JP2018159062A - Heat-conductive composite material, heat-conductive filler, and production method of the same - Google Patents

Heat-conductive composite material, heat-conductive filler, and production method of the same Download PDF

Info

Publication number
JP2018159062A
JP2018159062A JP2018051313A JP2018051313A JP2018159062A JP 2018159062 A JP2018159062 A JP 2018159062A JP 2018051313 A JP2018051313 A JP 2018051313A JP 2018051313 A JP2018051313 A JP 2018051313A JP 2018159062 A JP2018159062 A JP 2018159062A
Authority
JP
Japan
Prior art keywords
boron nitride
fine particles
nitride fine
composite material
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018051313A
Other languages
Japanese (ja)
Other versions
JP6826065B2 (en
Inventor
慈 佐々木
Shigeru Sasaki
慈 佐々木
田中 洋充
Hiromitsu Tanaka
洋充 田中
世里子 長谷川
Yoriko Hasegawa
世里子 長谷川
昌孝 出口
Masataka Deguchi
昌孝 出口
進一 三浦
Shinichi Miura
進一 三浦
真樹 寺田
Maki Terada
真樹 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Publication of JP2018159062A publication Critical patent/JP2018159062A/en
Application granted granted Critical
Publication of JP6826065B2 publication Critical patent/JP6826065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite material having excellent thermal conductivity.SOLUTION: A heat-conductive composite material is provided, which is prepared by dispersing a heat-conductive filler comprising boron nitride fine particles in a matrix. At least part of the boron nitride fine particles are partial cleavage boron nitride fine particles having a partial cleavage in a boron nitride fine particle; and the composite material includes swollen boron nitride fine particles resulting from such a phenomenon that the matrix fills a cleavage void in the partial cleavage boron nitride particle to swell the particle. On a basis of a cross section of the composite material, the total area of regions corresponding to the swollen boron nitride fine particles is 1 to 50% with respect to the cross-sectional area of the composite material.SELECTED DRAWING: None

Description

本発明は、熱伝導性複合材料及びそれに用いる熱伝導性フィラー、並びにそれらの製造方法に関する。   The present invention relates to a heat conductive composite material, a heat conductive filler used therefor, and a method for producing the same.

窒化ホウ素は熱伝導性の高い高絶縁性の材料として知られており、窒化ホウ素粒子を熱伝導性フィラーとしてマトリックス中に分散させた様々な熱伝導性複合材料が開発されている。例えば、特開2010−260225号公報(特許文献1)では、平均粒子径が相違する2種類の窒化ホウ素粉末を熱伝導性フィラーとして含有するシリコーン積層体を積層方向から切断してなる熱伝導性成形体が開示されている。   Boron nitride is known as a highly insulating material having high thermal conductivity, and various thermally conductive composite materials in which boron nitride particles are dispersed in a matrix as a thermally conductive filler have been developed. For example, in Japanese Patent Application Laid-Open No. 2010-260225 (Patent Document 1), thermal conductivity obtained by cutting a silicone laminate containing two types of boron nitride powders having different average particle diameters as thermal conductive fillers from the lamination direction. A shaped body is disclosed.

また、国際公開2008/042446号公報(特許文献2)では、少なくとも2種類の異なるタイプの窒化ホウ素粉体材料として、プレートレット窒化ホウ素粉体材料と窒化ホウ素粉体材料の球状凝集体とを含むポリマー組成物が開示されている。   Further, International Publication No. 2008/042446 (Patent Document 2) includes platelet boron nitride powder material and spherical aggregate of boron nitride powder material as at least two different types of boron nitride powder materials. A polymer composition is disclosed.

さらに、特開2015−6985号公報(特許文献3)では、窒化ホウ素凝集粒子中の一次粒子同士がカードハウス構造を有している窒化ホウ素凝集粒子よりなるフィラーと樹脂とを含む組成物が開示されている。   Furthermore, JP-A-2015-6985 (Patent Document 3) discloses a composition containing a filler and a resin composed of boron nitride aggregated particles in which primary particles in the boron nitride aggregated particles have a card house structure. Has been.

しかしながら、このような従来の熱伝導性複合材料であっても、熱伝導性の向上に限界があり、必ずしも十分な熱伝導性を達成できるものではなかった。   However, even such a conventional heat conductive composite material has a limit in improvement of heat conductivity, and sufficient heat conductivity cannot always be achieved.

特開2010−260225号公報JP 2010-260225 A 国際公開2008/042446号公報International Publication No. 2008/042446 特開2015−6985号公報JP2015-6985A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、熱伝導性を効率良く向上させることが可能な熱伝導性フィラー及びその製造方法と、優れた熱伝導性を有する熱伝導性複合材料及びその製造方法とを提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and is capable of efficiently improving thermal conductivity, a method for producing the same, and thermal conductivity having excellent thermal conductivity. It is an object to provide a functional composite material and a method for producing the same.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、窒化ホウ素粒子を含有する流体を高圧でノズルから噴射させて湿式衝突粉砕することにより、熱伝導性を効率良く向上させることが可能な熱伝導性フィラーが得られるようになり、その熱伝導性フィラーを用いることによって優れた熱伝導性を有する熱伝導性複合材料が得られることを見出し、本発明を完成するに至った。   As a result of intensive research to achieve the above object, the present inventors have improved the thermal conductivity efficiently by jetting a fluid containing boron nitride particles from a nozzle at high pressure and performing wet collision pulverization. The present inventors have found that a heat conductive composite material having excellent heat conductivity can be obtained by using the heat conductive filler, and the present invention has been completed. .

すなわち、本発明の熱伝導性フィラーの製造方法は、窒化ホウ素粒子を含有する流体を高圧でノズルから噴射させて湿式衝突粉砕することにより、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子からなる熱伝導性フィラーを得ることを特徴とする方法である。   That is, in the method for producing a thermally conductive filler of the present invention, the partially cleaved boron nitride fine particles in which the boron nitride fine particles are partially cleaved by jetting a fluid containing boron nitride particles from a nozzle at high pressure and performing wet collision pulverization. It is a method characterized by obtaining the heat conductive filler which consists of boron nitride microparticles | fine-particles containing.

このような本発明の熱伝導性フィラーの製造方法においては、前記高圧が30〜250MPaの圧力であり、前記流体を前記ノズルから噴射させる際の流速が200〜800m/sであることが好ましい。   In such a method for producing a thermally conductive filler of the present invention, it is preferable that the high pressure is 30 to 250 MPa, and the flow rate when the fluid is ejected from the nozzle is 200 to 800 m / s.

また、本発明の熱伝導性フィラーは、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子を含有する窒化ホウ素微粒子からなり、前記部分劈開窒化ホウ素微粒子の含有率が前記窒化ホウ素微粒子の全量に対して5体積%以上であることを特徴とするものである。   The thermally conductive filler of the present invention comprises boron nitride fine particles containing partially cleaved boron nitride fine particles in which the boron nitride fine particles are partially cleaved, and the content of the partially cleaved boron nitride fine particles is the total amount of the boron nitride fine particles. It is characterized by being 5% by volume or more.

このような本発明の熱伝導性フィラーにおいては、前記窒化ホウ素微粒子の平均粒子径が1〜100μmであることが好ましく、また、前記窒化ホウ素微粒子が六方晶系の板状窒化ホウ素微粒子であることが好ましい。   In such a heat conductive filler of the present invention, the boron nitride fine particles preferably have an average particle diameter of 1 to 100 μm, and the boron nitride fine particles are hexagonal plate-like boron nitride fine particles. Is preferred.

さらに、本発明の熱伝導性複合材料の製造方法は、
窒化ホウ素粒子を含有する流体を高圧でノズルから噴射させて湿式衝突粉砕することにより、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子を得る工程と、
前記部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子からなる熱伝導性フィラーをマトリックス中に分散させて、前記部分劈開窒化ホウ素微粒子の劈開空隙中に前記マトリックスが充填されて膨潤した膨潤窒化ホウ素微粒子を含有する熱伝導性複合材料を得る工程と、
を含むことを特徴とする方法である。
Furthermore, the manufacturing method of the heat conductive composite material of this invention is as follows.
A step of obtaining boron nitride fine particles including partially cleaved boron nitride fine particles in which boron nitride fine particles are partially cleaved by jetting a fluid containing boron nitride particles from a nozzle at high pressure and performing wet collision pulverization;
A thermally conductive filler composed of boron nitride fine particles including the partially cleaved boron nitride fine particles is dispersed in a matrix, and the swollen boron nitride fine particles that are swollen with the matrix filled in the cleaved voids of the partially cleaved boron nitride fine particles are contained. Obtaining a thermally conductive composite material,
It is the method characterized by including.

このような本発明の熱伝導性複合材料の製造方法においては、前記高圧が30〜250MPaの圧力であり、前記流体を前記ノズルから噴射させる際の流速が200〜800m/sであることが好ましい。   In such a method for producing a heat conductive composite material of the present invention, the high pressure is preferably 30 to 250 MPa, and the flow rate when the fluid is ejected from the nozzle is preferably 200 to 800 m / s. .

また、本発明の熱伝導性複合材料は、窒化ホウ素微粒子からなる熱伝導性フィラーをマトリックス中に分散させてなるものであって、
前記窒化ホウ素微粒子の少なくとも一部が、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子であり、
前記部分劈開窒化ホウ素微粒子の劈開空隙中に前記マトリックスが充填されて膨潤した膨潤窒化ホウ素微粒子が前記複合材料に含有されており、
前記複合材料の断面基準で、前記膨潤窒化ホウ素微粒子に相当する領域の合計面積が、前記複合材料の断面面積に対して1〜50%である、
ことを特徴とするものである。
The thermally conductive composite material of the present invention is obtained by dispersing a thermally conductive filler composed of boron nitride fine particles in a matrix,
At least a part of the boron nitride fine particles are partially cleaved boron nitride fine particles in which the boron nitride fine particles are partially cleaved,
The composite material contains swollen boron nitride fine particles that are swollen by filling the matrix into the cleavage voids of the partially cleaved boron nitride fine particles,
The total area of the region corresponding to the swollen boron nitride fine particles is 1 to 50% with respect to the cross-sectional area of the composite material on the basis of the cross-section of the composite material.
It is characterized by this.

このような本発明の熱伝導性複合材料においては、前記部分劈開窒化ホウ素微粒子の含有率が前記窒化ホウ素微粒子の全量に対して5体積%以上であることが好ましく、また、前記熱伝導性フィラーの含有率が前記複合材料の全量に対して10〜90体積%であることが好ましい。   In such a heat conductive composite material of the present invention, the content of the partially cleaved boron nitride fine particles is preferably 5% by volume or more based on the total amount of the boron nitride fine particles, and the heat conductive filler Is preferably 10 to 90% by volume based on the total amount of the composite material.

また、本発明の熱伝導性複合材料においては、前記熱伝導性フィラーとして、前記窒化ホウ素微粒子に加えて、熱伝導率が20W/mK以上である高熱伝導性微粒子が更に含有されていることが好ましい。   Moreover, in the heat conductive composite material of this invention, in addition to the said boron nitride microparticles | fine-particles, in addition to the said boron nitride microparticles | fine-particles, the high heat conductive microparticles | fine-particles which are 20 W / mK or more are contained further. preferable.

このように本発明の熱伝導性複合材料において前記高熱伝導性微粒子が含有されている場合は、前記窒化ホウ素微粒子の含有率が前記熱伝導性フィラーの全量に対して5体積%以上であることが好ましい。   As described above, when the thermally conductive composite material of the present invention contains the highly thermally conductive fine particles, the content of the boron nitride fine particles is 5% by volume or more with respect to the total amount of the thermally conductive filler. Is preferred.

さらに、このように本発明の熱伝導性複合材料において前記高熱伝導性微粒子が含有されている場合は、前記窒化ホウ素微粒子が六方晶系の板状窒化ホウ素微粒子であり、かつ、前記高熱伝導性微粒子が、立方晶窒化ホウ素、ダイヤモンド、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ケイ素及び炭化ケイ素からなる群から選択される少なくとも一種の微粒子であることが好ましい。   Further, when the high thermal conductive fine particles are contained in the heat conductive composite material of the present invention, the boron nitride fine particles are hexagonal plate-like boron nitride fine particles, and the high thermal conductivity The fine particles are preferably at least one fine particle selected from the group consisting of cubic boron nitride, diamond, aluminum nitride, aluminum oxide, magnesium oxide, zinc oxide, silicon nitride, and silicon carbide.

なお、本発明の熱伝導性フィラーを用いた熱伝導性複合材料によって優れた熱伝導性が得られる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の熱伝導性複合材料においては、熱伝導性フィラーとして用いられる窒化ホウ素微粒子のうちの少なくとも一部が、部分的に劈開して粒子の内部や端部に劈開面を有する部分劈開窒化ホウ素微粒子となっており、このような部分劈開窒化ホウ素微粒子は熱伝導性フィラーとしてマトリックス中に分散させる際に劈開空隙中にマトリックスが入り込んで膨潤した状態となる。そのため、部分的な劈開が形成されていない窒化ホウ素微粒子と比較して、このように膨潤した窒化ホウ素微粒子は見掛けの平均直径が増大するとともに変形しやすくなり、それによって複合材料中で窒化ホウ素微粒子間の接触が生じやすくなるとともに密着性が向上し、窒化ホウ素微粒子間の接触部位を通じて熱が拡散する熱伝導パスのネットワーク構造が効率良く形成されるとともに微粒子間の界面熱抵抗が大幅に低減するため、得られる複合材料の熱伝導性が向上して優れた熱伝導性が達成されるようになると本発明者らは推察する。また、窒化ホウ素微粒子内部の未劈開部分は、劈開前の窒化ホウ素粒子の高熱伝導性構造を保持しているため、粒子内部の熱の伝達も効率良く行うことができ、高熱伝導性の複合材料とした時に有利である。   The reason why excellent thermal conductivity is obtained by the thermally conductive composite material using the thermally conductive filler of the present invention is not necessarily clear, but the present inventors infer as follows. That is, in the thermally conductive composite material of the present invention, at least a part of the boron nitride fine particles used as the thermally conductive filler is partially cleaved and has a cleavage plane that has a cleavage plane inside or at the end of the particle. Boron nitride fine particles are formed. When such partially cleaved boron nitride fine particles are dispersed in the matrix as a thermally conductive filler, the matrix enters the cleaved voids and swells. Therefore, compared with boron nitride fine particles in which partial cleavage is not formed, the boron nitride fine particles swollen in this way are easily deformed as the apparent average diameter increases, and thereby boron nitride fine particles in the composite material. The contact between the particles is easy to occur and the adhesion is improved, the network structure of the heat conduction path through which heat diffuses through the contact sites between the boron nitride particles is efficiently formed, and the interfacial thermal resistance between the particles is greatly reduced. For this reason, the present inventors speculate that the thermal conductivity of the resulting composite material is improved and excellent thermal conductivity is achieved. In addition, since the uncleaved portion inside the boron nitride fine particles retains the high thermal conductivity structure of the boron nitride particles before the cleavage, the heat transfer inside the particles can be efficiently performed, and the high thermal conductivity composite material This is advantageous.

