JP2018154922A - α+β TYPE TITANIUM ALLOY EXTRUDED SHAPE - Google Patents

α+β TYPE TITANIUM ALLOY EXTRUDED SHAPE Download PDF

Info

Publication number
JP2018154922A
JP2018154922A JP2018043259A JP2018043259A JP2018154922A JP 2018154922 A JP2018154922 A JP 2018154922A JP 2018043259 A JP2018043259 A JP 2018043259A JP 2018043259 A JP2018043259 A JP 2018043259A JP 2018154922 A JP2018154922 A JP 2018154922A
Authority
JP
Japan
Prior art keywords
less
temperature
extrusion
titanium alloy
old
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018043259A
Other languages
Japanese (ja)
Other versions
JP7087476B2 (en
Inventor
真哉 西山
Masaya Nishiyama
真哉 西山
善久 白井
Yoshihisa Shirai
善久 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2018154922A publication Critical patent/JP2018154922A/en
Application granted granted Critical
Publication of JP7087476B2 publication Critical patent/JP7087476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an α+β type titanium alloy extruded shape using a Ti-Al-Fe-Mo-based α+β type titanium alloy having higher strength than Ti-Al-C as a raw material, and less in warpage and having fatigue strength and strength ductility balance equivalent to prior art even with having an acicular structure.SOLUTION: There is provided an α+β type titanium alloy extruded shape, containing Al:4.4 to 5.5%, Fe:1.4 to 2.3%, Mo:1.5 to 5.5%, O:over 0% and 0.20% or less, C:over 0% and 0.08% or less, N:over 0% and 0.05% or less, Si:over 0% and 0.1% or less, further selectively one or more kind of Ni:0% or more and less than 0.15%, Cr:0% or more and less than 0.25% and Mn:0% or more and less than 0.25% and the balance Ti with impurities of total amount of 0.4% or less, satisfying a relationship of 1.4%≤[Fe]+[Ni]+[Cr]+[Mn]≤2.3%, and having a metallic structure with an acicular structure and average of old β particle diameter of 300 μm or less.SELECTED DRAWING: Figure 2

Description

本発明は、α+β型チタン合金押出形材に関する。   The present invention relates to an α + β type titanium alloy extruded profile.

チタン合金は高い比強度と優れた耐食性を活かして、航空機の骨材や構造部材、ゴルフフェースクラブヘッドやメガネのフレーム等の民生品用途、インプラント等の医療用途等、様々な分野で使用されてきている。   Titanium alloys have been used in various fields, such as aircraft aggregates and structural members, civilian products such as golf face club heads and eyeglass frames, and medical applications such as implants, taking advantage of high specific strength and excellent corrosion resistance. ing.

その中でも、α+β型チタン合金は強度、延性バランスが良く、破壊靭性に優れることから、宇宙航空機産業を中心に多用されてきた。特に、α+β型チタン合金は、このような航空機向け用途の中で、骨材やシートレール等の形材として更なる品質の向上が期待される。   Among them, α + β type titanium alloys have been widely used mainly in the spacecraft industry because they have a good balance between strength and ductility and excellent fracture toughness. In particular, the α + β type titanium alloy is expected to further improve quality as a shape material such as an aggregate or a seat rail in such an aircraft application.

このようなα+β型チタン合金は、最も使用量の多いTi−6Al−4Vをはじめとして、主に航空機分野を主用途として長年使用されている。最近、更なる低燃費化のために機体への炭素繊維強化複合材(CFRP)の適用比率が高まってきたことに伴い、チタン合金の使用割合も上昇しており、今後もさらに上昇することが見込まれている。これは、従来、航空機分野で使用されていたアルミニウム合金では、CFRPとの接触で異種金属接触腐食が生じる、CFRPとの熱膨張率の差が大きく、飛行中と地上での温度差(約100℃)に起因してずれや緩み等を生じやすいという問題があるのに対して、チタン合金は、CFRPと接触しても異種金属接触腐食は起こらず、熱膨張率もアルミニウム合金に比べてCFRPに近いためである。   Such α + β type titanium alloys have been used for many years mainly in the aircraft field, including Ti-6Al-4V, which is the most used amount. Recently, with the increase in the application ratio of carbon fiber reinforced composite material (CFRP) to the aircraft for further fuel efficiency reduction, the usage rate of titanium alloy has increased, and it may increase further in the future. Expected. This is because aluminum alloys that have been used in the field of aircraft conventionally have different metal contact corrosion due to contact with CFRP, and there is a large difference in thermal expansion coefficient between CFRP and temperature difference between in flight and on the ground (about 100 In contrast to titanium alloy, there is a problem that misalignment, loosening, etc. are likely to occur due to (° C.). It is because it is near.

α+β型チタン合金は、このような航空機向け用途の中で骨材やシートレール等の形材として使用されることもある。形材には複雑な断面形状を有するものもあり、従来は、大断面の鍛造品や極厚材を切削加工することにより製造されてきた。α+β型チタン合金について、鍛造後に切削加工を行う場合、β変態点温度以下で強加工を行うことにより、金属組織を、高い強度・延性バランスを有する等軸組織とし、必要とする引張特性、特に高い耐力を実現していた。   The α + β type titanium alloy may be used as a shape material such as an aggregate or a seat rail in such an aircraft application. Some shapes have a complicated cross-sectional shape, and conventionally, they have been manufactured by cutting a forged product having a large cross section or a very thick material. For α + β type titanium alloy, when cutting after forging, by performing strong processing below the β transformation point temperature, the metal structure becomes an equiaxed structure with a high strength / ductility balance, and the required tensile properties, especially High durability was realized.

しかし、近年、航空機向け部品の製造コスト削減ニーズが高まる中、最終製品に近い断面形状で長尺の形材を製造することにより、歩留り、生産性の向上が期待され、熱間での押出加工による形材の製造技術が開発されてきている。   However, in recent years, there has been a growing need to reduce the cost of manufacturing parts for aircraft, and by producing a long profile with a cross-sectional shape close to the final product, it is expected to improve yield and productivity, and hot extrusion processing The manufacturing technology of the shape material by has been developed.

押出加工には、間接押出法、静水圧押出法等の方法があり、ユージンセジュルネ法はその一つである。この方法では、インゴットを鍛造して製造した丸ビレットを素材とする。図1のようにコンテナ1に素材(ビレット5)を挿入し、ステム2に油圧による荷重を付与してダミーブロック3を介してビレット5を押出方向11に押し、ダイス4を通過させて様々な断面形状に成形することで、長尺の形材6を得ることが可能となる。   There are methods such as an indirect extrusion method and an isostatic extrusion method for the extrusion process, and the Eugene Sejurune method is one of them. In this method, a round billet produced by forging an ingot is used as a material. As shown in FIG. 1, a material (billet 5) is inserted into the container 1, a hydraulic load is applied to the stem 2, the billet 5 is pushed in the extrusion direction 11 through the dummy block 3, and the die 4 is allowed to pass through various types. By forming into a cross-sectional shape, a long shape 6 can be obtained.

ところで、α+β型チタン合金の金属組織は、前述のように、高い強度・延性バランスを必要とする用途向けには、β変態点温度以下(α+β温度域)で鍛造等により強加工を行い、金属組織を等軸組織に制御することで、必要とする高い引張強度を実現してきた。一方、押出成型で金属組織を等軸組織に制御する場合、α+β型チタン合金はβ変態点温度(Tβ)を200℃以上下回る温度域では熱間変形抵抗が著しく高くなるため、高い押出荷重を付加できる大型の押出プレスが必要となり、設備コストが高くなるとともに、押出不能になる場合がある。さらに押出可能であった場合でも、押出中の加工発熱により、形材断面内の一部の温度がβ変態点温度を超えた場合、形材の断面内に等軸組織と、β変態点温度以上での加工で得られる針状組織が混在し、断面内で著しい機械特性差が生じる。そのため、一般にα+β型チタン合金の押出では、低い押出荷重で製造でき、表面欠陥が生じにくいように、ビレットをβ変態点温度以上に加熱して押出し、押出後の形材の組織を針状組織に制御している。 By the way, as described above, the metal structure of the α + β type titanium alloy is subjected to strong processing by forging or the like at a temperature lower than the β transformation point temperature (α + β temperature range) for applications requiring a high strength / ductility balance. The required high tensile strength has been realized by controlling the structure to be equiaxed. On the other hand, when the metal structure is controlled to be an equiaxed structure by extrusion molding, the α + β type titanium alloy has a very high hot deformation resistance in a temperature range lower than the β transformation point temperature (T β ) by 200 ° C. or more. A large-scale extrusion press that can be added is required, which increases the equipment cost and may make extrusion impossible. Further, even when extrudable, if part of the temperature in the cross section of the profile exceeds the β transformation point temperature due to processing heat generated during extrusion, the equiaxed structure and β transformation temperature in the cross section of the profile The needle-like structure obtained by the above processing is mixed, and a significant mechanical property difference occurs in the cross section. Therefore, in general, extrusion of α + β type titanium alloys can be manufactured with a low extrusion load, and the billet is extruded by heating to a temperature above the β transformation temperature so that surface defects are unlikely to occur. Is controlling.

しかしながら、ビレットをβ変態点温度以上に加熱して押し出した場合、押出後の形材は針状組織を有し、その強度・延性バランスは、等軸組織に比べて劣るという問題がある。さらに、ビレットの加熱温度がβ変態点温度に比べて高い場合、押出後にβ変態点温度以上で保持される時間が長くなり、β粒が成長するため、強度・延性バランスや疲労強度が劣るという問題がある。よりエンジンに近い部位に使用するためには、エンジン回転数の上昇に伴う慣性重量の増加による強度不足、疲労強度不足は深刻な問題である。   However, when the billet is heated to the β transformation point temperature or higher and extruded, the extruded shape has a needle-like structure, and the strength / ductility balance is inferior to that of the equiaxed structure. Furthermore, when the heating temperature of the billet is higher than the β transformation point temperature, the time that is maintained at the β transformation point temperature or longer after extrusion becomes longer, and β grains grow, so that the strength / ductility balance and fatigue strength are inferior. There's a problem. In order to use it in a part closer to the engine, insufficient strength and insufficient fatigue strength due to an increase in inertia weight accompanying an increase in engine speed are serious problems.

一方、ビレット加熱温度がβ変態点温度近傍、もしくはβ変態点温度より低すぎれば、コンテナやダイス等の押出工具との接触による抜熱も影響して、表層に等軸組織が混入する。さらに表層は温度低下のため延性が低下し、押出中に割れや疵などの欠陥が生じる可能性がある。   On the other hand, if the billet heating temperature is in the vicinity of the β transformation point temperature or too low than the β transformation point temperature, heat removal due to contact with an extrusion tool such as a container or a die is also affected, and the equiaxed structure is mixed into the surface layer. Further, the surface layer has reduced ductility due to a decrease in temperature, and defects such as cracks and wrinkles may occur during extrusion.

金属材料の疲労強度を向上させる方法として、金属または非金属粒子を高速で投射するピーニング処理が一般に知られている。これは、ピーニング処理によって金属材料表層部に圧縮残留応力が付与され、疲労き裂が生じにくくなるためであるが、複雑形状を有する形材ではピーニング処理が均質になされず、疲労強度の低い部位が残る。また、このような処理を行うことで、さらに加工費がかかるため、形材の製造コストが上昇する。   As a method for improving the fatigue strength of a metal material, a peening process in which metal or nonmetal particles are projected at a high speed is generally known. This is because compressive residual stress is applied to the surface layer of the metal material by the peening process, and fatigue cracks are less likely to occur. However, in a profile having a complex shape, the peening process is not uniform, and the site has a low fatigue strength. Remains. Further, by performing such processing, the processing cost is further increased, so that the manufacturing cost of the shape material is increased.

また、成分組成的には、従来、高強度を必要とする用途向けに、α相中に置換型固溶して室温および高温で固溶強化させる安価な元素であるAl、およびβ安定化元素であり凝固偏析しにくいVを添加した、Ti−6Al−4V合金が、長年使用されてきている。しかし、Ti−6Al−4Vは、上記の課題に対して疲労強度が不足する。   In terms of component composition, Al and β-stabilizing elements, which are inexpensive elements that have been conventionally solid-solution-dissolved in α-phase and strengthened at room temperature and high temperature for applications that require high strength, are used. Ti-6Al-4V alloy to which V which is difficult to solidify and segregate is added has been used for many years. However, Ti-6Al-4V has insufficient fatigue strength for the above problems.

このように、押出加工を行って得られる針状組織を呈するα+β型チタン合金押出形材は、押出温度の制御が難しく、押出温度が高すぎれば引張特性が低下する、押出温度が低すぎれば表面欠陥や、押出荷重が高く押出不能になるという問題がある。これらの問題を解決すべく、以下のような先行技術が開示されている。   As described above, the α + β-type titanium alloy extruded shape having an acicular structure obtained by performing extrusion processing is difficult to control the extrusion temperature. If the extrusion temperature is too high, the tensile properties are deteriorated. If the extrusion temperature is too low, There are problems such as surface defects and high extrusion load, making extrusion impossible. In order to solve these problems, the following prior art is disclosed.

