JP2021050132A - Thermally conductive filler, thermally conductive composite using the same, and method of producing thermally conductive filler - Google Patents

Thermally conductive filler, thermally conductive composite using the same, and method of producing thermally conductive filler Download PDF

Info

Publication number
JP2021050132A
JP2021050132A JP2020010131A JP2020010131A JP2021050132A JP 2021050132 A JP2021050132 A JP 2021050132A JP 2020010131 A JP2020010131 A JP 2020010131A JP 2020010131 A JP2020010131 A JP 2020010131A JP 2021050132 A JP2021050132 A JP 2021050132A
Authority
JP
Japan
Prior art keywords
particles
thermally conductive
boron nitride
conductive filler
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020010131A
Other languages
Japanese (ja)
Other versions
JP2021050132A5 (en
Inventor
由香 山田
Yuka Yamada
由香 山田
田中 洋充
Hiromitsu Tanaka
洋充 田中
慈 佐々木
Shigeru Sasaki
慈 佐々木
須田 明彦
Akihiko Suda
明彦 須田
亮 宮▲崎▼
Akira Miyazaki
亮 宮▲崎▼
昌孝 出口
Masataka Deguchi
昌孝 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Publication of JP2021050132A publication Critical patent/JP2021050132A/en
Publication of JP2021050132A5 publication Critical patent/JP2021050132A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

To provide a thermally conductive filler capable of imparting high heat conductivity to a matrix.SOLUTION: A thermally conductive filler is formed of pulverized material of a sintered body comprising: isotropic highly thermally conductive particles having an average particle size of 0.2-100 μm and a thermal conductivity of 20 W/mK or more; non-porous hexagonal boron nitride particles having an average particle size of 0.01-5 times the average particle size of the highly thermally conductive particles; and porous boron nitride. The porosity of the boron nitride phase formed by the hexagonal boron nitride particles and the porous boron nitride is 10-50 vol.%, and 40% or more, on a count basis, of all the highly thermally conductive particles in the pulverized material are in the form of composite particles with the hexagonal boron nitride particles which are bound via the porous boron nitride to at least a part of the surface of the highly thermally conductive particles.SELECTED DRAWING: None

Description

本発明は、熱伝導性フィラー及びそれを用いた熱伝導性複合材料、並びに熱伝導性フィラーの製造方法に関する。 The present invention relates to a thermally conductive filler, a thermally conductive composite material using the same, and a method for producing the thermally conductive filler.

窒化ホウ素は熱伝導性の高い高絶縁性の材料として知られており、窒化ホウ素粒子を熱伝導性フィラーとしてマトリックス中に分散させた様々な熱伝導性複合材料が開発されている。また、そのような窒化ホウ素粒子を、酸化アルミニウム、窒化アルミニウム、酸化ケイ素、窒化ケイ素、炭化ケイ素、酸化亜鉛、黒鉛等の他の熱伝導性材料の粒子と組み合わせて用いた熱伝導性複合材料も開発されている。 Boron nitride is known as a highly insulating material having high thermal conductivity, and various thermally conductive composite materials in which boron nitride particles are dispersed in a matrix as a thermally conductive filler have been developed. Also, a thermally conductive composite material using such boron nitride particles in combination with particles of other thermally conductive materials such as aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, silicon carbide, zinc oxide, and graphite. It is being developed.

例えば、特開2005−29421号公報(特許文献1)には、窒化アルミニウム粉末にホウ素化合物とNH基を有する化合物とを混合して調製した原料粉末に低温加熱処理を施して前記原料粉末の熱分解により非晶質のB−N−O結合物質からなる窒化ホウ素前駆体を形成させ、次いで、この窒化ホウ素前駆体に水素又は窒素雰囲気中で還元加熱処理を施して乱層構造の窒化ホウ素を形成させるとともに、前記窒化アルミニウム粉末の表面を酸化してAl層を形成させ、次いで、このAl層に窒素雰囲気中、炭素の存在下で高温加熱処理を施して前記Al層を脱酸素、再窒化させて窒化アルミニウム層を形成することによって、窒化ホウ素を3〜40体積%含有する窒化アルミニウム/窒化ホウ素複合粉末を製造する方法が記載されており、このようにして得られる窒化アルミニウム/窒化ホウ素複合粉末が、窒化アルミニウム粉末の表面を乱層構造の窒化ホウ素で被覆した複合粉末であることも記載されている。 For example, Japanese Patent Application Laid-Open No. 2005-29421 (Patent Document 1) describes a raw material powder prepared by mixing a boron nitride compound and a compound having two NH groups with an aluminum nitride powder by subjecting the raw material powder to low temperature heat treatment. A boron nitride precursor composed of an amorphous BNO binding substance is formed by thermal decomposition, and then the boron nitride precursor is subjected to reduction heat treatment in a hydrogen or nitrogen atmosphere to form a boron nitride having a multi-layer structure. The surface of the aluminum nitride powder is oxidized to form an Al 2 O 3 layer, and then the Al 2 O 3 layer is heat-treated at a high temperature in the presence of carbon in a nitrogen atmosphere to form the Al 2 O 3 layer. 2 O 3 layer a deoxygenated, by forming an aluminum nitride layer was re nitride, a method of manufacturing the aluminum nitride / boron complex nitride powder containing boron nitride 3-40% by volume have been described, such It is also described that the aluminum nitride / boron nitride composite powder obtained in the above is a composite powder in which the surface of the aluminum nitride powder is coated with boron nitride having a disordered layer structure.

また、特開2008−1536号公報(特許文献2)には、アルミナの表面をホウ素化合物で被覆した混合粉末に、低温加熱処理を施してホウ酸アルミニウムを生成させ、次いで、このホウ酸アルミニウムに窒素雰囲気中、カーボンの存在下で高温加熱処理を施すことによって、窒化アルミニウム/窒化ホウ素複合粉末を製造する方法が記載されており、このようにして得られる窒化アルミニウム/窒化ホウ素複合粉末が、窒化アルミニウム粒子の間隙に窒化ホウ素粒子が存在したものや、窒化アルミニウム粒子の表面に窒化ホウ素粒子が付着したものであることも記載されている。 Further, in Japanese Patent Application Laid-Open No. 2008-1536 (Patent Document 2), a mixed powder in which the surface of alumina is coated with a boron compound is subjected to low-temperature heat treatment to generate aluminum borate, and then this aluminum borate is used. A method for producing an aluminum nitride / boron nitride composite powder by performing a high-temperature heat treatment in the presence of carbon in a nitrogen atmosphere has been described, and the aluminum nitride / boron nitride composite powder thus obtained is nitrided. It is also described that the boron nitride particles are present in the gaps between the aluminum particles and that the boron nitride particles are attached to the surface of the aluminum nitride particles.

さらに、特開2018−162335号公報(特許文献3)には、平均粒子径が10〜100μmの窒化ホウ素粒子と、平均粒子径が前記窒化ホウ素粒子の平均粒子径の1/100〜1/2の窒化アルミニウム粒子との混合物であり、前記窒化ホウ素粒子の含有率が前記窒化ホウ素粒子と前記窒化アルミニウム粒子との合計量に対して60〜90体積%である熱伝導性フィラーが記載されている。 Further, Japanese Patent Application Laid-Open No. 2018-162335 (Patent Document 3) describes boron nitride particles having an average particle diameter of 10 to 100 μm and 1/100 to 1/2 of the average particle diameter of the boron nitride particles. Described is a heat conductive filler which is a mixture of the aluminum nitride particles of the above and has a content of the boron nitride particles of 60 to 90% by volume based on the total amount of the boron nitride particles and the aluminum nitride particles. ..

また、特開2019−43804号公報(特許文献4)には、窒化ホウ素粉末と窒化アルミニウム粉末との混合物を圧縮しながら焼成することによって圧縮焼成体を作製し、この圧縮焼成体を粉砕することによって、窒化ホウ素粒子と窒化アルミニウム粒子とを含有し、前記窒化アルミニウム粒子の外表面の50%以上が前記窒化ホウ素粒子の内部に包含され、かつ、前記窒化ホウ素粒子に当接した状態で形成されている複合粒子を含む熱伝導性フィラーが得られることが記載されている。 Further, in Japanese Patent Application Laid-Open No. 2019-43804 (Patent Document 4), a compression-fired body is produced by firing a mixture of boron nitride powder and aluminum nitride powder while compressing, and the compression-fired body is crushed. It contains boron nitride particles and aluminum nitride particles, and is formed in a state where 50% or more of the outer surface of the aluminum nitride particles is contained inside the boron nitride particles and is in contact with the boron nitride particles. It is described that a thermally conductive filler containing the composite particles is obtained.

しかしながら、窒化アルミニウム粒子の表面にホウ素化合物を用いて窒化ホウ素を形成することによって得られる従来の熱伝導性フィラーや、窒化アルミニウム粒子と窒化ホウ素粒子とを混合することによって得られる従来の熱伝導性フィラーは、熱伝導性の向上に限界があり、必ずしも十分な熱伝導性を達成できるものではなかった。 However, the conventional thermal conductivity filler obtained by forming boron nitride on the surface of the aluminum nitride particles using a boron compound, or the conventional thermal conductivity obtained by mixing the aluminum nitride particles and the boron nitride particles. The filler has a limit in improving the thermal conductivity, and cannot always achieve sufficient thermal conductivity.

また、特開2012−171842号公報(特許文献5)には、ホウ酸メラミンと、特定の鱗片状窒化ホウ素粉末からなる複合粒子を非酸化性雰囲気下で焼成することによって、熱伝導性に優れた窒化ホウ素粒子が得られることが記載されている。しかしながら、このようにして得られる窒化ホウ素粒子は、窒化ホウ素固有の熱伝導性を超えることはできないため、必ずしも十分な熱伝導性を達成できるものではなかった。 Further, Japanese Patent Application Laid-Open No. 2012-171842 (Patent Document 5) provides excellent thermal conductivity by firing composite particles composed of melamine borate and specific scaly boron nitride powder in a non-oxidizing atmosphere. It is described that the boron nitride particles can be obtained. However, since the boron nitride particles thus obtained cannot exceed the thermal conductivity inherent in boron nitride, it has not always been possible to achieve sufficient thermal conductivity.

特開2005−29421号公報Japanese Unexamined Patent Publication No. 2005-29421 特開2008−1536号公報Japanese Unexamined Patent Publication No. 2008-1536 特開2018−162335号公報JP-A-2018-162335 特開2019−43804号公報JP-A-2019-43804 特開2012−171842号公報Japanese Unexamined Patent Publication No. 2012-171842

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、マトリックスに高い熱伝導性を付与することが可能な熱伝導性フィラー及びその製造方法、並びに、優れた熱伝導性を有する複合材料を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and has a thermally conductive filler capable of imparting high thermal conductivity to the matrix, a method for producing the same, and excellent thermal conductivity. It is an object of the present invention to provide a composite material.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、高熱伝導性粉末と非多孔性の六方晶窒化ホウ素粉末とホウ酸錯体との混合物を特定の圧力で圧縮成形した後、焼成し、得られた圧縮焼結体を粉砕することによって、高熱伝導性粒子の表面の少なくとも一部に多孔性窒化ホウ素を介して六方晶窒化ホウ素粒子が結合した複合粒子を個数基準で40%以上含有する熱伝導性フィラーが得られることを見出し、さらに、この熱伝導性フィラーを用いることによって、マトリックスに高い熱伝導性を付与できることを見出し、本発明を完成するに至った。 As a result of diligent research to achieve the above object, the present inventors compression-molded a mixture of a highly thermally conductive powder, a non-porous hexagonal boron nitride powder, and a borate complex at a specific pressure, and then, By firing and crushing the obtained compression sintered body, 40% of composite particles in which hexagonal boron nitride particles are bonded to at least a part of the surface of the highly thermally conductive particles via porous boron nitride are 40% on a number basis. It has been found that a thermally conductive filler containing the above can be obtained, and further, it has been found that high thermal conductivity can be imparted to the matrix by using this thermally conductive filler, and the present invention has been completed.

すなわち、本発明の熱伝導性フィラーは、平均粒子径が0.2〜100μmであり、熱伝導率が20W/mK以上である等方性の高熱伝導性粒子と、該高熱伝導性粒子の平均粒子径の0.01〜5倍の平均粒子径を有する非多孔性の六方晶窒化ホウ素粒子と、多孔性窒化ホウ素とを含有し、前記六方晶窒化ホウ素粒子及び前記多孔性窒化ホウ素により形成される窒化ホウ素相の空隙率が10〜50vol%である焼結体の粉砕物からなり、
前記粉砕物中の全ての前記高熱伝導性粒子のうちの個数基準で40%以上の粒子が、該高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子を形成していることを特徴とするものである。
That is, the heat conductive filler of the present invention has an average particle size of 0.2 to 100 μm, an isotropic high heat conductive particle having a heat conductivity of 20 W / mK or more, and an average of the high heat conductive particles. It contains non-porous hexagonal boron nitride particles having an average particle size of 0.01 to 5 times the particle size and porous boron nitride, and is formed of the hexagonal boron nitride particles and the porous boron nitride. It is composed of a pulverized product of a sintered body having a porosity of 10 to 50 vol% in the boron nitride phase.
Of all the high thermal conductive particles in the ground product, 40% or more of the particles are made of the hexagonal boron nitride via the porous boron nitride on at least a part of the surface of the high thermal conductive particles. It is characterized in that the particles form a composite particle in which the particles are bonded.

本発明の熱伝導性フィラーにおいては、前記高熱伝導性粒子が窒化アルミニウム粒子、窒化ケイ素粒子、立方晶窒化ホウ素粒子、酸化アルミニウム粒子、酸化亜鉛粒子、炭化ケイ素粒子、及びダイヤモンド粒子からなる群から選択される少なくとも一種の粒子であることが好ましく、また、前記多孔性窒化ホウ素が乱層構造を有するものであることが好ましい。さらに、本発明の熱伝導性フィラーにおいては、表面がアルキル化されていることが好ましい。 In the thermally conductive filler of the present invention, the highly thermally conductive particles are selected from the group consisting of aluminum nitride particles, silicon nitride particles, cubic boron nitride particles, aluminum oxide particles, zinc oxide particles, silicon carbide particles, and diamond particles. It is preferable that the particles are at least one kind of particles, and it is preferable that the porous boron nitride has a multi-layer structure. Further, in the thermally conductive filler of the present invention, it is preferable that the surface is alkylated.

また、本発明の熱伝導性複合材料は、マトリックスと、該マトリックス中に分散している前記本発明の熱伝導性フィラーとを含有することを特徴とするものである。 Further, the thermally conductive composite material of the present invention is characterized by containing a matrix and the thermally conductive filler of the present invention dispersed in the matrix.

本発明の熱伝導性複合材料において、前記熱伝導性フィラーは、二峰性以上の粒度分布を有するものであることが好ましい。 In the thermally conductive composite material of the present invention, the thermally conductive filler preferably has a bimodal or higher particle size distribution.

また、本発明の熱伝導性複合材料としては、前記マトリックスがオイルであるグリース組成物が挙げられる。前記オイルとしては、シリコーンオイル、変性シリコーンオイル、フルオロエーテルオイル、鉱物油、動植物性天然油、パラフィン及び合成油からなる群から選択される少なくとも1種が好ましい。 Further, as the heat conductive composite material of the present invention, a grease composition in which the matrix is oil can be mentioned. As the oil, at least one selected from the group consisting of silicone oil, modified silicone oil, fluoroether oil, mineral oil, animal and vegetable natural oil, paraffin and synthetic oil is preferable.

さらに、本発明の熱伝導性フィラーの製造方法は、平均粒子径が0.2〜100μmであり、熱伝導率が20W/mK以上である等方性の高熱伝導性粉末と、該高熱伝導性粉末の平均粒子径の0.01〜5倍の平均粒子径を有する非多孔性の六方晶窒化ホウ素粉末と、ホウ酸錯体との混合物を20MPa以上の圧力で圧縮成形する第一の工程と
前記第一の工程で得られた圧縮成形体を不活性ガス雰囲気下で焼成する第二の工程と
前記第二の工程で得られた圧縮焼結体を粉砕して、高熱伝導性粒子の表面の少なくとも一部に多孔性窒化ホウ素を介して六方晶窒化ホウ素粒子が結合した複合粒子を含有する熱伝導性フィラーを得る第三の工程と
を含むことを特徴とする方法である。
Further, the method for producing a thermally conductive filler of the present invention comprises an isotropic high thermal conductive powder having an average particle size of 0.2 to 100 μm and a thermal conductivity of 20 W / mK or more, and the high thermal conductivity. The first step of compression molding a mixture of a non-porous hexagonal boron nitride powder having an average particle size of 0.01 to 5 times the average particle size of the powder and a boric acid complex at a pressure of 20 MPa or more and the above. The second step of firing the compression molded product obtained in the first step in an inert gas atmosphere and the compression sintered body obtained in the second step are crushed to form the surface of the highly thermally conductive particles. The method is characterized by including a third step of obtaining a thermally conductive filler containing composite particles in which hexagonal boron nitride particles are bonded via porous boron nitride at least in part.

前記第一の工程においては、静水圧下で圧縮成形することが好ましい。また、本発明の熱伝導性フィラーの製造方法においては、前記ホウ酸錯体がホウ酸メラミン錯体及びホウ酸尿素錯体からなる群から選択される少なくとも1種であることが好ましい。 In the first step, it is preferable to perform compression molding under hydrostatic pressure. Further, in the method for producing a thermally conductive filler of the present invention, it is preferable that the boric acid complex is at least one selected from the group consisting of a borate melamine complex and a borate urea complex.

また、本発明の熱伝導性フィラーの製造方法においては、前記熱伝導性フィラーとシラザン系カップリング剤又はチタネート系カップリング剤とを反応させて前記熱伝導性フィラーの表面をアルキル化する第四の工程を更に含むことが好ましい。 Further, in the method for producing a thermally conductive filler of the present invention, a fourth method of alkylating the surface of the thermally conductive filler by reacting the thermally conductive filler with a silazane-based coupling agent or a titanate-based coupling agent. It is preferable to further include the above steps.

なお、本発明の熱伝導性フィラーの製造方法によって、前記高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子を含有する熱伝導性フィラーが得られる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の熱伝導性フィラーの製造方法においては、前記高熱伝導性粉末と前記六方晶窒化ホウ素粉末とホウ酸錯体との混合物を所定の圧力で圧縮成形し、得られた圧縮成形体を不活性ガス雰囲気下で焼成することによって、圧縮焼結体を形成し、この圧縮焼結体を粉砕することによって、熱伝導性フィラーを得ている。前記高熱伝導性粉末と前記六方晶窒化ホウ素粉末と前記ホウ酸錯体との混合物を所定の圧力で圧縮成形することによって、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子とが前記ホウ酸錯体を介して接触した状態となり、このような状態の圧縮成形体を不活性ガス雰囲気下で焼成することによって、前記ホウ酸錯体が窒化ホウ素に変換されるとともに、酸素や炭素化合物が脱離するため、前記窒化ホウ素に空隙が形成される。その結果、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子とが前記多孔性窒化ホウ素を介して接合した圧縮焼結体が得られる。そして、このような圧縮成形体を粉砕すると、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子とが非常に硬質な材料であるため、前記多孔性窒化ホウ素が選択的に破壊され、前記高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子が形成されると推察される。 According to the method for producing a thermally conductive filler of the present invention, thermal conductivity containing composite particles in which the hexagonal boron nitride particles are bonded to at least a part of the surface of the highly thermally conductive particles via the porous boron nitride. The reason why the sex filler is obtained is not always clear, but the present inventors speculate as follows. That is, in the method for producing a thermally conductive filler of the present invention, a mixture of the highly thermally conductive powder, the hexagonal boron nitride powder and a borate complex is compression-molded at a predetermined pressure, and the obtained compression-molded product is obtained. A compression sintered body is formed by firing in an inert gas atmosphere, and the compression sintered body is pulverized to obtain a thermally conductive filler. By compression-molding a mixture of the high thermal conductive powder, the hexagonal boron nitride powder, and the boric acid complex at a predetermined pressure, the high thermal conductive particles and the hexagonal boron nitride particles form the boric acid complex. By firing the compression molded product in such a state in an inert gas atmosphere, the boric acid complex is converted to boron nitride and oxygen and carbon compounds are desorbed. Voids are formed in the boron nitride. As a result, a compression sintered body is obtained in which the highly thermally conductive particles and the hexagonal boron nitride particles are bonded via the porous boron nitride. When such a compression molded body is crushed, the highly thermally conductive particles and the hexagonal boron nitride particles are very hard materials, so that the porous boron nitride is selectively destroyed and the highly thermally conductive particles are destroyed. It is presumed that composite particles in which the hexagonal boron nitride particles are bonded via the porous boron nitride are formed on at least a part of the surface of the sex particles.