また、本発明の熱伝導性フィラーの製造方法においては、窒化ホウ素粒子を含有する流体を高圧でノズルから噴射させることにより、粒子同士が衝突あるいはせん断流動により微細化することによって結晶構造の破壊や過度の微細化を抑制しつつ湿式粉砕されるとともに、粒子が流体中で高圧でせん断流動圧縮させた状態から急激に圧力を低下させることにより、粒子に対して加わっていた圧力が急激に消失することで粒子内部から外部に向かって膨張する力が働き、それに伴って粒子が外側に引っ張られることによって粒子の内部や端部に部分的な劈開が生じて部分劈開窒化ホウ素微粒子が得られると本発明者らは推察する。   Further, in the method for producing a thermally conductive filler of the present invention, a fluid containing boron nitride particles is ejected from a nozzle at a high pressure, whereby the particles are refined by collision or shear flow, thereby destroying the crystal structure. While being finely pulverized while suppressing excessive miniaturization, the pressure applied to the particles suddenly disappears by rapidly decreasing the pressure from the state where the particles are sheared and compressed at high pressure in the fluid. As a result, a force that expands from the inside of the particle toward the outside acts, and along with this, the particle is pulled to the outside, so that partial cleavage occurs inside and at the end of the particle to obtain partially cleaved boron nitride fine particles. The inventors speculate.

本発明によれば、熱伝導性を効率良く向上させることが可能な熱伝導性フィラー及びその製造方法と、優れた熱伝導性を有する熱伝導性複合材料及びその製造方法とを提供することが可能となる。   According to the present invention, it is possible to provide a thermally conductive filler capable of efficiently improving thermal conductivity and a method for producing the same, a thermally conductive composite material having excellent thermal conductivity, and a method for producing the same. It becomes possible.

実施例及び比較例で作製した円柱状の複合材料及びそれから切り出した熱伝導率測定用試料を示す模式図である。It is a schematic diagram which shows the cylindrical composite material produced by the Example and the comparative example, and the sample for thermal conductivity measurement cut out from it. 実施例1で得られた複合材料の断面のSEM像の一例を示す走査型電子顕微鏡写真である。4 is a scanning electron micrograph showing an example of a cross-sectional SEM image of the composite material obtained in Example 1. FIG. 図2に示すSEM像において、二値化により膨潤窒化ホウ素微粒子に相当する領域以外の領域を濃色に着色した走査型電子顕微鏡写真である。In the SEM image shown in FIG. 2, it is the scanning electron micrograph which colored the area | region other than the area | region corresponded to the swelling boron nitride fine particle by binarization by binarization. 比較例1で得られた複合材料の断面のSEM像の一例を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing an example of a cross-sectional SEM image of the composite material obtained in Comparative Example 1. FIG. 図4に示すSEM像において、二値化により非膨潤窒化ホウ素粒子に相当する領域を濃色に着色した走査型電子顕微鏡写真である。In the SEM image shown in FIG. 4, it is the scanning electron micrograph which colored the area | region corresponded to the non-swelled boron nitride particle | grains by binarization by binarization.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の熱伝導性フィラーについて説明する。本発明の熱伝導性フィラーは、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子を含有する窒化ホウ素微粒子からなり、前記部分劈開窒化ホウ素微粒子の含有率が前記窒化ホウ素微粒子の全量に対して5体積%以上であることを特徴とするものである。   First, the thermally conductive filler of the present invention will be described. The thermally conductive filler of the present invention comprises boron nitride fine particles containing partially cleaved boron nitride fine particles in which the boron nitride fine particles are partially cleaved, and the content of the partially cleaved boron nitride fine particles is based on the total amount of the boron nitride fine particles. And 5 vol% or more.

本発明の熱伝導性フィラーは、窒化ホウ素(BN)の微粒子からなるものであり、窒化ホウ素には六方晶系の常圧相や立方晶系の高圧相等があるが、劈開のしやすさや熱伝導性の観点から六方晶系の板状窒化ホウ素微粒子であることが好ましい。   The thermally conductive filler of the present invention is composed of boron nitride (BN) fine particles, and boron nitride has a hexagonal atmospheric pressure phase, a cubic high pressure phase, and the like. From the viewpoint of conductivity, hexagonal plate-like boron nitride fine particles are preferable.

また、本発明の熱伝導性フィラーを構成する窒化ホウ素微粒子の大きさは特に制限されないが、平均粒子径が1〜100μmであることが好ましく、2〜50μmであることがより好ましく、3〜30μmであることが特に好ましい。窒化ホウ素微粒子の平均粒子径が前記下限未満では、得られる複合材料において窒化ホウ素微粒子間の粒界抵抗及び複合材料中の粒界数が増大するため熱伝導性が低下する傾向にあり、他方、前記上限を超えると、得られる複合材料における熱伝導性フィラーの分散均一性及び充填率が低下して熱伝導性が低下する傾向にある。なお、本明細書において、「平均粒子径」は、レーザー回折・散乱法によって求めた粒度分布における累積50%粒子径(メディアン径:D50)を意味する。   The size of the boron nitride fine particles constituting the heat conductive filler of the present invention is not particularly limited, but the average particle diameter is preferably 1 to 100 μm, more preferably 2 to 50 μm, and 3 to 30 μm. It is particularly preferred that If the average particle diameter of the boron nitride fine particles is less than the lower limit, the thermal conductivity tends to decrease because the grain boundary resistance between the boron nitride fine particles and the number of grain boundaries in the composite material increase in the obtained composite material, When the upper limit is exceeded, the dispersion uniformity and filling rate of the heat conductive filler in the resulting composite material are lowered, and the heat conductivity tends to be lowered. In the present specification, “average particle diameter” means a cumulative 50% particle diameter (median diameter: D50) in a particle size distribution determined by a laser diffraction / scattering method.

本発明においては、前記窒化ホウ素微粒子のうちの少なくとも一部が、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子となっていることが必要である。このような部分劈開窒化ホウ素微粒子は、窒化ホウ素微粒子が部分的に劈開して粒子の内部や端部に劈開面を有するものであり、熱伝導性フィラーとしてマトリックス中に分散させる際に劈開空隙(対向する劈開面の間の空隙)中にマトリックスが入り込んで膨潤した状態(膨潤窒化ホウ素微粒子)となる。   In the present invention, it is necessary that at least a part of the boron nitride fine particles are partially cleaved boron nitride fine particles in which the boron nitride fine particles are partially cleaved. Such partially cleaved boron nitride fine particles are those in which the boron nitride fine particles are partially cleaved and have a cleaved surface inside or at the end of the particle, and when dispersed in a matrix as a thermally conductive filler, The matrix enters the space between the opposing cleavage planes) and swells (swelled boron nitride fine particles).

なお、このような部分劈開窒化ホウ素微粒子は、得られる複合材料の断面の走査型電子顕微鏡(SEM)写真において膨潤窒化ホウ素微粒子として観察され、明度と形状に基づいて、劈開されずに未劈開のまま残っている未劈開窒化ホウ素粒子や、窒化ホウ素粒子が劈開により完全に分割されて得られた内部や端部に劈開面を有していない完全劈開窒化ホウ素微粒子と区別することができる。さらに、FIB−SEM(集束イオンビーム−走査型電子顕微鏡)による三次元分散構造観察によっても区別が可能である。以下、このような未劈開窒化ホウ素粒子と完全劈開窒化ホウ素微粒子とを合わせて「非膨潤窒化ホウ素微粒子」と総称する。   Such partially cleaved boron nitride fine particles are observed as swollen boron nitride fine particles in a scanning electron microscope (SEM) photograph of a cross-section of the obtained composite material, and are not cleaved without being cleaved based on brightness and shape. It can be distinguished from uncleaved boron nitride particles that remain as they are, and completely cleaved boron nitride particles that do not have a cleaved surface at the inside or at the end obtained by completely dividing the boron nitride particles by cleavage. Furthermore, it is also possible to distinguish by three-dimensional dispersion structure observation by FIB-SEM (focused ion beam-scanning electron microscope). Hereinafter, such uncleaved boron nitride particles and fully cleaved boron nitride particles are collectively referred to as “non-swelled boron nitride particles”.

本発明の熱伝導性フィラーにおいては、前記部分劈開窒化ホウ素微粒子の含有率が、前記窒化ホウ素微粒子の全量(前記部分劈開窒化ホウ素微粒子と前記未劈開窒化ホウ素粒子と前記完全劈開窒化ホウ素微粒子との総量)に対して5体積%以上となっていることが必要である。前記部分劈開窒化ホウ素微粒子の含有率が5体積%未満では、得られる複合材料中で窒化ホウ素微粒子間の接触部位を通じて熱が拡散する熱伝導パスのネットワーク構造が十分に形成されず、得られる複合材料の熱伝導性が十分に向上しない。また、得られる複合材料の熱伝導性がより向上するという観点から、前記部分劈開窒化ホウ素微粒子の含有率が前記窒化ホウ素微粒子の全量に対して10体積%以上であることが好ましく、20体積%以上であることがより好ましい。   In the thermally conductive filler of the present invention, the content of the partially cleaved boron nitride fine particles is the total amount of the boron nitride fine particles (the partially cleaved boron nitride fine particles, the uncleaved boron nitride particles, and the completely cleaved boron nitride fine particles. It is necessary to be 5% by volume or more with respect to the total amount). When the content of the partially cleaved boron nitride fine particles is less than 5% by volume, a network structure of a heat conduction path in which heat is diffused through contact portions between the boron nitride fine particles is not sufficiently formed in the obtained composite material, and the resulting composite is obtained. The thermal conductivity of the material does not improve sufficiently. From the viewpoint of further improving the thermal conductivity of the obtained composite material, the content of the partially cleaved boron nitride fine particles is preferably 10% by volume or more, and 20% by volume with respect to the total amount of the boron nitride fine particles. More preferably.

なお、前記窒化ホウ素微粒子の全量に対する前記部分劈開窒化ホウ素微粒子の含有率は、以下のようにして求められる。すなわち、得られる複合材料の断面の走査型電子顕微鏡写真(SEM像)において、明度と形状に基づいて、
(i)前記膨潤窒化ホウ素微粒子(前記部分劈開窒化ホウ素微粒子とその劈開空隙に取り込まれたマトリックス)に相当する領域と、
(ii)前記非膨潤窒化ホウ素微粒子(前記未劈開窒化ホウ素粒子及び前記完全劈開窒化ホウ素微粒子)に相当する領域と、
(iii)マトリックスのうち前記膨潤窒化ホウ素微粒子中に取り込まれずに存在するマトリックスに相当する領域と、
を区別して認識し、公知の二値化等の画像解析手法によりそれぞれの領域の面積を求めることができる。したがって、得られる複合材料の断面について、例えば、横60μm以上、縦40μm以上の測定領域を任意に10箇所以上抽出し、それぞれの測定領域のSEM像において(ii)前記非膨潤窒化ホウ素微粒子に相当する領域の合計面積を求め、当該測定領域における全ての窒化ホウ素が未劈開窒化ホウ素粒子である場合の全窒化ホウ素粒子に相当する領域の合計面積との関係から当該領域における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率を求めることができる。そして、全ての測定領域の平均値を算出することにより、用いた熱伝導性フィラーにおける前記窒化ホウ素微粒子の全量に対する前記部分劈開窒化ホウ素微粒子の含有率(平均値)が求められる。
The content of the partially cleaved boron nitride fine particles with respect to the total amount of the boron nitride fine particles is obtained as follows. That is, in the scanning electron micrograph (SEM image) of the cross section of the obtained composite material, based on the brightness and shape,
(I) a region corresponding to the swollen boron nitride fine particles (the partially cleaved boron nitride fine particles and the matrix incorporated in the cleaved voids thereof);
(Ii) a region corresponding to the non-swelled boron nitride fine particles (the uncleaved boron nitride particles and the completely cleaved boron nitride fine particles);
(Iii) a region of the matrix corresponding to a matrix that is not incorporated in the swollen boron nitride fine particles;
And the area of each region can be obtained by a known image analysis method such as binarization. Therefore, for the cross section of the obtained composite material, for example, 10 or more measurement regions having a width of 60 μm or more and a length of 40 μm or more are arbitrarily extracted, and in the SEM image of each measurement region, (ii) corresponds to the non-swelled boron nitride fine particles The total area of the region to be obtained is determined, and from the relationship with the total area of the region corresponding to all the boron nitride particles when all the boron nitrides in the measurement region are uncleaved boron nitride particles, The content of the partially cleaved boron nitride fine particles can be determined. Then, by calculating the average value of all the measurement regions, the content (average value) of the partially cleaved boron nitride fine particles with respect to the total amount of the boron nitride fine particles in the used thermally conductive filler is obtained.

このように本発明の熱伝導性フィラーは、前記部分劈開窒化ホウ素微粒子を所定量以上含有する前記窒化ホウ素微粒子からなるものであるが、マトリックスへの分散性をより向上させる観点から、窒化ホウ素微粒子の表面に水酸基、カルボキシル基、エステル基、アミド基、アミノ基等の官能基が結合していてもよい。   Thus, the thermally conductive filler of the present invention comprises the boron nitride fine particles containing a predetermined amount or more of the partially cleaved boron nitride fine particles. From the viewpoint of further improving dispersibility in the matrix, the boron nitride fine particles A functional group such as a hydroxyl group, a carboxyl group, an ester group, an amide group, an amino group, or the like may be bonded to the surface.

また、本発明の熱伝導性フィラーは、前記部分劈開窒化ホウ素微粒子を所定量以上含有する前記窒化ホウ素微粒子のみからなるものであってもよいが、前記窒化ホウ素微粒子に加えて、例えば、板状グラファイト、板状窒化アルミニウム、板状アルミナ、アルミフレーク、銅フレーク、ダイヤモンド、窒化ケイ素等の他の熱伝導性粒子や、SiC繊維、炭素繊維、カーボンナノチューブ、金属めっきを施した繊維、金属繊維等の他の熱伝導性繊維を更に含有していてもよい。   The thermally conductive filler of the present invention may be composed of only the boron nitride fine particles containing a predetermined amount or more of the partially cleaved boron nitride fine particles. In addition to the boron nitride fine particles, for example, a plate-like shape Other thermally conductive particles such as graphite, plate-like aluminum nitride, plate-like alumina, aluminum flake, copper flake, diamond, silicon nitride, SiC fiber, carbon fiber, carbon nanotube, metal-plated fiber, metal fiber, etc. Other heat conductive fibers may be further contained.