特許文献1には、α+β型チタン合金であるTi−6Al−4V合金をα+β温度域に加熱して押出加工し、高強度、高靭性で、かつ押出長手方向の寸法変動の小さく表面疵が少ない形材を製造する方法が記載されている。   In Patent Document 1, a Ti-6Al-4V alloy, which is an α + β type titanium alloy, is extruded by heating to an α + β temperature range, and has high strength, high toughness, small dimensional variation in the longitudinal direction of extrusion, and little surface flaws. A method of manufacturing a profile is described.

特許文献2には、α+β型チタン合金をα+β温度域もしくはβ単相温度域に加熱して押出加工を施した後、α+β温度域に加熱してから強制冷却する溶体化処理を行い、次いで、時効処理を行う2段階の熱処理を施して、強度、延性ともに優れた形材を製造する方法が記載されている。   In Patent Document 2, an α + β-type titanium alloy is heated to an α + β temperature range or a β single-phase temperature range and subjected to extrusion, followed by a solution treatment in which the α + β type titanium alloy is forcibly cooled after being heated to an α + β temperature range, A method is described in which a two-stage heat treatment for aging treatment is performed to produce a shape having excellent strength and ductility.

特許文献3には、微細な等軸α+β組織を呈するα+β型チタン合金ビレットをβ変態点温度以上で押出加工し、5℃/秒以上で急冷した後、焼鈍することでα+β域で押出加工を行った形材と同等の強度、延性を有する押出形材を製造する方法が記載されている。   In Patent Document 3, an α + β type titanium alloy billet exhibiting a fine equiaxed α + β structure is extruded at a temperature above the β transformation point temperature, quenched at 5 ° C./second or more, and then annealed to perform extrusion in the α + β region. A method is described for producing an extruded profile having the same strength and ductility as the shaped profile.

特許文献4には、α+β型チタン合金ビレットをβ変態点温度以上に加熱した後、表面層をα+β域まで冷却してからビレットを押出加工する方法が提案されている。この方法
では、押出時、ビレット内部がβ変態点温度以上に加熱されているために熱間変形抵抗が小さく、小さい押出力で押出加工が可能であり、かつ、得られる形材は表面層が等軸α+β組織を有するため高強度であるとされる。
Patent Document 4 proposes a method in which the billet is extruded after the surface layer is cooled to the α + β region after the α + β type titanium alloy billet is heated to the β transformation point temperature or higher. In this method, the inside of the billet is heated to the β transformation point temperature or higher at the time of extrusion, so that the hot deformation resistance is small, the extrusion process is possible with a small pushing force, and the obtained shape has a surface layer. It has high strength because it has an equiaxed α + β structure.

特許文献5には、α+β型チタン合金ビレットを、押出比を含む一次式によって計算されるα+β域の温度範囲に加熱して押出加工を行うことにより、押出中に生じる加工発熱によって後続の熱処理を省略可能な製造方法が開示されている。   In Patent Document 5, an α + β type titanium alloy billet is heated to an α + β region temperature range calculated by a linear expression including an extrusion ratio to perform an extrusion process. An optional manufacturing method is disclosed.

特許文献6には、α+β型チタン合金ビレットを、押出比を含む一次式により計算されるα+β域の温度で押出加工を行うことで組織制御を行い、疲労強度に優れた形材を製造する方法が記載されている。   Patent Document 6 discloses a method for producing a shape material having excellent fatigue strength by controlling the structure of an α + β type titanium alloy billet by performing extrusion processing at a temperature in an α + β range calculated by a linear expression including an extrusion ratio. Is described.

一方、Vを含まない成分組成を検討し、機械的特性を向上あるいは調整させた合金として、特許文献7〜9には、4.4%以上5.5%未満のAl、1.4%以上2.3%未満のFe、1.5%以上5.5%未満のMoを含有し、不純物として、Siは0.1%未満、Cは0.01%未満を満たし、残部チタンおよび不可避的不純物からなるα+β型チタン合金が開示されている。   On the other hand, Patent Documents 7 to 9 disclose that the component composition not containing V is improved or adjusted, and Patent Documents 7 to 9 include 4.4% or more and less than 5.5% Al, 1.4% or more. Fe containing less than 2.3% Fe, 1.5% or more and less than 5.5% Mo, and as impurities, Si is less than 0.1%, C is less than 0.01%, the remaining titanium and inevitable An α + β type titanium alloy made of impurities is disclosed.

特許文献7には、引張強度が1000MPa級以上のα+β型チタン合金のヤング率を所定のものに調整するために、所定の温度範囲の加熱と、それに対応する所定の冷却速度を組み合わせた熱処理を施す旨記載されている。   In Patent Document 7, in order to adjust the Young's modulus of an α + β-type titanium alloy having a tensile strength of 1000 MPa class or higher to a predetermined value, a heat treatment that combines heating in a predetermined temperature range and a predetermined cooling rate corresponding thereto is performed. It is stated that it will be applied.

特許文献8には、熱間で粗成形し、溶体化、空冷後に切削加工を行い製造された、α+β型チタン合金製のエンジンバルブが記載されている。この発明において、疲労強度の上昇のためピーニング処理を施している。   Patent Document 8 describes an engine valve made of α + β-type titanium alloy, which is manufactured by roughly forming hot, forming a solution, and cutting after air cooling. In the present invention, a peening process is performed to increase the fatigue strength.

特許文献9には、各構成成分の種類と量を所定の範囲とすることにより、引張強度、伸び、疲労強度、成形性、高温高速引張試験の絞りが向上する旨記載されている。   Patent Document 9 describes that the tensile strength, the elongation, the fatigue strength, the formability, and the drawing of the high-temperature high-speed tensile test are improved by setting the types and amounts of the respective components within a predetermined range.

特開昭61−193719号公報JP 61-193719 A 特開昭61−284560号公報JP-A 61-284560 特開昭63−223155号公報JP 63-223155 A 特公平5−2405号公報Japanese Patent Publication No.5-2405 特許第2932918号公報Japanese Patent No. 2932918 特開2012−52219号公報JP 2012-52219 A 特開2007−314834号公報JP 2007-314834 A 特開2007−100666号公報JP 2007-1000066 A 特開2005−320618号公報Japanese Patent Laying-Open No. 2005-320618

上記先行技術に挙げた特許文献1〜6によるα+β型チタン合金押出形材は、いずれも押出後に強制冷却を行って組織制御を行うか、針状組織以外の組織に制御して強度・延性バランスの向上を行っている。   The α + β-type titanium alloy extruded shapes according to Patent Documents 1 to 6 listed in the above prior art are all subjected to forced cooling after extrusion to control the structure, or controlled to a structure other than the needle-shaped structure to balance strength and ductility. Improvements are being made.

強制冷却による組織制御を行った形材は、高い強度・延性バランスを有する。これは冷却速度の上昇に従って、針状組織中のサイドプレートα相や粒界α相の、冷却中の成長が抑制されるためである。しかしながら、長尺材や断面積が大きい形材は、強制冷却した際
に全長および形材内外で冷却速度がばらつき、目的とする組織や材質特性が得られない部位が発生するという問題がある。さらに、冷却過程では、熱収縮により形材内部に応力が発生する。このため、冷却速度差が著しく、応力が大きい場合には、塑性変形により形材に反り等の形状不良が生じる、もしくは、冷却後も残留応力が残る場合もあるため好ましくない。
Profiles subjected to structure control by forced cooling have a high balance between strength and ductility. This is because the growth during cooling of the side plate α phase and the grain boundary α phase in the needle-like structure is suppressed as the cooling rate increases. However, long materials and shapes with a large cross-sectional area have a problem in that when forced cooling is performed, the overall length and the cooling rate vary between the inside and outside of the shape, resulting in occurrence of sites where the desired structure and material properties cannot be obtained. Furthermore, in the cooling process, stress is generated inside the shape member due to heat shrinkage. For this reason, when the cooling rate difference is remarkably large and the stress is large, the shape deformation such as warpage may occur in the shape material due to plastic deformation, or residual stress may remain after cooling, which is not preferable.

形材の組織を針状組織以外とする方法では、ビレットの一部および全域をα+β温度域に制御する必要がある。しかしながら、α+β型チタン合金は、加工温度がβ変態点温度以下に下がると熱間変形抵抗が高く、大きなプレス力が必要である。また、α+β温度域では加工発熱量が大きいため、押出中の加工発熱により加工温度がβ変態点温度を超える場合がある。その結果、均一な組織の形材が得られず、機械的特性が均一でないという問題がある。さらに、ビレット断面内で温度勾配を設けて加熱する方法では、わずかな断面内の温度の違いにより変形の程度がばらつくために、安定した形状が得られないという問題がある。   In the method in which the structure of the shape material is other than the acicular structure, it is necessary to control a part and the entire area of the billet to the α + β temperature range. However, the α + β type titanium alloy has high hot deformation resistance when the processing temperature falls below the β transformation point temperature, and requires a large pressing force. Further, since the processing heat generation amount is large in the α + β temperature range, the processing temperature may exceed the β transformation point temperature due to processing heat generation during extrusion. As a result, there is a problem that a uniform shaped material cannot be obtained and the mechanical properties are not uniform. Furthermore, in the method of heating by providing a temperature gradient within the billet cross section, there is a problem that a stable shape cannot be obtained because the degree of deformation varies due to a slight difference in temperature within the cross section.

また、先行技術で挙げた特許文献8では、ピーニング処理により疲労強度を上昇させている。しかし、前述のように、複雑形状を有する形材ではピーニング処理が均質になされず、疲労強度の低い部位が残る問題が生じ、さらに加工費がかかる。航空機部品向け製品の多くは表面を切削して目的の形状にするため、疲労強度の高い表面部が切削される可能性がある。また、熱間矯正などの二次加工を必要とする場合があるが、表面加工部は延性が低く、割れが発生する可能性がある。   Moreover, in patent document 8 mentioned by prior art, fatigue strength is raised by the peening process. However, as described above, in a shape having a complicated shape, the peening process is not made uniform, and there is a problem that a portion with low fatigue strength remains, which further increases processing costs. Since many products for aircraft parts cut the surface into a desired shape, the surface portion with high fatigue strength may be cut. In addition, secondary processing such as hot correction may be required, but the surface processed portion has low ductility, and cracks may occur.

さらに、上記先行技術で挙げた特許文献9では、押出によって製造された形材については言及されておらず、押出形材の組織及び製造条件と、疲労強度との関係についても言及されていない。   Further, Patent Document 9 cited in the above prior art does not mention a shape produced by extrusion, nor does it mention the relationship between the structure and production conditions of the extruded shape and fatigue strength.

そこで本発明は、Ti−Al―Vに比べて高強度なTi−Al−Fe−Mo系α+β型チタン合金を素材に、針状組織を有するが、先行技術と同等の疲労強度および強度・延性バランスを有するα+βチタン合金押出形材を提供することを目的とする。   Therefore, the present invention uses a Ti-Al-Fe-Mo type α + β type titanium alloy, which has higher strength than Ti-Al-V, and has a needle-like structure, but has fatigue strength, strength and ductility equivalent to the prior art. An object is to provide an α + β titanium alloy extruded profile having a balance.

本発明では、α+βチタン合金押出形材の機械特性として、室温における0.2%耐力が、等軸組織を有するTi−6Al−4Vの従来材(圧延で製造した極厚材等)と同等以上、すなわち、900MPa以上であり、伸びは、熱間矯正等の二次加工を行う上で問題のない10%以上を課題とした。また、疲労強度は、Ti−6Al−4Vの従来材を表面処理して得られる疲労強度と同等以上、すなわち、550MPa以上を課題とした。   In the present invention, as a mechanical property of an α + β titanium alloy extruded shape, 0.2% proof stress at room temperature is equal to or greater than that of a conventional material of Ti-6Al-4V having an equiaxed structure (such as a very thick material manufactured by rolling). That is, it is 900 MPa or more, and the elongation was set to 10% or more, which is no problem in performing secondary processing such as hot correction. Further, the fatigue strength was set to be equal to or higher than the fatigue strength obtained by subjecting a conventional Ti-6Al-4V material to surface treatment, that is, 550 MPa or more.

