JP2018158283A - 複合部材、ガス分離体、及びガス分離装置 - Google Patents

複合部材、ガス分離体、及びガス分離装置 Download PDF

Info

Publication number
JP2018158283A
JP2018158283A JP2017056051A JP2017056051A JP2018158283A JP 2018158283 A JP2018158283 A JP 2018158283A JP 2017056051 A JP2017056051 A JP 2017056051A JP 2017056051 A JP2017056051 A JP 2017056051A JP 2018158283 A JP2018158283 A JP 2018158283A
Authority
JP
Japan
Prior art keywords
gas
space
separation
inorganic material
porous aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2017056051A
Other languages
English (en)
Inventor
原田 耕一
Koichi Harada
耕一 原田
米津 麻紀
Maki Yonezu
麻紀 米津
ひとみ 斉藤
Hitomi Saito
ひとみ 斉藤
亮介 八木
Ryosuke Yagi
亮介 八木
末永 誠一
Seiichi Suenaga
誠一 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2017056051A priority Critical patent/JP2018158283A/ja
Priority to US15/705,931 priority patent/US20180272311A1/en
Priority to EP17192157.0A priority patent/EP3378551A1/en
Publication of JP2018158283A publication Critical patent/JP2018158283A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • B01D2253/3425Honeycomb shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】実用的なガス分離性能を維持しつつ、空調等に応用可能な性能や強度等を得ることを可能にした複合部材及びガス分離体とそれを用いたガス分離装置を提供する。【解決手段】実施形態のガス分離体5は、第1の空間と第2の空間との間に配置され、第1の空間に存在する分離対象ガスを第2の空間に透過させるために用いられる。ガス分離体5は、第1の面と第2の面との間に設けられた隔壁26を隔てて並設された複数の貫通孔22とを有するハニカム基材23と、複数の貫通孔22内に充填され、第3の面と第4の面とを有する無機材料粒子24の多孔質集合体25とを具備する。多孔質集合体25は、無機材料粒子24間において第3の面から第4の面に通じる空孔27を備え、多孔質集合体25の第3の面から第4の面への空気透過率が1×10−14m2以上1×10−11m2以下である。【選択図】図3