このように前記熱伝導性フィラーとして、前記窒化ホウ素微粒子に加えて他の熱伝導性材料が含有されている場合、他の熱伝導性材料として熱伝導率が20W/mK以上である高熱伝導性微粒子が含有されていることが好ましく、そのような高熱伝導性微粒子としては等方的に高熱伝導性を有するものがより好ましい。このように前記窒化ホウ素微粒子に加えて前記高熱伝導性微粒子が含有されることにより、得られる熱伝導性複合材料における熱伝導性がより向上する傾向にある。   As described above, when the thermally conductive filler contains another thermally conductive material in addition to the boron nitride fine particles, the thermal conductivity is 20 W / mK or more as the other thermally conductive material. Fine particles are preferably contained, and as such high heat conductive fine particles, those having isotropic high heat conductivity are more preferable. Thus, by containing the high thermal conductive fine particles in addition to the boron nitride fine particles, the thermal conductivity in the obtained thermally conductive composite material tends to be further improved.

また、このように前記高熱伝導性微粒子が含有されている場合は、前記窒化ホウ素微粒子が六方晶系の板状窒化ホウ素微粒子であり、かつ、前記高熱伝導性微粒子が、立方晶窒化ホウ素(熱伝導率:1000〜2000W/mK)、ダイヤモンド(熱伝導率:2000〜3000W/mK)、窒化アルミニウム(熱伝導率:150〜350W/mK)、酸化アルミニウム(熱伝導率:20〜35W/mK)、酸化マグネシウム(熱伝導率:45〜60W/mK)、酸化亜鉛(熱伝導率:20〜30W/mK)、窒化ケイ素(熱伝導率:80〜100W/mK)及び炭化ケイ素(熱伝導率:150〜170W/mK)からなる群から選択される少なくとも一種の微粒子であることが好ましい。なお、本明細書中における熱伝導率とは、室温(20℃)における熱伝導率である。   When the high thermal conductivity fine particles are contained in this way, the boron nitride fine particles are hexagonal plate-like boron nitride fine particles, and the high thermal conductivity fine particles are cubic boron nitride (thermal Conductivity: 1000 to 2000 W / mK), diamond (thermal conductivity: 2000 to 3000 W / mK), aluminum nitride (thermal conductivity: 150 to 350 W / mK), aluminum oxide (thermal conductivity: 20 to 35 W / mK) , Magnesium oxide (thermal conductivity: 45-60 W / mK), zinc oxide (thermal conductivity: 20-30 W / mK), silicon nitride (thermal conductivity: 80-100 W / mK) and silicon carbide (thermal conductivity: 150-170 W / mK) is preferable. In addition, the thermal conductivity in this specification is the thermal conductivity at room temperature (20 ° C.).

前記高熱伝導性微粒子の大きさは特に制限されないが、平均粒子径が0.1〜100μmであることが好ましく、0.3〜50μmであることがより好ましく、0.5〜30μmであることが特に好ましい。前記高熱伝導性微粒子の平均粒子径が前記下限未満では、得られる複合材料において熱伝導性フィラー間の粒界抵抗及び複合材料中の粒界数が増大するため熱伝導性が低下する傾向にあり、他方、前記上限を超えると、得られる複合材料における熱伝導性フィラーの分散均一性及び充填率が低下して熱伝導性が低下する傾向にある。   The size of the high thermal conductive fine particles is not particularly limited, but the average particle size is preferably 0.1 to 100 μm, more preferably 0.3 to 50 μm, and 0.5 to 30 μm. Particularly preferred. If the average particle size of the high thermal conductive fine particles is less than the lower limit, the thermal conductivity tends to decrease because the grain boundary resistance between the thermal conductive fillers and the number of grain boundaries in the composite material increase in the obtained composite material. On the other hand, when the above upper limit is exceeded, the dispersion uniformity and filling rate of the thermally conductive filler in the resulting composite material tend to decrease, and the thermal conductivity tends to decrease.

このように他の熱伝導性材料が含有される場合、本発明の熱伝導性フィラーの全量に対する前記窒化ホウ素微粒子の含有率は5体積%以上であることが好ましく、20体積%以上であることがより好ましく、60体積%以上であることが特に好ましい。   Thus, when other heat conductive materials are contained, the content of the boron nitride fine particles with respect to the total amount of the heat conductive filler of the present invention is preferably 5% by volume or more, and 20% by volume or more. Is more preferable, and 60% by volume or more is particularly preferable.

なお、このように前記窒化ホウ素微粒子に加えて前記高熱伝導性微粒子が含有されることにより、得られる熱伝導性複合材料の熱伝導性がより向上する傾向となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、高熱伝導性微粒子は粒子内熱抵抗が小さいという利点があるものの、概して硬い粒子であることから粒子間熱抵抗(界面熱抵抗)が大きくなり、そのような粒子を分散せしめた従前の複合材料においては高熱伝導性微粒子による熱伝導性の向上効果を十分に引き出すことが困難であった。それに対して、本発明においては前述の通り部分劈開窒化ホウ素微粒子が含有されており、そのような部分劈開窒化ホウ素微粒子は柔かく界面熱抵抗が低いだけでなく、部分的に劈開した構造が熱伝導性フィラーのネットワーク構造を形成して熱伝導のパスが効率良く形成される。そして、そのような熱伝導性フィラーの一部として前記高熱伝導性微粒子が共存する場合は、前記高熱伝導性微粒子の周りに界面熱抵抗の低い前記部分劈開窒化ホウ素微粒子が存在することにより、高熱伝導性微粒子同士が接触する界面が少なくなり、高熱伝導性微粒子が有する優れた粒子内熱伝導性が効果的に発揮されるようになると本発明者らは推察する。   In addition, the reason why the thermal conductivity of the obtained heat conductive composite material tends to be further improved by containing the high thermal conductivity fine particles in addition to the boron nitride fine particles is not necessarily clear, The present inventors infer as follows. In other words, high thermal conductivity fine particles have the advantage of low thermal resistance in the particles, but since they are generally hard particles, the thermal resistance between the particles (interfacial thermal resistance) increases, and the conventional composite in which such particles are dispersed is used. In the material, it is difficult to sufficiently bring out the effect of improving the thermal conductivity by the high thermal conductive fine particles. On the other hand, in the present invention, partially cleaved boron nitride fine particles are contained as described above, and such partially cleaved boron nitride fine particles have not only a soft and low interface thermal resistance, but also a partially cleaved structure having a heat conduction property. The heat conduction path is efficiently formed by forming the network structure of the conductive filler. When the high thermal conductivity fine particles coexist as a part of such a thermal conductive filler, the presence of the partially cleaved boron nitride fine particles having low interfacial thermal resistance around the high thermal conductivity fine particles increases the heat The present inventors speculate that the interface between the conductive fine particles decreases and the excellent intra-particle thermal conductivity of the high thermal conductive fine particles is effectively exhibited.

次に、本発明の熱伝導性複合材料について説明する。本発明の熱伝導性複合材料は、窒化ホウ素微粒子からなる熱伝導性フィラーをマトリックス中に分散させてなるものであって、
前記窒化ホウ素微粒子の少なくとも一部が、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子であり、
前記部分劈開窒化ホウ素微粒子の劈開空隙中に前記マトリックスが充填されて膨潤した膨潤窒化ホウ素微粒子が前記複合材料に含有されており、
前記複合材料の断面基準で、前記膨潤窒化ホウ素微粒子に相当する領域の合計面積が、前記複合材料の断面面積に対して1〜50%である、
ことを特徴とするものである。
Next, the thermally conductive composite material of the present invention will be described. The thermally conductive composite material of the present invention is obtained by dispersing a thermally conductive filler composed of boron nitride fine particles in a matrix,
At least a part of the boron nitride fine particles are partially cleaved boron nitride fine particles in which the boron nitride fine particles are partially cleaved,
The composite material contains swollen boron nitride fine particles that are swollen by filling the matrix into the cleavage voids of the partially cleaved boron nitride fine particles,
The total area of the region corresponding to the swollen boron nitride fine particles is 1 to 50% with respect to the cross-sectional area of the composite material on the basis of the cross-section of the composite material.
It is characterized by this.

すなわち、本発明の熱伝導性複合材料においては、前記部分劈開窒化ホウ素微粒子を含有する前記窒化ホウ素微粒子からなる本発明の熱伝導性フィラーがマトリックス中に分散して配置されており、前記部分劈開窒化ホウ素微粒子はその劈開空隙中に前記マトリックスが充填されて膨潤した膨潤窒化ホウ素微粒子となっている。   That is, in the thermally conductive composite material of the present invention, the thermally conductive filler of the present invention composed of the boron nitride fine particles containing the partially cleaved boron nitride fine particles is arranged dispersed in a matrix, and the partially cleaved boron nitride fine particles are arranged. The boron nitride fine particles are swollen boron nitride fine particles which are swollen by filling the matrix in the cleavage gap.

このような本発明の熱伝導性複合材料におけるマトリックスとしては、好ましくは絶縁性の樹脂や絶縁性のオイルが用いられ、具体的には特に制限されないが、樹脂としては例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂等の熱硬化性樹脂や、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン)、ポリオレフィンエラストマー、ポリエチレンテレフタレート、ナイロン、ABS樹脂、ポリアミド、ポリイミド、ポリアミドイミド、エチレン−プロピレン−ジエンゴム(EPDM)、ブチルゴム、天然ゴム、ポリイソプレン、ポリエーテルイミド等の熱可塑性樹脂が挙げられる。また、オイルとしては例えば、シリコーンオイル、フルオロエーテルオイル、鉱物油、動植物性天然油、パラフィン等が挙げられる。これらの樹脂やオイルは、1種を単独で使用しても2種以上を併用してもよい。   As a matrix in such a heat conductive composite material of the present invention, an insulating resin or an insulating oil is preferably used, and specifically, although not particularly limited, examples of the resin include an epoxy resin and a phenol resin. , Thermosetting resins such as silicone resins, polystyrene, polymethyl methacrylate, polycarbonate, polyolefin (eg, polyethylene, polypropylene), polyolefin elastomer, polyethylene terephthalate, nylon, ABS resin, polyamide, polyimide, polyamideimide, ethylene-propylene- Examples thereof include thermoplastic resins such as diene rubber (EPDM), butyl rubber, natural rubber, polyisoprene and polyetherimide. Examples of the oil include silicone oil, fluoroether oil, mineral oil, animal and vegetable natural oil, and paraffin. These resins and oils may be used alone or in combination of two or more.

本発明の熱伝導性複合材料においては、その断面基準で、前記膨潤窒化ホウ素微粒子に相当する領域の合計面積が、前記複合材料の断面面積に対して1〜50%となっていることが必要である。前記膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率が1%未満では、複合材料中で窒化ホウ素微粒子間の接触部位を通じて熱が拡散する熱伝導パスのネットワーク構造が十分に形成されず、得られる複合材料の熱伝導性が十分に向上しない。一方、前記膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率が50%を超えると、複合材料にする際にフィラーがかさ高くなって取り扱いが困難となる。また、複合材料の熱伝導性がより向上するという観点から、前記膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率が、前記複合材料の断面面積に対して5〜45%であることが好ましく、10〜40%であることがより好ましく、15〜35%であることが特に好ましい。   In the thermally conductive composite material of the present invention, the total area of the region corresponding to the swollen boron nitride fine particles needs to be 1 to 50% with respect to the cross-sectional area of the composite material on the basis of the cross section. It is. When the ratio of the total area of the regions corresponding to the swollen boron nitride fine particles is less than 1%, a network structure of a heat conduction path through which heat diffuses through the contact portion between the boron nitride fine particles in the composite material is not sufficiently formed. The thermal conductivity of the composite material is not sufficiently improved. On the other hand, if the ratio of the total area of the regions corresponding to the swollen boron nitride fine particles exceeds 50%, the filler becomes bulky and difficult to handle when making a composite material. Further, from the viewpoint of further improving the thermal conductivity of the composite material, the ratio of the total area of the region corresponding to the swollen boron nitride fine particles is preferably 5 to 45% with respect to the cross-sectional area of the composite material. 10 to 40% is more preferable, and 15 to 35% is particularly preferable.

なお、複合材料の断面基準で、前記膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率(前記複合材料の断面面積に対する比率)は、以下のようにして求められる。すなわち、前述のとおり、複合材料の断面の走査型電子顕微鏡写真(SEM像)において、明度と形状に基づいて、
(i)前記膨潤窒化ホウ素微粒子(前記部分劈開窒化ホウ素微粒子とその劈開空隙に取り込まれたマトリックス)に相当する領域と、
(ii)前記非膨潤窒化ホウ素微粒子(前記未劈開窒化ホウ素粒子及び前記完全劈開窒化ホウ素微粒子)に相当する領域と、
(iii)マトリックスのうち前記膨潤窒化ホウ素微粒子中に取り込まれずに存在するマトリックスに相当する領域と、
を区別して認識し、公知の二値化等の画像解析手法によりそれぞれの領域の面積を求めることができる。したがって、複合材料の断面について、例えば、横60μm以上、縦40μm以上の測定領域を任意に10箇所以上抽出し、それぞれの測定領域のSEM像において(i)前記膨潤窒化ホウ素微粒子に相当する領域の合計面積を求め、当該測定領域の面積に対する比率として当該領域における前記膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率を求めることができる。そして、全ての測定領域の平均値を算出することにより、測定対象の熱伝導性複合材料について、その断面基準で、前記膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率(前記複合材料の断面面積に対する比率、平均値)が求められる。
Note that the ratio of the total area of the regions corresponding to the swollen boron nitride fine particles (ratio to the cross-sectional area of the composite material) on the basis of the cross-section of the composite material is obtained as follows. That is, as described above, in the scanning electron micrograph (SEM image) of the cross section of the composite material, based on the brightness and shape,
(I) a region corresponding to the swollen boron nitride fine particles (the partially cleaved boron nitride fine particles and the matrix incorporated in the cleaved voids thereof);
(Ii) a region corresponding to the non-swelled boron nitride fine particles (the uncleaved boron nitride particles and the completely cleaved boron nitride fine particles);
(Iii) a region of the matrix corresponding to a matrix that is not incorporated in the swollen boron nitride fine particles;
And the area of each region can be obtained by a known image analysis method such as binarization. Therefore, with respect to the cross section of the composite material, for example, 10 or more measurement regions having a width of 60 μm or more and a length of 40 μm or more are arbitrarily extracted, and in the SEM image of each measurement region, (i) the region corresponding to the swollen boron nitride fine particles The total area can be obtained, and the ratio of the total area of the region corresponding to the swollen boron nitride fine particles in the region can be obtained as the ratio to the area of the measurement region. Then, by calculating the average value of all the measurement regions, the ratio of the total area of the regions corresponding to the swollen boron nitride fine particles (the cross section of the composite material) on the cross-sectional basis for the heat conductive composite material to be measured The ratio to the area, the average value) is obtained.