また、このような本発明の熱伝導性フィラーを用いることによって、熱伝導性に優れた複合材料が得られる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、熱伝導性フィラーをマトリックス中に分散させた複合材料においては、フィラー粒子が接触した部位を通じて熱が伝達されるが、窒化アルミニウム粒子等の高熱伝導性粒子は粒子内熱抵抗が小さいという利点があるものの、概して硬い粒子であることから、粒子間接触する際に粒子が変形することなく、接触面積が小さい点接点となり、粒子間熱抵抗(界面熱抵抗)が大きくなる。また、窒化ホウ素粒子は高熱伝導性粒子の中でも比較的軟らかい粒子ではあり、点接点よりは接触面積が大きくなり、粒子間熱抵抗(界面熱抵抗)が小さくなる。そこで、従来の熱伝導性フィラーにおいては、窒化アルミニウム粒子等の高熱伝導性粒子と窒化ホウ素粒子とを併用して、接触面積を増加させ、粒子間熱抵抗を低下させているものの、必ずしも十分なものではなかった。 Further, the reason why a composite material having excellent thermal conductivity can be obtained by using such a thermally conductive filler of the present invention is not necessarily clear, but the present inventors presume as follows. That is, in a composite material in which a heat conductive filler is dispersed in a matrix, heat is transferred through a portion where the filler particles are in contact, but high heat conductive particles such as aluminum nitride particles have an advantage that the intraparticle thermal resistance is small. However, since the particles are generally hard, the particles do not deform when they come into contact with each other, and the contact area becomes a small point contact, and the interparticle thermal resistance (interfacial thermal resistance) increases. Further, the boron nitride particles are relatively soft particles among the high thermal conductive particles, and the contact area is larger than that of the point contacts, and the interfacial thermal resistance (interfacial thermal resistance) is reduced. Therefore, in the conventional heat conductive filler, although high heat conductive particles such as aluminum nitride particles and boron nitride particles are used in combination to increase the contact area and reduce the thermal resistance between the particles, it is not always sufficient. It wasn't a thing.

これに対して、本発明の熱伝導性フィラーは、前記高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子を含有するものである。ここで、前記多孔性窒化ホウ素は、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子とを高い結合力で結合するだけでなく、これらの粒子の接触面積を増大させる役割も備えている。このため、本発明の熱伝導性フィラーにおいては、粒子間熱抵抗が更に小さくなり、得られる複合材料の熱伝導性が向上すると推察される。 On the other hand, the thermally conductive filler of the present invention contains composite particles in which the hexagonal boron nitride particles are bonded to at least a part of the surface of the highly thermally conductive particles via the porous boron nitride. is there. Here, the porous boron nitride not only binds the highly thermally conductive particles and the hexagonal boron nitride particles with a high bonding force, but also has a role of increasing the contact area of these particles. Therefore, in the heat conductive filler of the present invention, it is presumed that the thermal resistance between particles is further reduced and the heat conductivity of the obtained composite material is improved.

本発明によれば、マトリックスに高い熱伝導性を付与することが可能な熱伝導性フィラー、及び、優れた熱伝導性を有する複合材料を得ることが可能となる。 According to the present invention, it is possible to obtain a thermally conductive filler capable of imparting high thermal conductivity to a matrix and a composite material having excellent thermal conductivity.

実施例A5において作製した圧縮焼結体の断面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of the compression sintered body produced in Example A5. 実施例A3で得られた熱伝導性フィラーを示す走査型電子顕微鏡写真(二次電子像)である。It is a scanning electron micrograph (secondary electron image) which shows the heat conductive filler obtained in Example A3. 実施例A3で得られた熱伝導性フィラーを示す走査型電子顕微鏡写真(反射電子像)である。6 is a scanning electron micrograph (reflected electron image) showing the heat conductive filler obtained in Example A3. 実施例A4で得られた熱伝導性フィラーを示す走査型電子顕微鏡写真(無作為に抽出した25μm×20μmの視野)である。9 is a scanning electron micrograph (randomly sampled 25 μm × 20 μm field of view) showing the thermally conductive filler obtained in Example A4. 窒化アルミニウム粒子の表面の少なくとも一部が多孔性窒化ホウ素で被覆された粒子のX線回折パターンを示すグラフである。6 is a graph showing an X-ray diffraction pattern of particles in which at least a part of the surface of aluminum nitride particles is coated with porous boron nitride. 実施例A7〜A8及び比較例A8で得られた熱伝導性フィラーの粒径分布を示すグラフである。It is a graph which shows the particle size distribution of the heat conductive filler obtained in Examples A7 to A8 and Comparative Example A8. 実施例A6、A9及び比較例A9で得られた熱伝導性フィラーの粒径分布を示すグラフである。It is a graph which shows the particle size distribution of the heat conductive filler obtained in Example A6, A9 and Comparative Example A9. 実施例A4において作製した圧縮焼結体を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the compression sintered body produced in Example A4. 実施例A4で得られた熱伝導性フィラーを示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the heat conductive filler obtained in Example A4. 比較例A6で得られた熱伝導性フィラーを示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the heat conductive filler obtained in the comparative example A6. 実施例及び比較例で作製した円柱状の複合材料及びそれから切り出した熱伝導率測定用試料を示す模式図である。It is a schematic diagram which shows the columnar composite material produced in Example and Comparative Example, and the sample for thermal conductivity measurement cut out from it. 圧縮成形時の静水圧圧力と複合材料の熱伝導率との関係を示すグラフである。It is a graph which shows the relationship between the hydrostatic pressure at the time of compression molding, and the thermal conductivity of a composite material.

以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail according to the preferred embodiment thereof.

(熱伝導性フィラー)
先ず、本発明の熱伝導性フィラーについて説明する。本発明の熱伝導性フィラーは、平均粒子径が0.2〜100μmであり、熱伝導率が20W/mK以上である等方性の高熱伝導性粒子と、該高熱伝導性粒子の平均粒子径の0.01〜5倍の平均粒子径を有する非多孔性の六方晶窒化ホウ素粒子と、多孔性窒化ホウ素とを含有し、前記六方晶窒化ホウ素粒子及び前記多孔性窒化ホウ素により形成される窒化ホウ素相の空隙率が10〜50vol%である焼結体の粉砕物からなるものである。また、本発明の熱伝導性フィラーにおいては、前記粉砕物中の全ての前記高熱伝導性粒子のうちの個数基準で40%以上の粒子が、該高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子を形成している。
(Thermal conductive filler)
First, the thermally conductive filler of the present invention will be described. The heat conductive filler of the present invention has an isotropic high heat conductive particle having an average particle diameter of 0.2 to 100 μm and a heat conductivity of 20 W / mK or more, and an average particle diameter of the high heat conductive particles. It contains non-porous hexagonal boron nitride particles having an average particle size of 0.01 to 5 times that of the above, and porous boron nitride, and is formed by the hexagonal boron nitride particles and the porous boron nitride. It is composed of a pulverized product of a sintered body having a porosity of 10 to 50 vol% in the boron phase. Further, in the heat conductive filler of the present invention, 40% or more of the high heat conductive particles in the pulverized product are formed on at least a part of the surface of the high heat conductive particles. The hexagonal boron nitride particles are bonded to each other via the porous boron nitride to form composite particles.

本発明に用いられる高熱伝導性粒子としては、熱伝導率が20W/mK以上の等方性の熱伝導性粒子であれば特に制限はなく、例えば、窒化アルミニウム粒子、窒化ケイ素粒子、立方晶窒化ホウ素粒子、酸化アルミニウム粒子、酸化亜鉛粒子、炭化ケイ素粒子、ダイヤモンド粒子が挙げられる。これらの高熱伝導性粒子は1種を単独で使用しても2種以上を併用してもよい。また、これらの高熱伝導性粒子の中でも、焼結により前記六方晶窒化ホウ素粒子との間に密に接触した界面を形成でき、前記六方晶窒化ホウ素粒子との複合粒子が優れた熱伝導性を示すという観点から、窒化アルミニウム粒子、窒化ケイ素粒子、立方晶窒化ホウ素粒子、炭化ケイ素粒子、ダイヤモンド粒子が好ましく、窒化アルミニウム粒子が特に好ましい。なお、本明細書における熱伝導率とは、室温(20℃)における熱伝導率である。 The highly thermally conductive particles used in the present invention are not particularly limited as long as they are isotropic thermally conductive particles having a thermal conductivity of 20 W / mK or more, and are, for example, aluminum nitride particles, silicon carbide particles, and cubic crystal nitride. Examples thereof include boron particles, aluminum oxide particles, zinc oxide particles, silicon carbide particles, and diamond particles. These high thermal conductive particles may be used alone or in combination of two or more. Further, among these highly thermally conductive particles, an interface in close contact with the hexagonal boron nitride particles can be formed by sintering, and the composite particles with the hexagonal boron nitride particles have excellent thermal conductivity. From the viewpoint of showing, aluminum nitride particles, silicon nitride particles, cubic boron nitride particles, silicon carbide particles, and diamond particles are preferable, and aluminum nitride particles are particularly preferable. The thermal conductivity in the present specification is a thermal conductivity at room temperature (20 ° C.).

前記高熱伝導性粒子の平均粒子径は0.2〜100μmである。前記高熱伝導性粒子の平均粒子径が前記下限未満になると、得られる複合材料において前記六方晶窒化ホウ素粒子と前記高熱伝導性粒子との間及び前記高熱伝導性粒子間の粒界数が増大するため全体の熱抵抗が増大する。他方、前記高熱伝導性粒子の平均粒子径が前記上限を超えると、得られる複合材料において熱伝導性フィラーの分散均一性及び充填率が低下して熱伝導性が低下する。また、同様の観点から、前記高熱伝導性粒子の平均粒子径としては、0.3〜95μmが好ましく、0.5〜90μmがより好ましく、0.5〜50μmが更に好ましく、1〜20μmが特に好ましい。なお、本発明において、前記高熱伝導性粒子の平均粒子径は、熱伝導性フィラーに含まれる全ての前記高熱伝導性粒子、すなわち、前記六方晶窒化ホウ素粒子との複合粒子を形成している前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子と複合粒子を形成していない前記高熱伝導性粒子とを含む全ての前記高熱伝導性粒子の平均粒子径である。 The average particle size of the highly thermally conductive particles is 0.2 to 100 μm. When the average particle size of the high thermal conductive particles is less than the lower limit, the number of grain boundaries between the hexagonal boron nitride particles and the high thermal conductive particles and between the high thermal conductive particles increases in the obtained composite material. Therefore, the overall thermal resistance increases. On the other hand, when the average particle size of the high thermal conductive particles exceeds the upper limit, the dispersion uniformity and filling rate of the thermally conductive filler in the obtained composite material are lowered, and the thermal conductivity is lowered. From the same viewpoint, the average particle size of the highly thermally conductive particles is preferably 0.3 to 95 μm, more preferably 0.5 to 90 μm, further preferably 0.5 to 50 μm, and particularly preferably 1 to 20 μm. preferable. In the present invention, the average particle size of the high thermal conductive particles is such that all the high thermal conductive particles contained in the thermally conductive filler, that is, composite particles with the hexagonal boron nitride particles are formed. It is the average particle diameter of all the high thermal conductive particles including the high thermal conductive particles, the hexagonal boron nitride particles and the high thermal conductive particles that do not form a composite particle.

なお、本明細書において、「平均粒子径」は、原料粉末等に関するカタログ値を除き、走査型電子顕微鏡(SEM)観察等により無作為に抽出した300個以上の粒子の粒子径の平均値を意味する。また、粒子が球形状(断面が円形状)でない場合には、粒子(断面)の外接円を想定し、その外接円の直径を粒子径とする。 In the present specification, the "mean particle size" is the average value of the particle size of 300 or more particles randomly selected by scanning electron microscope (SEM) observation or the like, excluding the catalog value for raw material powder and the like. means. When the particles are not spherical (circular cross section), the circumscribed circle of the particles (cross section) is assumed, and the diameter of the circumscribed circle is defined as the particle diameter.

本発明に用いられる窒化ホウ素粒子は、非多孔性の六方晶窒化ホウ素粒子であり、熱伝導性に優れている。このような六方晶窒化ホウ素粒子の平均粒子径は、組合せて用いられる前記高熱伝導性粒子の平均粒子径の0.01〜5倍である。前記六方晶窒化ホウ素粒子の平均粒子径が前記下限未満になると、得られる複合材料において前記六方晶窒化ホウ素粒子と前記高熱伝導性粒子との間及び前記六方晶窒化ホウ素粒子間の粒界数が増大するため全体の熱抵抗が増大する。他方、前記六方晶窒化ホウ素粒子の平均粒子径が前記上限を超えると、得られる複合材料において熱伝導性フィラーの分散均一性及び充填率が低下して熱伝導性が低下する。また、同様の観点から、前記六方晶窒化ホウ素粒子の平均粒子径としては、組合せて用いられる前記高熱伝導性粒子の平均粒子径の0.03〜0.3倍が好ましく、0.05〜1倍がより好ましい。なお、本発明において、前記六方晶窒化ホウ素粒子の平均粒子径は、熱伝導性フィラーに含まれる全ての前記六方晶窒化ホウ素粒子、すなわち、前記高熱伝導性粒子との複合粒子を形成している前記六方晶窒化ホウ素粒子と前記高熱伝導性粒子と複合粒子を形成していない前記六方晶窒化ホウ素粒子とを含む全ての前記六方晶窒化ホウ素粒子の平均粒子径である。 The boron nitride particles used in the present invention are non-porous hexagonal boron nitride particles and are excellent in thermal conductivity. The average particle size of such hexagonal boron nitride particles is 0.01 to 5 times the average particle size of the high thermal conductive particles used in combination. When the average particle size of the hexagonal boron nitride particles is less than the lower limit, the number of grain boundaries between the hexagonal boron nitride particles and the highly thermally conductive particles and between the hexagonal boron nitride particles in the obtained composite material is increased. As it increases, the overall thermal resistance increases. On the other hand, when the average particle size of the hexagonal boron nitride particles exceeds the upper limit, the dispersion uniformity and filling rate of the heat conductive filler in the obtained composite material are lowered, and the heat conductivity is lowered. From the same viewpoint, the average particle size of the hexagonal boron nitride particles is preferably 0.03 to 0.3 times the average particle size of the highly thermally conductive particles used in combination, preferably 0.05 to 1. Double is more preferable. In the present invention, the average particle size of the hexagonal boron nitride particles forms composite particles with all the hexagonal boron nitride particles contained in the thermally conductive filler, that is, the highly thermally conductive particles. It is the average particle diameter of all the hexagonal boron nitride particles including the hexagonal boron nitride particles and the hexagonal boron nitride particles that do not form composite particles with the high thermal conductive particles.

また、前記六方晶窒化ホウ素粒子においては、黒鉛化指数が2.0以下であることが好ましい。前記六方晶窒化ホウ素粒子の黒鉛化指数が前記上限を超えると、前記六方晶窒化ホウ素粒子の熱伝導率そのものが小さくなるため、得られる複合材料の熱伝導性が低下する。 Further, in the hexagonal boron nitride particles, the graphitization index is preferably 2.0 or less. When the graphitization index of the hexagonal boron nitride particles exceeds the upper limit, the thermal conductivity of the hexagonal boron nitride particles itself becomes small, so that the thermal conductivity of the obtained composite material decreases.

さらに、前記高熱伝導性粒子及び前記六方晶窒化ホウ素粒子においては、マトリックスへの分散性をより向上させるという観点から、それらの表面に水酸基、カルボキシル基、エステル基、アミド基、アミノ基等の官能基が結合していてもよい。 Further, in the highly thermally conductive particles and the hexagonal boron nitride particles, functional groups such as a hydroxyl group, a carboxyl group, an ester group, an amide group, and an amino group are functional on the surface thereof from the viewpoint of further improving the dispersibility in the matrix. The groups may be bonded.

本発明にかかる多孔性窒化ホウ素は、本発明にかかる焼結体や本発明の熱伝導性フィラーにおいて、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子とを高い結合力で結合させるものである。また、このような多孔性窒化ホウ素は、配向性が高すぎると、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子との間の熱伝導を妨げる位置に配置される可能性があるため、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子との間の効率的な熱伝導という観点から、乱層構造を有していることが好ましい。 The porous boron nitride according to the present invention binds the highly thermally conductive particles and the hexagonal boron nitride particles with a high bonding force in the sintered body according to the present invention and the thermally conductive filler of the present invention. .. Further, if the orientation of such porous boron nitride is too high, it may be arranged at a position that hinders heat conduction between the highly thermally conductive particles and the hexagonal boron nitride particles. From the viewpoint of efficient heat conduction between the highly thermally conductive particles and the hexagonal boron nitride particles, it is preferable to have a multi-layer structure.

また、前記多孔性窒化ホウ素においては、002面に由来するX線回折ピークの半値幅が0.5〜10°であることが好ましく、0.5〜5°であることがより好ましく、0.5〜2°であることが特に好ましい。多孔性窒化ホウ素の002面に由来するX線回折ピークの半値幅が前記下限未満になると、乱層構造の割合が少なくなり、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子との間の結合力や接合力が低下する傾向にあり、他方、前記上限を超えると、乱層構造により結晶が乱れるため、熱伝導率が低下する傾向にある。 Further, in the porous boron nitride, the half width of the X-ray diffraction peak derived from the 002 surface is preferably 0.5 to 10 °, more preferably 0.5 to 5 °, and 0. It is particularly preferably 5 to 2 °. When the half-value width of the X-ray diffraction peak derived from the 002 surface of the porous boron nitride is less than the lower limit, the proportion of the disordered layer structure is reduced, and the bond between the highly thermally conductive particles and the hexagonal boron nitride particles is reduced. The force and bonding force tend to decrease, while when the upper limit is exceeded, the crystal is disturbed due to the disordered layer structure, so that the thermal conductivity tends to decrease.

このような多孔性窒化ホウ素は、例えば、後述するように、ホウ酸錯体を不活性ガス雰囲気下で焼成することによって形成することができる。ホウ酸錯体は、不活性ガス雰囲気下での焼成によって、窒化ホウ素に変換される。このとき、酸素や炭素化合物が脱離するため、前記窒化ホウ素に空隙が形成され、多孔性の窒化ホウ素が得られる。 Such porous boron nitride can be formed, for example, by calcining the boric acid complex in an inert gas atmosphere, as will be described later. The boric acid complex is converted to boron nitride by calcination in an inert gas atmosphere. At this time, since oxygen and carbon compounds are desorbed, voids are formed in the boron nitride, and porous boron nitride can be obtained.

本発明の熱伝導性フィラーは、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子と前記多孔性窒化ホウ素とを含有する焼結体の粉砕物である。前記焼結体において、前記六方晶窒化ホウ素粒子と前記多孔性窒化ホウ素とによって形成される窒化ホウ素相の空隙率は10〜50vol%である。前記窒化ホウ素相の空隙率が前記範囲内にあると、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子との接触面積が増加し、粒子間の熱抵抗が低減される。また、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子との密着性の向上と前記窒化ホウ素相の熱伝導性の向上とを両立させることができる。一方、前記窒化ホウ素相の空隙率が前記下限未満になると、前記窒化ホウ素相の熱伝導性は向上するものの、焼結体の粉砕時に、前記多孔性窒化ホウ素が優先的に破断されないため、前記高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子が形成しにくく、得られる熱伝導性フィラーにおいて、前記複合粒子の含有量が少なくなる。他方、前記窒化ホウ素相の空隙率が前記上限を超えると、前記窒化ホウ素相の熱伝導性が低下するため、得られる複合材料の熱伝導性も低下する。また、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子との密着性が低下するため、焼結体の粉砕時に、前記高熱伝導性粒子の表面から前記六方晶窒化ホウ素粒子が脱離しやすく、得られる熱伝導性フィラーにおいて、前記高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子の含有量が少なくなる。また、同様の観点から、前記窒化ホウ素相の空隙率としては、15〜40vol%が好ましい。 The thermally conductive filler of the present invention is a pulverized product of a sintered body containing the highly thermally conductive particles, the hexagonal boron nitride particles, and the porous boron nitride. In the sintered body, the porosity of the boron nitride phase formed by the hexagonal boron nitride particles and the porous boron nitride is 10 to 50 vol%. When the porosity of the boron nitride phase is within the above range, the contact area between the highly thermally conductive particles and the hexagonal boron nitride particles is increased, and the thermal resistance between the particles is reduced. Further, it is possible to achieve both the improvement of the adhesion between the highly thermally conductive particles and the hexagonal boron nitride particles and the improvement of the thermal conductivity of the boron nitride phase. On the other hand, when the porosity of the boron nitride phase is less than the lower limit, the thermal conductivity of the boron nitride phase is improved, but the porous boron nitride is not preferentially broken during pulverization of the sintered body. It is difficult to form composite particles in which the hexagonal boron nitride particles are bonded to at least a part of the surface of the highly thermally conductive particles via the porous boron nitride, and the content of the composite particles in the obtained thermally conductive filler is high. Less. On the other hand, when the porosity of the boron nitride phase exceeds the upper limit, the thermal conductivity of the boron nitride phase decreases, so that the thermal conductivity of the obtained composite material also decreases. Further, since the adhesion between the high thermal conductive particles and the hexagonal boron nitride particles is lowered, the hexagonal boron nitride particles can be easily desorbed from the surface of the high thermal conductive particles when the sintered body is pulverized. In the thermally conductive filler, the content of the composite particles in which the hexagonal boron nitride particles are bonded to at least a part of the surface of the highly thermally conductive particles via the porous boron nitride is reduced. From the same viewpoint, the porosity of the boron nitride phase is preferably 15 to 40 vol%.