かかる課題を解決するために、本発明の要旨とするところは以下のとおりである。
[1]
質量%で、Al:4.4〜5.5%、Fe:1.4〜2.3%、Mo:1.5〜5.5%、O:0%超0.20%以下、C:0%超0.08%以下、N:0%超0.05%以下、Si:0%超0.1%以下を含有し、更に選択的に、Ni:0%以上0.15%未満、Cr:0%以上0.25%未満、Mn:0%以上0.25%未満のうち1種または2種以上含有し、残部がTiおよび合計量0.4%以下の不純物であり、1.4%≦[Fe]+[Ni]+[Cr]+[Mn]≦2.3%の関係を満たし、金属組織が針状組織からなり、旧β粒径の平均が300μm以下である、α+β型チタン合金押出形材。なお、ここで[Fe]、[Ni]、[Cr]および[Mn]は各含有成分の質量%を示す。
[2]
旧β粒径の平均が250μm以下である、[1]に記載のα+β型チタン合金押出形材。
[3]
粒界α相の平均最大幅が5μm以下である、[1]または[2]に記載のα+β型チタン合金押出形材。
[4]
押出形材の押出方向に垂直なある一断面の旧β粒の平均粒径d(m)と、前記一断面に平行で、前記一断面から押出方向に距離L(m)離れた押出形材の別の一断面の旧β粒の平均粒径d(m)によって計算される下記(1)式の値が、25以下であることを特徴とする[1]〜[3]のいずれか一つに記載のα+β型チタン合金押出形材。
|(d−d)/L|×10 (1)
In order to solve this problem, the gist of the present invention is as follows.
[1]
In mass%, Al: 4.4 to 5.5%, Fe: 1.4 to 2.3%, Mo: 1.5 to 5.5%, O: more than 0% and 0.20% or less, C: More than 0% and 0.08% or less, N: more than 0% and 0.05% or less, Si: more than 0% and 0.1% or less, more selectively, Ni: 0% or more and less than 0.15%, One or more of Cr: 0% or more and less than 0.25% and Mn: 0% or more and less than 0.25%, with the balance being Ti and a total amount of impurities of 0.4% or less. Α + β satisfying the relationship of 4% ≦ [Fe] + [Ni] + [Cr] + [Mn] ≦ 2.3%, the metal structure is a needle-like structure, and the average of the old β particle diameter is 300 μm or less. Type titanium alloy extruded shape. Here, [Fe], [Ni], [Cr] and [Mn] indicate mass% of each component.
[2]
The α + β-type titanium alloy extruded profile according to [1], wherein the average of the old β grain size is 250 μm or less.
[3]
The α + β-type titanium alloy extruded profile according to [1] or [2], wherein the average maximum width of the grain boundary α phase is 5 μm or less.
[4]
An average particle diameter d 1 (m) of an old β grain having a cross section perpendicular to the extruding direction of the extruded profile, and an extruding shape that is parallel to the one cross section and separated from the one cross section by a distance L (m) in the extruding direction. Any of [1] to [3], wherein the value of the following formula (1) calculated by the average particle diameter d 2 (m) of the old β grains of another cross section of the material is 25 or less The α + β type titanium alloy extruded shape according to any one of the above.
| (D 1 −d 2 ) / L | × 10 6 (1)

本発明によれば、特定の組成からなるα+β型チタン合金形材について、金属組織が針状組織からなり、旧β粒径の平均が300μm以下であることにより、0.2%耐力が900MPa以上、伸びが10%以上の押出形材とすることができる。さらに、0.2%耐力が550MPa以上の特性を有する押出形材とすることができる。   According to the present invention, with respect to an α + β type titanium alloy profile having a specific composition, the 0.2% proof stress is 900 MPa or more because the metal structure is an acicular structure and the average of the old β grain size is 300 μm or less. , An extruded shape having an elongation of 10% or more. Furthermore, it can be set as the extrusion shape material which has the characteristic that 0.2% yield strength is 550 Mpa or more.

本発明のα+β型チタン合金押出形材は、優れた強度および疲労強度を有し、かつ、大量生産が可能であることから、航空機用構造部材をはじめ、自動車や二輪車の部材等を低コストで製造できるようになる。本発明によれば、産業上の用途が拡大するとともに、その軽量、高強度な特性により、航空機や自動車等の燃費向上等の効果を得ることが可能になる。   Since the α + β type titanium alloy extruded profile of the present invention has excellent strength and fatigue strength and can be mass-produced, it can be used for structural members for aircraft, automobiles and motorcycles at low cost. Can be manufactured. According to the present invention, industrial applications are expanded, and it is possible to obtain an effect such as improvement in fuel consumption of an aircraft or an automobile due to its light weight and high strength characteristics.

ユージンセジュルネ法における押出プレス機の模式図である。It is a schematic diagram of the extrusion press machine in the Eugene Sejurune method. α+β型チタン合金押出形材の針状組織を示す顕微鏡写真である。It is a microscope picture which shows the acicular structure of (alpha) + (beta) type | mold titanium alloy extruded shape material. (a)〜(d)は、いずれも本発明のα+β型チタン合金押出形材の製造方法を例示した熱履歴を示すグラフである。(A)-(d) is a graph which shows the heat history which illustrated the manufacturing method of the (alpha) + (beta) type | mold titanium alloy extrusion shape material of this invention, all. 実施例で製造した押出形材の断面形状の模式図である。It is a schematic diagram of the cross-sectional shape of the extrusion profile manufactured in the Example. 実施例で測定した押出形材の「反り」の説明図である。It is explanatory drawing of the "warp" of the extrusion shape member measured in the Example.

本発明が対象とするα+β型チタン合金は、β変態点温度以下では、HCP構造を持つα相と、BCC構造をもつβ相からなり、β変態点温度以上では、α相はβ相に変態してβ相のみからなる。針状組織は、β変態点以上の温度での加工後に生じる形態であり、その組織形態を図2に示す。β変態点温度以上の温度で1つの粒であった旧β粒の境界に粒界α相が生成している。即ち、β変態点温度以上で存在していたβ粒(旧β粒)の粒界には、冷却中に粒界α相が形成される。β変態点温度以上で存在していたβ粒(旧β粒)の粒界である粒界α相で囲まれた領域を本発明では「旧β粒」と呼ぶ。旧β粒内には複数のコロニーと呼ばれるα相とβ相が層状に並んだ組織が形成されている。以降、コロニー中のα相はサイドプレートα相、β相はサイドプレートβ相と呼ぶ。   The α + β type titanium alloy targeted by the present invention is composed of an α phase having an HCP structure and a β phase having a BCC structure below the β transformation point temperature, and the α phase is transformed into the β phase above the β transformation point temperature. It consists only of β phase. The acicular structure is a form generated after processing at a temperature equal to or higher than the β transformation point, and the form of the structure is shown in FIG. A grain boundary α phase is formed at the boundary of the old β grains which were one grain at a temperature equal to or higher than the β transformation temperature. That is, a grain boundary α phase is formed during cooling at the grain boundaries of β grains (old β grains) that existed at a temperature equal to or higher than the β transformation temperature. In the present invention, the region surrounded by the grain boundary α phase, which is the grain boundary of β grains (old β grains) that existed at the β transformation temperature or higher, is called “old β grains”. A structure in which α phases and β phases called a plurality of colonies are arranged in layers is formed in the old β grains. Hereinafter, the α phase in the colony is referred to as a side plate α phase, and the β phase is referred to as a side plate β phase.

また、金属は一般的に冷却時に熱収縮して体積が減少する。部位によって冷却速度に差がある場合、冷却中のある時間では熱収縮量が異なるため、形材内部に応力が発生する。空冷や炉冷など、形材の冷却速度が遅い場合には、このような応力は形材に弾性変形を与えるのみに留まる。しかしながら、従来技術では、押出直後の強制冷却、もしくは押出後の熱処理における溶体化処理(高温域から強制冷却)により、組織や組成を制御することで、高い強度・延性バランスを得る。これら強制冷却では、冷却速度の差が大きいために著しい応力が生じ、形材に反り等の塑性変形を与える。また、冷却時には形状不良が生じなくても、形材内部に残留応力を生じ、形材の加工、切削時等に反り等の形状不良を与える。   In addition, metals generally shrink due to heat shrinkage during cooling, resulting in a decrease in volume. When there is a difference in the cooling rate depending on the part, the amount of heat shrinkage varies at a certain time during cooling, so that stress is generated inside the shape member. When the cooling rate of the profile is slow, such as air cooling or furnace cooling, such stress only gives elastic deformation to the profile. However, in the prior art, a high strength / ductility balance is obtained by controlling the structure and composition by forced cooling immediately after extrusion or by solution treatment (forced cooling from a high temperature range) in heat treatment after extrusion. In these forced coolings, since the difference in cooling rate is large, significant stress is generated and plastic deformation such as warpage is given to the profile. Further, even if a shape defect does not occur at the time of cooling, a residual stress is generated inside the shape member, and a shape defect such as a warp is given during processing or cutting of the shape member.

そこで本発明者らは、特定の組成からなるα+β型チタン合金について、加熱条件を種々変更して熱間押出を行い、形材の引張特性と針状組織の関係について検討を行った。その結果、形状不良の原因となる強制冷却を用いなくとも、金属組織が針状組織からなり、旧β粒径の平均を300μm以下とすることにより、等軸組織を有するTi-6Al-4Vと同等以上の0.2%耐力、および疲労強度を有し、延性が実用上問題ない程度のα+β型チタン合金押出形材とすることができることを見出した。   Therefore, the present inventors examined the relationship between the tensile properties of the profile and the acicular structure by subjecting the α + β type titanium alloy having a specific composition to hot extrusion under various heating conditions. As a result, Ti-6Al-4V having an equiaxed structure can be obtained by forming the metal structure to be an acicular structure and making the average of the old β grain size 300 μm or less without using forced cooling that causes shape defects. It has been found that an α + β-type titanium alloy extruded shape having a 0.2% proof stress and fatigue strength equal to or higher and having a practically satisfactory ductility can be obtained.

本発明において、成分組成を決定した意義について述べる。以下の成分組成の%は、すべて質量%である。   In the present invention, the significance of determining the component composition will be described. The percentages of the following component compositions are all mass%.

本発明は、Al、Fe、Moを主要含有元素としたチタン合金、すなわち、Ti−5Al-2Fe-3Moを対象とする。以下、各成分の限定理由について説明する。   The present invention is directed to a titanium alloy mainly containing Al, Fe, and Mo, that is, Ti-5Al-2Fe-3Mo. Hereinafter, the reason for limitation of each component is demonstrated.

Al:4.4〜5.5%
Alはα安定化元素であり、α相の分率を増加するために添加する元素である。その含有量が4.4%未満であればβ相に比べて強度の高いα相の分率が過少になり、十分な強度が得られず、優れた0.2%耐力が得られない。一方、その含有量が5.5%を超えて過多になると、積層欠陥エネルギーを上げ、双晶変形を抑制するために熱間および室温延性が劣化するとともに、Ti3Alが析出することで靭性も劣化し、加工性が低下する。さらに、その含有量が5.5%超になると、平滑な局所すべりを誘発するため、局所すべりが生じた場所でき裂が発生しやすくなり、疲労特性が低下する。従って、Alの含有量は、その下限を4.4%とし、その上限を5.5%とする。
Al: 4.4 to 5.5%
Al is an α stabilizing element and is an element added to increase the fraction of the α phase. If the content is less than 4.4%, the fraction of the α phase, which is higher in strength than the β phase, becomes too small to obtain sufficient strength, and excellent 0.2% proof stress cannot be obtained. On the other hand, if the content exceeds 5.5%, the stacking fault energy is increased, and the hot and room temperature ductility deteriorates in order to suppress twin deformation, and Ti 3 Al precipitates toughness. Deteriorates and processability decreases. Furthermore, if the content exceeds 5.5%, a smooth local slip is induced, so that cracks are likely to occur at the location where the local slip occurs, and the fatigue characteristics are degraded. Therefore, the lower limit of the Al content is 4.4% and the upper limit is 5.5%.

Fe:1.4〜2.3%
Feはβ安定化元素であり、添加することでβ変態点温度を低下させる作用がある。また、0.2%耐力を向上させる作用を持つため、1.4%以上のFeを添加する。一方、その含有量が2.3%を越えて過多になると、凝固時の偏析が顕著になり、その影響は後の加工処理や熱処理等の製造工程では解消できない。さらに、伸びが劣化し、加工性の低下を招くことになる。従ってFeの含有量の上限を2.3%とする。
Fe: 1.4 to 2.3%
Fe is a β-stabilizing element and, when added, has the effect of lowering the β transformation point temperature. Moreover, since it has the effect | action which improves a 0.2% yield strength, 1.4% or more of Fe is added. On the other hand, if the content exceeds 2.3%, segregation during solidification becomes remarkable, and the influence cannot be eliminated in subsequent manufacturing processes such as processing and heat treatment. Furthermore, the elongation deteriorates and the workability is reduced. Therefore, the upper limit of the Fe content is set to 2.3%.

Mo:1.5〜5.5%
Moはβ安定化元素であり、Feと同様にチタン合金のβ変態点温度を下げることが出来る。また、1.5%以上添加することで、0.2%耐力、延性および疲労強度を向上させ、かつ、熱間加工性を向上させる。一方、添加量が5.5%を超えると、Feと同様に凝固偏析の問題が生じる。そこで、大型鋳塊で凝固偏析が顕著にならない添加量として、Moの含有量の上限は5.5%とする。
Mo: 1.5 to 5.5%
Mo is a β-stabilizing element and can lower the β transformation point temperature of the titanium alloy in the same manner as Fe. Moreover, by adding 1.5% or more, 0.2% yield strength, ductility and fatigue strength are improved, and hot workability is improved. On the other hand, when the addition amount exceeds 5.5%, a problem of solidification segregation occurs as in the case of Fe. Therefore, the upper limit of the Mo content is set to 5.5% as an addition amount that does not cause solid segregation in a large ingot.