本発明の熱伝導性複合材料においては、前記熱伝導性フィラーの含有率が前記複合材料の全量に対して10〜90体積%であることが好ましく、15〜80体積%であることがより好ましく、20〜70体積%であることが特に好ましい。前記熱伝導性フィラーの含有率が前記下限未満では、複合材料中で窒化ホウ素微粒子(前記高熱伝導性微粒子を含有する場合は前記窒化ホウ素微粒子及び前記高熱伝導性微粒子)間の接触部位を通じて熱が拡散する熱伝導パスのネットワーク構造が十分に形成されず、得られる複合材料の熱伝導性が十分に向上しない傾向にある。一方、前記熱伝導性フィラーの含有率が前記上限を超えると、膨潤窒化ホウ素微粒子領域にマトリックスが十分に浸透せず、空隙が生じやすくなり、フィラーの部分劈開による高熱伝導化の効果が相殺されてしまい、また、粒子同士の立体的な干渉により充填率が低下してしまう傾向にある。   In the heat conductive composite material of this invention, it is preferable that the content rate of the said heat conductive filler is 10-90 volume% with respect to the whole quantity of the said composite material, and it is more preferable that it is 15-80 volume%. It is especially preferable that it is 20-70 volume%. When the content of the heat conductive filler is less than the lower limit, heat is transmitted through a contact portion between the boron nitride fine particles (the boron nitride fine particles and the high heat conductive fine particles when the high heat conductive fine particles are included) in the composite material. The network structure of the diffusing heat conduction path is not sufficiently formed, and the thermal conductivity of the obtained composite material tends not to be sufficiently improved. On the other hand, if the content of the thermally conductive filler exceeds the upper limit, the matrix does not sufficiently penetrate into the swollen boron nitride fine particle region, voids are likely to be generated, and the effect of high thermal conductivity due to partial cleavage of the filler is offset. In addition, the filling rate tends to decrease due to steric interference between the particles.

次に、本発明の熱伝導性フィラーの製造方法及び本発明の熱伝導性複合材料の製造方法について説明する。   Next, the manufacturing method of the heat conductive filler of this invention and the manufacturing method of the heat conductive composite material of this invention are demonstrated.

先ず、本発明の熱伝導性フィラーの製造方法(本発明の熱伝導性複合材料の製造方法の前段工程)においては、窒化ホウ素粒子を含有する流体を高圧でノズルから噴射させて湿式衝突粉砕することにより、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子からなる熱伝導性フィラーを得る(湿式粉砕工程)。   First, in the method for producing a thermally conductive filler of the present invention (the pre-stage step of the method for producing a thermally conductive composite material of the present invention), a fluid containing boron nitride particles is jetted from a nozzle at high pressure and wet collision pulverization is performed. Thus, a thermally conductive filler made of boron nitride fine particles including partially cleaved boron nitride fine particles in which the boron nitride fine particles are partially cleaved is obtained (wet pulverization step).

このような本発明にかかる湿式粉砕工程においては、原料粒子としての窒化ホウ素粒子を含有する流体を高圧でノズルから噴射させることにより、粒子同士が衝突あるいはせん断流動により微細化することによって結晶構造の破壊や過度の微細化を抑制しつつ湿式粉砕されるとともに、粒子が流体中で高圧でせん断流動圧縮させた状態から急激に圧力を低下させることにより、粒子に対して加わっていた圧力が急激に消失することで粒子内部から外部に向かって膨張する力が働き、それに伴って粒子が外側に引っ張られることによって粒子の内部や端部に部分的な劈開が生じて前述の部分劈開窒化ホウ素微粒子が得られるようになる。   In such a wet pulverization process according to the present invention, a fluid containing boron nitride particles as raw material particles is ejected from a nozzle at a high pressure, whereby the particles are refined by collision or shear flow, thereby forming a crystal structure. While being pulverized wet while suppressing destruction and excessive miniaturization, the pressure applied to the particles is drastically reduced by reducing the pressure rapidly from the state where the particles are sheared and compressed at high pressure in the fluid. By disappearing, a force that expands from the inside of the particle toward the outside works, and the particle is pulled outward along with it, so that partial cleavage occurs inside or at the end of the particle, and the above-mentioned partially cleaved boron nitride fine particles are formed. It will be obtained.

このような湿式粉砕工程に用いる装置としては、特に制限されず、原料粒子を含有する流体を高圧でノズルから噴射させて湿式衝突粉砕させて微細化する原理に基づく市販の湿式粉砕装置(湿式微細化装置)を用いることができる。また、窒化ホウ素粒子の結晶構造の破壊や過度の微細化を抑制しつつ湿式粉砕するという観点から、ストレート型のノズルを備える湿式粉砕装置を用いることが好ましい。   The apparatus used in such a wet pulverization step is not particularly limited, and a commercially available wet pulverization apparatus (wet micronizer) based on the principle of spraying a fluid containing raw material particles from a nozzle at a high pressure and performing wet collision pulverization to make it fine. Can be used. Moreover, it is preferable to use a wet pulverizer equipped with a straight type nozzle from the viewpoint of wet pulverization while suppressing destruction of crystal structure of the boron nitride particles and excessive miniaturization.

また、原料粒子として用いる窒化ホウ素粒子も特に制限されず、目的とする窒化ホウ素微粒子の平均粒子径等に応じて、平均粒子径が2〜200μm(より好ましくは10〜60μm)程度の市販の窒化ホウ素粉末(好ましくは六方晶系の板状窒化ホウ素粉末)を用いることができる。   Further, the boron nitride particles used as the raw material particles are not particularly limited, and are commercially available nitrides having an average particle size of about 2 to 200 μm (more preferably 10 to 60 μm) depending on the average particle size of the target boron nitride fine particles. Boron powder (preferably hexagonal plate-like boron nitride powder) can be used.

また、前記窒化ホウ素粒子とともにノズルから噴射させる流体の分散媒も特に制限されず、例えば、水;N−メチル−2−ピロリドン、クロロホルム、ジクロロメタン、四塩化炭素、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、テトラヒドロフラン、ジメチルホルムアルデヒド、ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ヘキサノール、オクタノール、ヘキサフルオロイソプロパノール、エチレングリコール、プロピレングリコール、テトラメチレングリコール、テトラエチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、クロロフェノール、フェノール、テトラヒドロフラン、スルホラン、1,3−ジメチル−2−イミダゾリジノン、γ−ブチロラクトン、N−ジメチルピロリドン、ペンタン、ヘキサン、ネオペンタン、シクロヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、デカン、ジエチルエーテル等の有機溶媒;シリコーンオイル、流動パラフィン等のオイル類が挙げられる。   Also, the dispersion medium of the fluid ejected from the nozzle together with the boron nitride particles is not particularly limited, and for example, water; N-methyl-2-pyrrolidone, chloroform, dichloromethane, carbon tetrachloride, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl Ketone, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, tetrahydrofuran, dimethylformaldehyde, dimethylacetamide, dimethyl sulfoxide, acetonitrile, methanol, ethanol, propanol, isopropanol, Butanol, hexanol, octanol, hexafluoroisopropanol, ethylene glycol, propylene glycol, tetramethylene glycol Tetraethylene glycol, hexamethylene glycol, diethylene glycol, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, trichlorobenzene, chlorophenol, phenol, tetrahydrofuran, sulfolane, 1,3-dimethyl-2-imidazolidinone, γ-butyrolactone, N -Organic solvents such as dimethylpyrrolidone, pentane, hexane, neopentane, cyclohexane, heptane, octane, isooctane, nonane, decane, diethyl ether; and oils such as silicone oil and liquid paraffin.

さらに、前記窒化ホウ素粒子を含有する流体(分散液)の濃度も特に制限されないが、前記窒化ホウ素粒子の含有率が0.1〜20体積%が好ましく、0.5〜10体積%がより好ましい。前記分散液の濃度が前記下限未満では劈開窒化ホウ素微粒子の収率が小さくなる傾向にあり、他方、前記上限を超えると分散液の粘度が高くなり粉砕処理が困難となる傾向にある。   Further, the concentration of the fluid (dispersion) containing the boron nitride particles is not particularly limited, but the content of the boron nitride particles is preferably 0.1 to 20% by volume, more preferably 0.5 to 10% by volume. . When the concentration of the dispersion is less than the lower limit, the yield of the cleaved boron nitride fine particles tends to be small. On the other hand, when the concentration exceeds the upper limit, the viscosity of the dispersion tends to be high and the pulverization tends to be difficult.

また、前記湿式粉砕処理の際の諸条件としては、特に制限されるものではないが、前記部分劈開窒化ホウ素微粒子が効率良く得られるという観点から、以下の諸条件が好ましい。
噴射前圧力:30〜250MPa(より好ましくは50〜200MPa)
噴射後圧力:常圧
ノズル径:0.1〜0.5mm
流量:0.1〜7.0L/min(より好ましくは0.5〜1.1L/min)
ノズル噴射流速:200〜800m/s(より好ましくは300〜700m/s)。
In addition, the conditions for the wet pulverization treatment are not particularly limited, but the following conditions are preferable from the viewpoint that the partially cleaved boron nitride fine particles can be obtained efficiently.
Pressure before injection: 30 to 250 MPa (more preferably 50 to 200 MPa)
Pressure after injection: Normal pressure Nozzle diameter: 0.1-0.5mm
Flow rate: 0.1-7.0 L / min (more preferably 0.5-1.1 L / min)
Nozzle injection flow rate: 200 to 800 m / s (more preferably 300 to 700 m / s).

前記湿式粉砕処理における噴射前圧力や流量やノズル噴射流速が前記下限未満では、前記窒化ホウ素粒子の劈開が進行しにくくなり、前記部分劈開窒化ホウ素微粒子が十分に得られなくなる傾向にある。他方、前記湿式粉砕処理における噴射前圧力や流量やノズル噴射流速が前記上限を超えると、前記窒化ホウ素粒子の劈開が進行し過ぎてしまい、大半の窒化ホウ素粒子が劈開により完全に分割されて前記完全劈開窒化ホウ素微粒子となり、前記部分劈開窒化ホウ素微粒子が十分に得られなくなる傾向にある。   When the pre-injection pressure, flow rate, and nozzle injection flow rate in the wet pulverization treatment are less than the lower limit, the cleavage of the boron nitride particles is difficult to proceed, and the partially cleaved boron nitride fine particles tend not to be sufficiently obtained. On the other hand, when the pre-injection pressure, flow rate or nozzle injection flow rate in the wet pulverization process exceeds the upper limit, the cleavage of the boron nitride particles proceeds too much, and most of the boron nitride particles are completely divided by cleavage and the It becomes completely cleaved boron nitride fine particles, and the partially cleaved boron nitride fine particles tend not to be sufficiently obtained.

さらに、前記窒化ホウ素粒子に前記湿式粉砕処理を施す回数は1回でもよいが、前記窒化ホウ素粒子に前記湿式粉砕処理を繰り返し施して所望量の前記部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子を得るようにしてもよい。このように前記湿式粉砕処理を繰り返し施す場合、その繰り返す回数(パス数)は2〜20回(より好ましくは2〜10回)程度が好ましい。湿式粉砕処理を繰り返す回数(パス数)が前記上限を超えると、前記窒化ホウ素粒子の劈開が進行し過ぎてしまい、大半の窒化ホウ素粒子が劈開により完全に分割されて前記完全劈開窒化ホウ素微粒子となり、前記部分劈開窒化ホウ素微粒子が十分に得られなくなる傾向にある。   Further, the wet pulverization treatment may be performed once on the boron nitride particles, but the boron nitride particles are repeatedly subjected to the wet pulverization treatment to obtain boron nitride fine particles including the desired amount of the partially cleaved boron nitride fine particles. You may do it. Thus, when performing the said wet grinding process repeatedly, the frequency | count (pass number) of repeating is preferably about 2-20 times (more preferably 2-10 times). If the number of times the wet pulverization process is repeated (the number of passes) exceeds the upper limit, the cleavage of the boron nitride particles proceeds excessively, and most of the boron nitride particles are completely divided by cleavage to become the completely cleaved boron nitride fine particles. The partially cleaved boron nitride fine particles tend not to be sufficiently obtained.

前記湿式粉砕工程においては、前記湿式粉砕処理の後に、必要に応じてろ過、洗浄、及び乾燥処理を施して前記部分劈開窒化ホウ素微粒子を含む前記窒化ホウ素微粒子を得るが、かかるろ過、洗浄、及び乾燥処理としてはいずれも特に制限されず、公知の方法を適宜採用することができる。   In the wet pulverization step, after the wet pulverization treatment, the boron nitride fine particles containing the partially cleaved boron nitride fine particles are obtained by performing filtration, washing, and drying treatment as necessary, but such filtration, washing, and Any drying process is not particularly limited, and a known method can be appropriately employed.

次に、本発明の熱伝導性複合材料の製造方法の後段工程においては、前記部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子(前記高熱伝導性微粒子を含有する場合は前記窒化ホウ素微粒子及び前記高熱伝導性微粒子)からなる熱伝導性フィラーをマトリックス中に分散させて、前記部分劈開窒化ホウ素微粒子の劈開空隙中に前記マトリックスが充填されて膨潤した膨潤窒化ホウ素微粒子を含有する熱伝導性複合材料を得る(複合工程)。   Next, in the latter step of the method for producing a heat conductive composite material of the present invention, boron nitride fine particles containing the partially cleaved boron nitride fine particles (if the high heat conductive fine particles are included, the boron nitride fine particles and the high heat conductive The thermally conductive filler comprising the finely divided fine particles) is dispersed in the matrix to obtain the thermally conductive composite material containing the swollen boron nitride fine particles that are swollen by filling the matrix into the cleaved voids of the partially cleaved boron nitride fine particles. (Composite process).

このような本発明にかかる複合工程においては、先ず、前記部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子からなる熱伝導性フィラーとマトリックスとを混合する。その際、得られる複合材料中の熱伝導性フィラーの含有率が目的の含有率となるように熱伝導性フィラーとマトリックスとの混合割合を定める。また、熱伝導性フィラーとマトリックスとを混合する方法は特に制限されず、公知の混合方法が適宜用いられる。   In such a composite process according to the present invention, first, a thermally conductive filler composed of boron nitride fine particles including the partially cleaved boron nitride fine particles and a matrix are mixed. At that time, the mixing ratio of the heat conductive filler and the matrix is determined so that the content of the heat conductive filler in the obtained composite material becomes the target content. Moreover, the method in particular of mixing a heat conductive filler and a matrix is not restrict | limited, A well-known mixing method is used suitably.

このようなマトリックスとして前記オイルを用いる場合は、前記熱伝導性フィラーと前記オイルとを混合して均一スラリーとすることにより前記熱伝導性複合材料を得ることができる。すなわち、このように前記熱伝導性フィラーと前記オイルとを混合する過程において、前記部分劈開窒化ホウ素微粒子の劈開空隙中に前記オイルが入り込んで膨潤窒化ホウ素微粒子となり、前記膨潤窒化ホウ素微粒子を含有する熱伝導性複合材料が得られる。   When the oil is used as such a matrix, the heat conductive composite material can be obtained by mixing the heat conductive filler and the oil into a uniform slurry. That is, in the process of mixing the thermally conductive filler and the oil in this way, the oil enters the cleaved voids of the partially cleaved boron nitride fine particles to become swollen boron nitride fine particles, and contains the swollen boron nitride fine particles. A thermally conductive composite material is obtained.