また、本発明の熱伝導性フィラーにおいては、前記粉砕物中の全ての前記高熱伝導性粒子のうちの個数基準で40%以上の粒子が、前記高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子を形成している。全ての前記高熱伝導性粒子のうちの40%以上の粒子が前記複合粒子を形成している熱伝導性フィラーは、粒子間の熱抵抗が小さく、得られる複合材料の熱伝導性が向上する。一方、前記複合粒子を形成している粒子の割合が前記下限未満の熱伝導性フィラーは、粒子間の熱抵抗が高く、得られる複合材料の熱伝導性が低下する。熱伝導性フィラーにおいて粒子間の熱抵抗が更に小さくなり、得られる複合材料の熱伝導性が更に向上するという観点から、全ての前記高熱伝導性粒子のうちの個数基準で50%以上の粒子が前記複合粒子を形成していることが好ましく、55%以上の粒子が前記複合粒子を形成していることがより好ましい。なお、全ての高熱伝導性粒子の個数は、表面の少なくとも一部に前記六方晶窒化ホウ素粒子が結合している高熱伝導性粒子と前記六方晶窒化ホウ素粒子が結合していない高熱伝導性粒子とを含む全ての前記高熱伝導性粒子の個数を意味する。 Further, in the heat conductive filler of the present invention, 40% or more of the high heat conductive particles in the pulverized product are formed on at least a part of the surface of the high heat conductive particles. The hexagonal boron nitride particles are bonded to each other via the porous boron nitride to form composite particles. The thermally conductive filler in which 40% or more of the highly thermally conductive particles form the composite particles has a small thermal resistance between the particles, and the thermal conductivity of the obtained composite material is improved. On the other hand, a thermally conductive filler in which the proportion of particles forming the composite particles is less than the lower limit has a high thermal resistance between the particles, and the thermal conductivity of the obtained composite material is lowered. From the viewpoint that the thermal resistance between the particles in the thermally conductive filler is further reduced and the thermal conductivity of the obtained composite material is further improved, 50% or more of the particles among all the highly thermally conductive particles are based on the number of particles. It is preferable that the composite particles are formed, and it is more preferable that 55% or more of the particles form the composite particles. The number of all the high thermal conductive particles is the high thermal conductive particles in which the hexagonal boron nitride particles are bonded to at least a part of the surface and the high thermal conductive particles in which the hexagonal boron nitride particles are not bonded. It means the number of all the highly thermally conductive particles including.

さらに、本発明の熱伝導性フィラーにおいては、前記複合粒子が必ずしも前記高熱伝導性粒子の全表面が前記六方晶窒化ホウ素粒子により被覆されていなくてもよいが、前記高熱伝導性粒子の表面の40%以上が被覆されていることが好ましく、55%以上が被覆されていることがより好ましく、全表面が被覆されていることが特に好ましい。 Further, in the thermally conductive filler of the present invention, the composite particles do not necessarily have to have the entire surface of the highly thermally conductive particles coated with the hexagonal boron nitride particles, but the surface of the highly thermally conductive particles It is preferable that 40% or more is coated, 55% or more is more preferably coated, and it is particularly preferable that the entire surface is coated.

本発明の熱伝導性フィラーにおいて、前記高熱伝導性粒子と前記窒化ホウ素相(前記六方晶窒化ホウ素粒子と前記多孔性窒化ホウ素とにより形成される相)との体積比率(高熱伝導性粒子:窒化ホウ素相)としては特に制限はないが、30:70〜98:2が好ましく、40:60〜90:10がより好ましい。前記高熱伝導性粒子と前記窒化ホウ素相との体積比率が前記下限未満になると、前記高熱伝導性粒子による熱伝導性の向上効果が十分に得られず、得られる複合材料の熱伝導性が十分に向上しない傾向にあり、他方、前記上限を超えると、得られる複合材料において、前記高熱伝導性粒子が関与する熱抵抗の大きい接触界面が相対的に増加するため、優れた熱伝導性を有する複合材料が得られない傾向にある。 In the thermally conductive filler of the present invention, the volume ratio of the highly thermally conductive particles and the boron nitride phase (the phase formed by the hexagonal boron nitride particles and the porous boron nitride) (highly thermally conductive particles: nitride). The boron phase) is not particularly limited, but is preferably 30:70 to 98: 2, and more preferably 40:60 to 90:10. When the volume ratio of the high thermal conductive particles to the boron nitride phase is less than the lower limit, the effect of improving the thermal conductivity of the high thermal conductive particles cannot be sufficiently obtained, and the obtained composite material has sufficient thermal conductivity. On the other hand, when the upper limit is exceeded, the contact interface having a large thermal resistance in which the high thermal conductive particles are involved relatively increases in the obtained composite material, so that the composite material has excellent thermal conductivity. There is a tendency that composite materials cannot be obtained.

また、本発明の熱伝導性フィラーにおいて、前記六方晶窒化ホウ素粒子と前記多孔性窒化ホウ素との体積比率(六方晶窒化ホウ素粒子:多孔性窒化ホウ素)としては特に制限はないが、10:90〜90:10が好ましく、20:80〜80:20がより好ましい。前記六方晶窒化ホウ素粒子と前記多孔性窒化ホウ素との体積比率が前記下限未満になると、前記六方晶窒化ホウ素粒子が関与する熱抵抗の小さい接触界面が相対的に減少するため、優れた熱伝導性を有する複合材料が得られない傾向にあり、他方、前記上限を超えると、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子との密着性が低下するため、焼結体の粉砕時に、前記高熱伝導性粒子の表面から前記六方晶窒化ホウ素粒子が脱離しやすく、得られる熱伝導性フィラーにおいて、前記複合粒子の含有量が少なくなり、優れた熱伝導性を有する複合材料が得られない傾向にある。 Further, in the thermally conductive filler of the present invention, the volume ratio of the hexagonal boron nitride particles to the porous boron nitride (hexagonal boron nitride particles: porous boron nitride) is not particularly limited, but is 10:90. ~ 90:10 is preferable, and 20:80 to 80:20 is more preferable. When the volume ratio of the hexagonal boron nitride particles to the porous boron nitride is less than the lower limit, the contact interface having a small thermal resistance in which the hexagonal boron nitride particles are involved is relatively reduced, resulting in excellent thermal conductivity. On the other hand, if the upper limit is exceeded, the adhesion between the highly thermally conductive particles and the hexagonal boron nitride particles is lowered, so that when the sintered body is pulverized, the above-mentioned The hexagonal boron nitride particles are easily desorbed from the surface of the highly thermally conductive particles, and the content of the composite particles is reduced in the obtained thermally conductive filler, so that a composite material having excellent thermal conductivity cannot be obtained. It is in.

さらに、本発明の熱伝導性フィラーにおいては、表面がアルキル化されていることが好ましい。これにより、後述するマトリックス中に熱伝導性フィラーを添加した場合に、熱伝導性フィラーの凝集を抑制することができ、複合材料の流動性が向上するため、熱抵抗が更に低減された、熱伝導性に更に優れた複合材料を得ることが可能となる。 Further, in the thermally conductive filler of the present invention, it is preferable that the surface is alkylated. As a result, when the heat conductive filler is added to the matrix described later, the aggregation of the heat conductive filler can be suppressed and the fluidity of the composite material is improved, so that the thermal resistance is further reduced. It becomes possible to obtain a composite material having further excellent conductivity.

(熱伝導性フィラーの製造方法)
次に、本発明の熱伝導性フィラーの製造方法について説明する。本発明の熱伝導性フィラーの製造方法は、平均粒子径が0.2〜100μmであり、熱伝導率が20W/mK以上である等方性の高熱伝導性粉末と、該高熱伝導性粉末の平均粒子径の0.01〜5倍の平均粒子径を有する非多孔性の六方晶窒化ホウ素粉末と、ホウ酸錯体との混合物を20MPa以上の圧力で圧縮成形する第一の工程と
前記第一の工程で得られた圧縮成形体を不活性ガス雰囲気下、1800〜2200℃の温度で焼成する第二の工程と
前記第二の工程で得られた圧縮焼結体を粉砕して、高熱伝導性粒子の表面の少なくとも一部に多孔性窒化ホウ素を介して六方晶窒化ホウ素粒子が結合した複合粒子を含有する熱伝導性フィラーを得る第三の工程と
を含む方法である。
(Manufacturing method of thermally conductive filler)
Next, the method for producing the thermally conductive filler of the present invention will be described. The method for producing a thermally conductive filler of the present invention comprises an isotropic high thermal conductive powder having an average particle size of 0.2 to 100 μm and a thermal conductivity of 20 W / mK or more, and the high thermal conductive powder. The first step of compression-molding a mixture of a non-porous hexagonal boron nitride powder having an average particle size of 0.01 to 5 times the average particle size and a boric acid complex at a pressure of 20 MPa or more and the first step. The second step of firing the compression molded product obtained in the above step at a temperature of 1800 to 2200 ° C. in an inert gas atmosphere and the compression sintered body obtained in the second step are crushed to achieve high thermal conductivity. This method includes a third step of obtaining a thermally conductive filler containing composite particles in which hexagonal boron nitride particles are bonded to at least a part of the surface of the sex particles via porous boron nitride.

また、本発明の熱伝導性フィラーの製造方法においては、前記熱伝導性フィラーとシラザン系カップリング剤又はチタネート系カップリング剤とを反応させて前記熱伝導性フィラーの表面をアルキル化する第四の工程を更に含むことが好ましい。 Further, in the method for producing a thermally conductive filler of the present invention, a fourth method of alkylating the surface of the thermally conductive filler by reacting the thermally conductive filler with a silazane-based coupling agent or a titanate-based coupling agent. It is preferable to further include the above steps.

(第一の工程)
第一の工程においては、先ず、高熱伝導性粉末と六方晶窒化ホウ素粉末とホウ酸錯体との混合物を調製する。ここで用いる高熱伝導性粉末は、前記本発明の熱伝導性フィラーにおける高熱伝導性粒子となる原料粉末であり、その平均粒子径は0.2〜100μmであり、0.3〜95μmであることが好ましく、0.5〜90μmであることがより好ましく、0.5〜50μmであることが更に好ましく、1〜20μmであることが特に好ましい。また、ここで用いる六方晶窒化ホウ素粉末は、前記本発明の熱伝導性フィラーにおける六方晶窒化ホウ素粒子となる原料粉末であり、その平均粒子径は組合せて用いられる前記高熱伝導性粉末の平均粒子径の0.01〜5倍であり、0.03〜3倍であることが好ましく、0.05〜1倍であることがより好ましい。
(First step)
In the first step, first, a mixture of a highly thermally conductive powder, a hexagonal boron nitride powder, and a boric acid complex is prepared. The high thermal conductive powder used here is a raw material powder that becomes high thermal conductive particles in the thermally conductive filler of the present invention, and the average particle diameter thereof is 0.2 to 100 μm and 0.3 to 95 μm. It is preferably 0.5 to 90 μm, more preferably 0.5 to 50 μm, and particularly preferably 1 to 20 μm. The hexagonal boron nitride powder used here is a raw material powder that becomes hexagonal boron nitride particles in the thermally conductive filler of the present invention, and the average particle size thereof is the average particle of the highly thermally conductive powder used in combination. The diameter is 0.01 to 5 times, preferably 0.03 to 3 times, and more preferably 0.05 to 1 times the diameter.

また、前記ホウ酸錯体としては不活性ガス雰囲気下での焼成によって多孔性の窒化ホウ素を形成できるものであれば特に制限はなく、例えば、ホウ酸メラミン錯体、ホウ酸尿素錯体が挙げられる。 The boric acid complex is not particularly limited as long as it can form a porous boron nitride by firing in an inert gas atmosphere, and examples thereof include a borate melamine complex and a borate urea complex.

前記混合物を調製する際の混合方法としては特に制限はなく、例えば、湿式ボールミル粉砕混合法、乾式ボールミル粉砕混合法、機械混合法、撹拌混合法、乳鉢等による混合法等を採用することができ、必要に応じて、ろ過、洗浄、乾燥、分粒等の処理を施してもよい。このようなろ過、洗浄、乾燥、分粒等の処理としてはいずれも特に制限されず、公知の方法を適宜採用することができる。 The mixing method when preparing the mixture is not particularly limited, and for example, a wet ball mill crushing mixing method, a dry ball mill crushing mixing method, a mechanical mixing method, a stirring mixing method, a mixing method using a mortar or the like can be adopted. If necessary, treatments such as filtration, washing, drying, and pulverization may be performed. The treatments such as filtration, washing, drying, and granulation are not particularly limited, and known methods can be appropriately adopted.

前記高熱伝導性粉末と前記六方晶窒化ホウ素粉末と前記ホウ酸錯体との混合比率としては特に制限はないが、得られる熱伝導性フィラーにおいて、前記高熱伝導性粒子と前記窒化ホウ素相との体積比率及び前記六方晶窒化ホウ素粒子と前記多孔性窒化ホウ素との体積比率が前記範囲内となる混合比率が好ましい。 The mixing ratio of the high thermal conductive powder, the hexagonal boron nitride powder, and the boric acid complex is not particularly limited, but the volume of the high thermal conductive particles and the boron nitride phase in the obtained thermally conductive filler. A mixing ratio in which the ratio and the volume ratio of the hexagonal boron nitride particles and the porous boron nitride are within the above range is preferable.

次に、このようにして得られた混合物を所定の圧力で圧縮成形する。これにより、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子とが前記ホウ酸錯体を介して密着した圧縮成形体を得ることができる。 Next, the mixture thus obtained is compression-molded at a predetermined pressure. As a result, it is possible to obtain a compression molded body in which the highly thermally conductive particles and the hexagonal boron nitride particles are in close contact with each other via the boric acid complex.

圧縮成形時の圧力は20MPa以上であり、60MPa以上であることが好ましく、80MPa以上であることがより好ましい。圧縮成形時の圧力が前記下限未満になると、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子とが前記ホウ酸錯体を介して十分に密着せず、前記高熱伝導性粒子と前記六方晶窒化ホウ素粒子とが前記多孔性窒化ホウ素を介して高い結合力で結合している複合材料が形成されにくく、得られる熱伝導性フィラー及び複合材料の熱伝導性が向上しにくい傾向にある。 The pressure during compression molding is 20 MPa or more, preferably 60 MPa or more, and more preferably 80 MPa or more. When the pressure during compression molding becomes less than the lower limit, the high thermal conductive particles and the hexagonal boron nitride particles do not sufficiently adhere to each other via the boric acid complex, and the high thermal conductive particles and the hexagonal boron nitride particles do not adhere sufficiently to each other. It is difficult to form a composite material in which particles are bonded to each other through the porous boron nitride with a high bonding force, and it tends to be difficult to improve the thermal conductivity of the obtained thermally conductive filler and composite material.

前記混合物を圧縮成形する方法としては特に制限はないが、静水圧下での圧縮成形が好ましい。これにより、前記混合物に均一に圧力が印加され、効果的な密着状態の圧縮成形体を得ることができる。また、静水圧下で圧縮成形することにより、窒化ホウ素の配向による熱伝導性フィラーの熱伝導率異方性を抑制することができる。このような熱伝導性フィラーの熱伝導率異方性は成形履歴による熱伝導率異方性を生じさせるため、場合によっては好ましくない。 The method for compression molding the mixture is not particularly limited, but compression molding under hydrostatic pressure is preferable. As a result, pressure is uniformly applied to the mixture, and a compression molded product in an effective close contact state can be obtained. Further, by compression molding under hydrostatic pressure, the thermal conductivity anisotropy of the thermally conductive filler due to the orientation of boron nitride can be suppressed. Such thermal conductivity anisotropy of the thermally conductive filler causes thermal conductivity anisotropy due to the molding history, which is not preferable in some cases.

(第二の工程)
第二の工程においては、前記第一の工程で得られた圧縮成形体を不活性ガス雰囲気下で焼成する。これにより、前記圧縮成形体中の前記ホウ酸錯体が窒化ホウ素に変換されるとともに、酸素や炭素化合物が脱離するため、前記窒化ホウ素内に空隙が形成され、多孔性の窒化ホウ素が得られる。
(Second step)
In the second step, the compression molded product obtained in the first step is fired in an inert gas atmosphere. As a result, the boric acid complex in the compression molded product is converted to boron nitride, and oxygen and carbon compounds are desorbed, so that voids are formed in the boron nitride and porous boron nitride can be obtained. ..

前記不活性ガスとしては、窒素、希ガス(例えば、アルゴン、ヘリウム、ネオン)等が挙げられる。焼成温度としては、前記混合物が十分に焼結する温度であれば特に制限はないが、1600〜2200℃が好ましく、1650〜1900℃がより好ましい。また、焼成時間としては、前記混合物が十分に焼結する時間であれば特に制限はないが、0.5〜6時間が好ましく、1〜4時間がより好ましい。 Examples of the inert gas include nitrogen, a rare gas (for example, argon, helium, neon) and the like. The firing temperature is not particularly limited as long as the mixture is sufficiently sintered, but is preferably 1600 to 2200 ° C, more preferably 1650 to 1900 ° C. The firing time is not particularly limited as long as the mixture is sufficiently sintered, but is preferably 0.5 to 6 hours, more preferably 1 to 4 hours.

(第三の工程)
第三の工程においては、前記第二の工程で得られた圧縮焼結体を粉砕する。このとき、前記圧縮成形体の多孔性窒化ホウ素が選択的に破断されるため、前記高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子が形成され、この複合粒子を多く含有する熱伝導性フィラーが得られる。
(Third step)
In the third step, the compressed sintered body obtained in the second step is pulverized. At this time, since the porous boron nitride of the compression molded product is selectively broken, the hexagonal boron nitride particles are bonded to at least a part of the surface of the highly thermally conductive particles via the porous boron nitride. Composite particles are formed, and a thermally conductive filler containing a large amount of these composite particles can be obtained.

前記圧縮焼結体の粉砕方法としては特に制限はなく、例えば、各種粉砕機(ミル)や乳鉢を用いた粉砕方法や湿式ボールミルや乾式ボールミルを用いた粉砕方法等を採用することができる。 The crushing method of the compression sintered body is not particularly limited, and for example, a crushing method using various crushers (mills) or mortars, a crushing method using a wet ball mill or a dry ball mill, or the like can be adopted.

(第四の工程)
第四の工程においては、前記第三の工程で得られた熱伝導性フィラーとシラザン系カップリング剤又はチタネート系カップリング剤とを反応させる。このとき、前記熱伝導性フィラー中の前記BN粒子とシラザン系カップリング剤又はチタネート系カップリング剤とが反応することによって、前記熱伝導性フィラーの表面がアルキル化され、後述するマトリックス中に熱伝導性フィラーを添加した場合に、熱伝導性フィラーの凝集を抑制することができ、複合材料の流動性が向上するため、熱抵抗が更に低減された、熱伝導性に更に優れた複合材料を得ることが可能となる。
(Fourth step)
In the fourth step, the thermally conductive filler obtained in the third step is reacted with a silazane-based coupling agent or a titanate-based coupling agent. At this time, the surface of the thermally conductive filler is alkylated by the reaction between the BN particles in the thermally conductive filler and the silazane-based coupling agent or the titanate-based coupling agent, and heat is generated in the matrix described later. When a conductive filler is added, aggregation of the thermally conductive filler can be suppressed and the fluidity of the composite material is improved. Therefore, a composite material having further reduced thermal resistance and excellent thermal conductivity can be obtained. It becomes possible to obtain.