さらに質量%で、Ni:0%以上〜0.15%未満、Cr:0%以上〜0.25%未満、Mn:0%以上〜0.25%未満の1種または2種以上
本発明のα+β型チタン合金押出形材は、任意添加元素として、さらに質量%で、Ni:0%以上〜0.15%未満、Cr:0%以上〜0.25%未満、Mn:0%以上〜0.25%未満の1種または2種以上を含有しても良い。これらは、Feの一部を、Feと同様の働きをする安価な元素で置換するものである。
Further, by mass%, Ni: 0% to less than 0.15%, Cr: 0% to less than 0.25%, Mn: 0% to less than 0.25% The α + β type titanium alloy extruded profile is further added as an optional additive element in mass%, Ni: 0% to less than 0.15%, Cr: 0% to less than 0.25%, Mn: 0% to 0% to 0 One or two or more of less than 25% may be contained. In these, a part of Fe is replaced with an inexpensive element that functions in the same manner as Fe.

ここで、Ni、Cr、Mnの添加量の上限をそれぞれ、0.15%未満、0.25%未満、0.25%未満としたのは、これらの元素は、上記上限値以上添加すると、平衡相である金属間化合物(TiNi、TiCr、TiMn)が生成し、疲労強度、および室温延性が劣化するからである。なお、Ni、Cr,Mn,Feの総量は、1.4%以上、2.3%以下とする必要がある。これは、1.4%未満であると、室温引張強度が小さくなるためであり、また、2.3%超では、室温延性が低下するためである。 Here, the upper limit of the addition amount of Ni, Cr, and Mn is less than 0.15%, less than 0.25%, and less than 0.25%, respectively. This is because an intermetallic compound (Ti 2 Ni, TiCr 2 , TiMn) which is an equilibrium phase is generated, and fatigue strength and room temperature ductility deteriorate. The total amount of Ni, Cr, Mn, and Fe needs to be 1.4% or more and 2.3% or less. This is because if it is less than 1.4%, the room temperature tensile strength becomes small, and if it exceeds 2.3%, the room temperature ductility is lowered.

O:0%超0.20%以下、C:0%超0.08%以下、N:0%超0.05%以下、Si:0%超0.1%以下
O、C、N、Siはα安定化元素であり、添加することでα相の分率を増加するとともに、0.2%耐力を向上させる作用を持つ。しかしながら、それぞれの元素の含有量が増加すると、延性が低下し、加工性が低下する。従って、O:0%超0.20%以下、C:0%超0.08%以下、N:0%超0.05%以下、Si:0%超0.1%以下とする。
O: more than 0% to 0.20% or less, C: more than 0% to 0.08% or less, N: more than 0% to 0.05% or less, Si: more than 0% to 0.1% or less O, C, N, Si Is an α-stabilizing element which, when added, increases the α-phase fraction and improves the 0.2% yield strength. However, when the content of each element is increased, ductility is lowered and workability is lowered. Therefore, O: more than 0% and 0.20% or less, C: more than 0% and 0.08% or less, N: more than 0% and 0.05% or less, and Si: more than 0% and 0.1% or less.

残部:Tiおよび合計量0.4%以下の不純物
残部は、Tiおよび不純物である。不純物の元素として、チタンの精錬工程で混入するCl、Na、Mg、およびスクラップから混入するZr、Sn、Cu、Mo、Nb、Taなどの不純物が例示される。いずれの不純物も、含有量が増加するとTiと化合物を生成して靭性が低下し、その結果加工性が低下する。また、不純物の総含有量が過多になると、延性が低下するために加工性が劣化する。従って、本発明の効果を阻害しないよう、その他の元素の合計は0.4%以下に制御する必要がある。
Balance: Ti and impurities with a total amount of 0.4% or less The balance is Ti and impurities. Illustrative examples of the impurity element include Cl, Na, Mg mixed in the titanium refining process, and impurities such as Zr, Sn, Cu, Mo, Nb, Ta mixed from scrap. When the content of any impurity is increased, Ti and a compound are generated and toughness is lowered, and as a result, workability is lowered. In addition, when the total content of impurities is excessive, ductility is lowered and workability is deteriorated. Therefore, the total of other elements must be controlled to 0.4% or less so as not to hinder the effects of the present invention.

次に、本発明において、旧β粒径を限定した意義について述べる。針状組織では、一部の転位はα/β相境界を容易に伝播するため、一部の転位の堆積距離はコロニーサイズの半分で与えられる。また、コロニーサイズは旧β粒径の減少に伴って減少する。そのため、旧β粒径の減少に伴い、コロニー境界での転位の堆積による応力場が減少し、組織微細化強化により0.2%耐力が上昇する傾向にある。逆に言えば、旧β粒径が大きくなると、転位の堆積距離が増加してコロニー境界で生じる応力集中が増加するために、0.2%耐力が低下する。さらに、旧β粒径が小さくなると、コロニーサイズが小さくなり、旧β粒界およびコロニー境界に堆積する転位数が減少するために、旧β粒界およびコロニー境界における応力集中が緩和されて伸びが上昇する。そこで、本発明において、0.2%耐力が900MPa以上、疲労強度が550MPa以上、伸びが10%となる旧β粒径の平均である300μmを上限とした。好ましくは、旧β粒径の平均が250μm以下である。一方、下限については必ずしも限定されるものではないが、50μm以上が好ましい。それ以上細かくするには押出温度を下げるか、押出の際に強加工を行う必要があり、変形抵抗が大きくなることから、装置の負担が大きいので、上記の下限が好ましい。   Next, the significance of limiting the old β particle size in the present invention will be described. In acicular tissue, some dislocations easily propagate through the α / β phase boundary, so the deposition distance of some dislocations is given by half the colony size. Also, the colony size decreases as the old β particle size decreases. Therefore, as the old β grain size decreases, the stress field due to the accumulation of dislocations at the colony boundary decreases, and the 0.2% proof stress tends to increase due to the strengthening of the microstructure. In other words, when the old β grain size is increased, the stress concentration generated at the colony boundary is increased due to an increase in the dislocation deposition distance, so that the 0.2% yield strength is reduced. Furthermore, as the old β grain size becomes smaller, the colony size becomes smaller, and the number of dislocations deposited at the old β grain boundary and the colony boundary decreases, so the stress concentration at the old β grain boundary and the colony boundary is relaxed and elongation increases. To rise. Therefore, in the present invention, the upper limit is set to 300 μm, which is the average of the old β grain size, in which the 0.2% proof stress is 900 MPa or more, the fatigue strength is 550 MPa or more, and the elongation is 10%. Preferably, the average of the old β particle size is 250 μm or less. On the other hand, the lower limit is not necessarily limited, but is preferably 50 μm or more. In order to make it finer, it is necessary to lower the extrusion temperature or to perform strong processing during extrusion, and the deformation resistance becomes large, so the burden on the apparatus is large, so the above lower limit is preferable.

針状組織では、粒界α相の平均最大幅が増加するに従い、延性が低下する。粒界α相は、加工中に転位の堆積しやすい旧β粒界に生成する。そのため、加工中のボイドも粒界α相界面に発生しやすいが、粒界α相の平均最大幅が増加すると、ボイドが粒界αに沿って進展しやすくなる。そこで、本発明において、通常の放冷で得られる最大の粒界α幅である5μmを粒界αの平均最大幅の上限とすることが好ましい。一方、下限については必ずしも限定されるものではないが、押出形材の反りの発生を抑制するためには、0.5μm以上が好ましい。それ以上小さくするには、水冷やファン空冷などの強制冷却を行う必要があり、形材内部の温度差を大きくするために、内部応力に起因した形状不良や、空冷後の残留応力の発生の原因となるため、上記の下限が好ましい。   In an acicular structure, the ductility decreases as the average maximum width of the grain boundary α-phase increases. The grain boundary α phase is generated in the old β grain boundary where dislocations are likely to accumulate during processing. Therefore, voids during processing are also likely to be generated at the grain boundary α-phase interface, but when the average maximum width of the grain boundary α-phase is increased, the voids are likely to progress along the grain boundary α. Therefore, in the present invention, it is preferable that 5 μm, which is the maximum grain boundary α width obtained by normal cooling, be the upper limit of the average maximum width of the grain boundary α. On the other hand, the lower limit is not necessarily limited, but 0.5 μm or more is preferable in order to suppress the occurrence of warpage of the extruded profile. In order to reduce the temperature further, forced cooling such as water cooling or fan air cooling is required.In order to increase the temperature difference inside the profile, shape defects caused by internal stress and residual stress after air cooling are generated. The above lower limit is preferable because it causes.

粒界α相の平均最大幅について測定方法を述べる。図4に示された押出形材断面において、顕微鏡による組織観察位置で確認される旧β粒を任意に5つ選び、各々の粒界α相の最大幅を測定する。なお旧β粒を選択する際、隣接し合う旧β粒を選択することは避ける。5つの最大幅の平均値を粒界α相の平均最大幅と定義する。   A method for measuring the average maximum width of the grain boundary α phase will be described. In the cross section of the extruded shape shown in FIG. 4, five old β grains confirmed at a structure observation position by a microscope are arbitrarily selected, and the maximum width of each grain boundary α phase is measured. When selecting old β grains, avoid selecting adjacent old β grains. The average value of the five maximum widths is defined as the average maximum width of the grain boundary α phase.

ところで、押出形材の旧β粒の平均粒径は、通常、押出形材の押出方向で、均一とならない。その理由は押し出す工程にある。押し出す際に、最初に押出の型に接触する、ビレット5の先頭である先端部は、ダイス4との接触により抜熱し、温度が下がりやすい。一方、押し出しの後端部は、ダミーブロック3と接触するために抜熱するとともに、先端部に比べてコンテナ1との接触時間が長いために抜熱量が大きい。これらの抜熱の程度が、先端部と後端部では、異なるために、先端部と後端部では、押出温度が均一とならず、旧β粒の平均粒径の差となって現れる。
旧β粒の平均粒径の差は、そのまま、各部の強度の差として現れる。そのため、押出方向に均一な機械的強度を有する押出形材とするためには、下記(1)式によって計算される値が、25以下であることが好ましい。(1)式は、一断面の旧β粒の平均粒径d(m)と別の一断面の旧β粒の平均粒径d(m)の差を、L(m)によって除した値の絶対値である。より好ましい(1)式の値は、15以下、さらに好ましくは10以下である。
|(d−d)/L|×10 (1)
:押出形材の押出方向に垂直なある一断面の旧β粒の平均粒径(m)
:一断面から押出方向に距離L(m)離れた押出形材の別の一断面の旧β粒の平均粒径(m)
L:一断面と別の断面の押出方向の距離(m)
なお、距離Lは、0.3m以上が好ましく、1m以上がより好ましい。そのため、押出形材の長さは、このLより長い2m以上が好ましく、3m以上がより好ましい。
By the way, the average particle size of the old β grains of the extruded profile is usually not uniform in the extrusion direction of the extruded profile. The reason is in the extrusion process. When extruding, the tip part which is the top of the billet 5 which first contacts the extrusion mold is removed by contact with the die 4 and the temperature tends to decrease. On the other hand, the rear end portion of the extrusion removes heat to contact the dummy block 3, and the heat removal amount is large because the contact time with the container 1 is longer than that of the front end portion. Since the degree of heat removal differs between the front end portion and the rear end portion, the extrusion temperature is not uniform at the front end portion and the rear end portion, and appears as a difference in the average particle diameter of the old β grains.
The difference in the average particle size of the old β grains appears as it is as the difference in the strength of each part. Therefore, in order to obtain an extruded shape having uniform mechanical strength in the extrusion direction, the value calculated by the following equation (1) is preferably 25 or less. In the formula (1), the difference between the average particle diameter d 1 (m) of the old β grains in one cross section and the average particle diameter d 2 (m) of the old β grains in another cross section is divided by L (m). The absolute value. A more preferable value of the formula (1) is 15 or less, more preferably 10 or less.
| (D 1 −d 2 ) / L | × 10 6 (1)
d 1 : average particle diameter (m) of old β grains having one cross section perpendicular to the extrusion direction of the extruded profile
d 2 : Average particle diameter (m) of the old β grains in another cross section of the extruded profile that is a distance L (m) away from one cross section in the extrusion direction
L: Distance in the extrusion direction between one cross section and another cross section (m)
The distance L is preferably 0.3 m or more, and more preferably 1 m or more. Therefore, the length of the extruded profile is preferably 2 m or longer, more preferably 3 m or longer, which is longer than L.

次に本発明のα+β型チタン合金押出形材の製造方法を図3に例示して説明する。図3において、(a)は、β変態点温度(Tβ)以上の温度域で熱間押出を行って針状組織を得る製造方法、(b)は、β変態点温度(Tβ)以上の温度域で熱間押出を行って針状組織を得た後、歪とり焼鈍を行う製造方法、(c)は、β変態点温度(Tβ)未満の温度域で押出を行った後、針状組織を得るためにβ単相域熱処理を行う製造方法、(d)は、β変態点温度(Tβ)未満の温度域で押出を行った後、針状組織を得るためにβ単相域熱処理を行い、歪とり焼鈍を行う製造方法である。なお、これらはあくまでも例示であり、本発明のα+β型チタン合金押出形材はこれらの製造方法で得られるものには限定されない。 Next, the manufacturing method of the α + β type titanium alloy extruded profile of the present invention will be described with reference to FIG. In FIG. 3, (a) is a production method for obtaining a needle-like structure by performing hot extrusion in a temperature range equal to or higher than the β transformation point temperature (T β ), and (b) is equal to or higher than the β transformation point temperature (T β ). After producing the needle-like structure by performing hot extrusion in the temperature range of (c), after performing extrusion in the temperature range lower than the β transformation point temperature (T β ), (c) A production method in which a β single-phase region heat treatment is carried out to obtain an acicular structure, (d) is obtained by performing β extrusion in a temperature range lower than the β transformation temperature (T β ) and then obtaining a needle-like structure. This is a manufacturing method in which phase region heat treatment is performed and strain relief annealing is performed. These are merely examples, and the α + β-type titanium alloy extruded profile of the present invention is not limited to those obtained by these production methods.