Description

本発明の実施形態は、複合部材、ガス分離体、及びガス分離装置に関する。
家庭用エアコン等の空調技術においては、冷媒及びエネルギー効率の両面で技術が進展し、それに伴ってより快適な生活環境が求められている。このため、温度ばかりでなく、調湿、換気、気流調整、空気清浄等の空気調和機の多機能化が進んできている。エネルギー効率の向上は、ここ最近のエネルギー不足からも最重要課題となっている。高温多湿のアジア諸国においても、生活水準の向上に伴って、調湿、特に除湿は重要と考えられており、これを省エネで行うことで環境負荷の小さい空調が求められている。現在主流となっているコンプレッサー等を用いた冷媒冷却による除湿では、空気を冷却して水蒸気を凝縮すると共に、冷却した空気を再加熱して温度調整するため、多大のエネルギーを要する。このため、消費電力が増加することから、環境負荷の大きさが課題となっている。
デシカント空調等のガス分離装置は、水蒸気を吸着する吸湿材を用いた吸湿器で室内の水分を吸着した後、これを温めて屋外に排出するため、冷媒式の除湿より省エネ性に優れている。吸湿材としては、例えばセラミックス多孔質体やゼオライト等の多孔質体に、ナトリウム、リチウム、カルシウム、マグネシウム等の塩化物や臭化物からなる潮解性物質を含浸担持させたものが知られている。しかし、吸湿材は水を吸着し続けることで飽和するため、再生処理が必要となる。吸湿材の再生処理は、吸湿材を加熱して水を排出させることにより行われる。吸湿材の再生処理を冷房と併用することは、非効率的である。
一方、計装機器等に用いられる空気を脱湿するために、ゼオライト膜のような吸湿膜を用いた脱湿装置が知られている。ゼオライトはその内部の微細孔内に水分子を吸着及び放出することができるため、吸湿材及び脱湿材として期待されている。ゼオライト膜を用いた脱湿装置は、水蒸気の吸湿性能に優れる反面、水蒸気の透過流量や透過速度が小さいという問題を有している。空調用途等では流量や流速を確保する必要があるため、ゼオライト膜を用いた脱湿装置では実用的な空調装置を構成することができない。ゼオライトは熱分解してしまうため、アルミナのような他の無機材料粒子のように焼結体として使用することができない。このため、ゼオライトを吸湿材として用いる場合、膜以外には粉末成形体を用いることが検討されている。しかしながら、結合剤を用いた成形体は、結合剤により粒子表面が覆われてしまうため、ゼオライト本来の吸湿性能を得ることができない。また、ゼオライト粉を圧縮して固めた圧粉体は、初期性能に優れる反面、時間の経過による劣化が著しく、ゼオライト膜と同様に実用的な空調装置を構成することができない。
また、現行の空調方式に代わる省エネで低コストの手法として、再生処理を必要としない水蒸気分離体を用いた連続除湿方式が検討されている。水蒸気分離体を用いた調湿装置の構造としては、ポリエチレンやフッ素樹脂等を用いた2枚の水蒸気透過性膜間に塩化リチウム水溶液等の液体吸収剤を充填したガス分離体を、調湿する室内等の空間と室外等の空間との間に配置した構造が挙げられ、室内の空気と液体吸収剤との間で水蒸気透過性膜を介して水蒸気の授受が行われる。しかしながら、水蒸気透過性膜は破損しやすく、さらにこの方式では水蒸気の移動速度が遅いため、効率的に除湿を行うことが難しい。
特開2016−176674号公報 特開2003−336863号公報 特開平7−328375号公報 特開2002−005493号公報
本発明が解決しようとする課題は、実用的なガス分離性能を維持しつつ、空調等に応用可能な性能や強度等を得ることを可能にした複合部材及びガス分離体とそれを用いたガス分離装置を提供することにある。
実施形態の複合部材は、第1の面と、前記第1の面と対向する第2の面と、前記第1の面と前記第2の面との間に設けられた隔壁を隔てて並設された複数の貫通孔とを有するハニカム基材と、前記複数の貫通孔内に充填され、前記第1の面側に位置する第3の面と、前記第2の面側に位置する第4の面とを有する無機材料粒子の多孔質集合体とを具備し、前記多孔質集合体は、前記無機材料粒子間において前記第3の面から前記第4の面に通じる空孔を備え、前記多孔質集合体の前記第3の面から前記第4の面への空気透過率が1×10−14以上1×10−11以下である。
実施形態のガス分離体は、第1の空間と第2の空間との間に配置され、前記第2の空間内の分離対象ガスの分圧を前記第1の空間内の前記分離対象ガスの分圧より低くすることにより、前記第1の空間内に存在する前記分離対象ガスを前記第2の空間に透過させるガス分離体であって、第1の面と、前記第1の面と対向する第2の面と、前記第1の面と前記第2の面との間に設けられた隔壁を隔てて並設された複数の貫通孔とを有するハニカム基材と、前記複数の貫通孔内に充填され、前記第1の面側に位置する第3の面と、前記第2の面側に位置する第4の面とを有する無機材料粒子の多孔質集合体とを具備し、前記多孔質集合体は、前記無機材料粒子間において前記第3の面から前記第4の面に通じる空孔を備え、前記多孔質集合体の前記第3の面から前記第4の面への空気透過率が1×10−14以上1×10−11以下である。
実施形態のガス分離装置は、第1の空間と、前記第1の空間に通じる第2の空間と、前記第1及び第3の面を前記第1の空間に露出させ、かつ前記第2及び第4の面を前記第2の空間に露出させつつ、前記第1の空間と前記第2の空間との間を仕切るように設けられた、実施形態のガス分離体と、前記第2の空間の前記分離対象ガスの分圧が前記第1の空間の前記分離対象ガスの分圧より低くなるように、前記第2の空間の前記分離対象ガスの分圧を調整するガス圧調整部とを具備し、前記第1の空間に存在する前記分離対象ガスを、前記ガス分離体を介して前記第2の空間に透過させる装置である。
実施形態のガス分離装置の構成を示す図である。 図1に示すガス分離装置でガス分離体として用いられる複合部材を示す斜視図である。 図2に示す複合部材を示す断面図である。 図2に示す複合部材で用いられるハニカム基材を示す斜視図である。 図4に示すハニカム基材を示す断面図である。 図2に示すガス分離体の使用例を示す断面図である。 図1に示すガス分離装置を除湿装置として用いた第1の例を示す図である。 図1に示すガス分離装置を除湿装置として用いた第2の例を示す図である。
以下、実施形態の複合部材及びガス分離体とそれを用いたガス分離装置について、図面を参照して説明する。なお、各実施形態において、実質的に同一の構成部位には同一の符号を付し、その説明を一部省略する場合がある。図面は模式的なものであり、厚さと平面寸法との関係、各部の厚さの比率等は現実のものとは異なる場合がある。説明中の上下等の方向を示す用語は、重力加速度方向を基準とした現実の方向とは異なる場合がある。
(第1の実施形態)
図1は第1の実施形態によるガス分離装置の構成を示している。図1に示すガス分離装置1は、処理対象の空間(被処理空間)内に存在する、例えば水蒸気や有機溶剤系ガス(有機溶剤蒸気)等のガス(分離対象ガス)を含む空気等の被処理気体から分離対象ガスを分離し、被処理空間のガス濃度を低下させる装置である。ガス分離装置1は、第1の空間S1を構成する分離室2と、第2の空間S2を構成する減圧室3と、分離室2と減圧室3とが通じるように接続する接続路4と、分離室2と減圧室3との間を仕切るように、接続路4内に配置されたガス分離体5と、分離対象ガスを含む被処理気体を分離室2に送る送風機6と、減圧室4内を減圧する減圧ポンプ7とを備えている。
分離室2は吸入口8Aと吐出口9Aとを有し、吸入口8Aは配管10を介して送風機6と接続されている。減圧室3は吸入口8Bと吐出口9Bとを有し、吐出口9Bは配管11を介して減圧ポンプ7と接続されている。分離室2内の第1の空間S1には、送風機6を稼働させることにより、配管10を介して分離対象ガスを含む空気等の被処理気体が送られる。被処理気体は、例えば水蒸気や有機溶剤系ガス等の分離対象ガスの濃度を低減する部屋、装置内部、工場内部(密閉空間等)、保管庫、貯蔵庫等の被処理空間(図示せず)から配管12を介して送風機6に導入される。分離室2内で分離対象ガスが分離され、ガス濃度が低減された被処理気体は、配管13を介して被処理空間に返送される。
減圧室3内の第2の空間S2は、減圧ポンプ7を稼働させることにより、分離室2内の圧力(第1の空間S1の圧力)と減圧室3内の圧力(第2の空間S2の圧力)との間に差が生じるように減圧される。被処理気体から分離された水蒸気や有機溶剤系ガス等のガスは、減圧ポンプ7に接続された配管14を介して排出される。分離されたガス(減圧室3に透過したガス)は、大気中に放出されたり、必要に応じて回収される。減圧室3の吸入口8Bには、減圧室3の内部に外部の空気等を取り込みながら減圧するように、配管15が接続されている。配管15には、必要に応じて弁(図示せず)を設けてもよい。また、配管15は場合によっては省くことができる。