また、このようなマトリックスとして前記樹脂を用いる場合は、前記熱伝導性フィラーと前記樹脂とを混合して均一混合物とし、得られた混合物を成形することにより前記熱伝導性複合材料を得ることができる。すなわち、このように前記熱伝導性フィラーと前記樹脂とを混合及び成形する過程において、前記部分劈開窒化ホウ素微粒子の劈開空隙中に前記樹脂が入り込んで膨潤窒化ホウ素微粒子となり、前記膨潤窒化ホウ素微粒子を含有する熱伝導性複合材料が得られる。   In addition, when the resin is used as such a matrix, the heat conductive composite material can be obtained by mixing the heat conductive filler and the resin to form a uniform mixture, and molding the obtained mixture. it can. That is, in the process of mixing and molding the thermally conductive filler and the resin in this way, the resin enters into the cleaved voids of the partially cleaved boron nitride fine particles to become swollen boron nitride fine particles, and the swollen boron nitride fine particles A heat conductive composite material is obtained.

このように前記熱伝導性フィラーと前記樹脂とを混合して均一混合物とする際に、分散媒を更に加えて均一スラリーとしてもよく、その場合は真空乾燥等の公知の方法で分散媒を除去した後に成形することが好ましい。このような分散媒としては特に制限されず、前記窒化ホウ素粒子とともにノズルから噴射させる流体の分散媒として挙げた有機溶媒と同様の有機溶媒を適宜用いてもよい。   Thus, when the heat conductive filler and the resin are mixed to form a uniform mixture, a dispersion medium may be further added to form a uniform slurry, in which case the dispersion medium is removed by a known method such as vacuum drying. After forming, it is preferable to mold. Such a dispersion medium is not particularly limited, and an organic solvent similar to the organic solvent mentioned as the dispersion medium of the fluid ejected from the nozzle together with the boron nitride particles may be appropriately used.

また、前記混合物を成形する際に加圧して圧縮することが好ましい。このような圧縮方法としては特に制限されず、一軸圧縮であっても二軸圧縮であってもよい。また、静水圧で等方的に圧縮してもよい。また、圧縮時の圧力も特に制限はないが、5〜20MPaが好ましい。圧縮時の圧力が前記下限未満になると、得られる複合材料に空隙が残存しやすくなる傾向にあり、他方、前記上限を超えると、得られる複合材料内のフィラーの配向制御が困難となり、残留ひずみが発生する傾向にある。   Moreover, it is preferable to compress and pressurize when the said mixture is shape | molded. Such a compression method is not particularly limited, and may be uniaxial compression or biaxial compression. Moreover, you may compress isotropically by a hydrostatic pressure. Further, the pressure at the time of compression is not particularly limited, but 5 to 20 MPa is preferable. If the pressure during compression is less than the lower limit, voids tend to remain in the obtained composite material.On the other hand, if the pressure exceeds the upper limit, it becomes difficult to control the orientation of the filler in the obtained composite material, resulting in residual strain. Tend to occur.

さらに、前記混合物を成形する際に樹脂を固化させる方法としては特に制限はなく、公知の方法、例えば、樹脂として熱可塑性樹脂を用いた場合には放冷等の冷却による方法、各種(熱、光、水)硬化性樹脂を用いた場合にはそれぞれ適切な硬化方法を採用することができる。また、このような固化は、成形時又は成形後のいずれにおいて実施してもよい。   Furthermore, the method for solidifying the resin when molding the mixture is not particularly limited. For example, when a thermoplastic resin is used as the resin, a method by cooling such as cooling, various (heat, When a light, water) curable resin is used, an appropriate curing method can be employed. Such solidification may be performed either during molding or after molding.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
原料粒子としての窒化ホウ素粒子としてデンカ株式会社製「デンカボロンナイトライド粉 SGP」(平均粒子径:18μm、六方晶板状窒化ホウ素(BN)粒子)を用い、N−メチル−2−ピロリドン(NMP)を分散媒とする5体積%分散液を得た。次いで、市販のストレート型ノズルを備えた湿式粉砕装置を用い、噴射前のチャンバー内圧力を200MPaとし、前記窒化ホウ素粒子を含有する分散液をノズル(ノズル径:0.2mm)から流量1.069L/min、流速632m/sで噴射させ、高圧でせん断流動圧縮された状態から常圧まで急激に圧力を低下させることにより、1回目の湿式粉砕処理が施された分散液を得た。さらに、得られた分散液を再び同じ条件でノズルから噴射させる湿式粉砕処理を計10回繰り返し(パス数:10回)、湿式粉砕された窒化ホウ素微粒子を含有する分散液を得た。そして、得られた分散液から窒化ホウ素微粒子をろ過し、メタノールで洗浄した後に真空乾燥して、湿式粉砕された窒化ホウ素微粒子を得た。得られた窒化ホウ素微粒子の平均粒子径は5μmであった。
Example 1
“Dencaboron nitride powder SGP” (average particle diameter: 18 μm, hexagonal plate boron nitride (BN) particles) manufactured by Denka Co., Ltd. was used as the boron nitride particles as raw material particles, and N-methyl-2-pyrrolidone (NMP) ) Was used as a dispersion medium to obtain a 5% by volume dispersion. Next, using a wet pulverizer equipped with a commercially available straight type nozzle, the pressure in the chamber before injection was set to 200 MPa, and the dispersion containing the boron nitride particles was flowed from the nozzle (nozzle diameter: 0.2 mm) at a flow rate of 1.069 L. The dispersion was subjected to the first wet pulverization treatment by injecting at a flow rate of 632 m / s at a flow rate of / min and abruptly reducing the pressure from the state of shear flow compression at high pressure to normal pressure. Further, the wet pulverization treatment in which the obtained dispersion was again sprayed from the nozzle under the same conditions was repeated a total of 10 times (the number of passes: 10 times) to obtain a dispersion containing wet-pulverized boron nitride fine particles. Then, boron nitride fine particles were filtered from the obtained dispersion, washed with methanol, and then vacuum dried to obtain wet-pulverized boron nitride fine particles. The average particle diameter of the obtained boron nitride fine particles was 5 μm.

次いで、得られた窒化ホウ素微粒子を熱伝導性フィラーとし、一液熱硬化型エポキシ樹脂(セメダイン社製「エポキシ樹脂 EP160」)をマトリックスとして、以下のようにして複合材料を得た。すなわち、先ず、得られる複合材料中のフィラー(窒化ホウ素微粒子)含有率が40体積%となるように、前記エポキシ樹脂のジクロロメタン溶液(濃度:6.0体積%)と前記窒化ホウ素微粒子とを混合し、得られたスラリーを撹拌しながらジクロロメタンを揮発させた後に約15分真空乾燥してジクロロメタンを完全に除去して、前記窒化ホウ素微粒子が前記エポキシ樹脂中に分散した混合物を得た。次いで、得られた混合物を、110℃に予熱した円筒容器(内径:14mmφ)中に成形後の厚みが35mmとなるように充填し、円筒容器の長手方向に7.5MPaの圧力で圧縮した状態で110℃に30分維持してエポキシ樹脂を硬化せしめて円柱状の熱伝導性複合材料を得た。得られた複合材料の空隙率は0%であった。   Next, using the obtained boron nitride fine particles as a thermally conductive filler and using a one-component thermosetting epoxy resin (“Epoxy resin EP160” manufactured by Cemedine Co.) as a matrix, a composite material was obtained as follows. That is, first, a dichloromethane solution (concentration: 6.0 vol%) of the epoxy resin and the boron nitride fine particles are mixed so that the filler (boron nitride fine particle) content in the obtained composite material is 40 vol%. The resulting slurry was stirred to evaporate dichloromethane and then vacuum dried for about 15 minutes to completely remove the dichloromethane to obtain a mixture in which the boron nitride fine particles were dispersed in the epoxy resin. Next, the obtained mixture was filled in a cylindrical container (inner diameter: 14 mmφ) preheated to 110 ° C. so that the thickness after molding was 35 mm, and compressed in a longitudinal direction of the cylindrical container at a pressure of 7.5 MPa. And maintained at 110 ° C. for 30 minutes to cure the epoxy resin to obtain a cylindrical heat conductive composite material. The porosity of the obtained composite material was 0%.

<熱伝導率測定>
図1に示すように、円柱状の複合材料1から熱伝導率測定用試料2(x軸方向長さ:3mm、y軸方向長さ:10mm、z軸方向長さ:10mm)を切り出し、前記試料の厚さ方向(x軸方向)を熱流方向としてキセノンフラッシュアナライザー(NETZSCH社製「LFA 447 NanoFlash」)を用いて圧縮方向に垂直な方向(x軸方向)の熱拡散率を測定した。
<Measurement of thermal conductivity>
As shown in FIG. 1, a sample 2 for thermal conductivity measurement (x-axis direction length: 3 mm, y-axis direction length: 10 mm, z-axis direction length: 10 mm) is cut out from the cylindrical composite material 1, The thermal diffusivity in the direction perpendicular to the compression direction (x-axis direction) was measured using a xenon flash analyzer (“LFA 447 NanoFlash” manufactured by NETZSCH) with the thickness direction (x-axis direction) of the sample as the heat flow direction.

また、前記試料の比熱を熱振動型示差走査熱量測定装置(ティー・エイ・インスツル社製)を用いてDSC法により測定した。さらに、前記試料の密度を水中置換法(アルキメデス法)により求めた。これらの結果から次式:
熱伝導率(W/(m・K))=比熱(J/(kg・K))×密度(kg/m)×熱拡散率(m/秒)
により、圧縮方向に垂直な方向(x軸方向)の熱伝導率を求めた。得られた結果を表2に示す。
Further, the specific heat of the sample was measured by a DSC method using a thermal vibration type differential scanning calorimeter (manufactured by TA Instruments Inc.). Furthermore, the density of the sample was determined by an underwater substitution method (Archimedes method). From these results:
Thermal conductivity (W / (m · K)) = specific heat (J / (kg · K)) × density (kg / m 3 ) × thermal diffusivity (m 2 / sec)
Thus, the thermal conductivity in the direction perpendicular to the compression direction (x-axis direction) was obtained. The obtained results are shown in Table 2.

<断面の電子顕微鏡観察及び構造解析>
円柱状の複合材料から断面の電子顕微鏡観察用の試料を切り出し、任意の10箇所の断面測定領域(実施例1においては縦210ミクロン、横70ミクロンの領域)について研磨機(ビューラー社製「ミニメットTM1000」)を用いて機械研磨を施した後に走査型電子顕微鏡((株)日立ハイテクノロジーズ製「NB−5000」)を用いて断面の電子顕微鏡観察を行った。得られた走査型電子顕微鏡写真(SEM像)の一例を図2に示す。
<Electron microscope observation and structural analysis of cross section>
A sample for electron microscope observation of a cross section was cut out from a cylindrical composite material, and a polishing machine (“Bulmet” manufactured by Buehler Co., Ltd.) was used for any 10 cross-section measurement regions (regions of 210 microns long and 70 microns wide in Example 1). After performing mechanical polishing using TM 1000 "), the cross-section was observed with an electron microscope using a scanning electron microscope (" NB-5000 "manufactured by Hitachi High-Technologies Corporation). An example of the obtained scanning electron micrograph (SEM image) is shown in FIG.

次いで、得られた各測定領域のSEM像において、明度と形状に基づいて、
(i)膨潤窒化ホウ素微粒子(部分劈開窒化ホウ素微粒子とその劈開空隙に取り込まれたマトリックス)に相当する領域と、
(ii)非膨潤窒化ホウ素微粒子(未劈開窒化ホウ素粒子及び完全劈開窒化ホウ素微粒子)に相当する領域と、
(iii)マトリックスのうち前記膨潤窒化ホウ素微粒子中に取り込まれずに存在するマトリックスに相当する領域と、
を区別して認識し、二値化により(i)膨潤窒化ホウ素微粒子に相当する領域の合計面積を求め、当該測定領域の面積に対する比率として当該領域における膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率を求めた。そして、全ての測定領域の平均値を算出することにより、得られた複合材料における膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率(前記複合材料の断面面積に対する比率、平均値)を求めた。得られた結果を表2に示す。また、二値化により、(i)膨潤窒化ホウ素微粒子に相当する領域以外の領域、すなわち(ii)非膨潤窒化ホウ素微粒子に相当する領域及び(iii)マトリックスのうち前記膨潤窒化ホウ素微粒子中に取り込まれずに存在するマトリックスに相当する領域、を濃色に着色したSEM像の一例を図3に示す。
Next, in the obtained SEM image of each measurement region, based on the brightness and shape,
(I) a region corresponding to swollen boron nitride fine particles (partially cleaved boron nitride fine particles and a matrix taken into the cleaved voids);
(Ii) a region corresponding to non-swelled boron nitride fine particles (uncleaved boron nitride particles and fully cleaved boron nitride fine particles);
(Iii) a region of the matrix corresponding to a matrix that is not incorporated in the swollen boron nitride fine particles;
And (i) the total area of the region corresponding to the swollen boron nitride fine particles is obtained by binarization, and the ratio of the total area of the regions corresponding to the swollen boron nitride fine particles in the region is calculated as a ratio to the area of the measurement region. The ratio was determined. Then, by calculating the average value of all the measurement regions, the ratio of the total area of the region corresponding to the swollen boron nitride fine particles in the obtained composite material (ratio to the cross-sectional area of the composite material, average value) was obtained. . The obtained results are shown in Table 2. Also, by binarization, (i) a region other than the region corresponding to the swollen boron nitride fine particles, that is, (ii) a region corresponding to the non-swelled boron nitride fine particles and (iii) the matrix is incorporated into the swollen boron nitride fine particles. FIG. 3 shows an example of an SEM image in which the region corresponding to the existing matrix is darkly colored.

また、得られた各測定領域のSEM像において、同様に二値化により(ii)非膨潤窒化ホウ素微粒子(未劈開窒化ホウ素粒子及び完全劈開窒化ホウ素微粒子)に相当する領域の合計面積を求め、当該測定領域における全ての窒化ホウ素が未劈開窒化ホウ素粒子である場合の全窒化ホウ素粒子に相当する領域の合計面積(後述する比較例1における同一面積の測定領域における非膨潤窒化ホウ素微粒子に相当する領域の合計面積)との関係から、当該領域における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率を求めた。そして、全ての測定領域の平均値を算出することにより、得られた複合材料に用いたフィラーにおける窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率(平均値)を求めた。得られた結果を表2に示す。   Further, in the SEM image of each obtained measurement region, similarly, by binarization, (ii) the total area of the region corresponding to the non-swelled boron nitride fine particles (uncleaved boron nitride particles and completely cleaved boron nitride fine particles) is obtained, The total area of the regions corresponding to all boron nitride particles when all the boron nitrides in the measurement region are uncleaved boron nitride particles (corresponding to non-swelled boron nitride fine particles in the measurement region of the same area in Comparative Example 1 described later) From the relationship with the total area of the region, the content of partially cleaved boron nitride fine particles with respect to the total amount of boron nitride fine particles in the region was determined. And the content rate (average value) of the partially cleaved boron nitride fine particles with respect to the total amount of boron nitride fine particles in the filler used in the obtained composite material was calculated by calculating the average value of all the measurement regions. The obtained results are shown in Table 2.