図3(a)(b)に示すような、押出温度をβ変態点温度以上とし、押出後にβ単相域熱処理を施さない製造方法では、チタン合金ビレットをβ変態点温度以上まで加熱して熱間押出を行う際、ビレットの表面も中心も含めてβ変態点温度以上の所定の温度に均熱化していることが必要である。
最初に押出後に焼鈍を施さない図3(a)に示す製造方法について説明する。
チタンは熱伝導率が低いので、チタン合金ビレットを所定温度に均熱化するためには、加熱時の昇温速度を低速とし、あるいは加熱炉の在炉時間を長くして、ビレット中心まで含めて目標温度に到達させている。このようにしてビレットの中心まで目標温度に到達させようとすると、ビレット表面については、中心よりも早くβ変態点温度以上となるので、β変態点温度以上に到達してからの滞在時間が長くなる。その結果、ビレット表面についてはβ粒の成長が促進され、押出前のβ粒径が増大する。押出前のβ粒が粗大化すると、押出後のβ粒の再結晶核生成サイトが少ないために押出後のβ粒も粗大化し、旧β粒径の平均が300μmを超えることとなり、0.2%耐力が低下する。
In a production method in which the extrusion temperature is set to the β transformation point temperature or higher and the β single-phase region heat treatment is not performed after the extrusion as shown in FIGS. 3 (a) and 3 (b), the titanium alloy billet is heated to the β transformation point temperature or higher. When hot extrusion is performed, it is necessary that the temperature of the billet surface, including the center and the center, be soaked to a predetermined temperature equal to or higher than the β transformation point temperature.
First, the manufacturing method shown in FIG. 3A in which annealing is not performed after extrusion will be described.
Titanium has a low thermal conductivity, so in order to soak the titanium alloy billet to a predetermined temperature, the heating rate during heating is slowed down or the furnace is kept in the furnace for a long time to include the billet center. To reach the target temperature. In this way, if the target temperature is reached to the center of the billet, the billet surface becomes higher than the β transformation point temperature earlier than the center, so the staying time after reaching the β transformation point temperature or longer is longer. Become. As a result, the growth of β grains is promoted on the billet surface, and the β grain size before extrusion increases. When the β grains before extrusion are coarsened, the number of recrystallized nucleation sites of the beta grains after extrusion is small, so the beta grains after extrusion are also coarsened, and the average of the old β grain size exceeds 300 μm, 0.2 % Yield strength decreases.

そこで、ビレットをβ変態点温度以下の所定の温度にて均熱化する予加熱を行い、その後に急速加熱を行ってビレット全体をβ変態点温度以上の所定温度とし、β変態点温度以上の温度保持時間を短縮して熱間押出を行う方法を着想した。予加熱においては、β変態点温度以下の温度でビレットを均熱化するので、β粒の粗大化は発生しない。予加熱を行っているので、その後に急速加熱を行うことが可能となり、ビレット中心がβ変態点温度以上の所定温度に到達したとき、ビレット表面のβ変態点温度以上の保持時間を短い時間とすることが可能となる。その結果、ビレットの表面を含め、押出前のβ粒粗大化を防止し、押出後のβ粒粗大化をも防止することができ、旧β粒径の平均を300μm以下とすることを可能とした。   Therefore, preheating is performed so that the billet is soaked at a predetermined temperature equal to or lower than the β transformation point temperature, and then rapid heating is performed to bring the entire billet to a predetermined temperature equal to or higher than the β transformation point temperature. The idea was to create a hot extrusion process with a shorter temperature holding time. In the preheating, the billet is soaked at a temperature equal to or lower than the β transformation point temperature, so that no coarsening of β grains occurs. Since preheating is performed, it is possible to perform rapid heating thereafter, and when the billet center reaches a predetermined temperature equal to or higher than the β transformation point temperature, the holding time equal to or higher than the β transformation point temperature on the billet surface is set to a short time. It becomes possible to do. As a result, including the surface of the billet, β grain coarsening before extrusion can be prevented, and β grain coarsening after extrusion can be prevented, and the average of the old β grain size can be made 300 μm or less. did.

予加熱においては、ビレット表面および中心の温度を(Tβ−500)〜(Tβ−80)℃に、表面と中心の温度差が50℃以下になるように予加熱を行う。 In preheating, the temperature of the billet surface and the center (T β -500) ~ (T β -80) ℃, the temperature difference between the surface and the center performs preheating so that the 50 ° C. or less.

ビレット表面の温度測定は、放射温度計で行うとよい。一方、ビレット中心の温度測定は、加熱に先立ってビレット底面である円の中心位置をドリルで穿孔し、ビレットの中心に至るまでドリル穴をあけ、絶縁管で保護された熱電対を挿入することによって行うとよい。   The billet surface temperature may be measured with a radiation thermometer. On the other hand, the temperature measurement of the billet center is performed by drilling the center position of the circle at the bottom of the billet prior to heating, drilling to the center of the billet, and inserting a thermocouple protected by an insulating tube. It is good to do by.

予加熱後のビレット温度が低すぎると、その後に急速加熱を行う際、ビレット中心まで所定のβ変態点温度以上とするためには、急速加熱後の保持時間を増加する必要が生じ、その結果としてビレット表面のβ変態点温度以上での保持時間が増加してβ粒が粗大化することとなる。本発明においては、予加熱温度下限を(Tβ−500)℃とすることにより、急速加熱後の保持時間を短縮し、押出後の旧β粒径の平均を300μm以下とすることが可能となった。 If the billet temperature after pre-heating is too low, it is necessary to increase the holding time after rapid heating in order to make the billet center more than the predetermined β transformation point temperature when performing rapid heating thereafter. As a result, the retention time of the billet surface above the β transformation point temperature increases, and the β grains become coarse. In the present invention, by setting the preheat temperature limit (T β -500) ℃, shorten the retention time after the rapid heating, and can be the average of the old beta particle size after extrusion and 300μm or less became.

チタンは大気中で加熱すると酸化しやすく、ある温度以上に加熱するとαケースと呼ばれる硬化層を表面に形成し、その厚さは加熱温度が高くなるほど厚くなる。αケースは硬く、延性に乏しいため押出中のクラックの起点となり、押出製品に割れを生じる。また表面硬化層の研磨作用によりダイスが著しく摩耗するため、押出材長手方向で断面寸法の変動が大きくなる。そこで、αケースの形成が著しくない(Tβ−80)℃をビレットの予加熱温度の上限とした。 Titanium tends to oxidize when heated in the atmosphere, and when heated above a certain temperature, forms a hardened layer called α-case on the surface, and the thickness increases as the heating temperature increases. Since the α case is hard and has poor ductility, it becomes the starting point of cracks during extrusion, and cracks occur in the extruded product. Further, since the die is worn significantly by the polishing action of the hardened surface layer, the cross-sectional dimension varies greatly in the longitudinal direction of the extruded material. So, the upper limit of α formation of the case is not significantly (T β -80) ℃ the billet preheat temperature.

チタンは熱伝導性が悪く、予加熱後に十分にビレットが均熱化されない状態でビレット表面から急速加熱を行ったのでは、ビレット全体が均等に加熱されない。そこで、急速加熱時にビレットの一部がβ変態点温度に達してからビレット全体がβ変態点温度に達するまでの時間が短く、押出後の旧β粒径が、旧β粒径の断面内の平均の上限である300μmを超えないよう、予加熱時のビレット表面と中心の温度差の上限を50℃とした。実際の操業では、温度差は20℃以下が好ましい。   Titanium has poor heat conductivity, and if the rapid heating is performed from the billet surface in a state where the billet is not sufficiently soaked after preheating, the entire billet is not heated uniformly. Therefore, the time from when a part of the billet reaches the β transformation point temperature during rapid heating until the whole billet reaches the β transformation point temperature is short, and the old β particle size after extrusion is within the cross section of the old β particle size. The upper limit of the temperature difference between the billet surface and the center during preheating was set to 50 ° C. so that the average upper limit of 300 μm was not exceeded. In actual operation, the temperature difference is preferably 20 ° C. or less.

ビレットを予加熱した後、通電加熱もしくは誘導加熱により1.0℃/s以上の昇温速度でTβ〜(Tβ+200)℃に加熱し、その後、押出加工を行う。 After preheated billet, heated to T β ~ (T β +200) ℃ at 1.0 ° C. / s or higher when energized heating or induction heating of the heating rate, then performing the extrusion.

急速加熱後のビレット温度が高いほど旧β粒径は増加する。これは、押出中に加工を受けたβ粒が、押出後にβ変態点温度以上に保持されている間に再結晶するが、押出前ビレット温度が上昇するに伴い、押出後にβ変態点温度以上に保持される時間が増加し、再結晶後の粒成長時間が長くなるためである。急速加熱後のビレット温度が(Tβ+200)℃を超えると、形材の旧β粒径の平均が300μm超となり、0.2%耐力が900MPa、疲労強度が550MPaを下回ることを見出した。
また、チタンは大気中で加熱すると酸化しやすく、ある温度以上に加熱するとαケースと呼ばれる硬化層を表面に形成し、その厚さは加熱温度が高くなるほど厚くなる。αケースは硬く、延性に乏しいため押出中のクラックの起点となり、押出製品に割れを生じる。また表面硬化層の研磨作用によりダイスが著しく摩耗するため、押出材長手方向で断面寸法の変動が大きくなる。そこで、旧β粒径の平均が300μm以下となり、かつ、αケースの形成が著しくない(Tβ+200)℃をビレット急速加熱温度の上限とした。
一方、急速加熱後の温度がβ変態点温度(Tβ)近傍では、形材表層部は、押出の際にダイスと接触した際の抜熱により加工温度がTβ以下まで低下するため、等軸組織を有する。押出の進行に伴い、ダイス温度は上昇するため、形材表層も加工温度が上昇し、定常部では針状組織を有するが、安定して針状組織を有する形材を製造するためには、急速加熱後の温度は(Tβ+50)℃以上が好ましい。
The older β particle size increases as the billet temperature after rapid heating increases. This is because the β grains processed during extrusion recrystallize while being held above the β transformation point temperature after extrusion, but as the billet temperature before extrusion rises, it rises above the β transformation point temperature after extrusion. This is because the time that is held in the crystal increases and the grain growth time after recrystallization becomes longer. It has been found that when the billet temperature after rapid heating exceeds (T β +200) ° C., the average β grain size of the profile exceeds 300 μm, the 0.2% proof stress is 900 MPa, and the fatigue strength is less than 550 MPa.
Titanium easily oxidizes when heated in the atmosphere, and when heated above a certain temperature, forms a hardened layer called α-case on the surface, and the thickness increases as the heating temperature increases. Since the α case is hard and has poor ductility, it becomes the starting point of cracks during extrusion, and cracks occur in the extruded product. Further, since the die is worn significantly by the polishing action of the hardened surface layer, the cross-sectional dimension varies greatly in the longitudinal direction of the extruded material. Therefore, the upper limit of the billet rapid heating temperature was set to an average of the old β particle diameter of 300 μm or less and the formation of α case was not significant (T β +200) ° C.
On the other hand, when the temperature after the rapid heating is in the vicinity of the β transformation point temperature (T β ), the shape material surface layer portion has a processing temperature lowered to T β or less due to heat removal when contacting the die during extrusion, etc. Has an axial structure. As the die temperature increases with the progress of extrusion, the processing temperature of the shape material layer also rises, and in order to produce a shape material having a needle-like structure stably, although it has a needle-like structure in the stationary part, The temperature after rapid heating is preferably (T β +50) ° C. or higher.

押出前のビレット急速加熱時の昇温速度が遅いと、ビレット表面は、β変態点温度以上の温度に保持される時間が長くなり、押出前の旧β粒径が粗大化し、押出後の旧β粒径が増加する。そこで、押出前のビレット表面のβ粒の成長を抑制し、押出後の旧β粒径の平均が300μm以下となる1.0℃/sを、昇温速度の下限とした。   If the heating rate at the time of rapid heating of the billet before extrusion is slow, the billet surface is held for a longer time than the β transformation point temperature, the old β particle size before extrusion becomes coarse, β particle size increases. Therefore, the lower limit of the heating rate was set to 1.0 ° C./s at which the growth of β grains on the billet surface before extrusion was suppressed and the average of the old β particle diameter after extrusion was 300 μm or less.