ガス分離体5について、図2ないし図5を参照して述べる。図2はガス分離体5として用いられる複合部材の斜視図、図3は複合部材の断面図、図4は複合部材で用いられるハニカム基材の斜視図、図5はハニカム基材の断面図である。これらの図に示すように、ガス分離体5は、上面21aと、上面21aと対向する下面21bと、上面21aから下面21bに通じる空孔とを有する複合部材21を具備する。複合部材21は、複数の貫通孔22を有するハニカム基材23と、複数の貫通孔22内に充填された無機材料粒子24の多孔質集合体25とを備えている。ハニカム基材23は、複合部材21の上面21aに相当する面(第1の面)と下面21bに相当する面(第2の面)との間に厚み方向に設けられた複数の隔壁26と、これら隔壁26で隔てられて厚み方向に並設された複数の貫通孔22とを有する。複数の貫通孔22内には、それぞれ無機材料粒子24の多孔質集合体25が充填されている。多孔質集合体25は、複合部材21の上面21aに相当する面(第3の面)から下面21bに相当する面(第4の面)に通じる空孔27を有している。空孔27は無機材料粒子24間に形成されている。
このような多孔質集合体25内の空孔27によって、複合部材21の空気透過率は1×10−14以上1×10−11以下の範囲とされている。ハニカム基材23は複数の貫通孔22を除いて緻密な材料で形成されているため、複合部材21の空気透過率は多孔質集合体25の空気透過率に基づくものである。ハニカム基材23の第1の面と多孔質集合体25の第3の面とは、同一の面(21a)を形成しており、同様に第2の面と第4の面とは、同一の面(21b)を形成している。なお、これらハニカム基材23の面と多孔質集合体25の面とで形成される面(21a、21b)は、平坦面に限られるものではなく、多孔質集合体25の一部が突出していたり、あるいは凹んでいたりしてもよい。
ガス分離体5を構成する複合部材21は、例えばディスク状や直方体状等の形状を有し、分離室2内(第1の空間S1)に露出される第1の面21aと、減圧室3内(第2の空間S2)に露出される第2の面21bとを有している。複合部材21の多孔質集合体25内に設けられた空孔27の少なくとも一部は、複合部材21の第1の面21aから第2の面21bに通じている。ガス分離体5は、多孔質集合体25の空孔27内に分離対象ガスの液化物、例えば水蒸気であれば水、また有機溶剤系ガスであれば有機溶剤を保持してウエットシールを形成する。ガス分離体5は、当初より分離対象ガスの液化物を含んでいてもよいし、ガス分離体5の使用時に液化物を含ませるようにしてもよい。ガス分離体5としての複合部材21の具体的な構成については、後に詳述する。
ガス分離体5を水蒸気分離体として用いる場合、水蒸気分離体(5)は多孔質集合体25の空孔27内に存在する水溶性吸湿剤を備えていてもよい。水溶性吸湿剤は水分を吸収して保持するため、水蒸気分離体(5)にウエットシールを形成しやすくなる。水溶性吸湿剤としては、第1族元素や第2族元素のクエン酸塩、炭酸塩、リン酸塩、ハロゲン化物塩、酸化物塩、水酸化物塩、硫酸塩等が用いられる。これらの化合物は単独で用いてもよいし、複合して用いてもよい。水溶性吸湿剤は空孔27内に偏析させて存在させてもよいし、空孔27の内壁全体又は一部に薄く均一に付着させてもよい。また、水蒸気分離体(5)は多孔質集合体25の空孔27内に存在するイオン性液体等のガス吸着液体を備えていてもよい。
水溶性吸湿剤の具体例としては、塩化カルシウム(CaCl)、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、酸化カルシウム(CaO)、酸化ナトリウム(NaO)、酸化カリウム(KO)、水酸化カルシウム(Ca(OH))、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化リチウム(LiOH)、炭酸カルシウム(CaCO)、炭酸マグネシウム(MgCO)、炭酸リチウム(LiCO)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、リン酸ナトリウム(NaPO)、リン酸カリウム(KPO)、クエン酸ナトリウム(Na(CO(COO))等)、クエン酸カリウム(K(CO(COO))等)、硫酸ナトリウム(NaSO)、硫酸カリウム(KSO)、硫酸リチウム(LiSO)等やこれらの水和物が挙げられる。
ガス分離装置1に用いられるガス分離体5は、図6に示すように、気体を透過する支持体28により支持されていてもよい。図6は一対の支持体28をガス分離体5の両面に沿って配置した状態を示しているが、支持体28はガス分離体5の一方の面のみに沿って配置してもよい。支持体28には、例えば紙、パンチングメタル、ポリイミド多孔体等が用いられ、これら以外のメッシュ状物質であってもよい。支持体28は、数μm径以上の貫通孔を有していることが好ましいが、これに限定されるものではない。
分離対象ガスを含む空気等の被処理気体は、上述したように送風機6を稼働させることにより分離室2内に送られる。送風機3と同時に減圧ポンプ7を稼働させ、減圧室3内を減圧することによって、分離室2内の圧力と減圧室3内の圧力との間に差を生じさせる。この圧力差によって、減圧室3内の水蒸気圧等の分離対象ガスの分圧(第2の空間S2の分離対象ガスの分圧(以下、単にガス分圧ともいう))が分離室2内の水蒸気圧等のガス分圧(第2の空間S2のガス分圧)より小さくなる。ガス分離体5は空孔27内に保持された分離対象ガスの液化物によりウエットシールを形成しているため、分離室2内と減圧室3内との間にガス分圧差を生じさせることで、ガス分離体5を介して配置された分離室2と減圧室3との間で分離対象ガスの移動が起こる。
ガス分離体5を介して分離対象ガスの移動を生じさせるにあたって、減圧室3内の圧力が分離室2内の圧力に対して−50kPa以下となるように、減圧ポンプ7で減圧室3内を減圧することが好ましい。言い換えると、分離室2内の圧力と減圧室3内の圧力との差が50kPa以上となるように、減圧室3内を減圧することが好ましい。この圧力差が50kPa未満であると、分離室2内から減圧室3内への分離対象ガスの移動を十分に促進できないおそれがある。さらに、分離室2と減圧室3との圧力差は100kPa未満であることが好ましい。圧力差が大きすぎると、ガス分離体5を構成する多孔質集合体25が破損するおそれが生じる。分離室2と減圧室3との圧力差は80〜90kPaの範囲であることがより好ましい。
図1に示すガス分離装置1においては、減圧室3内を減圧する減圧ポンプ7で分離室2と減圧室3との間にガス分圧差を生じさせているが、ガス分圧の調整部はこれに限られるものではない。例えば、減圧室3(第2の空間S2)に乾燥空気や加熱空気を導入するようにしてもよい。これによっても、分離室2と減圧室3との間に水蒸気圧差等のガス分圧差を生じさせることができる。図1に示すガス分離装置1において、分離室2と減圧室3との間にガス分圧差を生じさせるガス圧調整部は、特に限定されるものではなく、ガス分圧差を生じさせることが可能な各種の機構を適用することができる。
ガス分圧が相対的に高い分離室2内の被処理気体中に含まれる分離対象ガスは、ガス分離体5内に形成されるウエットシール、具体的には空孔27内に保持された分離対象ガスの液化物に吸収される。ガス分離体5内の分離対象ガスの液化物は、ガス分圧が相対的に低い減圧室3内に透過する。分離室2内のガス分圧と減圧室3内のガス分圧とガス分離体5内の分離対象ガスの液化物量等のバランスによって、分離室2内の被処理気体中に含まれる分離対象ガスのガス分離体5による吸収とガス分離体5内の分離対象ガスの減圧室3内への放出とが連続して起こる。
上述した分離対象ガスのガス分離体5による吸収及びガス分離体5内の分離対象ガスの減圧室3内への放出が連続して起こることによって、分離室2内(第1の空間S1)の分離対象ガスの濃度、さらには分離室2と送風機6を介して接続された被処理空間の分離対象ガスの濃度を連続的に低下させることができる。分離対象ガスが水蒸気である場合、分離室2内及び被処理空間の水蒸気量を減少させて除湿することができる。ガス濃度を低下させた空気等の被処理気体は、分離室2から被処理空間に返送される。減圧室3内に透過した水蒸気等の分離対象ガスは、配管11、減圧ポンプ7、及び配管14を介して外部に排出される。分離対象ガスが水蒸気である場合、減圧室3内に透過した水分を加湿が必要な部屋等の第3の空間に送るようにしてもよい。また、分離対象ガスが有機溶剤ガスである場合、必要に応じて有機溶剤やそのガスが回収される。
実施形態のガス分離装置1においては、ガス分離体5がウエットシールを形成しているため、分離室2内の空気等の被処理気体中に含まれる分離対象ガスのみを減圧室3内に移動させることができる。例えば、ガス分離装置1を除湿装置として使用する場合、分離室2と減圧室3との間で、基本的には空気中の水分のみが移動し、空気中の乾燥空気はほとんど移動しない。従って、除湿対象の被処理空間の温度をほとんど変動させることがない。被処理空間の温度をほとんど変動させることなく、空間内を除湿することによって、例えば空間の冷房と併用する場合においても、熱効率を低下させるおそれがない。除湿装置を冷房と併用する際の熱効率を高めることができる。