(比較例1)
実施例1において原料粒子として用いた窒化ホウ素粒子を、湿式粉砕することなくそのまま熱伝導性フィラーとして用いるようにしたこと以外は実施例1と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例1と同様にして熱伝導率測定を行い、圧縮方向に垂直な方向(x軸方向)の熱伝導率を求めた。得られた結果を表2に示す。
(Comparative Example 1)
A heat conductive composite material was obtained in the same manner as in Example 1 except that the boron nitride particles used as the raw material particles in Example 1 were used as they were as the heat conductive filler without wet pulverization. And about the obtained composite material, heat conductivity measurement was performed like Example 1, and the heat conductivity of the direction (x-axis direction) perpendicular | vertical to a compression direction was calculated | required. The obtained results are shown in Table 2.

また、得られた複合材料について実施例1と同様にして断面の電子顕微鏡観察及び構造解析を行い、得られた複合材料における膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率、並びに、用いたフィラーおける部分劈開窒化ホウ素微粒子の含有率を求めた。得られた結果を表2に示す。また、得られた走査型電子顕微鏡写真(SEM像)の一例を図4に示す。さらに、二値化により非膨潤窒化ホウ素粒子に相当する領域を濃色に着色したSEM像の一例を図5に示す。   The obtained composite material was subjected to electron microscopic observation and structural analysis of the cross section in the same manner as in Example 1, and the ratio of the total area of the region corresponding to the swollen boron nitride fine particles in the obtained composite material was used. The content of the partially cleaved boron nitride fine particles in the filler was determined. The obtained results are shown in Table 2. An example of the obtained scanning electron micrograph (SEM image) is shown in FIG. Furthermore, FIG. 5 shows an example of an SEM image in which the region corresponding to the non-swelled boron nitride particles is colored deeply by binarization.

(比較例2)
窒化ホウ素粒子としてデンカ株式会社製「デンカボロンナイトライド粉 SGP」(平均粒子径:18μm)に代えてデンカ株式会社製「デンカボロンナイトライド粉 HGP」(平均粒子径:5μm、六方晶板状窒化ホウ素(BN)粒子)を用いるようにしたこと以外は比較例1と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例1と同様にして熱伝導率測定を行い、圧縮方向に垂直な方向(x軸方向)の熱伝導率を求めた。得られた結果を表2に示す。
(Comparative Example 2)
Instead of “Denkaboron Nitride Powder SGP” (average particle size: 18 μm) manufactured by Denka Co., Ltd. as the boron nitride particles, “Denkaboron Nitride Powder HGP” manufactured by Denka Co., Ltd. (average particle size: 5 μm, hexagonal plate nitriding) A thermally conductive composite material was obtained in the same manner as in Comparative Example 1 except that boron (BN) particles were used. And about the obtained composite material, heat conductivity measurement was performed like Example 1, and the heat conductivity of the direction (x-axis direction) perpendicular | vertical to a compression direction was calculated | required. The obtained results are shown in Table 2.

また、得られた複合材料について実施例1と同様にして断面の電子顕微鏡観察及び構造解析を行い、得られた複合材料における膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率、並びに、用いたフィラーおける部分劈開窒化ホウ素微粒子の含有率を求めた。得られた結果を表2に示す。   The obtained composite material was subjected to electron microscopic observation and structural analysis of the cross section in the same manner as in Example 1, and the ratio of the total area of the region corresponding to the swollen boron nitride fine particles in the obtained composite material was used. The content of the partially cleaved boron nitride fine particles in the filler was determined. The obtained results are shown in Table 2.

(実施例2)
原料粒子としての窒化ホウ素粒子としてデンカ株式会社製「デンカボロンナイトライド粉 SGP」(平均粒子径:18μm)に代えてモメンティブ社製「窒化ホウ素(BN)パウダー PT110」(平均粒子径:40μm、六方晶板状窒化ホウ素(BN)粒子)を用いるようにしたこと以外は実施例1と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例1と同様にして熱伝導率測定を行い、圧縮方向に垂直な方向(x軸方向)の熱伝導率を求めた。得られた結果を表2に示す。
(Example 2)
Instead of “Denkaboron Nitride Powder SGP” (average particle size: 18 μm) manufactured by Denka Co., Ltd. as the raw material particles, “Boron Nitride (BN) Powder PT110” manufactured by Momentive (average particle size: 40 μm, hexagonal) A thermally conductive composite material was obtained in the same manner as in Example 1 except that crystal plate-like boron nitride (BN) particles) were used. And about the obtained composite material, heat conductivity measurement was performed like Example 1, and the heat conductivity of the direction (x-axis direction) perpendicular | vertical to a compression direction was calculated | required. The obtained results are shown in Table 2.

また、得られた複合材料について、断面測定領域を縦60ミクロン、横40ミクロンの領域としたこと以外は実施例1と同様にして断面の電子顕微鏡観察及び構造解析を行い、得られた複合材料における膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率、並びに、用いたフィラーにおける部分劈開窒化ホウ素微粒子の含有率を求めた。得られた結果を表2に示す。   Further, the obtained composite material was subjected to electron microscopic observation and structural analysis of the cross section in the same manner as in Example 1 except that the cross-sectional measurement region was a region of 60 microns in length and 40 microns in width. The ratio of the total area of the region corresponding to the swollen boron nitride fine particles and the content of the partially cleaved boron nitride fine particles in the filler used were determined. The obtained results are shown in Table 2.

(実施例3〜4)
湿式粉砕処理における諸条件を表1に示すように変更したこと以外は実施例2と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例1と同様にして熱伝導率測定を行い、圧縮方向に垂直な方向(x軸方向)の熱伝導率を求めた。得られた結果を表2に示す。
(Examples 3 to 4)
A thermally conductive composite material was obtained in the same manner as in Example 2 except that various conditions in the wet pulverization treatment were changed as shown in Table 1. And about the obtained composite material, heat conductivity measurement was performed like Example 1, and the heat conductivity of the direction (x-axis direction) perpendicular | vertical to a compression direction was calculated | required. The obtained results are shown in Table 2.

また、得られた複合材料について、断面測定領域を縦60ミクロン、横40ミクロンの領域としたこと以外は実施例1と同様にして断面の電子顕微鏡観察及び構造解析を行い、得られた複合材料における膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率、並びに、用いたフィラーにおける部分劈開窒化ホウ素微粒子の含有率を求めた。得られた結果を表2に示す。   Further, the obtained composite material was subjected to electron microscopic observation and structural analysis of the cross section in the same manner as in Example 1 except that the cross-sectional measurement region was a region of 60 microns in length and 40 microns in width. The ratio of the total area of the region corresponding to the swollen boron nitride fine particles and the content of the partially cleaved boron nitride fine particles in the filler used were determined. The obtained results are shown in Table 2.

(比較例3)
実施例2において原料粒子として用いた窒化ホウ素粒子を、湿式粉砕することなくそのまま熱伝導性フィラーとして用いるようにしたこと以外は実施例2と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例1と同様にして熱伝導率測定を行い、圧縮方向に垂直な方向(x軸方向)の熱伝導率を求めた。得られた結果を表2に示す。
(Comparative Example 3)
A heat conductive composite material was obtained in the same manner as in Example 2 except that the boron nitride particles used as the raw material particles in Example 2 were used as they were as the heat conductive filler without being wet pulverized. And about the obtained composite material, heat conductivity measurement was performed like Example 1, and the heat conductivity of the direction (x-axis direction) perpendicular | vertical to a compression direction was calculated | required. The obtained results are shown in Table 2.

また、得られた複合材料について、断面測定領域を縦60ミクロン、横40ミクロンの領域としたこと以外は実施例1と同様にして断面の電子顕微鏡観察及び構造解析を行い、得られた複合材料における膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率、並びに、用いたフィラーにおける部分劈開窒化ホウ素微粒子の含有率を求めた。得られた結果を表2に示す。   Further, the obtained composite material was subjected to electron microscopic observation and structural analysis of the cross section in the same manner as in Example 1 except that the cross-sectional measurement region was a region of 60 microns in length and 40 microns in width. The ratio of the total area of the region corresponding to the swollen boron nitride fine particles and the content of the partially cleaved boron nitride fine particles in the filler used were determined. The obtained results are shown in Table 2.

<表1及び表2に示した結果の評価>
表1及び表2に示した結果から明らかな通り、本発明の熱伝導性フィラーの製造方法により得られた実施例1〜4の熱伝導性フィラーにおいては、いずれも部分劈開窒化ホウ素微粒子の含有率が窒化ホウ素微粒子の全量に対して5体積%以上のものであった。それに対して、本発明にかかる湿式粉砕処理を施していない市販の窒化ホウ素粒子においては、いずれも部分劈開窒化ホウ素微粒子は含有されていないことが確認された。
<Evaluation of results shown in Table 1 and Table 2>
As is clear from the results shown in Tables 1 and 2, all of the thermally conductive fillers of Examples 1 to 4 obtained by the method for producing a thermally conductive filler of the present invention contain partially cleaved boron nitride fine particles. The rate was 5% by volume or more based on the total amount of boron nitride fine particles. On the other hand, it was confirmed that none of the commercially available boron nitride particles not subjected to the wet pulverization treatment according to the present invention contains partially cleaved boron nitride fine particles.

さらに、前記のように部分劈開窒化ホウ素微粒子を含有する本発明の熱伝導性フィラーを用いて本発明の熱伝導性複合材料の製造方法により得られた実施例1〜4の熱伝導性複合材料においては、いずれも複合材料の断面基準で膨潤窒化ホウ素微粒子に相当する領域の合計面積が複合材料の断面面積に対して1〜50%の範囲内にあり、このような本発明の熱伝導性複合材料は、膨潤窒化ホウ素微粒子の存在が確認されない比較例1〜3の熱伝導性複合材料に比べて熱伝導率が非常に高いことが確認された。   Furthermore, the heat conductive composite material of Examples 1-4 obtained by the manufacturing method of the heat conductive composite material of this invention using the heat conductive filler of this invention containing partially cleaved boron nitride fine particles as described above In all, the total area of the regions corresponding to the swollen boron nitride fine particles is within the range of 1 to 50% with respect to the cross-sectional area of the composite material on the basis of the cross-section of the composite material. It was confirmed that the composite material had a very high thermal conductivity as compared with the heat conductive composite materials of Comparative Examples 1 to 3 in which the presence of the swollen boron nitride fine particles was not confirmed.

(実施例5)
熱伝導性フィラーとして、実施例2において得られた湿式粉砕された窒化ホウ素微粒子と、窒化アルミニウム微粒子(巴工業株式会社製「窒化アルミ(AlN)パウダー」、平均粒子径:10μm)とを用い、得られる複合材料中の粉砕窒化ホウ素微粒子及び窒化アルミニウム微粒子の含有率がそれぞれ32体積%及び8体積%となるように混合して用いるようにしたこと以外は実施例2と同様にして熱伝導性複合材料を得た。
(Example 5)
As the thermally conductive filler, the wet-pulverized boron nitride fine particles obtained in Example 2 and aluminum nitride fine particles (“Aluminum nitride (AlN) powder” manufactured by Sakai Kogyo Co., Ltd., average particle size: 10 μm) are used. Thermal conductivity was obtained in the same manner as in Example 2 except that the pulverized boron nitride fine particles and aluminum nitride fine particles in the obtained composite material were mixed so that the contents were 32% by volume and 8% by volume, respectively. A composite material was obtained.

次いで、得られた円柱状の複合材料1から熱伝導率測定用試料(z軸方向厚さ:2mm、直径:14mmφ、図示せず)を切り出し、前記試料の厚さ方向(z軸方向)を熱流方向としてキセノンフラッシュアナライザー(NETZSCH社製「LFA 447 NanoFlash」)を用いて圧縮方向に平行な方向(z軸方向)の熱拡散率を測定し、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。   Next, a sample for thermal conductivity measurement (z-axis direction thickness: 2 mm, diameter: 14 mmφ, not shown) is cut out from the obtained cylindrical composite material 1, and the thickness direction (z-axis direction) of the sample is cut out. Using a xenon flash analyzer ("LFA 447 NanoFlash" manufactured by NETZSCH) as the heat flow direction, the thermal diffusivity in the direction parallel to the compression direction (z-axis direction) is measured, and the direction parallel to the compression direction (z-axis direction) is measured. The thermal conductivity was determined. The obtained results are shown in Table 3.

また、得られた複合材料における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率[体積%]及び複合材料の断面面積に対する膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率[%]はいずれも実施例2で得られた複合材料と同等(後者は窒化ホウ素微粒子の含有率に比例)のものであった。   Further, the content ratio [% by volume] of the partially cleaved boron nitride fine particles with respect to the total amount of boron nitride fine particles in the obtained composite material and the ratio [%] of the total area of the region corresponding to the swollen boron nitride fine particles to the cross-sectional area of the composite material are All were equivalent to the composite material obtained in Example 2 (the latter being proportional to the content of boron nitride fine particles).

(比較例4)
実施例2において得られた湿式粉砕された窒化ホウ素微粒子に代えて比較例3において用いた未粉砕の窒化ホウ素粒子を用いるようにしたこと以外は実施例5と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Comparative Example 4)
A thermally conductive composite material was prepared in the same manner as in Example 5 except that the unmilled boron nitride particles used in Comparative Example 3 were used in place of the wet-milled boron nitride fine particles obtained in Example 2. Obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

(実施例6)
湿式粉砕処理における諸条件を表1に示すように変更し、さらに得られる複合材料中のフィラー(窒化ホウ素微粒子)含有率が60体積%となるようにしたこと以外は実施例2と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Example 6)
Various conditions in the wet pulverization treatment were changed as shown in Table 1, and the filler (boron nitride fine particle) content in the obtained composite material was changed to 60% by volume in the same manner as in Example 2. A thermally conductive composite material was obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

また、得られた複合材料について、断面測定領域を縦60ミクロン、横40ミクロンの領域としたこと以外は実施例1と同様にして断面の電子顕微鏡観察及び構造解析を行い、得られた複合材料における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率[体積%]及び複合材料の断面面積に対する膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率[%]を求めたところ、それぞれ32.1体積%及び44.7%であった。   Further, the obtained composite material was subjected to electron microscopic observation and structural analysis of the cross section in the same manner as in Example 1 except that the cross-sectional measurement region was a region of 60 microns in length and 40 microns in width. When the content ratio [% by volume] of the partially cleaved boron nitride fine particles with respect to the total amount of the boron nitride fine particles and the ratio [%] of the total area of the region corresponding to the swollen boron nitride fine particles to the cross-sectional area of the composite material were determined, respectively. 1% by volume and 44.7%.