チタンは熱伝導性が悪いので、通電加熱や誘導加熱による急速加熱を行った際、ビレット全体が均等に加熱されるためには急速加熱後に所定の保持時間を設けると好ましい。ビレット全体がβ変態点温度以上の温度に加熱されるためには、急速加熱後に20秒以上保持するのが望ましい。一方、急速加熱後の保持時間が長すぎると、保持時間中にβ粒が粗大化し、押出後のβ粒も粗大化することとなって好ましくない。本発明では、急速加熱後の保持時間を20分以下とすることにより、形材の旧β粒径の平均を300μm以下とすることができる。   Since titanium has poor thermal conductivity, it is preferable to provide a predetermined holding time after rapid heating in order to heat the entire billet evenly when rapid heating is performed by energization heating or induction heating. In order for the entire billet to be heated to a temperature equal to or higher than the β transformation temperature, it is desirable to hold it for 20 seconds or more after rapid heating. On the other hand, if the holding time after rapid heating is too long, the β grains are coarsened during the holding time, and the β grains after extrusion are also coarsened. In the present invention, by setting the holding time after rapid heating to 20 minutes or less, the average of the old β particle diameter of the profile can be set to 300 μm or less.

押出加工を行った後、5℃/秒未満の冷却速度で室温まで放冷することが好ましい。ここでいう冷却速度は、500℃までの冷却速度を指す。押出後に5℃/秒以上の強制冷却を行うと、冷却速度が不均一となり、形材内部の温度差に起因した応力が形材内部に生じ、反りや曲り等の塑性変形が生じる。また、塑性変形が生じなくても、室温まで冷却した後に形材内部に残留応力が生じ、形材の加工、切削時等に反り等の形状不良を与える。そのため、押出加工後は、5℃/秒未満の冷却速度で放冷することが好ましい。また、冷却速度が遅いと冷却中に粒界α相が成長して延性が低下する。そのため、押出加工後の冷却速度は、0.5℃/秒以上で放冷する。実際の操業では、放冷(約1℃/秒)が好ましい。   After performing the extrusion process, it is preferable to cool to room temperature at a cooling rate of less than 5 ° C./second. The cooling rate here refers to a cooling rate up to 500 ° C. When forced cooling at 5 ° C./second or more is performed after extrusion, the cooling rate becomes non-uniform, stress due to the temperature difference inside the shape is generated inside the shape, and plastic deformation such as warping and bending occurs. Even if plastic deformation does not occur, residual stress is generated inside the shape after cooling to room temperature, giving shape defects such as warpage during processing or cutting of the shape. Therefore, it is preferable to cool after extrusion processing at a cooling rate of less than 5 ° C./second. On the other hand, if the cooling rate is slow, the grain boundary α phase grows during cooling and the ductility decreases. Therefore, the cooling rate after extrusion is allowed to cool at 0.5 ° C./second or more. In actual operation, cooling (about 1 ° C./second) is preferable.

以上が図3(a)に示す製造方法の説明であるが、それに加えて、図3(b)に示す製造方法のように、放冷後、(Tβ−500)〜(Tβ−200)℃で歪とり焼鈍を行っても良い。 Although the above is description of the manufacturing method shown to Fig.3 (a), in addition to it, like the manufacturing method shown in FIG.3 (b), after standing_to_cool, (T ( beta ) -500)-(T ( beta ) -200). ) Strain removal annealing may be performed at ° C.

押出後は放冷であっても、冷却中に、形材内部における温度差により、内部応力が発生する。そこで、本発明では、放冷後の形材について、内部の歪を除去し、内部応力を減少させるのに十分な時間の焼鈍を行うことにより、切削時等に生じる曲りを小さくできる。   Even if it is allowed to cool after extrusion, an internal stress is generated during cooling due to a temperature difference inside the profile. Therefore, in the present invention, the bending generated at the time of cutting or the like can be reduced by removing the internal strain from the shape material after cooling and performing annealing for a time sufficient to reduce the internal stress.

一方、焼鈍温度の上昇に伴いコロニー中のα相(サイドプレートα相)の幅が増加して、一部の転位の堆積距離が増加するため、0.2%耐力、および強度が低下する。そこで、サイドプレートα相の幅が増加しはじめる(Tβ−200)℃を焼鈍温度の上限とした。 On the other hand, as the annealing temperature rises, the width of the α phase (side plate α phase) in the colony increases and the deposition distance of some dislocations increases, so the 0.2% proof stress and strength decrease. Therefore, the width of the side plate α phase starts increasing (T β -200) ℃ was made the upper limit of the annealing temperature.

図3(a)(b)に示す製造方法とは異なり、図3(c)(d)に示すように、β変態点温度未満で押出しても本発明は製造することができる。
この図3(c)(d)に示す製造方法では、β変態点温度(Tβ)未満の温度域で押出加工が行われるため、押出加工後の組織は、等軸組織となる。そこで、等軸組織部を針状組織にするために、次にβ単相域熱処理を行う。以下にβ単相域熱処理の条件について詳しく述べる。
Unlike the manufacturing method shown in FIGS. 3 (a) and 3 (b), as shown in FIGS. 3 (c) and 3 (d), the present invention can be manufactured by extrusion at a temperature lower than the β transformation point temperature.
In the manufacturing method shown in FIGS. 3C and 3D, since the extrusion process is performed in a temperature range lower than the β transformation point temperature (T β ), the structure after the extrusion process is an equiaxed structure. Therefore, in order to make the equiaxed tissue portion into a needle-like structure, β single-phase region heat treatment is next performed. The conditions for the β single-phase region heat treatment are described in detail below.

β単相域熱処理後に焼鈍を施さない図3(c)に示す製造方法について説明する。
α+βチタン合金は、通常、熱間押出形材の断面形状が複雑である場合、押出の加工率が高い場合等は、加工発熱が大きくなり、発熱を利用できるので組織が針状組織となりやすいが、断面形状が単純である場合や、押出の加工率が低い場合は、ダイスやコンテナとの接触により奪われる熱が加工発熱量を上回るため、押出加工にて特に全体を針状組織とすることが難しい。
A manufacturing method shown in FIG. 3C in which annealing is not performed after the β single-phase region heat treatment will be described.
The α + β titanium alloy usually has a complicated cross-sectional shape of the hot-extruded shape, and when the processing rate of extrusion is high, the processing heat generation becomes large and the heat generation can be used, so the structure tends to become a needle-like structure. When the cross-sectional shape is simple or the processing rate of extrusion is low, the heat taken away by contact with the die or container exceeds the calorific value of the processing. Is difficult.

そこで、押出加工後に、β変態点温度Tβ以上に加熱することで全体がβ相に変態し、冷却後に針状組織が得られるようになる。そのため、押出加工後に、Tβを下限温度とするβ単相域熱処理を行う。 Therefore, after the extrusion process, the whole is transformed into the β phase by heating to a temperature equal to or higher than the β transformation temperature Tβ, and a needle-like structure can be obtained after cooling. Therefore, after the extrusion process, β single-phase region heat treatment with T β as the lower limit temperature is performed.

但し、β単相域熱処理温度が上昇するに伴い、原子の拡散速度が上昇してβ粒の成長速度が上昇するとともに、β変態点温度以下まで冷却するのに必要な時間が増加し、β粒の成長が促進される。その結果、β単相域熱処理が高すぎると、β粒径(旧β粒径)が300μmを超えて成長し、転位の堆積距離が増加してコロニー境界で生じる応力集中が増加するために、0.2%耐力が大きく低下する。そこで、β単相域熱処理の上限温度は、β粒の成長速度が著しくなく、β変態点温度以下までの冷却時間が短い(Tβ+200)℃とした。 However, as the β single-phase region heat treatment temperature increases, the diffusion rate of atoms increases and the growth rate of β grains increases, and the time required for cooling to the β transformation temperature or less increases. Grain growth is promoted. As a result, if the β single-phase region heat treatment is too high, the β grain size (old β grain size) grows beyond 300 μm, the dislocation deposition distance increases, and the stress concentration generated at the colony boundary increases, 0.2% yield strength is greatly reduced. Therefore, the upper limit temperature of the β single-phase region heat treatment was set to (T β +200) ° C. where the growth rate of β grains was not significant and the cooling time to the β transformation point temperature or less was short.

また、針状組織部のβ粒径(旧β粒径)を粗大に変化させることを防止するには、β単相域熱処理の加熱時間も重要である。β単相域熱処理時間が長くなるに従い、β粒径(旧β粒径)は増加する。これは、β変態点温度以上の保持温度が長いと、β粒の界面エネルギーを低下させるため、β粒が合体を始めるためである。また、チタンは大気中で加熱すると酸化しやすく、ある温度以上に加熱するとαケースと呼ばれる硬化層を表面に形成し、その厚さは加熱温度が高くなるほど厚くなる。αケースは硬く、延性に乏しいためクラックの起点となり、製品に割れを生じる。そこで、β粒径(旧β粒径)の平均が300μm以下となり、かつαケースの形成が著しくない、Tβ℃以上で形材を1000秒以下保持(β単相域熱処理温度)することで、針状組織部の旧β粒径を粗大に変化させることなく、等軸組織部をすべて針状組織にできる。一方、β単相域熱処理時間の下限は、形材の肉厚にも依存するが、形材の中央部までの伝熱時間を考慮すると、全体がβ変態点温度以上まで加熱される10秒程度が好ましい。 In order to prevent the β grain size (old β grain size) of the needle-like structure portion from being coarsely changed, the heating time of the β single-phase region heat treatment is also important. As the β single-phase region heat treatment time increases, the β particle size (old β particle size) increases. This is because if the holding temperature equal to or higher than the β transformation point temperature is long, the interfacial energy of the β grains is lowered, and the β grains start to coalesce. Titanium easily oxidizes when heated in the atmosphere, and when heated above a certain temperature, forms a hardened layer called α-case on the surface, and the thickness increases as the heating temperature increases. Since the α case is hard and has poor ductility, it becomes the starting point of cracks and causes cracks in the product. Therefore, the average of the beta grain size (formerly beta particle size) becomes 300μm or less, and α formed of the case is not significantly, by T beta ° C. hold profile 1000 seconds or more (beta single phase region annealing temperature) All of the equiaxed tissue parts can be made into a needle-like structure without coarsely changing the old β particle diameter of the needle-like tissue part. On the other hand, the lower limit of the β single-phase region heat treatment time depends on the thickness of the profile, but considering the heat transfer time to the center of the profile, the whole is heated to the β transformation temperature or higher for 10 seconds. The degree is preferred.

また、このようにβ単相域熱処理を行う場合も、ビレットの表面も中心も含めてβ変態点温度以上の所定の温度に均一化していることが必要である。そこで、図3(a)(b)に示す製造方法において、熱間押出する前にβ変態点温度以上に加熱する場合と同様に、β変態点温度以上に加熱するβ単相域熱処理を行う場合も、ビレットをβ変態点温度以下の所定の温度(表面および中心の温度(Tβ−500)〜(Tβ−80)℃、表面と中心の温度差50℃以下)にて均熱化する予加熱を行い、その後に急速加熱(昇温速度1.0℃/s以上)を行ってビレット全体をβ変態点温度以上の所定温度とし、β変態点温度以上の温度保持時間を短縮してβ単相域熱処理を行う。これにより、旧β粒径の平均を300μm以下とすることが可能となる。 Also in the case where the β single-phase region heat treatment is performed in this way, it is necessary that the billet surface and the center are uniformized to a predetermined temperature equal to or higher than the β transformation point temperature. Therefore, in the manufacturing method shown in FIGS. 3 (a) and 3 (b), β single-phase region heat treatment is performed to heat to the β transformation point temperature or higher, similarly to the case of heating to the β transformation point temperature or higher before hot extrusion. In some cases, the billet is soaked at a predetermined temperature not higher than the β transformation temperature (surface and center temperature (T β −500) to (T β −80) ° C., temperature difference between the surface and the center 50 ° C. or less). Preheating, followed by rapid heating (temperature increase rate of 1.0 ° C / s or more) to bring the entire billet to a predetermined temperature above the β transformation point temperature, and shorten the temperature holding time above the β transformation point temperature. Then, β single-phase region heat treatment is performed. Thereby, it becomes possible to make the average of the old β grain size 300 μm or less.

そして、β単相域熱処理を行った後、5℃/秒未満の冷却速度で室温まで放冷することが好ましい。これにより、反りや曲り等の塑性変形が防止され、形材内部に残留応力が生じなくなる。   And after performing beta single phase region heat treatment, it is preferable to cool to room temperature at a cooling rate of less than 5 ° C./second. As a result, plastic deformation such as warping and bending is prevented, and residual stress does not occur inside the profile.

以上が図3(c)に示す製造方法の説明であるが、それに加えて、図3(d)に示す製造方法のように、放冷後、(Tβ−500)〜(Tβ−200)℃で歪取り焼鈍を行っても良い。これにより、内部に発生した歪を除去することができ、切削等の二次加工時に発生する曲りを抑制することができる。 Although the above is description of the manufacturing method shown in FIG.3 (c), in addition to it, like the manufacturing method shown in FIG.3 (d), after standing_to_cool, (T ( beta ) -500)-(T ( beta ) -200). ) Strain relief annealing may be performed at ° C. Thereby, the distortion which generate | occur | produced inside can be removed and the curvature which generate | occur | produces at the time of secondary processes, such as cutting, can be suppressed.