図2ないし図5に示したガス分離体5は、前述したように複数の貫通孔22を有するハニカム基材23と、複数の貫通孔22内に充填された無機材料粒子24の多孔質集合体25とを備える複合部材21からなる。複合部材21は1×10−14以上1×10−11以下の空気透過率を有している。すなわち、複合部材21の第1の面21aから第2の面21bへの空気透過率が1×10−14以上1×10−11以下とされている。このような空気透過率を有する複合部材21をガス分離体5として用いることによって、ガス分離体5内に形成されたウエットシールを介して、分離室2内の被処理気体中に含まれる分離対象ガスを良好に減圧室3内に移動させることができる。複合部材21の空気透過率が1×10−14未満であると、分離対象ガスの透過流量が減少する。空気透過率が1×10−11を超えると、ガス分離体5のウエットシール性が低下して分離対象ガスの分離率α等が低下しやすくなる。
ここで、空気透過率Kは、一定容量の空気を試料の垂直方向に通過させ、その際の流入と流出の圧力差ΔP[単位:kPa]と流速Qair[単位:cm/min]から、下記の(1)式に基づいて求められる。(1)式において、δは試料の厚さ、Aは試料の面積、μairは空気の粘性(18.57μPa・s)である。
K=(Qair/ΔP)・(μair/A)・δ …(1)
また、ガスの分離率αは、例えば水のようなガスの液化物と被処理気体を構成する乾燥空気の透過量の割合であり、下記の(2)式で定義される。
α=(N4liquid/N4air)/(N3liquid/N3air) …(2)
式(2)において、(N3liquid/N3air)は分離室2(第1の空間S1)に供給させる被処理気体(空気)に含まれるガスの液化物と乾燥空気のモル比、(N4water/N4air)は減圧室3(第2の空間S2)から排出される被処理気体(空気)に含まれるガスの液化物と乾燥空気のモル比である。αが1であれば、分離側空間S1から減圧側空間S2にガスの液化物(水等)と乾燥空気が同じ割合で流れることを意味する。αが100であれば、除湿側空間S1から減圧側空間S2へのガスの液化物(水等)の透過に対して乾燥空気の透過が1/100に低減されることを意味する。
ガス(液化物)の透過速度Vは、下記の(3)式で定義される。
V=ΔMliquid/A/Δt …(3)
式(3)において、ΔMliquidは減圧側空間S2で回収されるガス液化物の量であり、Aはガス分離体5の面積、Δtは時間である。
ガス分離体5としての複合部材21において、ハニカム基材23の構成材料は、特に限定されるものではなく、無機材料粒子24の多孔質集合体25の保持体としての強度を維持し得る材料からなるものであればよい。ハニカム基材23の構成材料としては、例えばセラミックス材料、樹脂材料、金属材料等が用いられる。ハニカム基材23の形状は、特に限定されるものではなく、ガス分離装置1の構成に応じてディスク状(円柱状)や直方体状等の各種形状を適用することができる。ハニカム基材23の厚みは0.1〜30mmの範囲であることが好ましい。また、ハニカム基材23の隔壁26は、その厚さが薄いほど多孔質集合体25の量が増加するものの、あまり薄すぎると多孔質集合体25の保持体としての強度が低下する。このため、隔壁26の厚さは0.1〜5mmの範囲であることが好ましく、0.2〜2mmの範囲がより好ましい。
隔壁26の壁面は、平坦であってもよいし、ブラスト加工等による凹凸や溝が設けられていてもよい。隔壁26には隣接する貫通孔22間を接続する孔が設けられていてもよい。ここで、ハニカム基材23とは第1の面21aと第2の面21bとの間を繋ぐ複数の貫通孔22を密に配置したものであり、図2及び図4に示したように六角形の貫通孔22を有するものに限らない。貫通孔22の形状は六角形に限られるものではなく、円形、楕円形、四角形のような六角形以外の多角形等であってもよい。また、貫通孔22の大きさは上記したような厚さを有する隔壁26によって、貫通孔22内に充填された無機材料粒子24の多孔質集合体25を有する複合部材21の全体形状を維持し得る範囲で大きくすることが好ましい。ただし、貫通孔22の大きさを大きくしすぎると、複合部材21の全体形状を維持することが困難になるおそれがある。このような点から、貫通孔22の大きさ(最大値)は、1〜10mmの範囲であることが好ましく、2〜5mmの範囲がより好ましい。ここで、貫通孔22の大きさ(最大値)とは、外接円の直径を意味する。
無機材料粒子24の多孔質集合体25は、等方的な無機材料粒子24の未焼結圧粉体や焼結体等の粒子集合体である。集合体は未焼結圧粉体や焼結体に限らず、未焼結圧粉体の熱処理体、さらに無機材料粒子24間に適度な空孔27を形成し得る各種の粒子集合体構造を適用することができる。多孔質集合体25内における無機材料粒子24同士は、単に接触しているだけであってもよいし、一部がネッキングしていてもよい。多孔質集合体25の作製方法については、後述する。多孔質集合体25を構成する無機材料粒子24には、分離対象ガスに親和性を有する材料を用いることが好ましい。無機材料粒子24は、単結晶粒子及び多結晶粒子のいずれでもよく、また水熱合成で形成した粒子等であってもよい。分離対象ガスに親和性を有する無機材料粒子24で多孔質集合体25を構成することによって、多孔質集合体25の空孔27内に分離対象ガスの液化物を保持しやすくなり、ガス分離体5内へのウエットシールの形成性を高めることができる。
無機材料粒子24は分離対象ガスに応じて選択される。分離対象ガスとしては、水蒸気や有機溶剤系ガスが挙げられる。これら分離対象ガスを含む被処理気体としては、分離対象ガスを含む空気が挙げられるが、必ずしもこれに限定されない。有機溶剤系ガスとしては、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、s−ブタノール、t−ブタノール、酢酸エチル、酢酸n−エチル、ギ酸i−ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、ジイソプロパノール、トリクロロエチレン、n−ヘキサン等の蒸気が挙げられる。
分離対象ガスが水蒸気である場合、無機材料粒子24は親水性材料であることが好ましい。無機材料粒子24を構成する親水性材料には、アルミニウム(Al)、ケイ素(Si)、チタン(T)、ジルコニウム(Zr)、亜鉛(Zn)、マグネシウム(Mg)、鉄(Fe)等の酸化物、アルカリ金属やアルカリ土類金属を含むアルミノケイ酸塩、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等の炭酸塩、Mg、Ca、Sr等のリン酸塩、Mg、Ca、Sr、Al等のチタン酸塩のような化合物、又はこれらの複合物や混合物等が用いられる。また、金属水酸化物を前駆体とし、これを加水分解等で結合させ、反応を途中で止める等によって、OH基を制御した金属化合物であってもよい。親水性材料の具体例としては、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、酸化亜鉛、フェライト、ゼオライト、ハイドロキシアパタイト、チタン酸バリウム等が挙げられるが、これらに限定されるものではない。無機材料粒子24としてゼオライト粒子を用いた場合、粒界や粒内に吸着された水分によって、ガス(水蒸気)分離体5内にウエットシールが形成される。
分離対象ガスが有機溶剤ガスである場合、無機材料粒子24には上述した親水性の化合物粒子の格子内にチャージバランスを崩す添加元素を導入した複合材料粒子や、親水性の化合物粒子の格子内に酸素空孔のような原子空孔を導入した欠陥導入材料粒子が用いられる。親水性化合物は上述した通りであり、そのような化合物粒子の格子内に導入する添加元素としては、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)等が挙げられる。ただし、化合物粒子を構成する陽イオン元素と重複する元素は除かれる。これらの元素を格子内に導入したり、あるいは格子内に酸素空孔等を導入することで、有機溶剤に対する親和性が得られる。
多孔質集合体25を構成する無機材料粒子24の平均一次粒子径は10nm〜10μmの範囲であることが好ましい。このような平均一次粒子径を有する無機材料粒子24を用いることで、適度な大きさを有する空孔27を適度な量で存在させた多孔質集合体25が得られやすくなる。無機材料粒子24の平均一次粒子径が10μmを超えると、多孔質集合体25内の空孔27の大きさが大きくなりやすいため、ウエットシールの形成性が低下するおそれがある。無機材料粒子24の平均一次粒子径が10nm未満であると、多孔質集合体25内の空孔27の量が減少したり、空孔27の大きさが小さくなりすぎるため、分離対象ガスの透過流量が低下するおそれがある。無機材料粒子24の平均一次粒子径は50〜1000nmであることがより好ましく、50〜500nmであることがさらに好ましい。多孔質集合体25内の空孔27の大きさや量を制御するために、平均一次粒子径が異なる2種類以上の無機材料粒子24を用いてもよい。