一方、前記第三の工程で得られた熱伝導性フィラーの表面をシラン系カップリング剤又はアルミネート系カップリング剤で処理した場合、シラン系カップリング剤やアルミネート系カップリング剤の加水分解反応が進行してカップリング剤のゲル化が起こり、前記熱伝導性フィラー中の前記BN粒子とシラン系カップリング剤やアルミネート系カップリング剤との反応が進行しないため、前記熱伝導性フィラーの表面がアルキル化されず、後述するマトリックス中に熱伝導性フィラーを添加した場合に、熱伝導性フィラーの凝集を抑制することができず、複合材料の流動性が低下する。また、生じたゲルの介在により、熱伝導性フィラー間の接触熱抵抗が上昇する。これらの結果、複合材料は、熱抵抗が低減されず、熱伝導性が向上しない。 On the other hand, when the surface of the thermally conductive filler obtained in the third step is treated with a silane-based coupling agent or an aluminate-based coupling agent, the silane-based coupling agent or the aluminate-based coupling agent is hydrolyzed. Since the reaction proceeds and gelation of the coupling agent occurs and the reaction between the BN particles in the thermally conductive filler and the silane coupling agent or the aluminate coupling agent does not proceed, the thermally conductive filler When the surface of the heat conductive filler is not alkylated and the heat conductive filler is added to the matrix described later, the aggregation of the heat conductive filler cannot be suppressed and the fluidity of the composite material is lowered. In addition, the interposition of the generated gel increases the contact thermal resistance between the thermally conductive fillers. As a result, the composite material does not have reduced thermal resistance and does not improve thermal conductivity.

前記シラザン系カップリング剤及び前記チタネート系カップリング剤のうち、熱伝導性フィラーの凝集を十分に抑制することができ、複合材料の流動性が向上し、また、ゲルの介在による熱伝導性フィラー間の接触熱抵抗の上昇も起こらないため、得られる複合材料の熱抵抗がより低減され、熱伝導性がより高くなるという観点から、シラザン系カップリング剤が好ましい。 Of the silazane-based coupling agent and the titanate-based coupling agent, the aggregation of the thermally conductive filler can be sufficiently suppressed, the fluidity of the composite material is improved, and the thermally conductive filler due to the presence of the gel. Since the contact thermal resistance between them does not increase, the silazane-based coupling agent is preferable from the viewpoint of further reducing the thermal resistance of the obtained composite material and increasing the thermal conductivity.

前記熱伝導性フィラーとシラザン系カップリング剤又はチタネート系カップリング剤とを反応させる方法としては、例えば、トルエン等の有機溶媒中に前記熱伝導性フィラーを分散させ、得られた分散液にシラザン系カップリング剤又はチタネート系カップリング剤を添加した後、加熱する方法が挙げられる。 As a method of reacting the thermally conductive filler with the silazane-based coupling agent or the titanate-based coupling agent, for example, the thermally conductive filler is dispersed in an organic solvent such as toluene, and silazane is dispersed in the obtained dispersion. A method of heating after adding a system-based coupling agent or a titanate-based coupling agent can be mentioned.

前記熱伝導性フィラーとシラザン系カップリング剤又はチタネート系カップリング剤との混合比としては、前記熱伝導性フィラー100質量部に対して、シラザン系カップリング剤又はチタネート系カップリング剤の量が1〜20質量部であることが好ましく、5〜10質量部であることがより好ましい。 As a mixing ratio of the thermally conductive filler and the silazane-based coupling agent or the titanate-based coupling agent, the amount of the silazane-based coupling agent or the titanate-based coupling agent is 100 parts by mass of the thermally conductive filler. It is preferably 1 to 20 parts by mass, and more preferably 5 to 10 parts by mass.

反応温度としては室温〜100℃が好ましく、40〜60℃がより好ましい。また、反応時間としては0.5〜20時間が好ましく、1〜5時間がより好ましい。 The reaction temperature is preferably room temperature to 100 ° C, more preferably 40 to 60 ° C. The reaction time is preferably 0.5 to 20 hours, more preferably 1 to 5 hours.

(熱伝導性複合材料)
次に、本発明の熱伝導性複合材料について説明する。本発明の熱伝導性複合材料は、マトリックスと、このマトリックス中に分散している前記本発明の熱伝導性フィラーとを含有するものである。
(Thermal conductive composite material)
Next, the heat conductive composite material of the present invention will be described. The thermally conductive composite material of the present invention contains a matrix and the thermally conductive filler of the present invention dispersed in the matrix.

このような本発明の熱伝導性複合材料において、前記マトリックスとしては、絶縁性の樹脂や絶縁性のオイルが好ましく、例えば、樹脂としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂等の熱硬化性樹脂や、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン)、ポリオレフィンエラストマー、ポリエチレンテレフタレート、ナイロン、ABS樹脂、ポリアミド、ポリイミド、ポリアミドイミド、エチレン−プロピレン−ジエンゴム(EPDM)、ブチルゴム、天然ゴム、ポリイソプレン、ポリエーテルイミド等の熱可塑性樹脂が挙げられる。また、オイルとしては、シリコーンオイル、変性シリコーンオイル、フルオロエーテルオイル、鉱物油、動植物性天然油、パラフィン、合成油等が挙げられ、沸点が200℃以上の、シリコーンオイル、変性シリコーンオイル、パラフィン、合成油が好ましい。これらの樹脂やオイルは1種を単独で使用しても2種以上を併用してもよい。 In such a thermally conductive composite material of the present invention, an insulating resin or an insulating oil is preferable as the matrix, and for example, the resin is a thermosetting resin such as an epoxy resin, a phenol resin, or a silicone resin. , Polystyrene, polymethylmethacrylate, polycarbonate, polyolefin (eg polyethylene, polypropylene), polyolefin elastomer, polyethylene terephthalate, nylon, ABS resin, polyamide, polyimide, polyamideimide, ethylene-propylene-diene rubber (EPDM), butyl rubber, natural rubber , Polyisoprene, polyetherimide and the like. Examples of the oil include silicone oil, modified silicone oil, fluoroether oil, mineral oil, animal and vegetable natural oil, paraffin, synthetic oil, etc., and have a boiling point of 200 ° C. or higher, such as silicone oil, modified silicone oil, paraffin, Synthetic oils are preferred. These resins and oils may be used alone or in combination of two or more.

また、本発明の熱伝導性複合材料においては、前記熱伝導性フィラーの表面がアルキル化されていることが好ましい。これにより、前記マトリックス中での前記熱伝導性フィラーの凝集を抑制することができ、複合材料の流動性が向上するため、複合材料の熱抵抗が更に低減され、熱伝導性が更に向上する。 Further, in the thermally conductive composite material of the present invention, it is preferable that the surface of the thermally conductive filler is alkylated. As a result, the aggregation of the thermally conductive filler in the matrix can be suppressed and the fluidity of the composite material is improved, so that the thermal resistance of the composite material is further reduced and the thermal conductivity is further improved.

本発明の熱伝導性複合材料において、前記熱伝導性フィラーの含有量としては特に制限はないが、前記熱伝導性複合材料の全量に対して、10〜90vol%が好ましく、15〜70vol%がより好ましく、20〜60vol%が特に好ましい。前記熱伝導性フィラーの含有率が前記下限未満になると、複合材料中で前記熱伝導性フィラー間の接触部位を通じて熱が拡散する熱伝導パスのネットワーク構造が十分に形成されず、得られる複合材料の熱伝導性が十分に向上しない傾向にあり、他方、前記熱伝導性フィラーの含有率が前記上限を超えると、得られる複合材料が脆くなって自立した複合材料が得られにくくなる傾向にある。 In the heat conductive composite material of the present invention, the content of the heat conductive filler is not particularly limited, but is preferably 10 to 90 vol% and 15 to 70 vol% with respect to the total amount of the heat conductive composite material. More preferably, 20 to 60 vol% is particularly preferable. When the content of the heat conductive filler is less than the lower limit, a network structure of heat conductive paths in which heat is diffused through the contact portion between the heat conductive fillers in the composite material is not sufficiently formed, and the obtained composite material is obtained. On the other hand, when the content of the thermally conductive filler exceeds the upper limit, the obtained composite material tends to be brittle and it tends to be difficult to obtain a self-supporting composite material. ..

また、本発明の熱伝導性複合材料においては、前記熱伝導性フィラーが二峰性以上の粒度分布を有するものであることが好ましい。これにより、複合材料の粘度が低減され、複合材料の流動性が向上することにより、複合材料の厚みが薄くなるため、複合材料の熱抵抗が更に低減され、熱伝導性が更に向上する。このような二峰性以上の粒度分布を有する熱伝導性フィラーとしては、例えば、粒度分布が異なる2種以上の熱伝導性フィラーの混合物が挙げられるが、本発明の熱伝導性複合材料に含まれる二峰性以上の粒度分布を有する前記熱伝導性フィラーはこれに限定されるものではない。また、二峰性以上の粒度分布を有する前記熱伝導性フィラーにおいては、得られる複合材料の粘度が低減され、複合材料の流動性が向上することにより、複合材料の厚みが薄くなるため、複合材料の熱抵抗が更に低減され、熱伝導性が更に向上するという観点から、前記粒度分布におけるピークのうちの粒子径が最も大きいピークを形成する熱伝導性フィラーの割合が70〜95質量%であることが好ましく、75〜90質量%であることがより好ましい。 Further, in the thermally conductive composite material of the present invention, it is preferable that the thermally conductive filler has a bimodal or higher particle size distribution. As a result, the viscosity of the composite material is reduced and the fluidity of the composite material is improved, so that the thickness of the composite material is reduced, so that the thermal resistance of the composite material is further reduced and the thermal conductivity is further improved. Examples of the thermally conductive filler having such a bimodal or higher particle size distribution include a mixture of two or more kinds of thermally conductive fillers having different particle size distributions, which are included in the thermally conductive composite material of the present invention. The thermally conductive filler having a bimodal or higher particle size distribution is not limited thereto. Further, in the thermally conductive filler having a particle size distribution of two peaks or more, the viscosity of the obtained composite material is reduced and the fluidity of the composite material is improved, so that the thickness of the composite material is reduced. From the viewpoint of further reducing the thermal resistance of the material and further improving the thermal conductivity, the proportion of the thermally conductive filler forming the peak having the largest particle size among the peaks in the particle size distribution is 70 to 95% by mass. It is preferably 75 to 90% by mass, and more preferably 75 to 90% by mass.

さらに、本発明の熱伝導性複合材料においては、粒子間の転がりが促進され、複合材料の粘度が低減されるという観点から、真球状のナノ粒子を含んでいてもよい。また、このような真球状のナノ粒子は、表面処理が施されていてもよい。なお、前記複合材料に真球状ナノ粒子が含まれていても、熱抵抗の低減効果は維持され、熱伝導性に優れた複合材料を得ることができる。 Further, the thermally conductive composite material of the present invention may contain spherical nanoparticles from the viewpoint of promoting rolling between particles and reducing the viscosity of the composite material. Further, such spherical nanoparticles may be surface-treated. Even if the composite material contains spherical nanoparticles, the effect of reducing thermal resistance is maintained, and a composite material having excellent thermal conductivity can be obtained.

このような真球状ナノ粒子としては、熱伝導性フィラー表面への吸着性、及びマトリックス中での分散性の向上による複合材料の流動性の向上という観点から、真球状シリカナノ粒子、表面処理が施された真球状シリカナノ粒子が好ましい。また、このような真球状ナノ粒子は、熱伝導性フィラー表面に吸着していることが好ましい。これにより、マトリックス中での分散性が向上し、粒子間摩擦が低減されるため、複合材料の粘度が低減される。 As such spherical nanoparticles, spherical silica nanoparticles and surface treatment are applied from the viewpoint of improving the fluidity of the composite material by improving the adsorptivity to the surface of the thermally conductive filler and the dispersibility in the matrix. Spherical silica nanoparticles are preferred. Further, such spherical nanoparticles are preferably adsorbed on the surface of the thermally conductive filler. This improves dispersibility in the matrix and reduces interparticle friction, thus reducing the viscosity of the composite.

また、このような真球状ナノ粒子の平均粒子径としては、熱伝導性フィラー表面への吸着の均一性、真球状ナノ粒子による界面熱伝導阻害の回避という観点から、前記熱伝導性フィラーの平均粒子径の1/2倍以下が好ましく、1/4倍以下がより好ましく、1/5倍以下が特に好ましい。 The average particle size of such spherical nanoparticles is the average of the thermally conductive fillers from the viewpoint of uniformity of adsorption on the surface of the thermally conductive filler and avoidance of interfacial thermal conduction inhibition by the spherical nanoparticles. The particle size is preferably 1/2 times or less, more preferably 1/4 times or less, and particularly preferably 1/5 times or less.

本発明の熱伝導性複合材料が前記真球状ナノ粒子を含む場合、その含有量としては、前記熱伝導性複合材料の全量に対して、0.1〜20質量%が好ましく、0.5〜10質量%がより好ましく、0.5〜5質量%が特に好ましい。前記真球状ナノ粒子の配合量が前記下限未満になると、前記真球状ナノ粒子を配合する効果が十分に得られない傾向にあり、他方、前記上限を超えると、熱伝導性フィラー間の接触を妨げ、界面熱伝導を阻害し、熱伝導性複合材料の熱伝導性を低下させる傾向にある。 When the thermally conductive composite material of the present invention contains the spherical nanoparticles, the content thereof is preferably 0.1 to 20% by mass, preferably 0.5 to 20% by mass, based on the total amount of the thermally conductive composite material. 10% by mass is more preferable, and 0.5 to 5% by mass is particularly preferable. When the blending amount of the spherical nanoparticles is less than the lower limit, the effect of blending the spherical nanoparticles tends not to be sufficiently obtained, while when the blending amount exceeds the upper limit, contact between the thermally conductive fillers is caused. It tends to hinder, inhibit interfacial thermal conductivity, and reduce the thermal conductivity of thermally conductive composites.

このような熱伝導性複合材料は、例えば、以下のようにして製造することができる。すなわち、先ず、前記熱伝導性フィラーとマトリックスとを混合する。その際、得られる複合材料中の熱伝導性フィラーの含有率が目的の含有率となるように熱伝導性フィラーとマトリックスとの混合割合を定める。また、熱伝導性フィラーとマトリックスとを混合する方法は特に制限されず、公知の混合方法が適宜用いられる。 Such a thermally conductive composite material can be produced, for example, as follows. That is, first, the heat conductive filler and the matrix are mixed. At that time, the mixing ratio of the heat conductive filler and the matrix is determined so that the content of the heat conductive filler in the obtained composite material becomes the desired content. Further, the method of mixing the thermally conductive filler and the matrix is not particularly limited, and a known mixing method is appropriately used.

このようなマトリックスとして前記樹脂を用いる場合、前記熱伝導性フィラーと前記樹脂とを混合して均一混合物とし、得られた混合物を成形することにより前記熱伝導性複合材料を得ることができる。このように前記熱伝導性フィラーと前記樹脂とを混合して均一混合物とする際に、分散媒を更に加えて均一スラリーとしてもよく、その場合は真空乾燥等の公知の方法で分散媒を除去した後に成形することが好ましい。このような分散媒としては特に制限されず、例えば、N−メチル−2−ピロリドン、クロロホルム、ジクロロメタン、四塩化炭素、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、テトラヒドロフラン、ジメチルホルムアルデヒド、ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ヘキサノール、オクタノール、ヘキサフルオロイソプロパノール、エチレングリコール、プロピレングリコール、テトラメチレングリコール、テトラエチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、クロロフェノール、フェノール、テトラヒドロフラン、スルホラン、1,3−ジメチル−2−イミダゾリジノン、γ−ブチロラクトン、N−ジメチルピロリドン、ペンタン、ヘキサン、ネオペンタン、シクロヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、デカン、ジエチルエーテル等の有機溶媒が挙げられる。 When the resin is used as such a matrix, the thermally conductive filler and the resin are mixed to form a homogeneous mixture, and the obtained mixture is molded to obtain the thermally conductive composite material. When the thermally conductive filler and the resin are mixed in this way to form a homogeneous mixture, a dispersion medium may be further added to form a homogeneous slurry. In that case, the dispersion medium is removed by a known method such as vacuum drying. It is preferable to mold after the above. The dispersion medium is not particularly limited, and for example, N-methyl-2-pyrrolidone, chloroform, dichloromethane, carbon tetrachloride, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, methyl acetate, ethyl acetate, propyl acetate, etc. Isopropyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, tetrahydrofuran, dimethylformaldehyde, dimethylacetamide, dimethylsulfoxide, acetonitrile, methanol, ethanol, propanol, isopropanol, butanol, hexanol, octanol, hexafluoroisopropanol, ethylene Glycol, propylene glycol, tetramethylene glycol, tetraethylene glycol, hexamethylene glycol, diethylene glycol, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, trichlorobenzene, chlorophenol, phenol, tetrahydrofuran, sulfolane, 1,3-dimethyl-2- Examples thereof include organic solvents such as imidazolidinone, γ-butyrolactone, N-dimethylpyrrolidone, pentane, hexane, neopentane, cyclohexane, heptane, octane, isooctane, nonane, decane and diethyl ether.

前記混合物を成形する際、加圧して圧縮することが好ましい。このような圧縮方法としては特に制限されず、一軸圧縮であっても二軸圧縮であってもよい。また、静水圧で等方的に圧縮してもよい。また、圧縮時の圧力も特に制限はないが、5〜20MPaが好ましい。圧縮時の圧力が前記下限未満になると、得られる複合材料に空隙が残存しやすくなる傾向にあり、他方、前記上限を超えると、得られる複合材料内のフィラーの破壊変形が顕著となり、残留ひずみが発生する傾向にある。 When molding the mixture, it is preferable to pressurize and compress it. Such a compression method is not particularly limited, and may be uniaxial compression or biaxial compression. It may also be isotropically compressed with hydrostatic pressure. The pressure during compression is also not particularly limited, but is preferably 5 to 20 MPa. When the compression pressure is less than the lower limit, voids tend to remain in the obtained composite material, while when the pressure exceeds the upper limit, fracture deformation of the filler in the obtained composite material becomes remarkable and residual strain is generated. Tends to occur.

前記混合物を成形する際に樹脂を固化させる方法としては特に制限はなく、公知の方法、例えば、樹脂として熱可塑性樹脂を用いた場合には放冷等の冷却による方法、各種(熱、光、水)硬化性樹脂を用いた場合にはそれぞれ適切な硬化方法を採用することができる。また、このような固化は、成形時又は成形後のいずれにおいて実施してもよい。 The method for solidifying the resin when molding the mixture is not particularly limited, and a known method, for example, when a thermoplastic resin is used as the resin, a cooling method such as allowing to cool, various methods (heat, light, etc.) Water) When a curable resin is used, an appropriate curing method can be adopted for each. Moreover, such solidification may be carried out either at the time of molding or after molding.

また、前記マトリックスとして前記オイルを用いる場合は、前記熱伝導性フィラーと前記オイルとを混合して均一スラリーとすることにより前記熱伝導性複合材料(すなわち、グリース組成物)を得ることができる。 When the oil is used as the matrix, the thermally conductive composite material (that is, a grease composition) can be obtained by mixing the thermally conductive filler and the oil to form a uniform slurry.

さらに、本発明の熱伝導性複合材料が前記真球状ナノ粒子を含む場合、前記真球状ナノ粒子は、前記熱伝導性フィラーと前記マトリックスとを混合する際に、これらとともに混合してもよいが、前記熱伝導性フィラーと前記マトリックスとを混合する前に、予め、前記熱伝導性フィラーと混合して前記熱伝導性フィラーに真球状ナノ粒子を吸着させることが好ましい。これにより、前記真球状ナノ粒子が前記マトリックス中に分散しやすく、粒子間摩擦の低減により、複合材料の粘度が低減される。 Further, when the heat conductive composite material of the present invention contains the spherical nanoparticles, the spherical nanoparticles may be mixed together with the heat conductive filler when the matrix is mixed. Before mixing the heat conductive filler and the matrix, it is preferable to mix the heat conductive filler with the heat conductive filler in advance to adsorb spherical nanoparticles on the heat conductive filler. As a result, the spherical nanoparticles are easily dispersed in the matrix, and the friction between the particles is reduced, so that the viscosity of the composite material is reduced.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例で使用したホウ酸メラミン錯体の合成方法及び窒化ホウ素粉砕粒子の調製方法を以下に示す。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The method for synthesizing the borate melamine complex and the method for preparing the boron nitride pulverized particles used in Examples and Comparative Examples are shown below.

(合成例1)
95℃に加熱した800mlの水に、ホウ酸24gを添加し、攪拌することにより溶解させた後、さらに、メラミン16gを添加し、攪拌することにより溶解させた。加熱攪拌を10分間継続してホウ酸とメラミンとを反応させ、得られた反応液を水冷した後、室温で12時間放置した。その後、析出した結晶を濾過により回収し、40℃で真空乾燥して、ホウ酸メラミン錯体31.5gを得た。
(Synthesis Example 1)
To 800 ml of water heated to 95 ° C., 24 g of boric acid was added and dissolved by stirring, and then 16 g of melamine was further added and dissolved by stirring. The heating and stirring were continued for 10 minutes to react boric acid and melamine, and the obtained reaction solution was water-cooled and then left at room temperature for 12 hours. Then, the precipitated crystals were collected by filtration and vacuum dried at 40 ° C. to obtain 31.5 g of a melamine borate complex.