なお、上述したように、本発明のα+β型チタン合金押出形材はこれらの製造方法のみで得られるものではない。例えば、図3(c)、(d)に示す製造方法において、押出加工をβ変態点温度以上で行っても良い。また、拡散焼鈍は、押出加工後の冷却中やβ単相域熱処理後の冷却中に連続して行っても良い。   As described above, the α + β type titanium alloy extruded shape of the present invention is not obtained only by these production methods. For example, in the manufacturing method shown in FIGS. 3C and 3D, the extrusion process may be performed at the β transformation temperature or higher. Further, the diffusion annealing may be continuously performed during cooling after the extrusion process or during cooling after the β single-phase region heat treatment.

押出形材において、(1)式の値を25以下とするためには、先端部、後端部の抜熱を勘案して、ビレット5が接触するコンテナ1、ステム2、ダミーブロック3、ダイス4の温度や接触時間、熱容量から、抜熱量を計算し、抜熱量により低下する温度分を予め補償する加熱を先端部、後端部において行い、両者に温度勾配を付与する。   In order to reduce the value of the expression (1) to 25 or less in the extruded shape, the container 1, the stem 2, the dummy block 3, the die contacted with the billet 5 in consideration of heat removal at the front end and the rear end. The amount of heat removal is calculated from the temperature, contact time, and heat capacity of No. 4, and heating that compensates in advance for the temperature that decreases due to the amount of heat removal is performed at the front end and rear end, and a temperature gradient is applied to both.

真空アークで2回溶解して得られるφ700mm、重さ5トンで表1に示す成分組成のTi−5Al−2Fe-3Moインゴットを、α+β温度領域で面積減少率60%まで熱間鍛造し、得られたビレットの表面酸化層を切削して、押出用ビレットとした。   Obtained by hot forging a Ti-5Al-2Fe-3Mo ingot having a composition shown in Table 1 with a diameter of 700 mm and a weight of 5 tons obtained by melting twice in a vacuum arc to an area reduction rate of 60% in the α + β temperature region. The surface oxidized layer of the billet was cut to obtain an extrusion billet.

製造方法(a)、(b)については、このビレットを、Arガス雰囲気で700℃(表面と中心の温度差が5℃)に予加熱した後、昇温速度1.3℃/sで昇温し、表2に示す製造条件で凸型断面形状に押出加工を行った後、室温まで放冷した。製造方法(b)については、その後、この熱押形材を表2に示す条件で歪取り焼鈍した。製造方法(c)、(d)については、表2に示した押出温度で押し出した押出形材を、誘導加熱により、Arガス雰囲気で700℃(表面と中心の温度差が5℃)に予加熱した後、昇温速度1.3℃/sで昇温し、表3に示したβ単相域熱処理を行った。製造方法(d)については、その後、この熱押形材を表2に示す条件で歪取り焼鈍した。表2中の誘導加熱「あり」とは、(a)、(b)の場合は、押出加工前の予加熱において誘導加熱を行ったことを意味し、(c)、(d)の場合は、β単相域熱処理前の予加熱において、誘導加熱を行ったことを意味する。なお、押出温度は、ビレットの最先端から110mmの位置で測定した温度である。   For the manufacturing methods (a) and (b), the billet was preheated to 700 ° C. in an Ar gas atmosphere (temperature difference between the surface and the center was 5 ° C.) and then increased at a rate of temperature increase of 1.3 ° C./s. After heating and extruding into a convex cross-sectional shape under the production conditions shown in Table 2, it was allowed to cool to room temperature. Regarding the manufacturing method (b), the hot stamped material was then subjected to strain relief annealing under the conditions shown in Table 2. For the production methods (c) and (d), the extruded shape extruded at the extrusion temperature shown in Table 2 was preliminarily heated to 700 ° C. in an Ar gas atmosphere (the temperature difference between the surface and the center was 5 ° C.) by induction heating. After heating, the temperature was raised at a rate of temperature rise of 1.3 ° C./s, and the β single-phase region heat treatment shown in Table 3 was performed. Regarding the production method (d), the hot-pressed material was then subjected to strain relief annealing under the conditions shown in Table 2. In the case of (a) and (b), “with” induction heating in Table 2 means that induction heating was performed in preheating before extrusion, and in the cases of (c) and (d) This means that induction heating was performed in the preheating before the β single phase region heat treatment. In addition, extrusion temperature is the temperature measured in the position of 110 mm from the most advanced billet.

<引張試験>
この熱押形材の図4に示す位置からASTM E8 ハーフサイズ引張試験片(平行部φ6.35mm、ゲージ長25mm)を得た。引張試験により、0.2%耐力、引張強度、破断伸びを測定した。
<Tensile test>
An ASTM E8 half-size tensile test piece (parallel portion φ6.35 mm, gauge length 25 mm) was obtained from the position shown in FIG. 4 of the hot stamped material. 0.2% proof stress, tensile strength, and elongation at break were measured by a tensile test.

<組織観察試験>
引張試験片の採取位置と同一の位置から組織観察試験片を採取し、L断面について、光学顕微鏡観察写真を用いて組織観察を行った。旧β粒径は、切断法で円相当直径を測定し、3mm×6mm(粒数最小約200個)の平均を求めた。
粒界α相の平均最大幅についても、前述のように、図4に示された押出形材断面において、光学顕微鏡による組織観察位置で確認される旧β粒を任意に5つ選び、各々の粒界α相の最大幅を測定する。旧β粒を選択する際、隣接し合う旧β粒を選択することは避ける。そして、5つの最大幅の平均値を粒界α相の平均最大幅として求めた。
<Tissue observation test>
A structure observation test piece was collected from the same position as the position where the tensile test piece was collected, and the L section was subjected to structure observation using an optical microscope observation photograph. For the old β particle size, the equivalent circle diameter was measured by a cutting method, and the average of 3 mm × 6 mm (minimum number of particles: about 200) was obtained.
Regarding the average maximum width of the grain boundary α phase, as described above, in the cross section of the extruded shape shown in FIG. 4, arbitrarily select five old β grains confirmed at the structure observation position by the optical microscope, The maximum width of the grain boundary α phase is measured. When selecting old β grains, avoid selecting adjacent old β grains. Then, the average value of the five maximum widths was determined as the average maximum width of the grain boundary α phase.

<組織分布>
等軸組織部と針状組織部はマクロ組織観察により判断できる。マクロ組織は二つの領域に分けられ、金属光沢の強い領域と、白く見える光沢の低い領域である。いずれの領域も、マクロエッチングにより生じた表面の凹凸で光が反射して金属光沢が生じる。しかしながら、細粒の等軸α粒を含む領域では、針状組織の領域に比べて表面に生じる凹凸が細かく、光が乱反射する。そのため、等軸組織の領域は、針状組織の領域に比べて白く見える。組織分布は、全体長さ4000mmの形材を200mmごとに分割した断面(最先端部の端面を含む)を調査した。
<Tissue distribution>
The equiaxed tissue part and the acicular tissue part can be determined by macro-structure observation. The macro structure is divided into two regions: a region with a strong metallic luster and a region with a low gloss that appears white. In any region, the light is reflected by the unevenness of the surface caused by the macro etching, resulting in a metallic luster. However, in the region containing fine equiaxed α-grains, the unevenness generated on the surface is finer than the region of the needle-like tissue, and light is irregularly reflected. Therefore, the equiaxed tissue region appears white compared to the acicular tissue region. Regarding the tissue distribution, a cross section (including the end face of the most advanced portion) obtained by dividing a shape member having a total length of 4000 mm every 200 mm was examined.

<疲労試験>
疲労強度は、丸棒試験片を用い、応力比R=σmin/σmax=−1(σminは圧縮応力、σmaxは引張応力)、繰り返し速度3600rpm、室温の条件で回転曲げ疲労試験を行い、繰り返し数1.0×10回で破断しなかった強度σmaxの最大値を疲労強度とした。
<Fatigue test>
Fatigue strength was measured using a round bar test piece, a stress ratio R = σmin / σmax = −1 (σmin is a compressive stress, σmax is a tensile stress), a rotational speed of 3600 rpm, a room temperature, and a rotating bending fatigue test. The maximum value of strength σmax that did not break at 1.0 × 10 7 times was defined as fatigue strength.

<反り>
反りは、図5に示すように、形材押出長手方向の両端を結ぶ直線に対して、形材中央部における距離を反りと定義した。なお、実際の測定は、形材両端のA点(図4)に紐を取り付けて実施した。
<Warpage>
As shown in FIG. 5, the warp was defined as a warp in the center of the shape with respect to a straight line connecting both ends of the shape extrusion longitudinal direction. The actual measurement was performed by attaching a string to point A (FIG. 4) at both ends of the profile.

表2中の下線が付されたものは本発明の範囲外であり、また、表2において、製造方法のパターンは図3の(a)〜(d)のいずれかを示し、冷却速度は図4に示すAの位置で測定した。なお、0.2%耐力は900MPa以上、伸びは10%以上、疲労強度は550MPa以上および反りは、9mm(1000mmあたり2.25mm)以下を好ましい範囲とした。   Those underlined in Table 2 are outside the scope of the present invention, and in Table 2, the pattern of the manufacturing method indicates any one of (a) to (d) in FIG. Measurement was performed at the position A shown in FIG. The preferable range was 0.2% proof stress of 900 MPa or more, elongation of 10% or more, fatigue strength of 550 MPa or more, and warpage of 9 mm (2.25 mm per 1000 mm) or less.

比較例の試験番号12は、誘導加熱後のビレット温度が(Tβ+200)℃を超えたた
め、比較例の試験番号13は、β単相域熱処理の温度が(Tβ+200)℃を超えたため
、いずれも押出後にTβ以上の温度に保持されている間にβ粒が成長した。その結果、押出後の再結晶核生成サイトが減少し、旧β粒径の平均が300μmを超え、0.2%耐力が900MPaを、疲労強度が550MPaを下回った。
Test No. 12 of the comparative example, since the billet temperature after induction heating exceeds (T β +200) ℃, Test No. 13 of the comparative example, the temperature of the beta single phase region heat treatment the (T β +200) ℃ In both cases, β grains grew while being held at a temperature equal to or higher than T β after extrusion. As a result, the recrystallization nucleation sites after extrusion decreased, the average of the old β grain size exceeded 300 μm, the 0.2% proof stress was 900 MPa, and the fatigue strength was less than 550 MPa.

比較例の試験番号14は急速加熱を行わずにビレットの加熱を行ったため、押出前にβ粒が粗大化し、押出後の再結晶核生成サイトが少なかったために、押出後の旧β粒径の平均も300μmを越えた。このため、0.2%耐力が900MPaを、疲労強度が550MPaを下回った。   In the test number 14 of the comparative example, since the billet was heated without rapid heating, β grains were coarsened before extrusion, and there were few recrystallization nucleation sites after extrusion. The average also exceeded 300 μm. For this reason, the 0.2% proof stress was 900 MPa and the fatigue strength was less than 550 MPa.

比較例の試験番号15、16は、従来のTi−6Al−4V合金で製造した熱押形材である。いずれも0.2%耐力は900MPa、疲労強度が550MPaを下回った。   Test numbers 15 and 16 of the comparative examples are hot stamping materials manufactured with a conventional Ti-6Al-4V alloy. In both cases, the 0.2% proof stress was 900 MPa, and the fatigue strength was less than 550 MPa.

本発明の試験番号11は、β変態点温度以上で押出後、水冷による強制冷却を施して製造した。本発明の試験番号1〜4に比べて、旧β粒径が小さいものの、粒界α相の平均最大幅が小さいため、本発明の引張特性を有する。ただし、他の本発明に比べてβ単相域熱処理後の冷却速度が速いため形材の反りが大きく、実際の使用にあたっては矯正などの後処理が必要である。   Test No. 11 of the present invention was produced by extruding at a temperature equal to or higher than the β transformation temperature and then forced cooling by water cooling. Compared to Test Nos. 1 to 4 of the present invention, although the old β grain size is small, the average maximum width of the grain boundary α phase is small, and therefore, it has the tensile characteristics of the present invention. However, since the cooling rate after the β single-phase region heat treatment is higher than that of other present inventions, the warping of the shape is large, and post-treatment such as correction is required for actual use.

試験番号17は、押出後の冷却速度が遅く、粒界α相の平均最大幅が5μmを超えたため、0.2%耐力は900MPaを下回るとともに、伸びも10%を下回った。   In Test No. 17, the cooling rate after extrusion was slow, and the average maximum width of the grain boundary α phase exceeded 5 μm, so the 0.2% proof stress was less than 900 MPa and the elongation was also less than 10%.

一方、本発明例である試験番号1〜11は、いずれの合金成分においても0.2%耐力が900MPa以上、疲労強度550MPa以上で、かつ、伸びが10%を上回り、良好な特性を有した。   On the other hand, Test Nos. 1 to 11, which are examples of the present invention, had good characteristics with 0.2% proof stress of 900 MPa or more, fatigue strength of 550 MPa or more, and elongation exceeding 10% in any alloy components. .