上述したような無機材料粒子24を用いた多孔質集合体25としては、無機材料粒子24の圧粉体(未焼結圧粉体)、圧粉体の熱処理体、焼結体等が挙げられる。無機材料粒子24の未焼結圧粉体は、例えばハニカム基材23の貫通孔22内に無機材料粒子24の粉体(無機材料粉末)やそれを液体と混合して調製したスラリーを充填して圧縮することにより得られる。圧縮には、静水圧プレスや一軸プレス等が用いられる。また、無機材料粒子24の分解温度より低い温度で飛散する結合剤を混合して多孔質集合体25を作製してもよい。無機材料粉末を圧縮するとき、ハニカム基材23の上下に無機材料粉末を敷き詰めておくことによって、圧縮により縮んだ分の粉末をさらに充填し、無機材料粒子24の充填率を高めることができる。このようにして圧縮した場合、ハニカム基材23の上下に残った無機材料粉末は、削り取ってもよいし、そのまま残して使用してもよい。なお、液体や結合剤を用いた場合には、所定の熱処理を施して、添加した液体や結合剤を除去する。また、多孔質集合体25は有機繊維、金属繊維、ロックウール、セラミックウール、ガラスウール等の無機繊維を含んでいてもよい。
無機材料粒子24の焼結体は、ハニカム基材23の貫通孔22内に充填及び圧縮した無機材料粉末を焼結することにより得られる。無機材料粒子24の圧縮条件や焼結条件を調整することによって、適度な多孔質状態を有する無機材料粒子24の多孔質集合体25を得ることができる。また、無機材料粒子24としてゼオライト等を用いる場合、蒸気補助結晶化(SAC)法により緻密化してもよい。SAC法を適用する場合、ハニカム基材23の貫通孔22内に無機材料粉末を充填及び圧縮して調製した前駆体を、オートクレーブ等を用いて水蒸気雰囲気内で所定の温度に保持する。これによって、無機材料粒子24の一部がネッキングを起こし、緻密で強度の高い多孔質集合体25が得られる。さらに、無機材料粒子24とハニカム基材23とが親和性を有する場合には、無機材料粒子24と貫通孔22の壁面とが密着し、複合部材21の強度がさらに向上する。熱処理はSAC法に限られるものではなく、無機材料粒子24の多孔質集合体はそれ以外の熱処理を施して、緻密化や高強度化を図った圧粉体の熱処理体であってもよい。
実施形態のガス分離体5は、無機材料粒子24の多孔質集合体25をハニカム基材23の貫通孔22内に充填させた複合部材21により構成している。これによって、多孔質集合体25として未焼結圧粉体を用いる場合においても、ハニカム基材23が多孔質集合体25の強度を維持する補強材として機能するため、無機材料粒子24の多孔質集合体25を用いたガス分離体5の性能を長期間にわたって維持することができる。例えば、無機材料粒子24としてゼオライトを用いた場合、熱分解することから焼結することができないが、ゼオライト粒子をハニカム基材23の貫通孔22内に充填することによって、ゼオライト粒子の多孔質集合体の強度を保持することができる。
また、ハニカム基材23による多孔質集合体25の強度の保持は、ゼオライトに限られるものではない。空孔27の平均孔径を例えば50nm以下というように小さくしたい場合、そのような平均孔径が期待される粒径を有する無機材料粉末を単に焼結しても、無機材料粉末が凝集する等によって、平均孔径が大きくなったり、孔径のばらつきが大きくなるおそれがある。このような場合に、無機材料粒子24の多孔質集合体(未焼結圧粉体)25をハニカム基材23の貫通孔22内に充填することによって、無機材料粒子24間の微小な空孔を維持しつつ、多孔質集合体25の強度を高めることができる。逆に、空孔27の平均孔径を大きくしたいときにおいても、多孔質焼結体の強度が低下しやすくなるが、そのような場合でもハニカム基材23で強度を高めることができる。
さらに、無機材料粒子24の多孔質集合体25をハニカム基材23の貫通孔22内に充填させた複合部材21は、多孔質集合体25の強度を向上させるだけでなく、多孔質集合体25による透過速度や分離速度等の向上にも寄与する。その理由は明らかではないが、隔壁26と無機材料粒子24の多孔質集合体25との界面で速度が向上すること等が考えられる。これらによって、多孔質集合体25とハニカム基材23とを備える複合部材21をガス分離体5として用いることによって、ガス分離装置1のガス分離性能を向上させることができる。
実施形態のガス分離体5において、無機材料粒子24間に存在させる空孔27の平均孔径は1nm〜5μmの範囲であることが好ましい。空孔27の平均孔径を1nm〜5μmの範囲とすることによって、分離対象ガスの通り道である空孔27内に分離対象ガスの液化物を保持しやすくなり、ガス分離体5にウエットシールが形成されやすくなると同時に、分離対象ガスの適度な透過流量を確保することができる。空孔27の平均孔径が5μmを超えると、ウエットシール性が低下したり、また分離室2内からの分離対象ガスの吸収と減圧室3への分離対象ガスの放出のバランスが低下し、ガス分離性能が低下しやすくなる。空孔27の平均孔径が1nm未満であると、水蒸気や有機溶剤系ガス等の分離対象ガスの透過流量が低下しやすくなる。空孔27の平均孔径は10nm〜1μmの範囲であることがより好ましい。
多孔質集合体25の体積気孔率(多孔質集合体25内の空孔27の体積率)は20〜70%の範囲であることが好ましい。多孔質集合体25の体積気孔率が20%未満であると、空孔27を通過できる分離対象ガスの量が減少するため、分離室2内からの分離対象ガスの吸収量及び減圧室3への分離対象ガスの放出量が不十分になるおそれがある。多孔質集合体25の体積気孔率が70%を超えると、多孔質集合体25の強度が低下して、ガス分離装置1の連続運転を妨げたり、またガス分離体5のウエットシール性が低下するおそれがある。多孔質集合体25の体積気孔率は30〜60%の範囲であることがより好ましい。なお、多孔質集合体25の体積気孔率や空孔27の形状(平均孔径等)は、水銀圧入法により測定した値を示すものである。
ガス分離体5を構成する複合部材21の多孔質集合体25においては、上述した無機材料粒子24の平均一次粒子径、無機材料粒子24の成形条件、空孔27の平均孔径、体積気孔率等に基づいて、第1の面21aから第2の面21bへの空気透過率が1×10−14〜1×10−11の範囲に調整されている。これらによって、分離対象ガスの実用的な分離率α、例えば3〜100程度の分離率αを維持しつつ、分離対象ガスの透過流量を向上させることができる。多孔質集合体25の空気透過率が1×10−14未満であると、分離対象ガスの透過流量が減少する。空気透過率が1×10−11を超えると、ウエットシール性が低下して分離対象ガスの分離率αが低下しやすくなる。多孔質集合体25の空気透過率は1×10−14〜1×10−13の範囲であることが好ましい。このような分離対象ガスの分離率αと透過流量とを両立させたガス分離体5を用いることによって、再生処理を伴わない連続的なガス分離性能を高めることできる。従って、実用的でかつ効率的なガス分離装置1を提供することが可能となる。
(第2の実施形態)
次に、第1の実施形態によるガス分離装置1を除湿装置として用いた構成例について、図7及び図8を参照して説明する。図7において、Rは除湿の対象空間Rxを構成する部屋を示しており、部屋Rは吸気口Raを有している。除湿装置1は、除湿対象の空間Rxの空気から水蒸気(水分)を除去するために、部屋Rに設けられている。図7に示す除湿装置1は、減圧室3(第2の空間S2)に外部の空気を取り込む配管15が接続された構造を有している。除湿装置1では、減圧室3内に外部の空気を取り込みながら減圧室3内が減圧される。配管15は弁16を有している。配管15は省いてもよい。
空間Rx内の空気は、基本的に水蒸気(水分)と乾燥空気とにより構成されている。除湿装置1の分離室(除湿室)2内には、送風機6を稼働させることにより配管12、10を介して空間Rx内の空気が送られる。分離室2内で除湿された空気は、配管13を介して空間Rxに返送される。ガス分離体5を用いた除湿動作(ガス分離動作)は、第1の実施形態で詳述した通りである。すなわち、ウエットシールが形成されたガス分離体5を介して、分離室2から減圧室3に水分が透過する。このような分離室2内の空気中の水分のガス分離体5による吸収とガス分離体5内の水分の減圧室3への放出とが連続して起こるため、再生処理を伴わない連続除湿による除湿速度等の除湿性能を高めることできる。従って、実用的でかつ効率的な除湿装置1を提供することが可能となる。
実施形態の除湿装置1の適用構造は、図7に示す構造に限定されるものではない。実施形態の除湿装置1は、種々に変形することができる。図7では第1の空間S1を除湿装置1の分離室2に設定したが、第1の空間S1はこれに限定されるものではない。図8に示すように、第1の空間S1は除湿の対象空間Rxそのものであってもよい。すなわち、第2の空間S2となる減圧室3を、第1の空間S1となる対象空間Rxとガス分離体5を介して配置してもよい。この場合、減圧室3を減圧することによって、除湿の対象空間Rx(第1の空間S1)の空気から水蒸気(水分)が直接除去される。第1の空間S1及び第2の空間S2の設定は、種々に変更することができる。
除湿速度Vは、以下のようにして測定された値を示す。まず、湿度と温度を一定に保持された恒温恒湿槽の中に、直径10mmの穴の開いた1リットル容器により空間Rxを設ける。このような構造において、図1に示した除湿装置(ガス分離装置)により第1の空間に対する第2の空間の圧力を−80kPaに設定して除湿を行い、特定の相対湿度からそれより10%低い相対湿度まで除湿したときの時間を水蒸気分離体(ガス分離体)の面積換算した値とする。測定温度は40℃、水蒸気分離体の実行面積は直径10mmとする。例えば、相対湿度が70%から60%まで低下したときの時間が1時間であれば、除湿速度Vは10%/hとなる。