(調製例1)
原料窒化ホウ素粉末として非多孔性の六方晶窒化ホウ素粉末(スリーエム社製「3MTM窒化ホウ素クーリングフィラー Platelets003」、平均粒子径3μm)を濃度が5質量%となるようにエタノールに分散させた。得られた分散液を、湿式粉砕装置を用いてノズル(ノズル径0.15mm)から100MPaの圧力で噴射させ、圧縮された状態から常圧まで急激に圧力を開放する湿式粉砕処理を行った。その後、1回目の湿式粉砕処理を施した分散液に同じ条件で2回目及び3回目の湿式粉砕処理を施した後、粉砕された窒化ホウ素粉末を濾過により回収して真空乾燥させ、窒化ホウ素粉砕粒子(BN粉砕粒子)を得た。このBN粉砕粒子の平均粒子径は1μmであった。
(Preparation Example 1)
As the raw material boron nitride powder, a non-porous hexagonal boron nitride powder (“3M TM Boron Nitride Cooling Filler Platelets003” manufactured by 3M Ltd., average particle size 3 μm) was dispersed in ethanol so as to have a concentration of 5% by mass. The obtained dispersion was injected from a nozzle (nozzle diameter 0.15 mm) at a pressure of 100 MPa using a wet pulverizer, and a wet pulverization treatment was performed in which the pressure was rapidly released from a compressed state to normal pressure. Then, the dispersion liquid subjected to the first wet pulverization treatment is subjected to the second and third wet pulverization treatments under the same conditions, and then the crushed boron nitride powder is recovered by filtration and vacuum dried to pulverize the boron nitride. Particles (BN pulverized particles) were obtained. The average particle size of the BN pulverized particles was 1 μm.

(実施例A1)
先ず、得られる圧縮焼結体の組成比が窒化アルミニウム粒子(AlN粒子)/窒化ホウ素粒子(BN粒子)/多孔性窒化ホウ素(多孔性BN)=80vol%/15vol%/5vol%となるように、ポリエチレン製ポットに、等方性の高熱伝導性粒子であるAlN粉末(株式会社トクヤマ製「高純度窒化アルミニウム粉末・顆粒 Eグレード」、平均粒子径1μm、熱伝導率180W/mK)22.8g、非多孔性の六方晶BN粉末(スリーエム社製「3MTM窒化ホウ素クーリングフィラー Platelets001」、平均粒子径1μm)2.97g及び合成例1で得られたホウ酸メラミン錯体4.95gを投入し、さらに、ジルコニアボール(3mm径)500g及びアセトン165gを投入して、ボールミルにより400rpmの条件で12時間混合した。その後、濾過によりジルコニアボールを取り除き、さらに、エバポレーション及び真空乾燥によりアセトンを完全に除去した。得られた混合物を294MPaの静水圧下で圧縮した後、窒素雰囲気下、380℃で1時間加熱し、さらに、1800℃で1時間焼成して圧縮焼結体を得た。この圧縮焼結体を室温まで冷却した後、60秒間ミル粉砕して、前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを得た。
(Example A1)
First, the composition ratio of the obtained compression sintered body is such that aluminum nitride particles (AlN particles) / boron nitride particles (BN particles) / porous boron nitride (porous BN) = 80 vol% / 15 vol% / 5 vol%. , AlN powder (“High-purity aluminum nitride powder / granules E grade” manufactured by Tokuyama Co., Ltd., average particle diameter 1 μm, thermal conductivity 180 W / mK) 22.8 g in a polyethylene pot. , 2.97 g of non-porous hexagonal BN powder (“3M TM Boron Nitride Cooling Filler Platelets001” manufactured by 3M, average particle size 1 μm) and 4.95 g of the melamine borate complex obtained in Synthesis Example 1 were added. Further, 500 g of zirconia balls (3 mm diameter) and 165 g of acetone were added and mixed by a ball mill under the condition of 400 rpm for 12 hours. Then, the zirconia balls were removed by filtration, and the acetone was completely removed by evaporation and vacuum drying. The obtained mixture was compressed under hydrostatic pressure of 294 MPa, heated at 380 ° C. for 1 hour in a nitrogen atmosphere, and further fired at 1800 ° C. for 1 hour to obtain a compressed sintered body. After cooling this compression sintered body to room temperature, it is milled for 60 seconds to conduct heat conduction containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles are bonded via a porous BN. A sex filler was obtained.

次に、この熱伝導性フィラーと一液型熱硬化性エポキシ樹脂(セメダイン株式会社製「EP160」)とをフィラーの体積分率が60%となるように混合した後、ジクロロメタンを添加してスラリーを調製した。得られたスラリーを大気中で攪拌してジクロロメタンを蒸発させ、さらに、15分間の真空乾燥によりジクロロメタンを完全に除去した。このようにして得られたエポキシ樹脂組成物を、110℃で30分間予備加熱した円筒容器(内径14mm)に成形後の厚みが30〜40mmの範囲内となるように素早く充填した後、プランジャーを用いて円筒容器の長手方向に5〜10MPaの範囲内の圧力で圧縮し、この圧縮状態をクランプを用いて保持しながら110℃で30分間加熱してエポキシ樹脂を硬化させ、前記熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を得た。 Next, this thermally conductive filler and a one-component thermosetting epoxy resin (“EP160” manufactured by Cemedyne Co., Ltd.) are mixed so that the volume fraction of the filler is 60%, and then dichloromethane is added to the slurry. Was prepared. The obtained slurry was stirred in the air to evaporate dichloromethane, and further vacuum dried for 15 minutes to completely remove dichloromethane. The epoxy resin composition thus obtained is quickly filled in a cylindrical container (inner diameter 14 mm) preheated at 110 ° C. for 30 minutes so that the thickness after molding is within the range of 30 to 40 mm, and then a plunger. The epoxy resin is cured by heating at 110 ° C. for 30 minutes while holding this compressed state with a clamp at a pressure in the range of 5 to 10 MPa in the longitudinal direction of the cylindrical container. A columnar composite material in which the filler was dispersed in the cured epoxy resin was obtained.

(実施例A2)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=80vol%/16.7vol%/3.3vol%となるように、前記AlN粉末22.8g、前記BN粉末3.3g及び前記ホウ酸メラミン錯体3.3gを混合した以外は実施例A1と同様にして前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A2)
22.8 g of the AlN powder and 3.3 g of the BN powder so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 80 vol% / 16.7 vol% / 3.3 vol%. And the composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles are bonded via a porous BN in the same manner as in Example A1 except that 3.3 g of the melamine borate complex is mixed. A thermally conductive filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(実施例A3)
平均粒子径が1μmの前記BN粉末(スリーエム社製「3MTM窒化ホウ素クーリングフィラー Platelets001」)の代わりに調製例1で得られたBN粉砕粒子(平均粒子径1μm)2.97gを用いた以外は実施例A1と同様にして前記AlN粒子と前記BN粉砕粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A3)
Except for using 2.97 g of BN pulverized particles (average particle size 1 μm) obtained in Preparation Example 1 in place of the BN powder having an average particle size of 1 μm (“3M TM Boron Nitride Cooling Filler Platelets 001” manufactured by 3M Co., Ltd.). In the same manner as in Example A1, a heat conductive filler containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN crushed particles are bonded via a porous BN is prepared, and further, the heat conduction A columnar composite material in which the sex filler was dispersed in the cured epoxy resin was prepared.

(実施例A4)
平均粒子径が1μmの前記AlN粉末(株式会社トクヤマ製「高純度窒化アルミニウム粉末・顆粒 Eグレード」)の代わりに等方性の高熱伝導性粒子である平均粒子径が5μmのAlN粉末(古河電子株式会社製「高熱伝導AlNフィラーFAN−f05」、熱伝導率170W/mK)を用い、平均粒子径が1μmの前記BN粉末(スリーエム社製「3MTM窒化ホウ素クーリングフィラー Platelets001」)の代わりに調製例1で得られたBN粉砕粒子(平均粒子径1μm)を用い、得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=80vol%/10vol%/10vol%となるように、前記AlN粉末22.8g、前記BN粉砕粒子1.98g及び前記ホウ酸メラミン錯体9.98gを混合した以外は実施例A1と同様にして前記AlN粒子と前記BN粉砕粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A4)
AlN powder with an average particle size of 5 μm (Furukawa Denshi) is an isotropic high thermal conductive particle instead of the AlN powder with an average particle size of 1 μm (“High-purity aluminum nitride powder / granule E grade” manufactured by Tokuyama Co., Ltd.). Prepared in place of the BN powder (“3M TM Aluminum Nitride Cooling Filler Platelets001” manufactured by 3M) with an average particle size of 1 μm using “High Thermal Conductivity AlN Filler FAN-f05” manufactured by Co., Ltd., with a thermal conductivity of 170 W / mK). Using the BN pulverized particles (average particle diameter 1 μm) obtained in Example 1, the composition ratio of the obtained compression sintered body is such that AlN particles / BN particles / porous BN = 80 vol% / 10 vol% / 10 vol%. , The AlN powder and the BN crushed particles formed a porous BN in the same manner as in Example A1 except that 22.8 g of the AlN powder, 1.98 g of the BN crushed particles and 9.98 g of the borate melamine complex were mixed. A thermally conductive filler containing the composite particles (AlN / BN composite particles) bonded via the mixture was prepared, and further, a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(実施例A5)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=80vol%/15vol%/5vol%となるように、前記AlN粉末22.8g、前記BN粉砕粒子2.97g及び前記ホウ酸メラミン錯体4.95gを混合した以外は実施例A4と同様にして前記AlN粒子と前記BN粉砕粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A5)
The AlN powder 22.8 g, the BN crushed particles 2.97 g, and the hoe so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 80 vol% / 15 vol% / 5 vol%. Heat conduction containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN pulverized particles are bonded via a porous BN in the same manner as in Example A4 except that 4.95 g of the acid melamine complex is mixed. A sex filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(実施例A6)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=70vol%/15vol%/15vol%となるように、前記AlN粉末22.8g、前記BN粉砕粒子3.40g及び前記ホウ酸メラミン錯体17.01gを混合した以外は実施例A4と同様にして前記AlN粒子と前記BN粉砕粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A6)
The AlN powder 22.8 g, the BN crushed particles 3.40 g, and the hoe so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 70 vol% / 15 vol% / 15 vol%. Heat conduction containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN pulverized particles are bonded via a porous BN in the same manner as in Example A4 except that 17.01 g of the acid melamine complex is mixed. A sex filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(実施例A7)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=60vol%/20vol%/20vol%となるように、前記AlN粉末22.8g、前記BN粉砕粒子5.29g及び前記ホウ酸メラミン錯体26.46gを混合した以外は実施例A4と同様にして前記AlN粒子と前記BN粉砕粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A7)
22.8 g of the AlN powder, 5.29 g of the BN crushed particles, and the hoe so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 60 vol% / 20 vol% / 20 vol%. Heat conduction containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN pulverized particles are bonded via a porous BN in the same manner as in Example A4 except that 26.46 g of the acid melamine complex is mixed. A sex filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(実施例A8)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=60vol%/30vol%/10vol%となるように、前記AlN粉末22.8g、前記BN粉砕粒子7.94g及び前記ホウ酸メラミン錯体13.2gを混合した以外は実施例A4と同様にして前記AlN粒子と前記BN粉砕粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A8)
The AlN powder 22.8 g, the BN crushed particles 7.94 g, and the hoe so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 60 vol% / 30 vol% / 10 vol%. Heat conduction containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN pulverized particles are bonded via a porous BN in the same manner as in Example A4 except that 13.2 g of the acid melamine complex is mixed. A sex filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(実施例A9)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=70vol%/22.5vol%/7.5vol%となるように、前記AlN粉末22.8g、前記BN粉砕粒子5.10g及び前記ホウ酸メラミン錯体8.51gを混合した以外は実施例A4と同様にして前記AlN粒子と前記BN粉砕粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A9)
2. The AlN powder 22.8 g and the BN crushed particles so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 70 vol% / 22.5 vol% / 7.5 vol%. Composite particles (AlN / BN composite particles) in which the AlN particles and the BN pulverized particles are bonded via a porous BN in the same manner as in Example A4 except that 10 g and 8.51 g of the melamine borate complex are mixed. A thermally conductive filler to be contained was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(実施例A10)
前記BN粉砕粒子の代わりに平均粒子径が1μmの前記BN粉末(スリーエム社製「3MTM窒化ホウ素クーリングフィラー Platelets001」)1.98gを用いた以外は実施例A4と同様にして前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A10)
The AlN particles and the above in the same manner as in Example A4 except that 1.98 g of the BN powder (“3M TM Boron Nitride Cooling Filler Platelets001” manufactured by 3M Co., Ltd.) having an average particle diameter of 1 μm was used instead of the BN pulverized particles. A thermally conductive filler containing composite particles (AlN / BN composite particles) in which BN particles are bonded via a porous BN is prepared, and further, the thermally conductive filler is a columnar shape dispersed in an epoxy resin cured product. The composite material of was prepared.

(実施例A11)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=80vol%/15vol%/5vol%となるように、前記AlN粉末22.8g、前記BN粉末2.97g及び前記ホウ酸メラミン錯体4.95gを混合した以外は実施例A10と同様にして前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A11)
The AlN powder 22.8 g, the BN powder 2.97 g, and the boric acid so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 80 vol% / 15 vol% / 5 vol%. A thermally conductive filler containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles are bonded via a porous BN in the same manner as in Example A10 except that 4.95 g of the melamine complex is mixed. Was prepared, and further, a columnar composite material in which the heat conductive filler was dispersed in the cured epoxy resin was prepared.

(実施例A12)
静水圧圧力を98.1MPaに変更した以外は実施例A10と同様にして前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A12)
Heat conduction containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles are bonded via a porous BN in the same manner as in Example A10 except that the hydrostatic pressure is changed to 98.1 MPa. A sex filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(実施例A13)
静水圧圧力を29.4MPaに変更した以外は実施例A10と同様にして前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Example A13)
Heat conduction containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles are bonded via a porous BN in the same manner as in Example A10 except that the hydrostatic pressure is changed to 29.4 MPa. A sex filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(比較例A1)
前記BN粉末及び前記ホウ酸メラミン錯体を用いずに前記AlN粉末22.8gのみを用い、また、静水圧での圧縮及び1800℃での加熱を行わなかった以外は実施例A1と同様にして前記AlN粒子のみからなる熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A1)
The same as in Example A1 except that only 22.8 g of the AlN powder was used without using the BN powder and the melamine borate complex, and compression at hydrostatic pressure and heating at 1800 ° C. were not performed. A thermally conductive filler composed of only AlN particles was prepared, and further, a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(比較例A2)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=80vol%/0vol%/20vol%となるように、前記BN粉末を用いずに前記AlN粉末22.8g及び前記ホウ酸メラミン錯体20gを混合した以外は実施例A1と同様にして前記AlN粒子の表面の少なくとも一部が多孔性BNで被覆された粒子(多孔性BN被覆AlN粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A2)
22.8 g of the AlN powder and the boric acid so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 80 vol% / 0 vol% / 20 vol% without using the BN powder. A heat conductive filler containing particles in which at least a part of the surface of the AlN particles is coated with porous BN (porous BN-coated AlN particles) is prepared in the same manner as in Example A1 except that 20 g of the melamine complex is mixed. Further, a columnar composite material in which the heat conductive filler was dispersed in the cured epoxy resin was prepared.

(比較例A3)
前記BN粉砕粒子及び前記ホウ酸メラミン錯体を用いずに前記AlN粉末22.8gのみを用い、また、静水圧での圧縮を行わなかった以外は実施例A4と同様にして前記AlN粒子のみからなる熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A3)
It is composed of only the AlN particles in the same manner as in Example A4 except that only 22.8 g of the AlN powder is used without using the BN pulverized particles and the melamine borate complex, and compression is not performed under hydrostatic pressure. A thermally conductive filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in an epoxy resin cured product was prepared.

(比較例A4)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=80vol%/0vol%/20vol%となるように、前記BN粉砕粒子を用いずに前記AlN粉末22.8g及び前記ホウ酸メラミン錯体20gを混合した以外は実施例A4と同様にして前記AlN粒子の表面の少なくとも一部が多孔性BNで被覆された粒子(多孔性BN被覆AlN粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A4)
22.8 g of the AlN powder and the hoe without using the BN pulverized particles so that the composition ratio of the obtained compressed sintered body is AlN particles / BN particles / porous BN = 80 vol% / 0 vol% / 20 vol%. A heat conductive filler containing particles in which at least a part of the surface of the AlN particles is coated with porous BN (porous BN-coated AlN particles) is provided in the same manner as in Example A4 except that 20 g of the acid melamine complex is mixed. After preparation, a columnar composite material in which the heat conductive filler was dispersed in the cured epoxy resin was prepared.

(比較例A5)
混合物の組成比がAlN粒子/BN粒子/多孔性BN=80vol%/20vol%/0vol%となるように、前記ホウ酸メラミン錯体を用いずに前記AlN粉末22.8g及び前記BN粉砕粒子3.96gを混合し、また、静水圧での圧縮及び1800℃での加熱を行わなかった以外は実施例A4と同様にして前記AlN粒子と前記BN粉砕粒子との混合粒子(AlN/BN混合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A5)
2. 2.8 g of the AlN powder and the BN pulverized particles without using the melamine borate complex so that the composition ratio of the mixture is AlN particles / BN particles / porous BN = 80 vol% / 20 vol% / 0 vol%. Mixed particles of the AlN particles and the BN pulverized particles (AlN / BN mixed particles) in the same manner as in Example A4 except that 96 g was mixed and compression at hydrostatic pressure and heating at 1800 ° C. were not performed. A thermally conductive filler containing the above was prepared, and further, a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(比較例A6)
静水圧下での圧縮を行わなかった以外は実施例A4と同様にして前記AlN粒子と前記BN粉砕粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A6)
Heat containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN crushed particles are bonded via a porous BN in the same manner as in Example A4 except that compression is not performed under hydrostatic pressure. A conductive filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in an epoxy resin cured product was prepared.

(比較例A7)
前記BN粉砕粒子及び前記ホウ酸メラミン錯体を用いずに前記AlN粉末22.8gのみを用い、また、静水圧での圧縮及び1800℃での加熱を行わなかった以外は実施例A4と同様にして前記AlN粒子のみからなる熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A7)
The same as in Example A4 except that only 22.8 g of the AlN powder was used without using the BN pulverized particles and the melamine borate complex, and compression at hydrostatic pressure and heating at 1800 ° C. were not performed. A thermally conductive filler composed of only the AlN particles was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

(比較例A8)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=60vol%/0vol%/40vol%となるように、前記BN粉砕粒子を用いずに前記AlN粉末22.8g及び前記ホウ酸メラミン錯体52.9gを混合した以外は実施例A4と同様にして前記AlN粒子の表面の少なくとも一部が多孔性BNで被覆された粒子(多孔性BN被覆AlN粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A8)
22.8 g of the AlN powder and the hoe without using the BN pulverized particles so that the composition ratio of the obtained compressed sintered body is AlN particles / BN particles / porous BN = 60 vol% / 0 vol% / 40 vol%. Thermal conductivity containing particles in which at least a part of the surface of the AlN particles is coated with porous BN (porous BN-coated AlN particles) in the same manner as in Example A4 except that 52.9 g of the acid melamine complex is mixed. A filler was prepared, and a columnar composite material in which the heat conductive filler was dispersed in the cured epoxy resin was prepared.

(比較例A9)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=70vol%/0vol%/30vol%となるように、前記BN粉砕粒子を用いずに前記AlN粉末22.8g及び前記ホウ酸メラミン錯体34.0gを混合した以外は実施例A4と同様にして前記AlN粒子の表面の少なくとも一部が多孔性BNで被覆された粒子(多孔性BN被覆AlN粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A9)
22.8 g of the AlN powder and the hoe without using the BN pulverized particles so that the composition ratio of the obtained compressed sintered body is AlN particles / BN particles / porous BN = 70 vol% / 0 vol% / 30 vol%. Thermal conductivity containing particles in which at least a part of the surface of the AlN particles is coated with porous BN (porous BN-coated AlN particles) in the same manner as in Example A4 except that 34.0 g of the acid melamine complex is mixed. A filler was prepared, and a columnar composite material in which the heat conductive filler was dispersed in the cured epoxy resin was prepared.

(比較例A10)
静水圧圧力を15MPaに変更した以外は実施例A4と同様にして前記AlN粒子と前記BN粉砕粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A10)
Thermal conductivity containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN crushed particles are bonded via a porous BN in the same manner as in Example A4 except that the hydrostatic pressure is changed to 15 MPa. A filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in an epoxy resin cured product was prepared.