(実施例7)
熱伝導性フィラーとして、実施例6において得られた湿式粉砕された窒化ホウ素微粒子と、窒化アルミニウム微粒子(株式会社トクヤマ製「窒化アルミニウム(AlN)粉末 Eグレード」、平均粒子径:1μm)とを用い、得られる複合材料中の粉砕窒化ホウ素微粒子及び窒化アルミニウム微粒子の含有率がそれぞれ48体積%及び12体積%となるように混合して用いるようにしたこと以外は実施例6と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Example 7)
As the thermally conductive filler, the wet-pulverized boron nitride fine particles obtained in Example 6 and aluminum nitride fine particles (“aluminum nitride (AlN) powder E grade” manufactured by Tokuyama Corporation, average particle diameter: 1 μm) are used. The heat conduction was conducted in the same manner as in Example 6 except that the pulverized boron nitride fine particles and aluminum nitride fine particles in the composite material were mixed so that the contents were 48% by volume and 12% by volume, respectively. A composite material was obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

また、得られた複合材料における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率[体積%]及び複合材料の断面面積に対する膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率[%]はいずれも実施例6で得られた複合材料と同等(後者は窒化ホウ素微粒子の含有率に比例)のものであった。   Further, the content ratio [% by volume] of the partially cleaved boron nitride fine particles with respect to the total amount of boron nitride fine particles in the obtained composite material and the ratio [%] of the total area of the region corresponding to the swollen boron nitride fine particles to the cross-sectional area of the composite material are All were equivalent to the composite material obtained in Example 6 (the latter being proportional to the content of boron nitride fine particles).

(比較例5)
熱伝導性フィラーとして前記窒化アルミニウム微粒子(平均粒子径:1μm)のみを用い、得られる複合材料中の窒化アルミニウム微粒子の含有率が60体積%となるようにしたこと以外は実施例7と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Comparative Example 5)
Example 7 was used except that only the aluminum nitride fine particles (average particle diameter: 1 μm) were used as the heat conductive filler, and the content of the aluminum nitride fine particles in the obtained composite material was 60% by volume. Thus, a heat conductive composite material was obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

(実施例8)
熱伝導性フィラーとして、実施例6において得られた湿式粉砕された窒化ホウ素微粒子と、窒化アルミニウム微粒子(古河電子株式会社製「高熱伝導AlNフィラー FAN−f05」、平均粒子径:5μm)とを用い、得られる複合材料中の粉砕窒化ホウ素微粒子及び窒化アルミニウム微粒子の含有率がそれぞれ48体積%及び12体積%となるように混合して用いるようにしたこと以外は実施例6と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Example 8)
As the heat conductive filler, the wet-pulverized boron nitride fine particles obtained in Example 6 and aluminum nitride fine particles ("High Thermal Conductive AlN Filler FAN-f05" manufactured by Furukawa Electronics Co., Ltd., average particle size: 5 μm) are used. The heat conduction was conducted in the same manner as in Example 6 except that the pulverized boron nitride fine particles and aluminum nitride fine particles in the composite material were mixed so that the contents were 48% by volume and 12% by volume, respectively. A composite material was obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

また、得られた複合材料における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率[体積%]及び複合材料の断面面積に対する膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率[%]はいずれも実施例6で得られた複合材料と同等(後者は窒化ホウ素微粒子の含有率に比例)のものであった。   Further, the content ratio [% by volume] of the partially cleaved boron nitride fine particles with respect to the total amount of boron nitride fine particles in the obtained composite material and the ratio [%] of the total area of the region corresponding to the swollen boron nitride fine particles to the cross-sectional area of the composite material are All were equivalent to the composite material obtained in Example 6 (the latter being proportional to the content of boron nitride fine particles).

(比較例6)
熱伝導性フィラーとして前記窒化アルミニウム微粒子(平均粒子径:5μm)のみを用い、得られる複合材料中の窒化アルミニウム微粒子の含有率が60体積%となるようにしたこと以外は実施例8と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Comparative Example 6)
Example 8 was used except that only the aluminum nitride fine particles (average particle size: 5 μm) were used as the heat conductive filler, and the content of the aluminum nitride fine particles in the obtained composite material was 60% by volume. Thus, a heat conductive composite material was obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

(実施例9)
熱伝導性フィラーとして、実施例6において得られた湿式粉砕された窒化ホウ素微粒子と、ダイヤモンド微粒子(ビジョン開発株式会社製「ナノダイヤモンド」、平均粒子径:5μm)とを用い、得られる複合材料中の粉砕窒化ホウ素微粒子及びダイヤモンド微粒子の含有率がそれぞれ48体積%及び12体積%となるように混合して用いるようにしたこと以外は実施例6と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
Example 9
In the composite material obtained using the wet-pulverized boron nitride fine particles obtained in Example 6 and diamond fine particles (“Nanodiamond” manufactured by Vision Development Co., Ltd., average particle size: 5 μm) as the heat conductive filler A thermally conductive composite material was obtained in the same manner as in Example 6 except that the pulverized boron nitride fine particles and diamond fine particles were mixed and used so that the contents were 48 vol% and 12 vol%, respectively. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

また、得られた複合材料における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率[体積%]及び複合材料の断面面積に対する膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率[%]はいずれも実施例6で得られた複合材料と同等(後者は窒化ホウ素微粒子の含有率に比例)のものであった。   Further, the content ratio [% by volume] of the partially cleaved boron nitride fine particles with respect to the total amount of boron nitride fine particles in the obtained composite material and the ratio [%] of the total area of the region corresponding to the swollen boron nitride fine particles to the cross-sectional area of the composite material are All were equivalent to the composite material obtained in Example 6 (the latter being proportional to the content of boron nitride fine particles).

(比較例7)
熱伝導性フィラーとして前記ダイヤモンド微粒子のみを用い、得られる複合材料中のダイヤモンド微粒子の含有率が60体積%となるようにしたこと以外は実施例9と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Comparative Example 7)
A heat conductive composite material was obtained in the same manner as in Example 9 except that only the diamond fine particles were used as the heat conductive filler, and the content of the diamond fine particles in the obtained composite material was 60% by volume. . And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

(実施例10)
熱伝導性フィラーとして、実施例6において得られた湿式粉砕された窒化ホウ素微粒子と、立方晶窒化ホウ素微粒子(株式会社グローバルダイヤモンド製「立方晶窒化ホウ素(CBN)パウダー FBN−BM」、平均粒子径:5μm)とを用い、得られる複合材料中の粉砕窒化ホウ素微粒子及び立方晶窒化ホウ素微粒子の含有率がそれぞれ48体積%及び12体積%となるように混合して用いるようにしたこと以外は実施例6と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Example 10)
As the thermally conductive filler, wet-pulverized boron nitride fine particles obtained in Example 6 and cubic boron nitride fine particles (“Cubic Boron Nitride (CBN) Powder FBN-BM” manufactured by Global Diamond Co., Ltd., average particle diameter) : 5 μm), and the mixed composite material obtained was mixed so that the content of the pulverized boron nitride fine particles and cubic boron nitride fine particles was 48% by volume and 12% by volume, respectively. In the same manner as in Example 6, a heat conductive composite material was obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

また、得られた複合材料における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率[体積%]及び複合材料の断面面積に対する膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率[%]はいずれも実施例6で得られた複合材料と同等(後者は窒化ホウ素微粒子の含有率に比例)のものであった。   Further, the content ratio [% by volume] of the partially cleaved boron nitride fine particles with respect to the total amount of boron nitride fine particles in the obtained composite material and the ratio [%] of the total area of the region corresponding to the swollen boron nitride fine particles to the cross-sectional area of the composite material are All were equivalent to the composite material obtained in Example 6 (the latter being proportional to the content of boron nitride fine particles).

(比較例8)
熱伝導性フィラーとして前記立方晶窒化ホウ素微粒子のみを用い、得られる複合材料中の立方晶窒化ホウ素微粒子の含有率が60体積%となるようにしたこと以外は実施例10と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Comparative Example 8)
Heat conduction was carried out in the same manner as in Example 10 except that only the cubic boron nitride fine particles were used as the heat conductive filler, and the content of the cubic boron nitride fine particles in the obtained composite material was 60% by volume. A composite material was obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

(実施例11)
熱伝導性フィラーとして実施例3において得られた湿式粉砕された窒化ホウ素微粒子を用い、得られる複合材料中のフィラー(窒化ホウ素微粒子)含有率が60体積%となるようにしたこと以外は実施例3と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Example 11)
Example except that the wet pulverized boron nitride fine particles obtained in Example 3 were used as the thermally conductive filler, and the filler (boron nitride fine particle) content in the obtained composite material was 60% by volume. In the same manner as in No. 3, a heat conductive composite material was obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

また、得られた複合材料における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率[体積%]及び複合材料の断面面積に対する膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率[%]はいずれも実施例3で得られた複合材料と同等(後者は窒化ホウ素微粒子の含有率に比例)のものであった。   Further, the content ratio [% by volume] of the partially cleaved boron nitride fine particles with respect to the total amount of boron nitride fine particles in the obtained composite material and the ratio [%] of the total area of the region corresponding to the swollen boron nitride fine particles to the cross-sectional area of the composite material are All were equivalent to the composite material obtained in Example 3 (the latter being proportional to the content of boron nitride fine particles).

(実施例12)
熱伝導性フィラーとして、実施例3において得られた湿式粉砕された窒化ホウ素微粒子と、アルミナ微粒子(キンセイマテック株式会社製「セラフ00610」、平均粒子径:0.6μm)とを用い、得られる複合材料中の粉砕窒化ホウ素微粒子及びアルミナ微粒子の含有率がそれぞれ48体積%及び12体積%となるように混合して用いるようにしたこと以外は実施例11と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Example 12)
As the thermally conductive filler, the wet-pulverized boron nitride fine particles obtained in Example 3 and alumina fine particles (“Seraph 0670” manufactured by Kinsei Matec Co., Ltd., average particle size: 0.6 μm) are used, and the resulting composite A thermally conductive composite material was obtained in the same manner as in Example 11 except that the contents of the pulverized boron nitride fine particles and alumina fine particles in the material were mixed so as to be 48% by volume and 12% by volume, respectively. It was. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

また、得られた複合材料における窒化ホウ素微粒子の全量に対する部分劈開窒化ホウ素微粒子の含有率[体積%]及び複合材料の断面面積に対する膨潤窒化ホウ素微粒子に相当する領域の合計面積の比率[%]はいずれも実施例3で得られた複合材料と同等(後者は窒化ホウ素微粒子の含有率に比例)のものであった。   Further, the content ratio [% by volume] of the partially cleaved boron nitride fine particles with respect to the total amount of boron nitride fine particles in the obtained composite material and the ratio [%] of the total area of the region corresponding to the swollen boron nitride fine particles to the cross-sectional area of the composite material are All were equivalent to the composite material obtained in Example 3 (the latter being proportional to the content of boron nitride fine particles).

(比較例9)
熱伝導性フィラーとして前記アルミナ微粒子(平均粒子径:0.6μm)のみを用い、得られる複合材料中のアルミナ微粒子の含有率が60体積%となるようにしたこと以外は実施例12と同様にして熱伝導性複合材料を得た。そして、得られた複合材料について実施例5と同様にして熱伝導率測定を行い、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。得られた結果を表3に示す。
(Comparative Example 9)
Example 12 was used except that only the alumina fine particles (average particle size: 0.6 μm) were used as the heat conductive filler, and the content of the alumina fine particles in the obtained composite material was 60% by volume. Thus, a heat conductive composite material was obtained. And about the obtained composite material, heat conductivity measurement was performed like Example 5, and the heat conductivity of the direction (z-axis direction) parallel to a compression direction was calculated | required. The obtained results are shown in Table 3.

<表3に示した結果の評価>
表3に示した結果から明らかな通り、熱伝導性フィラーとして部分劈開窒化ホウ素微粒子を含有する湿式粉砕された窒化ホウ素微粒子のみを用いた本発明の熱伝導性複合材料においても高い熱伝導率が達成されているが(実施例6、11)、熱伝導性フィラーとして熱伝導率が20W/mK以上である高熱伝導性微粒子が更に含有されていると(実施例5、7〜10、12)、得られる複合材料の熱伝導率が更に向上することが確認された。
<Evaluation of results shown in Table 3>
As is apparent from the results shown in Table 3, the heat conductive composite material of the present invention using only wet-milled boron nitride fine particles containing partially cleaved boron nitride fine particles as the heat conductive filler also has high thermal conductivity. Although it has been achieved (Examples 6 and 11), when the thermally conductive filler further contains highly thermally conductive fine particles having a thermal conductivity of 20 W / mK or more (Examples 5, 7 to 10 and 12). It was confirmed that the thermal conductivity of the obtained composite material was further improved.

以上説明したように、本発明によれば、熱伝導性を効率良く向上させることが可能な熱伝導性フィラー及びその製造方法と、優れた熱伝導性を有する熱伝導性複合材料及びその製造方法とを提供することが可能となる。したがって、本発明の複合材料は、熱伝導性に優れているため、例えば、自動車用放熱材料、ヒーター材料等として有用である。   As described above, according to the present invention, the thermal conductive filler capable of efficiently improving the thermal conductivity and the manufacturing method thereof, and the thermal conductive composite material having excellent thermal conductivity and the manufacturing method thereof. And can be provided. Therefore, since the composite material of the present invention is excellent in thermal conductivity, it is useful as, for example, a heat radiating material for automobiles and a heater material.

また、本発明の複合材料として、高い熱伝導性を有していると共に絶縁性のものが得られることから、電気系部品等と組み合わせて使用する場合に絶縁シート等を用いることなく本発明の複合材料のみによって熱を拡散・伝達することが可能となる。したがって、本発明の複合材料は、インバーター、コンバーター等の電力変換器に用いられるパワーデバイスやCPU等の発熱性電子部品の熱を放熱部材に伝達する中間部材(熱インターフェース材)等としても非常に有用である。   In addition, since the composite material of the present invention has high thermal conductivity and is insulative, it can be used without using an insulating sheet or the like when used in combination with electrical parts or the like. Heat can be diffused and transferred only by the composite material. Therefore, the composite material of the present invention is very useful as an intermediate member (thermal interface material) for transmitting heat of heat generating electronic components such as power devices and CPUs used in power converters such as inverters and converters to heat radiating members. Useful.

1:複合材料、2:熱伝導率測定用試料。 1: Composite material, 2: Sample for thermal conductivity measurement.