次に、実施例とその評価結果について述べる。
(実施例1)
まず、アルミナ焼結体製のディスク状ハニカム基材を用意した。このハニカム基材の貫通孔内に、平均粒子径が3μmのLTA型ゼオライト粒子を充填し、1t/cmの圧力で圧縮することによって、厚み2mmの複合部材を作製した。ゼオライト粒子は圧粉体(多孔質集合体)を形成している。ゼオライト粒子の圧粉体の空孔形状等を水銀圧入法により測定したところ、空孔の平均孔径は400nm、体積気孔率は32%であった。複合部材の空気透過率Kは3×10−14であった。この複合部材をガス分離体として用いた場合の水蒸気分離率α及び水蒸気透過速度Vを測定したところ、除湿側への供給空気の温度が40℃、飽和蒸気の条件において、水蒸気分離率α=3、水蒸気透過速度V=330g/h/mであった。また、複合部材からなるガス分離体を用いて、1リットルの容器中の除湿を行った。容器内を減圧し、分離体を通して1時間除湿したところ、相対湿度70%であった除湿前の湿度が60%まで低減され、除湿速度は10%/hであった。さらに、除湿試験を数回繰り返し行ったところ、いずれも同様な結果が得られた。
(実施例2)
平均粒子径が3μmのLTA型ゼオライト粒子と、このLTA型ゼオライト粒子をビーズミルで粉砕して平均粒子径を300nmに調整した小径粒子とを用意した。平均粒子径が3μmのLTA型ゼオライト粒子と平均粒子径が300nmのLTA型ゼオライト粒子(小径粒子)とを、体積比で100:7の割合となるように混合した。この混合粉をアルミナ焼結体製のディスク状ハニカム基材の貫通孔内に充填し、1t/cmの圧力で圧縮することによって、厚み2mmの複合部材を作製した。このようにして得た複合部材の空気透過率K、水蒸気分離率α、及び水蒸気透過速度Vを実施例1と同様にして測定したところ、空気透過率K=7×10−14、水蒸気分離率α=6、水蒸気透過速度V=540g/h/mであった。この複合部材を水蒸気分離体として用いて、実施例1と同様に除湿試験を行ったところ、除湿速度は12%/hであった。さらに、除湿試験を数回繰り返し行ったところ、いずれも同様な結果が得られた。
(実施例3)
水熱合成で作製したLTA型ゼオライトを取り出し、これをアルミナ焼結体製のディスク状ハニカム基材の貫通孔内に充填して成型し、90℃で水熱合成処理して洗浄した。このようにして得た複合部材の空気透過率K、水蒸気分離率α、及び水蒸気透過速度Vを実施例1と同様にして測定したところ、空気透過率K=2×10−14、水蒸気分離率α=10、水蒸気透過速度V=300g/h/mであった。この複合部材を水蒸気分離体として用いて、実施例1と同様に除湿試験を行ったところ、除湿速度は8%/hであった。さらに、除湿試験を数回繰り返し行ったところ、いずれも同様な結果が得られた。
(実施例4)
実施例1で作製した複合部材をオートクレーブ中で水蒸気と反応させてガス分離体とした。このようにして得たガス分離体の空気透過率K、水蒸気分離率α、及び水蒸気透過速度Vを実施例1と同様にして測定したところ、空気透過率K=1.5×10−14、水蒸気分離率α=15、水蒸気透過速度V=280g/h/mであった。この水蒸気分離体を用いて、実施例1と同様に除湿試験を行ったところ、除湿速度は8%/hであった。さらに、除湿試験を数回繰り返し行ったところ、いずれも同様な結果が得られた。
(実施例5)
まず、ポリイミド樹脂製のディスク状ハニカム基材を用意した。このハニカム基材の貫通孔内に、平均粒子径が3μmのLTA型ゼオライト粒子を充填し、1t/cmの圧力で圧縮することによって、厚み2mmの複合部材を作製した。このようにして得た複合部材の空気透過率K、水蒸気分離率α、及び水蒸気透過速度Vを実施例1と同様にして測定したところ、空気透過率K=3×10−14、水蒸気分離率α=3、水蒸気透過速度V=300g/h/mであった。この複合部材を水蒸気分離体として用いて、実施例1と同様に除湿試験を行ったところ、除湿速度は9%/hであった。さらに、除湿試験を数回繰り返し行ったところ、いずれも同様な結果が得られた。
(実施例6)
まず、金属アルミニウム製のディスク状ハニカム基材を用意した。このハニカム基材の貫通孔内に、平均粒子径が3μmのLTA型ゼオライト粒子を充填し、1t/cmの圧力で圧縮することによって、厚み2mmの複合部材を作製した。このようにして得た複合部材の空気透過率K、水蒸気分離率α、及び水蒸気透過速度Vを実施例1と同様にして測定したところ、空気透過率K=3×10−14、水蒸気分離率α=3、水蒸気透過速度V=360g/h/mであった。この複合部材を水蒸気分離体として用いて、実施例1と同様に除湿試験を行ったところ、除湿速度は11%/hであった。さらに、除湿試験を数回繰り返し行ったところ、いずれも同様な結果が得られた。
(実施例7)
金属アルミニウム製のディスク状ハニカム基材の隔壁に、隣接する貫通孔間を繋ぐ孔が複数形成されているハニカム基材を用いることを以外は、実施例6と同様にして複合部材を作製した。このようにして得た複合部材の特性や除湿速度等を測定したところ、実施例6と同様な結果が得られた。
(実施例8)
金属アルミニウム製のディスク状ハニカム基材の隔壁に凹凸が複数形成されたハニカム基材を用いることを以外は、実施例6と同様にして複合部材を作製した。このようにして得た複合部材の特性や除湿速度等を測定したところ、実施例6と同様な結果が得られた。
(実施例9)
金属アルミニウム製のディスク状ハニカム基材の隔壁に厚さ方向に溝が複数形成されたハニカム基材を用いることを以外は、実施例6と同様にして複合部材を作製した。このようにして得た複合部材の特性や除湿速度等を測定したところ、実施例6と同様な結果が得られた。
(実施例10)
実施例6〜9で作製した複合部材を1mの高さから落下させる試験を行った。目視により破損が確認された落下回数は、実施例6〜9の各複合部材において、それぞれ2回、4回、3回、3回であった。
(比較例1)
平均粒子径が3μmのLTA型ゼオライト粒子を金型内に充填し、1t/cmの圧力で圧縮成形することによって、厚さ2mmの圧粉体を作製した。この圧粉体の空気透過率K、水蒸気分離率α、及び水蒸気透過速度Vを実施例1と同様にして測定したところ、空気透過率K=3×10−14、水蒸気分離率α=3、水蒸気透過速度V=300g/h/mであった。この複合部材を水蒸気分離体として用いて、実施例1と同様に除湿試験を行ったところ、除湿速度は9%/hであった。さらに、除湿試験を数回繰り返し行ったところ、圧粉体が崩壊して使用できなくなった。
(比較例2)
平均粒子径が3μmのLTA型ゼオライト粒子と、このLTA型ゼオライト粒子をビーズミルで粉砕して平均粒子径を300nmに調整した小径粒子とを用意した。平均粒子径が3μmの4Aゼオライト粒子と平均粒子径が300nmの4Aゼオライト粒子(小径粒子)とを、体積比で100:7の割合となるように混合した。この混合粉を金型内に充填し、1t/cmの圧力で圧縮成形することによって、厚さ2mmの圧粉体を作製した。この圧粉体の空気透過率K、水蒸気分離率α、及び水蒸気透過速度Vを実施例1と同様にして測定したところ、空気透過率K=5×10−14、水蒸気分離率α=6、水蒸気透過速度V=500g/h/mであった。この複合部材を水蒸気分離体として用いて、実施例1と同様に除湿試験を行ったところ、除湿速度は5%/hであった。さらに、除湿試験を数回繰り返し行ったところ、圧粉体が崩壊して使用できなくなった。
(比較例3)
アルミナ基材の表面にLTA型ゼオライトを擦りつけ、これを水熱合成用の溶液(90℃)に1時間浸漬して反応させることで、アルミナ基材の表面に厚さ5μmのLTA型ゼオライト膜を形成した。得られたゼオライト膜の水蒸気分離率α及び水蒸気透過速度Vを実施例1と同様にして測定したところ、水蒸気分離率α>100、水蒸気透過速度V=100g/h/mであったが、測定中に基材ごと破損して長時間水を分離することができなかった。この時の空気透過率は1×10−15であった。
(比較例4)
平均粒子径が0.4μmのアルミナ粒子に、濃度5%のポリビニルブチラール(PVB)のアセトン溶液を添加し、造粒した後に、金型に充填して1t/cmの圧力で成型し、さらに1000℃で焼結することで、厚み2mmのアルミナ多孔質焼結体を作製した。この多孔質焼結体の空気透過率K、水蒸気分離率α、及び水蒸気透過速度Vを実施例1と同様にして測定したところ、空気透過率K=1×10−12、水蒸気分離率α=1、水蒸気透過速度V=4000g/h/mであった。この複合部材を水蒸気分離体として用いて、実施例1と同様に除湿試験を行ったところ、除湿することができなかった。
(比較例5)
比較例1〜2で作製した圧粉体を1mの高さから落下させる試験を行った。目視により破損が確認された落下回数は、比較例1〜2の各圧粉体において、それぞれ1回、1回であった。
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…ガス分離装置、2…除湿室、3…減圧室、4…接続路、5…ガス分離体、6…送風機、7…減圧ポンプ、21…複合部材、22…貫通孔、23…ハニカム基材、24…無機材料粒子、25…多孔質集合体、26…隔壁、27…空孔、S1…第1の空間、S2…第2の空間。