(比較例A11)
静水圧圧力を2.9MPaに変更した以外は実施例A10と同様にして前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製し、さらに、この熱伝導性フィラーがエポキシ樹脂硬化物中に分散した円柱状の複合材料を作製した。
(Comparative Example A11)
Heat conduction containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles are bonded via a porous BN in the same manner as in Example A10 except that the hydrostatic pressure is changed to 2.9 MPa. A sex filler was prepared, and a columnar composite material in which the thermally conductive filler was dispersed in the cured epoxy resin was prepared.

<圧縮焼結体の電子顕微鏡観察>
実施例A5において作製した圧縮焼結体から電子顕微鏡観察用の断面を切出し、この断面に、研磨剤としてダイヤモンドサスペンション及びコロイダルシリカを用いて研磨機(ビューラー社製「ミニメットTM1000」)により機械研磨を施した後、小型プラズマ装置(ヤマト科学株式会社製「PR300」)を用いて120Wで3分間の酸素プラズマエッチングを施し、さらに、オスミウムコーターを用いてオスミウムコーティングを施した。得られた観察用断面を走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「NB−5000」)を用いて観察した。その結果を図1に示す。図1において、明灰色部1がAlN粒子、灰色部2がBN粒子、暗灰色部3が多孔性BN、黒色部4が多孔性BN相の空隙に相当する領域である。図1に示した結果から、前記圧縮焼結体においては、AlN粒子の表面の少なくとも一部に多孔性BNを介してBN粒子が結合していることがわかった。
<Electron microscope observation of compression sintered body>
A cross section for electron microscope observation was cut out from the compression sintered body produced in Example A5, and the cross section was mechanically polished by a polishing machine (“Minimet TM 1000” manufactured by Buehler) using a diamond suspension and colloidal silica as abrasives. After that, oxygen plasma etching was performed at 120 W for 3 minutes using a small plasma device (“PR300” manufactured by Yamato Scientific Co., Ltd.), and further, osmium coating was performed using an osmium coater. The obtained cross section for observation was observed using a scanning electron microscope (“NB-5000” manufactured by Hitachi High-Technologies Corporation). The result is shown in FIG. In FIG. 1, the light gray part 1 is an AlN particle, the gray part 2 is a BN particle, the dark gray part 3 is a porous BN, and the black part 4 is a region corresponding to a void of the porous BN phase. From the results shown in FIG. 1, it was found that in the compressed sintered body, the BN particles were bonded to at least a part of the surface of the AlN particles via the porous BN.

<熱伝導性フィラーの電子顕微鏡観察>
実施例A3で得られた熱伝導性フィラーを走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「NB−5000」)を用いて観察した。図2Aには、熱伝導性フィラーの二次電子像、図2Bには熱伝導性フィラーの反射電子像を示す。図2Aの明部はBNであり、図2Bの明部はAlNである。図2A及び図2Bに示した結果から、粒子の内部はAlNにより形成され、表面はBNにより形成されており、AlN粒子の表面がBN粒子で被覆されていることがわかった。
<Electron microscope observation of thermally conductive filler>
The thermally conductive filler obtained in Example A3 was observed using a scanning electron microscope (“NB-5000” manufactured by Hitachi High-Technologies Corporation). FIG. 2A shows a secondary electron image of the heat conductive filler, and FIG. 2B shows a backscattered electron image of the heat conductive filler. The bright part of FIG. 2A is BN, and the bright part of FIG. 2B is AlN. From the results shown in FIGS. 2A and 2B, it was found that the inside of the particles was formed of AlN, the surface was formed of BN, and the surface of the AlN particles was coated with BN particles.

<熱伝導性フィラーの元素分布>
実施例A4で得られた熱伝導性フィラーをエネルギー分散型X線分析装置を備える走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「NB−5000」)を用いて観察した。得られたSEM像において無作為に25μm×20μmの視野(図3)を抽出し、この視野内のホウ素(B)、炭素(C)、窒素(N)、酸素(O)、アルミニウム(Al)の各元素の分布を観察した。その結果、Alが存在している領域にはBも存在していることが確認され、AlN粒子の表面がBN粒子で被覆されていることがわかった。また、Alが存在している領域の中から無作為に1箇所の測定点(図3中の点A)を抽出し、元素組成の分析を行った。その結果を表1に示す。
<Elemental distribution of thermally conductive filler>
The thermally conductive filler obtained in Example A4 was observed using a scanning electron microscope (“NB-5000” manufactured by Hitachi High-Technologies Corporation) equipped with an energy dispersive X-ray analyzer. A 25 μm × 20 μm field of view (FIG. 3) was randomly extracted from the obtained SEM image, and boron (B), carbon (C), nitrogen (N), oxygen (O), and aluminum (Al) in this field of view were extracted. The distribution of each element of was observed. As a result, it was confirmed that B was also present in the region where Al was present, and it was found that the surface of the AlN particles was covered with the BN particles. In addition, one measurement point (point A in FIG. 3) was randomly extracted from the region where Al was present, and the elemental composition was analyzed. The results are shown in Table 1.

Figure 2021050132
Figure 2021050132

表1に示した結果からも、AlN粒子の表面がBN粒子で被覆されていることが確認された。 From the results shown in Table 1, it was confirmed that the surface of the AlN particles was coated with the BN particles.

<多孔性窒化ホウ素の構造解析>
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=50vol%/0vol%/50vol%となるように、ポリエチレン製ポットに、等方性の高熱伝導性粒子である平均粒子径が5μmの前記AlN粉末(古河電子株式会社製「高熱伝導AlNフィラーFAN−f05」)及び合成例1で得られたホウ酸メラミン錯体4.95gを投入し、さらに、ジルコニアボール(3mm径)500g及びアセトン165gを投入して、ボールミルにより400rpmの条件で12時間混合した。その後、濾過によりジルコニアボールを取り除き、さらに、エバポレーション及び真空乾燥によりアセトンを完全に除去した。得られた混合物を294MPaの静水圧下で圧縮した後、窒素雰囲気下、380℃で1時間加熱し、さらに、1800℃で1時間焼成して圧縮焼結体を得た。この圧縮焼結体を室温まで冷却した後、60秒間ミル粉砕して、前記AlN粒子の表面の少なくとも一部が多孔性BNで被覆された粒子(多孔性BN被覆AlN粒子)を含有する熱伝導性フィラーを得た。
<Structural analysis of porous boron nitride>
Average particles which are isotropic high thermal conductive particles are placed in a polyethylene pot so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 50 vol% / 0 vol% / 50 vol%. The AlN powder having a diameter of 5 μm (“High thermal conductivity AlN filler FAN-f05” manufactured by Furukawa Denshi Co., Ltd.) and 4.95 g of the melamine borate complex obtained in Synthesis Example 1 were added, and further, zirconia balls (3 mm diameter) were added. 500 g and 165 g of acetone were added and mixed by a ball mill at 400 rpm for 12 hours. Then, the zirconia balls were removed by filtration, and the acetone was completely removed by evaporation and vacuum drying. The obtained mixture was compressed under hydrostatic pressure of 294 MPa, heated at 380 ° C. for 1 hour in a nitrogen atmosphere, and further fired at 1800 ° C. for 1 hour to obtain a compressed sintered body. After cooling the compression sintered body to room temperature, it is milled for 60 seconds to conduct heat conduction containing particles in which at least a part of the surface of the AlN particles is coated with porous BN (porous BN-coated AlN particles). A sex filler was obtained.

この熱伝導性フィラーのX線回折パターンを測定した。その結果を図4に示す。図4に示したように、得られたX線回折パターンにおいては、AlN粒子に由来する回折ピークと多孔性BNに由来する回折ピークとが存在した。また、多孔性BNに由来する回折ピークは幅の広いBNの002面の回折ピーク(半値幅1.2°)であり、ホウ酸メラミン錯体を用いて形成した前記多孔性BNは乱層構造を有するものであることがわかった。 The X-ray diffraction pattern of this thermally conductive filler was measured. The result is shown in FIG. As shown in FIG. 4, in the obtained X-ray diffraction pattern, there were a diffraction peak derived from AlN particles and a diffraction peak derived from porous BN. The diffraction peak derived from the porous BN is the diffraction peak (half width 1.2 °) on the 002 surface of the wide BN, and the porous BN formed by using the borate melamine complex has a disordered layer structure. It turned out to have.

<熱伝導性フィラーの粒径分布>
実施例A6〜A9及び比較例A8〜A9で得られた熱伝導性フィラーをエタノールに分散させ、レーザ回折・散乱式粒子径分布測定装置(マイクロトラック・ベル株式会社製「MT3300EX」)を用いて、レーザ回折・散乱法により前記熱伝導性フィラーの体積基準の粒径分布を測定した。その結果を図5及び図6に示す。図5及び図6に示したように、BN相が多孔性BNのみからなる場合(比較例A8、比較例A9)には、熱伝導性フィラーは、原料のAlN粉末と同程度の大きさまで粉砕されるのに対して、BN相がBN粒子と多孔性BNとからなる場合(実施例A7〜A8、実施例A6及びA9)には、熱伝導性フィラーの粒子径は、原料のAlN粉末に比べて大きくなることがわかった。これは、BN相がBN粒子と多孔性BNとからなる場合(実施例A7〜A8、実施例A6及びA9)には、BN粒子が多孔性BNを介してAlN粒子に結合することにより、機械的強度が向上し、粉砕の衝撃力に対して高い耐性を示すAlN粒子とBN粒子との複合粒子が、熱伝導性フィラーに多く含まれるためと考えられる。
<Diameter distribution of thermally conductive filler>
The thermally conductive fillers obtained in Examples A6 to A9 and Comparative Examples A8 to A9 are dispersed in ethanol, and a laser diffraction / scattering particle size distribution measuring device (“MT3300EX” manufactured by Microtrac Bell Co., Ltd.) is used. , The volume-based particle size distribution of the thermally conductive filler was measured by the laser diffraction / scattering method. The results are shown in FIGS. 5 and 6. As shown in FIGS. 5 and 6, when the BN phase consists only of porous BN (Comparative Example A8, Comparative Example A9), the thermally conductive filler is pulverized to the same size as the raw material AlN powder. On the other hand, when the BN phase is composed of BN particles and porous BN (Examples A7 to A8, Examples A6 and A9), the particle size of the thermally conductive filler is the same as that of the raw material AlN powder. It turned out to be larger than that. This is because when the BN phase consists of BN particles and porous BN (Examples A7 to A8, Examples A6 and A9), the BN particles are bonded to the AlN particles via the porous BN, whereby the machine It is considered that the heat conductive filler contains a large amount of composite particles of AlN particles and BN particles, which have improved target strength and high resistance to the impact force of pulverization.

<窒化ホウ素相の空隙率>
実施例及び比較例において作製した圧縮焼結体から電子顕微鏡観察用の断面を切出し、この断面において無作為に抽出した20箇所の測定領域(縦60μm、横40μm)に、研磨剤としてダイヤモンドサスペンション及びコロイダルシリカを用いて研磨機(ビューラー社製「ミニメットTM1000」)により機械研磨を施した後、小型プラズマ装置(ヤマト科学株式会社製「PR300」)を用いて120Wで3分間の酸素プラズマエッチングを施し、さらに、オスミウムコーターを用いてオスミウムコーティングを施した。得られた測定用断面を走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「NB−5000」)を用いて観察した。図7には、実施例A4において作製した圧縮焼結体の走査型電子顕微鏡写真(SEM像)を示す。図7において、明灰色部5がAlN粒子、灰色部6がBN相、黒色部7がBN相内の空隙、黒色部8がBN相外の空隙に相当する領域である。
<Porosity of boron nitride phase>
A cross section for electron microscope observation was cut out from the compression sintered bodies prepared in Examples and Comparative Examples, and 20 measurement regions (60 μm in length and 40 μm in width) randomly selected in this cross section were covered with a diamond suspension as an abrasive. After mechanical polishing with a polishing machine ("Minimet TM 1000" manufactured by Buehler) using colloidal silica, oxygen plasma etching at 120 W for 3 minutes using a small plasma device ("PR300" manufactured by Yamato Scientific Co., Ltd.) is performed. Then, an osmium coating was applied using an osmium coater. The obtained cross section for measurement was observed using a scanning electron microscope (“NB-5000” manufactured by Hitachi High-Technologies Corporation). FIG. 7 shows a scanning electron micrograph (SEM image) of the compression sintered body produced in Example A4. In FIG. 7, the light gray portion 5 is an AlN particle, the gray portion 6 is a BN phase, the black portion 7 is a void in the BN phase, and the black portion 8 is a region corresponding to a void outside the BN phase.

得られたSEM像において、BN相に相当する領域(灰色部6)の合計面積及びBN相内の空隙に相当する領域(黒色部7)の合計面積を求め、下記式:
BN相の空隙率[vol%]=BN相内の空隙に相当する領域の合計面積/{BN相内の空隙に相当する領域の合計面積+BN相に相当する領域の合計面積}×100
により各測定領域におけるBN相の空隙率を算出し、20箇所の測定領域におけるBN相の空隙率の平均値を求めた。その結果を表2に示す。
In the obtained SEM image, the total area of the region corresponding to the BN phase (gray portion 6) and the total area of the region corresponding to the void in the BN phase (black portion 7) were obtained, and the following formula:
Porosity of the BN phase [vol%] = total area of the region corresponding to the void in the BN phase / {total area of the region corresponding to the void in the BN phase + total area of the region corresponding to the BN phase} × 100
The porosity of the BN phase in each measurement region was calculated, and the average value of the porosity of the BN phase in the 20 measurement regions was obtained. The results are shown in Table 2.

<AlN/BN複合粒子の割合>
実施例及び比較例で得られた熱伝導性フィラーを走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「NB−5000」)を用いて観察した。図8及び図9には、それぞれ実施例A4及び比較例A6で得られた熱伝導性フィラーの走査型電子顕微鏡写真(SEM像)を示す。
<Ratio of AlN / BN composite particles>
The thermally conductive fillers obtained in Examples and Comparative Examples were observed using a scanning electron microscope (“NB-5000” manufactured by Hitachi High-Technologies Corporation). 8 and 9 show scanning electron micrographs (SEM images) of the thermally conductive fillers obtained in Example A4 and Comparative Example A6, respectively.

得られたSEM像において、明度と形状に基づいて、
(i)AlN粒子
(ii)表面の少なくとも一部がBN粒子で被覆されているAlN粒子(AlN/BN複合粒子)
を抽出し、視野内の(i)AlN粒子の数及び(ii)AlN/BN複合粒子の数をそれぞれ求め、視野内の全てのAlN粒子のうちのBN粒子で被覆されているAlN粒子の割合{(ii)/[(i)+(ii)]}を算出した。この割合を10視野について求め、その平均値を求めた。その結果を表2に示す。
In the obtained SEM image, based on the brightness and shape
(I) AlN particles (ii) AlN particles (AlN / BN composite particles) in which at least a part of the surface is coated with BN particles.
, The number of (i) AlN particles and the number of (ii) AlN / BN composite particles in the visual field are determined, respectively, and the ratio of the AlN particles coated with the BN particles among all the AlN particles in the visual field. {(Ii) / [(i) + (ii)]} was calculated. This ratio was calculated for 10 fields of view, and the average value was calculated. The results are shown in Table 2.

<複合材料の熱伝導率>
図10に示すように、実施例及び比較例で得られた円柱状の複合材料11から熱伝導率測定用試料12(z軸方向厚さ:3mm、直径:14mmφ)を切り出し、得られた試料の表面を黒色スプレーで黒色化した。この試料の厚さ方向(z軸方向)を熱流方向としてキセノンフラッシュアナライザー(NETZSCH社製「LFA 447 NanoFlash」)を用いて圧縮方向に平行な方向(z軸方向)の熱拡散率を測定した。
<Thermal conductivity of composite materials>
As shown in FIG. 10, a sample 12 for measuring thermal conductivity (thickness in the z-axis direction: 3 mm, diameter: 14 mmφ) was cut out from the columnar composite material 11 obtained in Examples and Comparative Examples, and the obtained sample was obtained. The surface of the was blackened with a black spray. The heat diffusion rate in the direction parallel to the compression direction (z-axis direction) was measured using a xenon flash analyzer (“LFA 447 NanoFlash” manufactured by NETZSCH) with the thickness direction (z-axis direction) of this sample as the heat flow direction.

また、前記試料の比熱を熱振動型示差走査熱量測定装置(ティー・エイ・インスツルメント社製)を用いてDSC法により測定した。さらに、前記試料の密度を水中置換法(アルキメデス法)により求めた。これらの結果から下記式:
熱伝導率(W/(m・K))=比熱(J/(kg・K))×密度(kg/m)×熱拡散率(m/秒)
により、圧縮方向に平行な方向(z軸方向)の熱伝導率を求めた。その結果を表2に示す。
Further, the specific heat of the sample was measured by the DSC method using a thermal vibration type differential scanning calorimetry device (manufactured by TA Instruments). Further, the density of the sample was determined by an underwater substitution method (Archimedes method). From these results, the following formula:
Thermal conductivity (W / (m · K)) = specific heat (J / (kg · K)) x density (kg / m 3 ) x thermal diffusivity (m 2 / sec)
The thermal conductivity in the direction parallel to the compression direction (z-axis direction) was obtained. The results are shown in Table 2.

Figure 2021050132
Figure 2021050132

表2に示した結果から明らかなように、AlN粉末とBN粉末とホウ酸メラミン錯体との混合物を20MPa以上の静水圧下で圧縮成形した後、焼成した場合(実施例A1〜A13)には、BN粒子及び多孔性BNからなるBN相の空隙率が10〜50vol%の圧縮焼結体が得られることがわかった。また、この圧縮焼結体を粉砕することによって、AlN/BN複合粒子を個数基準で40%以上含有する熱伝導性フィラーが得られることがわかった。 As is clear from the results shown in Table 2, when a mixture of AlN powder, BN powder and melamine borate complex is compression-molded under hydrostatic pressure of 20 MPa or more and then fired (Examples A1 to A13). , It was found that a compression sintered body having a porosity of 10 to 50 vol% in the BN phase composed of BN particles and porous BN can be obtained. Further, it was found that by pulverizing this compression sintered body, a thermally conductive filler containing 40% or more of AlN / BN composite particles on a number basis can be obtained.

一方、ホウ酸メラミン錯体を用いず、AlN粉末とBN粉末とを混合しただけの場合(比較例A5)には、得られた熱伝導性フィラー中のAlN/BN複合粒子の含有率は0vol%であり、AlN/BN複合粒子は形成されないことがわかった。 On the other hand, when the AlN powder and the BN powder were simply mixed without using the melamine borate complex (Comparative Example A5), the content of the AlN / BN composite particles in the obtained thermally conductive filler was 0 vol%. It was found that AlN / BN composite particles were not formed.

また、圧縮成形を行わずに焼成した場合(比較例A6)や20MPa未満の静水圧下で圧縮成形した後、焼成した場合(比較例A10〜A11)には、得られた焼結体におけるBN粒子及び多孔性BNからなるBN相の空隙率は31vol%であったが、この圧縮焼結体を粉砕することによって得られた熱伝導性フィラーにおけるAlN/BN複合粒子の含有率は40vol%未満であった。これは、静水圧圧力が20MPa未満の場合には、BN粒子がAlN粒子の表面に多孔性BNを介して高い結合力で結合していないため、粉砕の衝撃力によってBN粒子がAlN粒子の表面から剥離したことによるものと考えられる。 Further, in the case of firing without compression molding (Comparative Example A6) or in the case of compression molding under hydrostatic pressure of less than 20 MPa and then firing (Comparative Examples A10 to A11), the BN in the obtained sintered body. The porosity of the BN phase consisting of particles and porous BN was 31 vol%, but the content of AlN / BN composite particles in the thermally conductive filler obtained by crushing this compression sintered body was less than 40 vol%. Met. This is because when the hydrostatic pressure is less than 20 MPa, the BN particles are not bonded to the surface of the AlN particles with a high bonding force via the porous BN, so that the BN particles are transferred to the surface of the AlN particles due to the impact force of pulverization. It is probable that it was peeled off from.

さらに、表2に示した結果から明らかなように、AlN/BN複合粒子を個数基準で40%以上含有する熱伝導性フィラーを含む複合材料(実施例A1〜A13)は、熱伝導性フィラーとしてAlN粒子のみを含む複合材料(比較例A1、A3、A7)、熱伝導性フィラーとして表面の少なくとも一部が多孔性BNで被覆されているAN粒子のみを含む複合材料(比較例A2、A4、A8、A9)、熱伝導性フィラーとしてAlN粒子とBN粒子との混合粒子のみを含む複合材料(比較例A5)に比べて、熱伝導性に優れていることがわかった。 Further, as is clear from the results shown in Table 2, the composite material (Examples A1 to A13) containing a heat conductive filler containing 40% or more of AlN / BN composite particles on a number basis is used as the heat conductive filler. Composite materials containing only AlN particles (Comparative Examples A1, A3, A7), composite materials containing only AN particles whose surface is at least partially coated with porous BN as a heat conductive filler (Comparative Examples A2, A4, It was found that A8, A9) are superior in thermal conductivity as compared with the composite material (Comparative Example A5) containing only mixed particles of AlN particles and BN particles as the thermally conductive filler.