Claims (15)

窒化ホウ素微粒子からなる熱伝導性フィラーをマトリックス中に分散させてなる熱伝導性複合材料であって、
前記窒化ホウ素微粒子の少なくとも一部が、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子であり、
前記部分劈開窒化ホウ素微粒子の劈開空隙中に前記マトリックスが充填されて膨潤した膨潤窒化ホウ素微粒子が前記複合材料に含有されており、
前記複合材料の断面基準で、前記膨潤窒化ホウ素微粒子に相当する領域の合計面積が、前記複合材料の断面面積に対して1〜50%である、
ことを特徴とする熱伝導性複合材料。
A thermally conductive composite material in which a thermally conductive filler composed of boron nitride fine particles is dispersed in a matrix,
At least a part of the boron nitride fine particles are partially cleaved boron nitride fine particles in which the boron nitride fine particles are partially cleaved,
The composite material contains swollen boron nitride fine particles that are swollen by filling the matrix into the cleavage voids of the partially cleaved boron nitride fine particles,
The total area of the region corresponding to the swollen boron nitride fine particles is 1 to 50% with respect to the cross-sectional area of the composite material on the basis of the cross-section of the composite material.
A thermally conductive composite material characterized by that.
前記部分劈開窒化ホウ素微粒子の含有率が前記窒化ホウ素微粒子の全量に対して5体積%以上であることを特徴とする請求項1に記載の熱伝導性複合材料。   2. The thermally conductive composite material according to claim 1, wherein the content of the partially cleaved boron nitride fine particles is 5% by volume or more based on the total amount of the boron nitride fine particles. 前記熱伝導性フィラーとして、前記窒化ホウ素微粒子に加えて、熱伝導率が20W/mK以上である高熱伝導性微粒子が更に含有されていることを特徴とする請求項1又は2に記載の熱伝導性複合材料。   The thermal conductivity according to claim 1 or 2, wherein the thermal conductive filler further contains high thermal conductive fine particles having a thermal conductivity of 20 W / mK or more in addition to the boron nitride fine particles. Composite material. 前記窒化ホウ素微粒子が六方晶系の板状窒化ホウ素微粒子であり、かつ、
前記高熱伝導性微粒子が、立方晶窒化ホウ素、ダイヤモンド、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ケイ素及び炭化ケイ素からなる群から選択される少なくとも一種の微粒子である、
ことを特徴とする請求項1〜3のうちのいずれか一項に記載の熱伝導性複合材料。
The boron nitride fine particles are hexagonal plate-like boron nitride fine particles, and
The high thermal conductivity fine particles are at least one fine particle selected from the group consisting of cubic boron nitride, diamond, aluminum nitride, aluminum oxide, magnesium oxide, zinc oxide, silicon nitride, and silicon carbide;
The thermally conductive composite material according to any one of claims 1 to 3, wherein
前記窒化ホウ素微粒子の含有率が前記熱伝導性フィラーの全量に対して5体積%以上であることを特徴とする請求項1〜4のうちのいずれか一項に記載の熱伝導性複合材料。   The heat conductive composite material according to any one of claims 1 to 4, wherein a content of the boron nitride fine particles is 5% by volume or more based on a total amount of the heat conductive filler. 前記熱伝導性フィラーの含有率が前記複合材料の全量に対して10〜90体積%であることを特徴とする請求項1〜5のうちのいずれか一項2に記載の熱伝導性複合材料。   The heat conductive composite material according to any one of claims 1 to 5, wherein a content of the heat conductive filler is 10 to 90% by volume with respect to a total amount of the composite material. . 窒化ホウ素粒子を含有する流体を高圧でノズルから噴射させて湿式衝突粉砕することにより、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子を得る工程と、
前記部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子からなる熱伝導性フィラーをマトリックス中に分散させて、前記部分劈開窒化ホウ素微粒子の劈開空隙中に前記マトリックスが充填されて膨潤した膨潤窒化ホウ素微粒子を含有する熱伝導性複合材料を得る工程と、
を含むことを特徴とする熱伝導性複合材料の製造方法。
A step of obtaining boron nitride fine particles including partially cleaved boron nitride fine particles in which boron nitride fine particles are partially cleaved by jetting a fluid containing boron nitride particles from a nozzle at high pressure and performing wet collision pulverization;
A thermally conductive filler composed of boron nitride fine particles including the partially cleaved boron nitride fine particles is dispersed in a matrix, and the swollen boron nitride fine particles that are swollen with the matrix filled in the cleaved voids of the partially cleaved boron nitride fine particles are contained. Obtaining a thermally conductive composite material,
The manufacturing method of the heat conductive composite material characterized by including.
前記高圧が30〜250MPaの圧力であり、前記流体を前記ノズルから噴射させる際の流速が200〜800m/sであることを特徴とする請求項7に記載の熱伝導性複合材料の製造方法。   The method for producing a thermally conductive composite material according to claim 7, wherein the high pressure is a pressure of 30 to 250 MPa, and a flow rate when the fluid is ejected from the nozzle is 200 to 800 m / s. 前記熱伝導性複合材料が、請求項1〜6のうちのいずれか一項に記載の熱伝導性複合材料であることを特徴とする請求項7又は8に記載の熱伝導性複合材料の製造方法。   The said heat conductive composite material is a heat conductive composite material as described in any one of Claims 1-6, The manufacture of the heat conductive composite material of Claim 7 or 8 characterized by the above-mentioned. Method. 窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子を含有する窒化ホウ素微粒子からなる熱伝導性フィラーであって、前記部分劈開窒化ホウ素微粒子の含有率が前記窒化ホウ素微粒子の全量に対して5体積%以上であることを特徴とする熱伝導性フィラー。   A thermally conductive filler composed of boron nitride fine particles containing partially cleaved boron nitride fine particles in which the boron nitride fine particles are partially cleaved, wherein the content of the partially cleaved boron nitride fine particles is 5 with respect to the total amount of the boron nitride fine particles. A thermally conductive filler characterized by being at least volume%. 前記窒化ホウ素微粒子の平均粒子径が1〜100μmであることを特徴とする請求項10に記載の熱伝導性フィラー。   The heat conductive filler according to claim 10, wherein the boron nitride fine particles have an average particle diameter of 1 to 100 μm. 前記窒化ホウ素微粒子が六方晶系の板状窒化ホウ素微粒子であることを特徴とする請求項10又は11に記載の熱伝導性フィラー。   The thermally conductive filler according to claim 10 or 11, wherein the boron nitride fine particles are hexagonal plate-like boron nitride fine particles. 窒化ホウ素粒子を含有する流体を高圧でノズルから噴射させて湿式衝突粉砕することにより、窒化ホウ素微粒子が部分的に劈開した部分劈開窒化ホウ素微粒子を含む窒化ホウ素微粒子からなる熱伝導性フィラーを得ることを特徴とする熱伝導性フィラーの製造方法。   By thermally injecting a fluid containing boron nitride particles from a nozzle at high pressure and performing wet collision pulverization, a thermally conductive filler made of boron nitride fine particles including partially cleaved boron nitride fine particles in which boron nitride fine particles are partially cleaved is obtained. The manufacturing method of the heat conductive filler characterized by these. 前記高圧が30〜250MPaの圧力であり、前記流体を前記ノズルから噴射させる際の流速が200〜800m/sであることを特徴とする請求項13に記載の熱伝導性フィラーの製造方法。   The method for producing a thermally conductive filler according to claim 13, wherein the high pressure is a pressure of 30 to 250 MPa, and a flow rate when the fluid is ejected from the nozzle is 200 to 800 m / s. 前記熱伝導性フィラーが、請求項10〜12のうちのいずれか一項に記載の熱伝導性フィラーであることを特徴とする請求項13又は14に記載の熱伝導性フィラーの製造方法。   The method for producing a thermally conductive filler according to claim 13 or 14, wherein the thermally conductive filler is the thermally conductive filler according to any one of claims 10 to 12.
JP2018051313A 2017-03-22 2018-03-19 Thermally conductive composite materials, thermally conductive fillers and their manufacturing methods Active JP6826065B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017055286 2017-03-22
JP2017055286 2017-03-22

Publications (2)

Publication Number Publication Date
JP2018159062A true JP2018159062A (en) 2018-10-11
JP6826065B2 JP6826065B2 (en) 2021-02-03

Family

ID=63796459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051313A Active JP6826065B2 (en) 2017-03-22 2018-03-19 Thermally conductive composite materials, thermally conductive fillers and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP6826065B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162335A (en) * 2017-03-24 2018-10-18 株式会社豊田中央研究所 Heat conductive composite material
JP2020045456A (en) * 2018-09-20 2020-03-26 株式会社豊田中央研究所 Heat-conductive composite material, heat-conductive composite material film, and method for producing them
JP2020084154A (en) * 2018-11-30 2020-06-04 株式会社トクヤマ Resin molded body, resin composition and method for producing resin molded body
WO2020213348A1 (en) * 2019-04-18 2020-10-22 信越化学工業株式会社 Thermally conductive resin composition and thermally conductive resin cured product
JP2021050132A (en) * 2019-09-17 2021-04-01 株式会社豊田中央研究所 Thermally conductive filler, thermally conductive composite using the same, and method of producing thermally conductive filler
WO2021070690A1 (en) * 2019-10-07 2021-04-15 Jfeスチール株式会社 Boron nitride powder, method for producing boron nitride powder, resin material, and method for producing resin material
KR102403182B1 (en) * 2020-12-31 2022-05-26 이준희 Thermal interface adhesive thin film, and manufacturing method for the same
JP7435294B2 (en) 2020-06-17 2024-02-21 株式会社豊田中央研究所 High thermal conductivity grease composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255055A (en) * 2011-06-07 2012-12-27 National Institute Of Advanced Industrial Science & Technology Composite material comprising inorganic-organic composite composition, and method of producing the same
JP2013253205A (en) * 2012-06-08 2013-12-19 National Institute Of Advanced Industrial Science & Technology Inorganic-organic composite composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255055A (en) * 2011-06-07 2012-12-27 National Institute Of Advanced Industrial Science & Technology Composite material comprising inorganic-organic composite composition, and method of producing the same
JP2013253205A (en) * 2012-06-08 2013-12-19 National Institute Of Advanced Industrial Science & Technology Inorganic-organic composite composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162335A (en) * 2017-03-24 2018-10-18 株式会社豊田中央研究所 Heat conductive composite material
JP2020045456A (en) * 2018-09-20 2020-03-26 株式会社豊田中央研究所 Heat-conductive composite material, heat-conductive composite material film, and method for producing them
JP7402410B2 (en) 2018-09-20 2023-12-21 株式会社豊田中央研究所 Thermally conductive composite material, thermally conductive composite film and method for producing the same
JP2020084154A (en) * 2018-11-30 2020-06-04 株式会社トクヤマ Resin molded body, resin composition and method for producing resin molded body
JP7295629B2 (en) 2018-11-30 2023-06-21 株式会社トクヤマ RESIN MOLDED PRODUCT, RESIN COMPOSITION, AND RESIN MOLDED PRODUCTION METHOD
WO2020213348A1 (en) * 2019-04-18 2020-10-22 信越化学工業株式会社 Thermally conductive resin composition and thermally conductive resin cured product
JP2020176201A (en) * 2019-04-18 2020-10-29 信越化学工業株式会社 Heat-conductive resin composition and heat-conductive resin cured product
JP2021050132A (en) * 2019-09-17 2021-04-01 株式会社豊田中央研究所 Thermally conductive filler, thermally conductive composite using the same, and method of producing thermally conductive filler
CN114521201A (en) * 2019-10-07 2022-05-20 杰富意钢铁株式会社 Boron nitride powder, method for producing boron nitride powder, resin material, and method for producing resin material
TWI770626B (en) * 2019-10-07 2022-07-11 日商杰富意鋼鐵股份有限公司 Boron nitride powder, method for producing boron nitride powder, resin material, and method for producing resin material
JP7136326B2 (en) 2019-10-07 2022-09-13 Jfeスチール株式会社 Boron nitride powder, method for producing boron nitride powder, resin material, and method for producing resin material
EP4043394A4 (en) * 2019-10-07 2023-03-08 JFE Steel Corporation Boron nitride powder, method for producing boron nitride powder, resin material, and method for producing resin material
JPWO2021070690A1 (en) * 2019-10-07 2021-10-28 Jfeスチール株式会社 Boron Nitride Powder, Boron Nitride Powder Manufacturing Method, Resin Material, and Resin Material Manufacturing Method
CN114521201B (en) * 2019-10-07 2023-11-17 杰富意钢铁株式会社 Boron nitride powder, method for producing boron nitride powder, resin material, and method for producing resin material
WO2021070690A1 (en) * 2019-10-07 2021-04-15 Jfeスチール株式会社 Boron nitride powder, method for producing boron nitride powder, resin material, and method for producing resin material
JP7435294B2 (en) 2020-06-17 2024-02-21 株式会社豊田中央研究所 High thermal conductivity grease composition
KR102403182B1 (en) * 2020-12-31 2022-05-26 이준희 Thermal interface adhesive thin film, and manufacturing method for the same

Also Published As

Publication number Publication date
JP6826065B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
JP6826065B2 (en) Thermally conductive composite materials, thermally conductive fillers and their manufacturing methods
JP6616344B2 (en) Thermally conductive composite material
Lee et al. Novel dielectric BN/epoxy nanocomposites with enhanced heat dissipation performance for electronic packaging
CA2740116C (en) Zinc oxide particle, method for producing it, exoergic filler, resin composition, exoergic grease and exoergic coating composition
JP6936442B2 (en) Method for manufacturing thermally conductive filler, thermally conductive composite material, and thermally conductive filler
JP6704271B2 (en) Hexagonal boron nitride primary particle aggregate, resin composition and use thereof
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
KR20210022569A (en) Bulk boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member
WO1989012026A1 (en) Fine flaky graphite particles and process for their production
JP7187919B2 (en) Thermally conductive composite material and manufacturing method thereof
JP2011032490A (en) Method for production of porous body
JP2016522299A (en) Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds to produce such components, and uses thereof
JP2016533282A (en) Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds for producing such components, methods for producing such components and uses thereof
WO2020138335A1 (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
JP2021050132A (en) Thermally conductive filler, thermally conductive composite using the same, and method of producing thermally conductive filler
JP2018030942A (en) Method for producing heat-conductive sheet
JP2021506730A (en) A powder composition containing first and second aggregates of inorganic particles, and a polymer composition containing a polymer and a powder composition.
JP7402410B2 (en) Thermally conductive composite material, thermally conductive composite film and method for producing the same
JP7292941B2 (en) Aluminum nitride composite filler
JP2006137860A (en) Thermal conductive sheet
JP6831534B2 (en) Composite particles, composite materials, and methods for producing composite particles
JP2021195291A (en) Heat-conductive filler and heat-conductive composite material using the same, and methods for producing the same
JP6171257B2 (en) Composite material and manufacturing method thereof
JP7209904B2 (en) Composite material, heat dissipation material, and method for manufacturing heat dissipation material
JP7357181B1 (en) Boron nitride particles and heat dissipation sheet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210114

R150 Certificate of patent or registration of utility model

Ref document number: 6826065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250