Claims (12)

  1. 第1の面と、前記第1の面と対向する第2の面と、前記第1の面と前記第2の面との間に設けられた隔壁を隔てて並設された複数の貫通孔とを有するハニカム基材と、
    前記複数の貫通孔内に充填され、前記第1の面側に位置する第3の面と、前記第2の面側に位置する第4の面とを有する無機材料粒子の多孔質集合体とを具備し、
    前記多孔質集合体は、前記無機材料粒子間において前記第3の面から前記第4の面に通じる空孔を備え、前記多孔質集合体の前記第3の面から前記第4の面への空気透過率が1×10−14以上1×10−11以下である、複合部材。
  2. 第1の空間と第2の空間との間に配置され、前記第2の空間内の分離対象ガスの分圧を前記第1の空間内の前記分離対象ガスの分圧より低くすることにより、前記第1の空間内に存在する前記分離対象ガスを前記第2の空間に透過させるガス分離体であって、
    第1の面と、前記第1の面と対向する第2の面と、前記第1の面と前記第2の面との間に設けられた隔壁を隔てて並設された複数の貫通孔とを有するハニカム基材と、前記複数の貫通孔内に充填され、前記第1の面側に位置する第3の面と、前記第2の面側に位置する第4の面とを有する無機材料粒子の多孔質集合体とを具備し、
    前記多孔質集合体は、前記無機材料粒子間において前記第3の面から前記第4の面に通じる空孔を備え、前記多孔質集合体の前記第3の面から前記第4の面への空気透過率が1×10−14以上1×10−11以下である、ガス分離体。
  3. 前記第1の面から前記第2の面までの厚みが0.1mm以上30mm以下である、請求項2に記載のガス分離体。
  4. 前記多孔質集合体内に存在する前記空孔の平均孔径が1nm以上5μm以下である、請求項2又は請求項3に記載のガス分離体。
  5. 前記多孔質集合体の体積気孔率が20%以上70%以下である、請求項2ないし請求項4のいずれか1項に記載のガス分離体。
  6. 前記多孔質集合体は、前記無機材料粒子の未焼結圧粉体、前記未焼結圧粉体の熱処理体、又は前記無機材料粒子の焼結体である、請求項2ないし請求項5のいずれか1項に記載のガス分離体。
  7. 前記多孔質集合体は、前記空孔内に保持された前記分離対象ガスの液化物を備える、請求項2ないし請求項6のいずれか1項に記載のガス分離体。
  8. 前記分離対象ガスは水蒸気であり、前記多孔質集合体は親水性を有する前記無機材料粒子の集合体であり、
    前記多孔質集合体は、前記空孔内に保持された水を備える、請求項2ないし請求項6のいずれか1項に記載のガス分離体。
  9. 前記無機材料粒子は、アルミニウム、ケイ素、チタン、ジルコニウム、亜鉛、マグネシウム、及び鉄から選ばれる少なくとも1つの第1元素の酸化物、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも1つを含むアルミノケイ酸塩、マグネシウム、カルシウム、及びストロンチウムから選ばれる少なくとも1つの第2元素の炭酸塩、前記第2元素のリン酸塩、並びにマグネシウム、カルシウム、ストロンチウム、バリウム、及びアルミニウムから選ばれる少なくとも1つの第3元素のチタン酸塩からなる群より選ばれる少なくとも1つを含む、請求項2ないし請求項8のいずれか1項に記載のガス分離体。
  10. 第1の空間と、
    前記第1の空間に通じる第2の空間と、
    前記第1及び第3の面を前記第1の空間に露出させ、かつ前記第2及び第4の面を前記第2の空間に露出させつつ、前記第1の空間と前記第2の空間との間を仕切るように設けられた、請求項2ないし請求項9のいずれか1項に記載のガス分離体と、
    前記第2の空間の前記分離対象ガスの分圧が前記第1の空間の前記分離対象ガスの分圧より低くなるように、前記第2の空間の前記分離対象ガスの分圧を調整するガス圧調整部とを具備し、
    前記第1の空間に存在する前記分離対象ガスを、前記ガス分離体を介して前記第2の空間に透過させる、ガス分離装置。
  11. 前記ガス圧調整部は、前記第2の空間の圧力を前記第1の空間の圧力より減圧する圧力調整機構を備える、請求項10に記載のガス分離装置。
  12. 前記分離対象ガスは水蒸気であり、前記第1の空間に存在する前記水蒸気を、前記ガス分離体を介して前記第2の空間に透過させる、請求項10又は請求項11に記載のガス分離装置。
JP2017056051A 2017-03-22 2017-03-22 複合部材、ガス分離体、及びガス分離装置 Abandoned JP2018158283A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017056051A JP2018158283A (ja) 2017-03-22 2017-03-22 複合部材、ガス分離体、及びガス分離装置
US15/705,931 US20180272311A1 (en) 2017-03-22 2017-09-15 Composite member, gas separator, and gas separating device
EP17192157.0A EP3378551A1 (en) 2017-03-22 2017-09-20 Composite member, gas separator and gas separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056051A JP2018158283A (ja) 2017-03-22 2017-03-22 複合部材、ガス分離体、及びガス分離装置