次に、押出形材において、押出方向での旧β粒の大きさの差を低減させ、押出方向での機械的特性の均一化を試みた。
製造条件と、結果を表3に示した。試験番号18〜23では、a〜dの製造方法を遵守しつつ、押出前のビレット加熱の際に、ビレットの先端と後端で温度勾配を与え、ダイス等による抜熱の補償を行った。これらは、ビレット先後端の温度勾配「あり」と記載した。一方、試験番号24、25は、aの製造方法を遵守したものの、抜熱分の熱の補償を行わなかった。これらは、ビレット先後端の温度勾配「なし」と記載した。
先端部、後端部の旧β粒径の平均の測定、先端部、後端部の耐力、伸びを測定するための試験片の採取は、先後端よりそれぞれ300mmの位置で行った。
Next, in the extruded shape, an attempt was made to reduce the difference in the size of the old β grains in the extrusion direction and to make the mechanical properties uniform in the extrusion direction.
The production conditions and the results are shown in Table 3. In Test Nos. 18 to 23, a temperature gradient was given at the front and rear ends of the billet during billet heating before extrusion while observing the manufacturing methods a to d, and heat removal due to a die or the like was compensated. These are described as “Yes” in the temperature gradient of the billet tip and tail. On the other hand, Test Nos. 24 and 25 did not perform heat compensation for the extracted heat, although the manufacturing method a was observed. These are described as “none” temperature gradient at the tip and rear ends of the billet.
The average measurement of the old β grain size at the front end and the rear end, and the collection of test pieces for measuring the yield strength and elongation at the front end and the rear end were performed at a position of 300 mm from the front and rear ends.

試験番号18〜23では、表3に示したように、抜熱による温度低下を補償するために、先端部と後端部の押出加熱温度に勾配を付与したことにより、押出形材の先端部と後端部の旧β粒径の平均の差を小さくすることができた。その結果、押出形材の押出方向の機械的特性を均質化することができた。一方、試験番号23、24は、各部での耐力、伸びともに好ましい値を上回ったものの、押出方向の旧β粒径の平均の差が大きく、機械的特性に差が現れた。
なお、試験番号1〜17は、先端部と後端部の押出加熱温度に勾配を付与していない。
In Test Nos. 18 to 23, as shown in Table 3, in order to compensate for the temperature drop due to heat removal, a gradient was given to the extrusion heating temperature of the front end portion and the rear end portion. And the average difference in the old β grain size at the rear end could be reduced. As a result, it was possible to homogenize the mechanical properties of the extruded shape in the extrusion direction. On the other hand, in Test Nos. 23 and 24, although both the yield strength and elongation at each part exceeded the preferred values, the average difference in the old β grain size in the extrusion direction was large, and a difference in mechanical properties appeared.
In Test Nos. 1 to 17, a gradient is not given to the extrusion heating temperature at the front end and the rear end.

本発明によれば、形材の金属組織を旧β粒径が300μm以下の針状組織に制御することで、実用上で問題のない引張特性を備え、かつ、強制冷却をおこなった場合に比べて、形状の良好な形材をえることができる。従って、冷却装置や形状矯正コストを削減できるので、産業上特に有用である。また、本発明のα+β型チタン合金押出形材は、残留応力も少なく、組織のばらつきがないため、機械加工中の曲りが小さく、疲労強度が良いため、航空機等の用途に有用である。   According to the present invention, by controlling the metal structure of the profile to an acicular structure with an old β particle size of 300 μm or less, it has tensile properties that are not problematic in practice, and compared to when forced cooling is performed. Thus, a shape having a good shape can be obtained. Therefore, the cooling device and the shape correction cost can be reduced, which is particularly useful in the industry. In addition, the α + β type titanium alloy extruded shape of the present invention has little residual stress and no variation in structure, so that it is less bent during machining and has good fatigue strength, so it is useful for applications such as aircraft. .

1 コンテナ
2 ステム
3 ダミーブロック
4 ダイス
5 ビレット
6 形材
11 押出方向
1 Container 2 Stem 3 Dummy block 4 Die 5 Billet 6 Profile 11 Extrusion direction

Claims (4)

質量%で、Al:4.4〜5.5%、Fe:1.4〜2.3%、Mo:1.5〜5.5%、O:0%超0.20%以下、C:0%超0.08%以下、N:0%超0.05%以下、Si:0%超0.1%以下を含有し、更に選択的に、Ni:0%以上0.15%未満、Cr:0%以上0.25%未満、Mn:0%以上0.25%未満のうち1種または2種以上含有し、残部がTiおよび合計量0.4%以下の不純物であり、1.4%≦[Fe]+[Ni]+[Cr]+[Mn]≦2.3%の関係を満たし、金属組織が針状組織からなり、旧β粒径の平均が300μm以下である、α+β型チタン合金押出形材。なお、ここで[Fe]、[Ni]、[Cr]および[Mn]は各含有成分の質量%を示す。   In mass%, Al: 4.4 to 5.5%, Fe: 1.4 to 2.3%, Mo: 1.5 to 5.5%, O: more than 0% and 0.20% or less, C: More than 0% and 0.08% or less, N: more than 0% and 0.05% or less, Si: more than 0% and 0.1% or less, more selectively, Ni: 0% or more and less than 0.15%, One or more of Cr: 0% or more and less than 0.25% and Mn: 0% or more and less than 0.25%, with the balance being Ti and a total amount of impurities of 0.4% or less. Α + β satisfying the relationship of 4% ≦ [Fe] + [Ni] + [Cr] + [Mn] ≦ 2.3%, the metal structure is a needle-like structure, and the average of the old β particle diameter is 300 μm or less. Type titanium alloy extruded shape. Here, [Fe], [Ni], [Cr] and [Mn] indicate mass% of each component. 旧β粒径の平均が250μm以下である、請求項1に記載のα+β型チタン合金押出形材。   The α + β type titanium alloy extruded profile according to claim 1, wherein the average of the old β grain size is 250 µm or less. 粒界α相の平均最大幅が5μm以下である、請求項1または請求項2に記載のα+β型チタン合金押出形材。   The α + β-type titanium alloy extruded profile according to claim 1 or 2, wherein the average maximum width of the grain boundary α phase is 5 µm or less. 押出形材の押出方向に垂直なある一断面の旧β粒の平均粒径d(m)と、前記一断面に平行で、前記一断面から押出方向に距離L(m)離れた押出形材の別の一断面の旧β粒の平均粒径d(m)によって計算される下記(1)式の値が、25以下であることを特徴とする請求項1〜請求項3のいずれか一項に記載のα+β型チタン合金押出形材。
|(d−d)/L|×10 (1)
An average particle diameter d 1 (m) of an old β grain having a cross section perpendicular to the extruding direction of the extruded profile, and an extruding shape that is parallel to the one cross section and separated from the one cross section by a distance L (m) in the extruding direction. The value of the following formula (1) calculated by the average particle diameter d 2 (m) of the old β grains in another cross section of the material is 25 or less, any one of claims 1 to 3 The α + β type titanium alloy extruded shape according to any one of the above items.
| (D 1 −d 2 ) / L | × 10 6 (1)
JP2018043259A 2017-03-15 2018-03-09 α + β type titanium alloy extruded profile Active JP7087476B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049505 2017-03-15
JP2017049505 2017-03-15

Publications (2)

Publication Number Publication Date
JP2018154922A true JP2018154922A (en) 2018-10-04
JP7087476B2 JP7087476B2 (en) 2022-06-21

Family

ID=63715737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043259A Active JP7087476B2 (en) 2017-03-15 2018-03-09 α + β type titanium alloy extruded profile

Country Status (1)

Country Link
JP (1) JP7087476B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085586A1 (en) * 2017-11-09 2020-04-30 한국기계연구원 Titanium alloy with high strength and high ductility comprising elements with melting points of 1,900℃ or lower
WO2022137334A1 (en) * 2020-12-22 2022-06-30 日本製鉄株式会社 Titanium alloy member and method of producing titanium alloy member
CN115229205A (en) * 2022-07-18 2022-10-25 中国第二重型机械集团德阳万航模锻有限责任公司 Method for manufacturing beta titanium alloy with double lamellar structures by electron beam additive manufacturing
WO2023127073A1 (en) * 2021-12-28 2023-07-06 日本製鉄株式会社 α+β TYPE TITANIUM ALLOY SHAPED MATERIAL AND MANUFACTURING METHOD THEREOF
JP7448776B2 (en) 2019-11-14 2024-03-13 日本製鉄株式会社 Titanium alloy thin plate and method for producing titanium alloy thin plate
JP7448777B2 (en) 2019-11-19 2024-03-13 日本製鉄株式会社 Production method of α+β type titanium alloy bar and α+β type titanium alloy bar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184683A (en) * 1992-10-21 1994-07-05 Nippon Steel Corp Titanium alloy wire suitable for producing valve and its production
JPH07180011A (en) * 1993-12-22 1995-07-18 Nkk Corp Production of alpha+beta type titanium alloy extruded material
JP2012126944A (en) * 2010-12-14 2012-07-05 Nippon Steel Corp α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS OF <75 GPa, AND METHOD FOR PRODUCING THE SAME
WO2016084980A1 (en) * 2014-11-28 2016-06-02 新日鐵住金株式会社 Titanium alloy member and method of manufacturing titanium alloy member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184683A (en) * 1992-10-21 1994-07-05 Nippon Steel Corp Titanium alloy wire suitable for producing valve and its production
JPH07180011A (en) * 1993-12-22 1995-07-18 Nkk Corp Production of alpha+beta type titanium alloy extruded material
JP2012126944A (en) * 2010-12-14 2012-07-05 Nippon Steel Corp α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS OF <75 GPa, AND METHOD FOR PRODUCING THE SAME
WO2016084980A1 (en) * 2014-11-28 2016-06-02 新日鐵住金株式会社 Titanium alloy member and method of manufacturing titanium alloy member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085586A1 (en) * 2017-11-09 2020-04-30 한국기계연구원 Titanium alloy with high strength and high ductility comprising elements with melting points of 1,900℃ or lower
JP7448776B2 (en) 2019-11-14 2024-03-13 日本製鉄株式会社 Titanium alloy thin plate and method for producing titanium alloy thin plate
JP7448777B2 (en) 2019-11-19 2024-03-13 日本製鉄株式会社 Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
WO2022137334A1 (en) * 2020-12-22 2022-06-30 日本製鉄株式会社 Titanium alloy member and method of producing titanium alloy member
WO2023127073A1 (en) * 2021-12-28 2023-07-06 日本製鉄株式会社 α+β TYPE TITANIUM ALLOY SHAPED MATERIAL AND MANUFACTURING METHOD THEREOF
CN115229205A (en) * 2022-07-18 2022-10-25 中国第二重型机械集团德阳万航模锻有限责任公司 Method for manufacturing beta titanium alloy with double lamellar structures by electron beam additive manufacturing
CN115229205B (en) * 2022-07-18 2023-12-19 中国第二重型机械集团德阳万航模锻有限责任公司 Method for manufacturing double-lamellar structure beta titanium alloy by electron beam additive

Also Published As

Publication number Publication date
JP7087476B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP7087476B2 (en) α + β type titanium alloy extruded profile
JP6176425B1 (en) α + β type titanium alloy extrusion
CN101855376B (en) Al-Cu-Li alloy product suitable for aerospace application
JP7119840B2 (en) α+β type titanium alloy extruded shape
CN103348029B (en) The wearability titanium alloy member of fatigue strength excellence
EP2660348B1 (en) Die steel having superior rusting resistance and thermal conductivity, and method for producing same
JP2020500108A (en) Gear rack steel plate having a maximum thickness of 177.8 mm manufactured by continuous casting billet and method for manufacturing the same
CN110468361B (en) Preparation method of deformed high-temperature alloy fine-grain bar
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
JP6871938B2 (en) An improved way to finish extruded titanium products
CN111868287A (en) Method for producing Ni-based superalloy and Ni-based superalloy
CN113430403B (en) Method for preparing high-strength and high-toughness rare earth magnesium alloy through pre-aging
CN116000134B (en) GH4738 alloy cold drawn bar and preparation method and application thereof
JP4340754B2 (en) Steel having high strength and excellent cold forgeability, and excellent molded parts such as screws and bolts or shafts having excellent strength, and methods for producing the same.
WO2020031579A1 (en) Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
JP5904409B2 (en) Manufacturing method of steel materials for molds with excellent toughness
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
JP2017078206A (en) α+β TYPE TITANIUM ALLOY HOT EXTRUSION SHAPE MATERIAL HAVING UNIFORM ACICULAR STRUCTURE AND EXCELLENT IN TENSILE PROPERTY
JP7151116B2 (en) α+β type titanium alloy extruded shape
JP6673123B2 (en) α + β type titanium alloy hot extruded material and method for producing the same
JP5150978B2 (en) High-strength steel with excellent cold forgeability, and excellent strength parts such as screws and bolts or molded parts such as shafts
JP2016023315A (en) Titanium plate and manufacturing method therefor
JP7372532B2 (en) Titanium alloy round rod and connecting rod
JP6345016B2 (en) Aluminum alloy plate for hot forming and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7087476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151