また、AlN/BN複合粒子を個数基準で40%以上含有する熱伝導性フィラーを含む複合材料(実施例A1〜A13)は、AlN/BN複合粒子の含有率が40vol%未満の熱伝導性フィラーを含む複合材料(比較例A6、A10〜A11)に比べて、熱伝導性に優れていることがわかった。 Further, the composite material (Examples A1 to A13) containing a heat conductive filler containing 40% or more of AlN / BN composite particles on a number basis is a heat conductive filler having an AlN / BN composite particle content of less than 40 vol%. It was found that the thermal conductivity was excellent as compared with the composite material containing (Comparative Examples A6, A10 to A11).

さらに、実施例A10、A12〜A13及び比較例A11で得られた複合材料の熱伝導率を静水圧圧力に対してプロットしたところ、図11に示すように、20MPa以上(好ましくは80MPa以上)の静水圧下で圧縮成形して作製した圧縮焼結体を粉砕することによって得られた熱伝導性フィラーを用いることによって、熱伝導性に優れた複合材料が得られることがわかった。 Further, when the thermal conductivity of the composite materials obtained in Examples A10, A12 to A13 and Comparative Example A11 was plotted against the hydrostatic pressure, as shown in FIG. 11, it was 20 MPa or more (preferably 80 MPa or more). It was found that a composite material having excellent thermal conductivity can be obtained by using a thermally conductive filler obtained by pulverizing a compression sintered body produced by compression molding under hydrostatic pressure.

(実施例B1)
先ず、得られる圧縮焼結体の組成比が窒化アルミニウム粒子(AlN粒子)/窒化ホウ素粒子(BN粒子)/多孔性窒化ホウ素(多孔性BN)=70vol%/15vol%/15vol%となるように、ポリエチレン製ポットに、等方性の高熱伝導性粒子であるAlN粉末(古河電子株式会社製「高熱伝導AlNフィラーFAN−f05」、平均粒子径5μm、熱伝導率170W/mK)22.8g、非多孔性の六方晶BN粉末(スリーエム社製「3MTM窒化ホウ素クーリングフィラー Platelets001」、平均粒子径1μm)3.40g及び合成例1で得られたホウ酸メラミン錯体17.01gを投入し、さらに、ジルコニアボール(3mm径)500g及びアセトン165gを投入して、ボールミルにより400rpmの条件で12時間混合した。その後、濾過によりジルコニアボールを取り除き、さらに、エバポレーション及び真空乾燥によりアセトンを完全に除去した。得られた混合物を294MPaの静水圧下で圧縮した後、窒素雰囲気下、1800℃で1時間焼成して圧縮焼結体を得た。この圧縮焼結体を室温まで冷却した後、前記方法に従って窒化ホウ素相の空隙率を求めた。その結果を表3に示す。
(Example B1)
First, the composition ratio of the obtained compression sintered body is such that aluminum nitride particles (AlN particles) / boron nitride particles (BN particles) / porous boron nitride (porous BN) = 70 vol% / 15 vol% / 15 vol%. , AlN powder (“High thermal conductivity AlN filler FAN-f05” manufactured by Furukawa Electronics Co., Ltd., average particle diameter 5 μm, thermal conductivity 170 W / mK), 22.8 g, in a polyethylene pot. 3.40 g of non-porous hexagonal BN powder (“3M TM Boron Nitride Cooling Filler Platelets001” manufactured by 3M, average particle size 1 μm) and 17.01 g of the melamine borate complex obtained in Synthesis Example 1 were added, and further. , 500 g of zirconia balls (3 mm diameter) and 165 g of acetone were added and mixed by a ball mill under the condition of 400 rpm for 12 hours. Then, the zirconia balls were removed by filtration, and the acetone was completely removed by evaporation and vacuum drying. The obtained mixture was compressed under hydrostatic pressure of 294 MPa and then fired at 1800 ° C. for 1 hour in a nitrogen atmosphere to obtain a compressed sintered body. After cooling this compression sintered body to room temperature, the porosity of the boron nitride phase was determined according to the above method. The results are shown in Table 3.

次に、得られた圧縮焼結体を60秒間ミル粉砕し、目開き53μmの篩を通して粗粒子を得た。この粗粒子を分級により8μm以下の粒子を回収して、前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを得た。前記方法に従って、前記熱伝導性フィラー中のAlN/BN複合粒子の割合を求めた。また、前記方法に従って、前記熱伝導性フィラーの体積基準の粒度分布を測定し、最大粒子径及び平均粒子径を求めた。これらの結果を表3に示す。 Next, the obtained compression sintered body was milled for 60 seconds, and coarse particles were obtained through a sieve having a mesh size of 53 μm. The coarse particles are classified to recover particles having a size of 8 μm or less to obtain a thermally conductive filler containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles are bonded via a porous BN. It was. According to the above method, the ratio of AlN / BN composite particles in the thermally conductive filler was determined. Further, according to the above method, the volume-based particle size distribution of the thermally conductive filler was measured, and the maximum particle size and the average particle size were determined. These results are shown in Table 3.

次に、前記熱伝導性フィラー10gをトルエン100mlに分散させ、さらにヘキサメチルジシラザン(HMDS)1mlを添加した後、容器を密閉し、時々振とうしながら50℃で5時間加熱した。その後、遠心分離及びトルエン洗浄を2回繰返し、ベンゼンを用いて凍結乾燥を行い、表面がHMDSでメチル化された熱伝導性フィラーを得た。 Next, 10 g of the thermally conductive filler was dispersed in 100 ml of toluene, and 1 ml of hexamethyldisilazane (HMDS) was further added, and then the container was sealed and heated at 50 ° C. for 5 hours with occasional shaking. Then, centrifugation and toluene washing were repeated twice, and freeze-drying was performed using benzene to obtain a thermally conductive filler whose surface was methylated with HMDS.

次に、表面がHMDSでメチル化された前記熱伝導性フィラー500mgとシリコーンオイル(東レ・ダウコーニング株式会社製「SRX310」)253mgとを混合し、得られた混合物を、自転・公転ミキサー(株式会社シンキー製「あわとり練太郎ARV−310」)を用いて1200rpmで2分間、さらに2000rpmで2分間攪拌してグリース組成物を得た。 Next, 500 mg of the thermally conductive filler whose surface was methylated with HMDS and 253 mg of silicone oil (“SRX310” manufactured by Toray Dow Corning Co., Ltd.) were mixed, and the obtained mixture was used as a rotation / revolution mixer (stock). A grease composition was obtained by stirring at 1200 rpm for 2 minutes and further at 2000 rpm for 2 minutes using "Awatori Rentaro ARV-310" manufactured by Shinky Co., Ltd.

(実施例B2)
実施例B1と同様にして、表面がHMDSでメチル化された熱伝導性フィラーを調製した。表面がHMDSでメチル化された前記熱伝導性フィラー500mg及び真球状シリカナノ粒子(信越化学工業株式会社製「信越シリコーンQSB−170」、平均粒子径:170nm)5mgを乾式混合して、前記熱伝導性フィラーの表面に真球状シリカナノ粒子を吸着させた。表面に真球状シリカナノ粒子が吸着した前記熱伝導性フィラーとシリコーンオイル(東レ・ダウコーニング株式会社製「SRX310」)253mgとを混合し、得られた混合物を実施例B1と同様に撹拌してグリース組成物を得た。
(Example B2)
A thermally conductive filler whose surface was methylated with HMDS was prepared in the same manner as in Example B1. The heat conductive filler 500 mg whose surface is methylated with HMDS and 5 mg of spherical silica nanoparticles (“Shin-Etsu Silicone QSB-170” manufactured by Shin-Etsu Chemical Co., Ltd., average particle size: 170 nm) are dry-mixed to obtain the heat conduction. Spherical silica nanoparticles were adsorbed on the surface of the sex filler. The thermally conductive filler in which spherical silica nanoparticles are adsorbed on the surface is mixed with 253 mg of silicone oil (“SRX310” manufactured by Toray Dow Corning Co., Ltd.), and the obtained mixture is stirred and greased in the same manner as in Example B1. The composition was obtained.

(実施例B3)
得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=80vol%/10vol%/10vol%となるように、前記AlN粉末22.8g、前記BN粉末1.98g及び前記ホウ酸メラミン錯体9.98gを混合した以外は実施例B1と同様にして圧縮成形体を調製し、さらに、前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製した。実施例B1と同様にして、窒化ホウ素相の空隙率、前記熱伝導性フィラー中のAlN/BN複合粒子の割合、前記熱伝導性フィラーの最大粒子径及び平均粒子径を求めた。これらの結果を表3に示す。また、実施例B1と同様にして、得られた熱伝導性フィラーの表面をHMDSでメチル化した。
(Example B3)
The AlN powder 22.8 g, the BN powder 1.98 g, and the boric acid so that the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 80 vol% / 10 vol% / 10 vol%. A compression molded product was prepared in the same manner as in Example B1 except that 9.98 g of the melamine complex was mixed, and further, composite particles (AlN / BN composite) in which the AlN particles and the BN particles were bonded via a porous BN. A thermally conductive filler containing particles) was prepared. In the same manner as in Example B1, the porosity of the boron nitride phase, the ratio of AlN / BN composite particles in the thermally conductive filler, the maximum particle diameter and the average particle diameter of the thermally conductive filler were determined. These results are shown in Table 3. Further, in the same manner as in Example B1, the surface of the obtained thermally conductive filler was methylated with HMDS.

また、平均粒子径が5μmの前記AlN粉末(古河電子株式会社製「高熱伝導AlNフィラーFAN−f05」)の代わりに等方性の高熱伝導性粒子である平均粒子径が1μmのAlN粉末(株式会社トクヤマ製「高純度窒化アルミニウム粉末・顆粒 Eグレード」、熱伝導率180W/mK)を用い、得られる圧縮焼結体の組成比がAlN粒子/BN粒子/多孔性BN=80vol%/10vol%/10vol%となるように、前記AlN粉末22.8g、前記BN粉末1.98g及び前記ホウ酸メラミン錯体9.98gを混合した以外は実施例B1と同様にして圧縮成形体を調製し、さらに、前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製した。実施例B1と同様にして、窒化ホウ素相の空隙率、前記熱伝導性フィラー中のAlN/BN複合粒子の割合、前記熱伝導性フィラーの最大粒子径及び平均粒子径を求めた。これらの結果を表3に示す。また、実施例B1と同様にして、得られた熱伝導性フィラーの表面をHMDSでメチル化した。 Further, instead of the AlN powder having an average particle diameter of 5 μm (“High thermal conductivity AlN filler FAN-f05” manufactured by Furukawa Electronics Co., Ltd.), AlN powder having an average particle diameter of 1 μm, which is isotropic high thermal conductive particles (stock). Using "High Purity Aluminum Nitride Powder / Granule E Grade" manufactured by Tokuyama Co., Ltd., thermal conductivity 180 W / mK), the composition ratio of the obtained compression sintered body is AlN particles / BN particles / porous BN = 80 vol% / 10 vol%. A compression molded product was prepared in the same manner as in Example B1 except that 22.8 g of the AlN powder, 1.98 g of the BN powder, and 9.98 g of the melamine borate complex were mixed so as to be / 10 vol%. , A thermally conductive filler containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles are bonded via a porous BN was prepared. In the same manner as in Example B1, the porosity of the boron nitride phase, the ratio of AlN / BN composite particles in the thermally conductive filler, the maximum particle diameter and the average particle diameter of the thermally conductive filler were determined. These results are shown in Table 3. Further, in the same manner as in Example B1, the surface of the obtained thermally conductive filler was methylated with HMDS.

次に、表面がHMDSでメチル化された平均粒子径が2.6μmの前記熱伝導性フィラー450mg、表面がHMDSでメチル化された平均粒子径が0.9μmの前記熱伝導性フィラー50mg及び真球状シリカナノ粒子(信越化学工業株式会社製「信越シリコーンQSB−170」、平均粒子径:170nm)5mgを乾式混合して、前記2種類の熱伝導性フィラーの表面に真球状シリカナノ粒子を吸着させた。表面に真球状シリカナノ粒子が吸着した前記2種類の熱伝導性フィラーとシリコーンオイル(東レ・ダウコーニング株式会社製「SRX310」)245mgとを混合し、得られた混合物を実施例B1と同様に撹拌してグリース組成物を得た。 Next, 450 mg of the thermally conductive filler having an average particle diameter of 2.6 μm methylated with HMDS on the surface, 50 mg of the thermally conductive filler having an average particle diameter of 0.9 μm methylated with HMDS on the surface, and true. 5 mg of spherical silica nanoparticles (“Shinetsu Silicone QSB-170” manufactured by Shinetsu Chemical Industry Co., Ltd., average particle diameter: 170 nm) were dry-mixed, and spherical silica nanoparticles were adsorbed on the surfaces of the two types of thermally conductive fillers. .. The above two types of thermally conductive fillers in which spherical silica nanoparticles are adsorbed on the surface are mixed with 245 mg of silicone oil (“SRX310” manufactured by Toray Dow Corning Co., Ltd.), and the obtained mixture is stirred in the same manner as in Example B1. To obtain a grease composition.

(実施例B4)
表面がHMDSでメチル化された平均粒子径が2.6μmの前記熱伝導性フィラーの配合量を400mgに、表面がHMDSでメチル化された平均粒子径が0.9μmの前記熱伝導性フィラーの配合量を100mgに変更した以外は実施例B3と同様にして、グリース組成物を得た。
(Example B4)
The amount of the thermally conductive filler having an average particle diameter of 2.6 μm methylated with HMDS on the surface was 400 mg, and the amount of the thermally conductive filler having an average particle diameter of 0.9 μm methylated with HMDS on the surface was adjusted to 400 mg. A grease composition was obtained in the same manner as in Example B3 except that the blending amount was changed to 100 mg.

(実施例B5)
ヘキサメチルジシラザン(HMDS)の代わりにチタネート系カップリング剤(味の素ファインテクノ株式会社製「プレンアクトTTS」)1mlを用いた以外は実施例B3と同様にして、平均粒子径が2.6μmの前記熱伝導性フィラー及び平均粒子径が0.9μmの前記熱伝導性フィラーの表面をそれぞれアルキル化した。
(Example B5)
Similar to Example B3, except that 1 ml of a titanate-based coupling agent (“Plenact TTS” manufactured by Ajinomoto Fine-Techno Co., Ltd.) was used instead of hexamethyldisilazane (HMDS), the above-mentioned product having an average particle size of 2.6 μm. The surfaces of the thermally conductive filler and the thermally conductive filler having an average particle size of 0.9 μm were alkylated, respectively.

次に、表面がチタネート系カップリング剤でアルキル化された平均粒子径が2.6μmの前記熱伝導性フィラー400mg、表面がチタネート系カップリング剤でアルキル化された平均粒子径が0.9μmの前記熱伝導性フィラー100mg及び真球状シリカナノ粒子(信越化学工業株式会社製「信越シリコーンQSB−170」、平均粒子径:170nm)5mgを乾式混合して、前記2種類の熱伝導性フィラーの表面に真球状シリカナノ粒子を吸着させた。表面に真球状シリカナノ粒子が吸着した前記2種類の熱伝導性フィラーとシリコーンオイル(東レ・ダウコーニング株式会社製「SRX310」)245mgとを混合し、得られた混合物を実施例B1と同様に撹拌してグリース組成物を得た。 Next, 400 mg of the thermally conductive filler having an average particle size of 2.6 μm alkylated with a titanate-based coupling agent on the surface and 0.9 μm having an average particle size alkylated with a titanate-based coupling agent on the surface. 100 mg of the heat conductive filler and 5 mg of true spherical silica nanoparticles (“Shinetsu Silicone QSB-170” manufactured by Shinetsu Chemical Industry Co., Ltd., average particle size: 170 nm) are dry-mixed on the surface of the two types of heat conductive fillers. Spherical silica nanoparticles were adsorbed. The above two types of thermally conductive fillers in which spherical silica nanoparticles are adsorbed on the surface are mixed with 245 mg of silicone oil (“SRX310” manufactured by Toray Dow Corning Co., Ltd.), and the obtained mixture is stirred in the same manner as in Example B1. To obtain a grease composition.

(実施例B6)
実施例B1と同様にして前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーを調製した。この熱伝導性フィラー500mgとシリコーンオイル(東レ・ダウコーニング株式会社製「SRX310」)253mgとを混合し、得られた混合物を実施例B1と同様に撹拌してグリース組成物を得た。
(Example B6)
In the same manner as in Example B1, a thermally conductive filler containing composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles were bonded via a porous BN was prepared. 500 mg of this thermally conductive filler and 253 mg of silicone oil (“SRX310” manufactured by Toray Dow Corning Co., Ltd.) were mixed, and the obtained mixture was stirred in the same manner as in Example B1 to obtain a grease composition.

(比較例B1)
ヘキサメチルジシラザン(HMDS)の代わりにアルミネート系カップリング剤(味の素ファインテクノ株式会社製「プレンアクトAL−M」)1mlを用いた以外は実施例B3と同様にして、平均粒子径が2.6μmの前記熱伝導性フィラー及び平均粒子径が0.9μmの前記熱伝導性フィラーの表面を処理したところ、いずれの熱伝導性フィラーにおいても、粒子が凝集して単離できなかった。このため、表面をアルミネート系カップリング剤で処理した平均粒子径が2.6μmの前記熱伝導性フィラーが450mg、表面をアルミネート系カップリング剤で処理した平均粒子径が0.9μmの前記熱伝導性フィラーが50mgとなるように、2回目のトルエン洗浄後の2種類の分散液を混合し、さらに、真球状シリカナノ粒子(信越化学工業株式会社製「信越シリコーンQSB−170」、平均粒子径:170nm)5mg及びシリコーンオイル(東レ・ダウコーニング株式会社製「SRX310」)245mgを混合した後、真空乾燥によりトルエンを除去してグリース組成物を調製した。
(Comparative Example B1)
Similar to Example B3, the average particle size was 2. except that 1 ml of an aluminate-based coupling agent (“Plenact AL-M” manufactured by Ajinomoto Fine-Techno Co., Ltd.) was used instead of hexamethyldisilazane (HMDS). When the surfaces of the heat conductive filler of 6 μm and the heat conductive filler having an average particle diameter of 0.9 μm were treated, the particles of any of the heat conductive fillers aggregated and could not be isolated. Therefore, the heat conductive filler having an average particle diameter of 2.6 μm whose surface is treated with an aluminate-based coupling agent is 450 mg, and the surface is treated with an aluminate-based coupling agent and has an average particle diameter of 0.9 μm. The two types of dispersion after the second toluene cleaning are mixed so that the heat conductive filler is 50 mg, and further, spherical silica nanoparticles (“Shin-Etsu Silicone QSB-170” manufactured by Shin-Etsu Chemical Co., Ltd., average particles). After mixing 5 mg (diameter: 170 nm) and 245 mg of silicone oil (“SRX310” manufactured by Toray Dow Corning Co., Ltd.), toluene was removed by vacuum drying to prepare a grease composition.

<グリース組成物の熱抵抗>
実施例及び比較例で得られたグリース組成物(約4μl)を、直径14mm、厚さ1mmのセラミック板で挟持して積層板を作製し、この積層板に3MPaの圧力を印加した状態でキセノンフラッシュアナライザー(NETZSCH社製「LFA447 NanoFlash」)を用いて前記積層板の熱拡散率を測定した。また、マイクロメーターを用いて前記積層板の厚さを測定した。得られた前記積層板の熱拡散率及び厚さ、前記セラミック板の熱拡散率、密度、比熱、厚さ、並びにグリース組成物の密度、比熱を用いてグリース組成物の熱抵抗率を算出した。その結果を表4に示す。
<Thermal resistance of grease composition>
The grease composition (about 4 μl) obtained in Examples and Comparative Examples was sandwiched between ceramic plates having a diameter of 14 mm and a thickness of 1 mm to prepare a laminated plate, and xenon was applied to the laminated plate at a pressure of 3 MPa. The thermal diffusivity of the laminated board was measured using a flash analyzer (“LFA447 NanoFlush” manufactured by NETZSCH). Moreover, the thickness of the laminated board was measured using a micrometer. The thermal diffusivity and thickness of the obtained laminated plate, the thermal diffusivity, density, specific heat and thickness of the ceramic plate, and the density and specific heat of the grease composition were used to calculate the thermal resistance of the grease composition. .. The results are shown in Table 4.