Publications (1)

Publication Number Publication Date
JP2018158283A true JP2018158283A (ja) 2018-10-11

Family

ID=60138162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056051A Abandoned JP2018158283A (ja) 2017-03-22 2017-03-22 複合部材、ガス分離体、及びガス分離装置

Country Status (3)

Country Link
US (1) US20180272311A1 (ja)
EP (1) EP3378551A1 (ja)
JP (1) JP2018158283A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112644847B (zh) * 2019-10-09 2022-12-23 华邦电子股份有限公司 干燥块结构以及存储装置
KR102245735B1 (ko) * 2020-07-06 2021-04-28 주식회사 데시칸 자동차 램프용 습기 제어 성능이 탁월한 더스트 커버

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184674B2 (en) * 2015-09-16 2019-01-22 Kabushiki Kaisha Toshiba Vapor separator and dehumidifier using the same

Also Published As

Publication number Publication date
EP3378551A1 (en) 2018-09-26
US20180272311A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
ES2729331T3 (es) Método de fabricación para estratificados adsorbentes para procesos PSA de alta frecuencia
US11738324B2 (en) 3D printed zeolite monoliths for CO2 removal
US10173168B2 (en) Vapor separator and dehumidifier using the same
US20150008178A1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
US11612857B2 (en) Honeycomb matrix comprising macroporous desiccant, process and use thereof
JP2006240956A (ja) 非晶質アルミニウムケイ酸塩、及び非晶質アルミニウムケイ酸塩を有する吸着剤、除湿ロータ及び空調装置
US20190345172A1 (en) Rare earth-based metal-organic framework for moisture removal and control in confined spaces
KR20150003716A (ko) 건조제 기반 허니컴 화학필터 및 그의 제조방법
JP2018158283A (ja) 複合部材、ガス分離体、及びガス分離装置
JP4958459B2 (ja) 除湿ロータの製造方法
JP6615619B2 (ja) ガス分離体とそれを用いたガス分離装置
JP2019202318A (ja) 水蒸気分離体とそれを用いた除湿装置
US10184674B2 (en) Vapor separator and dehumidifier using the same
JP6899739B2 (ja) ガス分離体及びガス分離装置
JP2018150206A (ja) セラミックス多孔質体、水蒸気分離体、及び調湿装置
JP2018159518A (ja) 調湿装置
JP2018075526A (ja) 水分吸着材
JP2009022931A (ja) 除湿器
JP2005246230A (ja) 除湿装置
JP2010240554A (ja) 吸放湿性シート、吸放湿性構造体およびそれらの製造方法
JP5649024B2 (ja) 除湿フィルター、これを用いたデシカント空調装置
JP2019072686A (ja) 水蒸気吸着材及びその製造方法
JP2011194352A (ja) 水分吸着剤、除湿用シート状物及び除湿用フィルター材
JP6961520B2 (ja) 全熱交換素子用シート、全熱交換素子、及び全熱交換器
JP2012187551A (ja) 多孔質セラミックフィルタおよびその製造方法ならびにガス分離方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180913

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20181203