Figure 2021050132
Figure 2021050132

Figure 2021050132
Figure 2021050132

表4に示したように、前記AlN粒子と前記BN粒子とが多孔性BNを介して結合した複合粒子(AlN/BN複合粒子)を含有する熱伝導性フィラーの表面をシラザン系カップリング剤(HMDS)(実施例B1〜B4)又はチタネート系カップリング剤(実施例B5)でアルキル化した場合には、表面処理を施さなかった場合(実施例B6)に比べて、グリース組成物の熱抵抗が低くなる(すなわち、熱伝導性が高くなる)ことがわかった。これは、前記熱伝導性フィラーの表面をシラザン系カップリング剤又はチタネート系カップリング剤で処理することによって、前記熱伝導性フィラー中の前記BN粒子とシラザン系カップリング剤又はチタネート系カップリング剤とが適度に反応してB−O−C結合又はB−O−Ti結合が形成され、前記熱伝導性フィラーの表面がアルキル化されたことにより、前記熱伝導性フィラーの凝集が抑制されてグリース組成物の流動性が向上したためと考えられる。 As shown in Table 4, the surface of the thermally conductive filler containing the composite particles (AlN / BN composite particles) in which the AlN particles and the BN particles are bonded via a porous BN is coated with a silazane-based coupling agent (AlN / BN composite particles). When alkylated with HMDS (Examples B1 to B4) or titanate-based coupling agent (Example B5), the thermal resistance of the grease composition is higher than that when no surface treatment is applied (Example B6). Was found to be lower (ie, higher thermal conductivity). This is done by treating the surface of the thermally conductive filler with a silazane-based coupling agent or a titanate-based coupling agent to treat the BN particles in the thermally conductive filler with the silazane-based coupling agent or the titanate-based coupling agent. B-OC bond or B-O-Ti bond is formed by an appropriate reaction with and, and the surface of the thermally conductive filler is alkylated, so that the aggregation of the thermally conductive filler is suppressed. It is considered that this is because the fluidity of the grease composition has improved.

一方、前記熱伝導性フィラーの表面をアルミネート系カップリング剤で処理した場合(比較例B1)には、表面処理を施さなかった場合(実施例B6)に比べて、グリース組成物の熱抵抗が高くなる(すなわち、熱伝導性が低くなる)ことがわかった。これは、前記熱伝導性フィラーの表面をアルミネート系カップリング剤で処理した場合、前記熱伝導性フィラー中の前記BN粒子とアルミネート系カップリング剤との反応に比べてアルミネート系カップリング剤の加水分解反応が速く、B−O−Al結合が十分に形成されず、前記熱伝導性フィラーの表面がアルキル化されなかったことにより、前記熱伝導性フィラーの凝集が十分に抑制されず、グリース組成物の流動性が低下したためと考えられる。 On the other hand, when the surface of the heat conductive filler is treated with an aluminate-based coupling agent (Comparative Example B1), the thermal resistance of the grease composition is higher than that when the surface treatment is not performed (Example B6). Was found to be higher (ie, lower thermal conductivity). This is because when the surface of the thermally conductive filler is treated with an aluminate-based coupling agent, the aluminum-based coupling is compared with the reaction between the BN particles in the thermally conductive filler and the aluminate-based coupling agent. The hydrolysis reaction of the agent was rapid, the BO-Al bond was not sufficiently formed, and the surface of the thermally conductive filler was not alkylated, so that the aggregation of the thermally conductive filler was not sufficiently suppressed. It is considered that this is because the fluidity of the grease composition has decreased.

また、表4に示したように、表面がアルキル化された前記熱伝導性フィラーと真球状ナノ粒子とを含有するグリース組成物(実施例B2)は、真球状ナノ粒子を含まないグリース組成物(実施例B1)と同程度の熱抵抗を示した。この結果から、真球状ナノ粒子を添加しても熱抵抗の低減効果は維持されることが確認された。 Further, as shown in Table 4, the grease composition containing the thermally conductive filler whose surface is alkylated and the spherical nanoparticles (Example B2) is a grease composition containing no spherical nanoparticles. It showed the same thermal resistance as (Example B1). From this result, it was confirmed that the effect of reducing the thermal resistance was maintained even when the spherical nanoparticles were added.

さらに、表面がアルキル化された平均粒子径が異なる2種類の前記熱伝導性フィラーを含有するグリース組成物(実施例B3〜B4)は、表面がアルキル化された1種類の前記熱伝導性フィラーを含有するグリース組成物(実施例B2)に比べて、熱抵抗が低下する(すなわち、熱伝導性が高くなる)ことがわかった。 Further, the grease compositions (Examples B3 to B4) containing the two types of the thermally conductive filler having an alkylated surface and different average particle diameters are one type of the thermally conductive filler having an alkylated surface. It was found that the thermal resistance was reduced (that is, the thermal conductivity was increased) as compared with the grease composition containing (Example B2).

また、表面がシラザン系カップリング剤(HMDS)でアルキル化された前記熱伝導性フィラーを含有するグリース組成物(実施例B4)は、表面がチタネート系カップリング剤でアルキル化された前記熱伝導性フィラーを含有するグリース組成物(実施例B5)に比べて、熱抵抗が低下する(すなわち、熱伝導性が高くなる)ことがわかった。 Further, the grease composition (Example B4) containing the heat conductive filler whose surface is alkylated with a silazane-based coupling agent (HMDS) has the heat conductivity whose surface is alkylated with a titanate-based coupling agent. It was found that the thermal resistance was reduced (that is, the thermal conductivity was increased) as compared with the grease composition containing the sex filler (Example B5).

以上の結果から、AlN粉末とBN粉末とホウ酸錯体との混合物を所定の静水圧下で圧縮成形した後、焼成することによって、BN相の空隙率が所定の範囲内にある圧縮焼結体が得られ、この圧縮焼結体を粉砕することによって、多孔性BNを介してAlN粒子の表面にBN粒子が高い結合力で結合している複合材料を多く含有する熱伝導性フィラーが得られることがわかった。また、このような熱伝導性フィラーを用いることによって、熱伝導性に優れた複合材料が得られることがわかった。さらに、前記熱伝導性フィラーの表面をアルキル化することによって、マトリックス中での前記熱伝導性フィラーの凝集が抑制され、複合材料の流動性が向上するため、熱伝導性に更に優れた複合材料が得られることがわかった。 From the above results, a compression sintered body in which the porosity of the BN phase is within a predetermined range by compression-molding a mixture of AlN powder, BN powder, and borate complex under a predetermined hydrostatic pressure and then firing. By crushing this compression sintered body, a thermally conductive filler containing a large amount of a composite material in which the BN particles are bonded to the surface of the AlN particles with a high bonding force via the porous BN can be obtained. I understood it. Further, it was found that a composite material having excellent thermal conductivity can be obtained by using such a thermally conductive filler. Further, by alkylating the surface of the thermally conductive filler, aggregation of the thermally conductive filler in the matrix is suppressed and the fluidity of the composite material is improved, so that the composite material having further excellent thermal conductivity is further improved. Was found to be obtained.

以上説明したように、本発明によれば、マトリックスに高い熱伝導性を付与することが可能な熱伝導性フィラー及びそれを含有する複合材料を得ることが可能となる。したがって、本発明の複合材料は、熱伝導性に優れるため、例えば、自動車用、電子素子用、各種電気製品用の放熱材料やヒーター材料、グリース組成物等として有用である。 As described above, according to the present invention, it is possible to obtain a thermally conductive filler capable of imparting high thermal conductivity to the matrix and a composite material containing the same. Therefore, since the composite material of the present invention has excellent thermal conductivity, it is useful as, for example, a heat radiating material, a heater material, a grease composition, etc. for automobiles, electronic elements, and various electric products.

1:窒化アルミニウム粒子
2:窒化ホウ素粒子
3:多孔性窒化ホウ素
4:多孔性窒化ホウ素相の空隙
5:窒化アルミニウム粒子
6:多孔性窒化ホウ素相
7:窒化ホウ素相内の空隙
8:窒化ホウ素相外の空隙
10:複合材料
11:熱伝導率測定用試料
1: Aluminum nitride particles 2: Boron nitride particles 3: Porous boron nitride 4: Voids in the porous boron nitride phase 5: Aluminum nitride particles 6: Porous boron nitride phase 7: Voids in the boron nitride phase 8: Boron nitride phase Outer void 10: Composite material 11: Sample for thermal conductivity measurement

Claims (12)

平均粒子径が0.2〜100μmであり、熱伝導率が20W/mK以上である等方性の高熱伝導性粒子と、該高熱伝導性粒子の平均粒子径の0.01〜5倍の平均粒子径を有する非多孔性の六方晶窒化ホウ素粒子と、多孔性窒化ホウ素とを含有し、前記六方晶窒化ホウ素粒子及び前記多孔性窒化ホウ素により形成される窒化ホウ素相の空隙率が10〜50vol%である焼結体の粉砕物からなり、
前記粉砕物中の全ての前記高熱伝導性粒子のうちの個数基準で40%以上の粒子が、該高熱伝導性粒子の表面の少なくとも一部に前記多孔性窒化ホウ素を介して前記六方晶窒化ホウ素粒子が結合した複合粒子を形成していることを特徴とする熱伝導性フィラー。
Isotropic high thermal conductivity particles having an average particle size of 0.2 to 100 μm and a thermal conductivity of 20 W / mK or more, and an average of 0.01 to 5 times the average particle size of the high thermal conductive particles. It contains non-porous hexagonal boron nitride particles having a particle size and porous boron nitride, and the porosity of the hexagonal boron nitride particles and the boron nitride phase formed by the porous boron nitride is 10 to 50 vol. Consists of crushed sintered body, which is%
Of all the high thermal conductive particles in the ground product, 40% or more of the particles are made of the hexagonal boron nitride via the porous boron nitride on at least a part of the surface of the high thermal conductive particles. A thermally conductive filler characterized by forming composite particles in which particles are bonded.
前記高熱伝導性粒子が窒化アルミニウム粒子、窒化ケイ素粒子、立方晶窒化ホウ素粒子、酸化アルミニウム粒子、酸化亜鉛粒子、炭化ケイ素粒子、及びダイヤモンド粒子からなる群から選択される少なくとも一種の粒子であることを特徴とする請求項1に記載の熱伝導性フィラー。 That the high thermal conductive particles are at least one kind of particles selected from the group consisting of aluminum nitride particles, silicon nitride particles, cubic boron nitride particles, aluminum oxide particles, zinc oxide particles, silicon carbide particles, and diamond particles. The thermally conductive filler according to claim 1. 前記多孔性窒化ホウ素が乱層構造を有するものであることを特徴とする請求項1又は2に記載の熱伝導性フィラー。 The thermally conductive filler according to claim 1 or 2, wherein the porous boron nitride has a disordered layer structure. 表面がアルキル化されていることを特徴とする請求項1〜3のうちのいずれか一項に記載の熱伝導性フィラー。 The thermally conductive filler according to any one of claims 1 to 3, wherein the surface is alkylated. マトリックスと、該マトリックス中に分散している請求項1〜4のうちのいずれか一項に記載の熱伝導性フィラーとを含有することを特徴とする熱伝導性複合材料。 A thermally conductive composite material comprising a matrix and the thermally conductive filler according to any one of claims 1 to 4 dispersed in the matrix. 前記熱伝導性フィラーが二峰性以上の粒度分布を有するものであることを特徴とする請求項5に記載の熱伝導性複合材料。 The heat conductive composite material according to claim 5, wherein the heat conductive filler has a bimodal or higher particle size distribution. 前記マトリックスがオイルであり、前記熱伝導性複合材料がグリース組成物であることを特徴とする請求項5又は6に記載の熱伝導性複合材料。 The heat conductive composite material according to claim 5 or 6, wherein the matrix is an oil and the heat conductive composite material is a grease composition. 前記オイルが、シリコーンオイル、変性シリコーンオイル、フルオロエーテルオイル、鉱物油、動植物性天然油、パラフィン及び合成油からなる群から選択される少なくとも1種であることを特徴とする請求項7に記載の熱伝導性複合材料。 The seventh aspect of claim 7, wherein the oil is at least one selected from the group consisting of silicone oils, modified silicone oils, fluoroether oils, mineral oils, animal and vegetable natural oils, paraffins and synthetic oils. Thermally conductive composite material. 平均粒子径が0.2〜100μmであり、熱伝導率が20W/mK以上である等方性の高熱伝導性粉末と、該高熱伝導性粉末の平均粒子径の0.01〜5倍の平均粒子径を有する非多孔性の六方晶窒化ホウ素粉末と、ホウ酸錯体との混合物を20MPa以上の圧力で圧縮成形する第一の工程と
前記第一の工程で得られた圧縮成形体を不活性ガス雰囲気下で焼成する第二の工程と
前記第二の工程で得られた圧縮焼結体を粉砕して、高熱伝導性粒子の表面の少なくとも一部に多孔性窒化ホウ素を介して六方晶窒化ホウ素粒子が結合した複合粒子を含有する熱伝導性フィラーを得る第三の工程と
を含むことを特徴とする熱伝導性フィラーの製造方法。
An isotropic high thermal conductive powder having an average particle size of 0.2 to 100 μm and a thermal conductivity of 20 W / mK or more, and an average of 0.01 to 5 times the average particle size of the high thermal conductive powder. The first step of compression-molding a mixture of a non-porous hexagonal boron nitride powder having a particle size and a boric acid complex at a pressure of 20 MPa or more, and the compression-molded body obtained in the first step are inert. The second step of firing in a gas atmosphere and the compression sintered body obtained in the second step are crushed and hexagonal nitrided via porous boron nitride on at least a part of the surface of the highly thermally conductive particles. A method for producing a thermally conductive filler, which comprises a third step of obtaining a thermally conductive filler containing composite particles to which boron particles are bonded.
前記熱伝導性フィラーとシラザン系カップリング剤又はチタネート系カップリング剤とを反応させて前記熱伝導性フィラーの表面をアルキル化する第四の工程を更に含むことを特徴とする請求項9に記載の熱伝導性フィラーの製造方法。 The ninth aspect of claim 9, further comprising a fourth step of reacting the thermally conductive filler with a silazane-based coupling agent or a titanate-based coupling agent to alkylate the surface of the thermally conductive filler. How to make a thermally conductive filler. 前記第一の工程において、静水圧下で圧縮成形することを特徴とする請求項9又は10に記載の熱伝導性フィラーの製造方法。 The method for producing a thermally conductive filler according to claim 9 or 10, wherein in the first step, compression molding is performed under hydrostatic pressure. 前記ホウ酸錯体がホウ酸メラミン錯体及びホウ酸尿素錯体からなる群から選択される少なくとも1種であることを特徴とする請求項9〜11のうちのいずれか一項に記載の熱伝導性フィラーの製造方法。 The thermally conductive filler according to any one of claims 9 to 11, wherein the boric acid complex is at least one selected from the group consisting of a borate melamine complex and a borate urea complex. Manufacturing method.
JP2020010131A 2019-09-17 2020-01-24 Thermally conductive filler, thermally conductive composite using the same, and method of producing thermally conductive filler Pending JP2021050132A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019168387 2019-09-17
JP2019168387 2019-09-17

Publications (2)

Publication Number Publication Date
JP2021050132A true JP2021050132A (en) 2021-04-01
JP2021050132A5 JP2021050132A5 (en) 2022-07-15

Family

ID=75157034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020010131A Pending JP2021050132A (en) 2019-09-17 2020-01-24 Thermally conductive filler, thermally conductive composite using the same, and method of producing thermally conductive filler

Country Status (1)

Country Link
JP (1) JP2021050132A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683818A (en) * 2021-08-27 2021-11-23 上海材料研究所 Core-shell structure modified boron nitride and preparation method thereof
KR102408533B1 (en) * 2021-11-25 2022-06-14 주식회사 첨단랩 Manufacturing method of silicon nitride filler for thermal interface material
CN117210712A (en) * 2023-11-09 2023-12-12 成都先进金属材料产业技术研究院股份有限公司 Liquid metal thermal interface composite material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454768A (en) * 1987-08-26 1989-03-02 Fuji Electric Co Ltd Manufacture of thin film solar cell
JP2005029421A (en) * 2003-07-11 2005-02-03 Japan Science & Technology Agency Method for producing ain/bn composite powder and method for producing ain/bn composite sintered material
JP2012171842A (en) * 2011-02-23 2012-09-10 Denki Kagaku Kogyo Kk Composite particle of melamine borate and boron nitride, and method for producing boron nitride particle using the same
JP2014193965A (en) * 2013-03-29 2014-10-09 Nippon Steel & Sumikin Chemical Co Ltd High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
JP2018159062A (en) * 2017-03-22 2018-10-11 株式会社豊田中央研究所 Heat-conductive composite material, heat-conductive filler, and production method of the same
JP2019043804A (en) * 2017-08-31 2019-03-22 株式会社豊田中央研究所 Heat-conductive filler, heat-conductive composite material, and method for producing the heat-conductive filler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454768A (en) * 1987-08-26 1989-03-02 Fuji Electric Co Ltd Manufacture of thin film solar cell
JP2005029421A (en) * 2003-07-11 2005-02-03 Japan Science & Technology Agency Method for producing ain/bn composite powder and method for producing ain/bn composite sintered material
JP2012171842A (en) * 2011-02-23 2012-09-10 Denki Kagaku Kogyo Kk Composite particle of melamine borate and boron nitride, and method for producing boron nitride particle using the same
JP2014193965A (en) * 2013-03-29 2014-10-09 Nippon Steel & Sumikin Chemical Co Ltd High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
JP2018159062A (en) * 2017-03-22 2018-10-11 株式会社豊田中央研究所 Heat-conductive composite material, heat-conductive filler, and production method of the same
JP2019043804A (en) * 2017-08-31 2019-03-22 株式会社豊田中央研究所 Heat-conductive filler, heat-conductive composite material, and method for producing the heat-conductive filler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683818A (en) * 2021-08-27 2021-11-23 上海材料研究所 Core-shell structure modified boron nitride and preparation method thereof
CN113683818B (en) * 2021-08-27 2023-07-04 上海材料研究所有限公司 Core-shell structure modified boron nitride and preparation method thereof
KR102408533B1 (en) * 2021-11-25 2022-06-14 주식회사 첨단랩 Manufacturing method of silicon nitride filler for thermal interface material
CN117210712A (en) * 2023-11-09 2023-12-12 成都先进金属材料产业技术研究院股份有限公司 Liquid metal thermal interface composite material and preparation method thereof
CN117210712B (en) * 2023-11-09 2024-02-02 成都先进金属材料产业技术研究院股份有限公司 Liquid metal thermal interface composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6552008B2 (en) Components produced from polymer / boron nitride compounds, polymer / boron nitride compounds to produce such components, and uses thereof
CN111511679B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
EP3345865B1 (en) Powder of hexagonal boron nitride, process for producing same, resin composition, and resin sheet
JP2021050132A (en) Thermally conductive filler, thermally conductive composite using the same, and method of producing thermally conductive filler
CN111164047B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
WO2020004600A1 (en) Aggregate boron nitride particles, boron nitride powder, production method for boron nitride powder, resin composition, and heat dissipation member
JP6348610B2 (en) Hexagonal boron nitride powder, production method thereof, resin composition and resin sheet
TWI598291B (en) Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
WO2018066277A1 (en) Boron nitride aggregated grain, method for producing same, and thermally conductive resin composition using same
WO2017145869A1 (en) Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
US9957199B2 (en) Formation of boron carbide-boron nitride carbon compositions
JP2016135730A (en) Boron nitride aggregated particle, and method for producing the same, composition containing the same, and molding containing the same
KR20150016957A (en) Boron nitride agglomerates, method for the production thereof and use thereof
JP6936442B2 (en) Method for manufacturing thermally conductive filler, thermally conductive composite material, and thermally conductive filler
JP2016522299A (en) Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds to produce such components, and uses thereof
JP2012151502A (en) Composite filler for mixing resin
JP2016533282A (en) Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds for producing such components, methods for producing such components and uses thereof
EP3932857A1 (en) Boron nitride aggregate powder, heat dissipation sheet and semiconductor device
EP3087153A2 (en) Nanodiamond containing composite and a method for producing the same
JP6786047B2 (en) Method of manufacturing heat conductive sheet
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
Wu et al. Novel in-situ constructing approach for vertically aligned AlN skeleton and its thermal conductivity enhancement effect on epoxy
JP2021506730A (en) A powder composition containing first and second aggregates of inorganic particles, and a polymer composition containing a polymer and a powder composition.
JP2021195291A (en) Heat-conductive filler and heat-conductive composite material using the same, and methods for producing the same
JP7435294B2 (en) High thermal conductivity grease composition

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240208