JP2018154549A - Silver oxide, silver oxide cake and manufacturing method of silver oxide - Google Patents

Silver oxide, silver oxide cake and manufacturing method of silver oxide Download PDF

Info

Publication number
JP2018154549A
JP2018154549A JP2018033393A JP2018033393A JP2018154549A JP 2018154549 A JP2018154549 A JP 2018154549A JP 2018033393 A JP2018033393 A JP 2018033393A JP 2018033393 A JP2018033393 A JP 2018033393A JP 2018154549 A JP2018154549 A JP 2018154549A
Authority
JP
Japan
Prior art keywords
silver oxide
silver
aqueous solution
solution
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018033393A
Other languages
Japanese (ja)
Other versions
JP7052411B2 (en
Inventor
広隆 平野
Hirotaka Hirano
広隆 平野
琢磨 片瀬
Takuma Katase
琢磨 片瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2018154549A publication Critical patent/JP2018154549A/en
Application granted granted Critical
Publication of JP7052411B2 publication Critical patent/JP7052411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide silver oxide hardly varying a composition or pH of a plating liquid when dissolved in the plating liquid and hardly changing plating properties, a silver oxide cake and a manufacturing method of the silver oxide.SOLUTION: The silver oxide has content of residual acid of 100 mass.ppm or less, and content of Na, K, Ca, Mg, Li of 100 mass.ppm or less as total. The silver oxide cake contains the silver oxide and water. The manufacturing method of the silver oxide has a process for preparing a reaction tank accommodating pure water, a silver salt solution and an alkali solution; and a process for depositing silver oxide particles by adding the silver oxide solution and the alkali solution to the reaction tank with adjusting pH of a mixture of the pure water, the silver salt solution and the alkali solution in the reaction tank to a range of 5.0 to 8.0.SELECTED DRAWING: None

Description

本発明は、酸化銀、ケーキおよび酸化銀の製造方法に関する。   The present invention relates to a method for producing silver oxide, cake and silver oxide.

Agは、Sn−Ag合金などのめっきの材料として利用されている。Sn−Ag合金を電解めっきする場合、アノードにSnを用いると、AgはSnより貴であるために、アノード面にAgが置換析出する。このAgの析出を避けるため、Pt等の不溶性アノードを用いてアノード側で水素を発生させ、カソード側でSn−Ag合金を電解めっきすることが行われている。   Ag is used as a plating material such as Sn—Ag alloy. In the case where Sn—Ag alloy is electrolytically plated, when Sn is used for the anode, Ag is deposited on the anode surface because Ag is nobler than Sn. In order to avoid the precipitation of Ag, hydrogen is generated on the anode side using an insoluble anode such as Pt, and Sn-Ag alloy is electroplated on the cathode side.

ところで、Sn−Ag合金を連続的に電解めっきにより生成させるためには、めっき液にSn成分とAg成分とを補給して、めっき液中のSnとAgの濃度を一定に維持することが必要となる。Sn成分の補給方法としては、イオン交換膜を用いたSnアノードによる補給方法、Snの高濃度溶液の添加、酸化第一錫での補給等があり、最も簡単かつめっき液の組成を崩さずに補給できる方法として酸化第一錫によるSn成分の補給が注目されている。また、Ag成分の補給方法としては、Agの高濃度溶液の添加による方法が利用されている。   By the way, in order to continuously produce the Sn—Ag alloy by electrolytic plating, it is necessary to replenish the plating solution with the Sn component and the Ag component and maintain the concentration of Sn and Ag in the plating solution constant. It becomes. As a replenishment method of the Sn component, there are a replenishment method by an Sn anode using an ion exchange membrane, addition of a high concentration solution of Sn, replenishment with stannous oxide, etc., and the simplest and without destroying the composition of the plating solution As a method for replenishment, replenishment of Sn component with stannous oxide has attracted attention. As a method for replenishing the Ag component, a method using a high concentration solution of Ag is used.

一方、Agの酸化物である酸化銀は、比較的低温での加熱によって還元してAgを生成することから、導電性ペースト用のフィラーとして利用されている。
特許文献1には、導電性ペースト用のフィラーとして有用な酸化銀微粒子の製造方法として、pHを12程度のアルカリ性に調整した水溶液中に、銀塩を6mol/L以下の量で含む水溶液と、この銀塩に対し1mol当量以上のアルカリを含む水溶液とを同時投入して反応を行い、一次粒子の小さな酸化銀微粒子を析出させる方法が記載されている。
On the other hand, silver oxide which is an oxide of Ag is used as a filler for conductive paste because it is reduced by heating at a relatively low temperature to produce Ag.
In Patent Document 1, as a method for producing silver oxide fine particles useful as a filler for conductive paste, an aqueous solution containing a silver salt in an amount of 6 mol / L or less in an aqueous solution adjusted to an alkaline pH of about 12, A method is described in which silver oxide fine particles having small primary particles are precipitated by simultaneously adding an aqueous solution containing an alkali of 1 mol equivalent or more to the silver salt to react.

特開2012−176892号公報JP 2012-176892 A

ところで、めっき液の補給材として利用する化合物は、比較的容易にめっき液に溶解し、かつ多量にめっき液に加えてもめっき液の特性を変化させないものであることが好ましい。しかしながら、Agは硝酸や硫酸などの無機酸には容易に溶解するが、めっき液のアニオン成分として広く利用されているメタンスルホン酸などのスルホン酸系の有機酸には溶解しにくいという問題がある。また、硝酸銀や硫酸銀などの銀無機塩はめっき液に溶解しやすいが、硝酸イオンや硫酸イオン等のAgの対イオン(カウンターイオン)が蓄積されて、めっき液の特性が変化するおそれがあった。
また、Agの高濃度溶液をめっき浴に添加してAgを補給する場合、水分や酸成分がAgと同時に添加されるため、めっき浴の液を抜いてAg濃度を調整する必要があり、連続的にAgを補給することはできない。このため、Agの補給作業に時間がかかり、連続的にめっきを行う場合の効率が悪かった。
By the way, it is preferable that the compound used as a replenisher for the plating solution is one that dissolves in the plating solution relatively easily and does not change the characteristics of the plating solution even when added to the plating solution in a large amount. However, Ag easily dissolves in inorganic acids such as nitric acid and sulfuric acid, but has a problem that it is difficult to dissolve in sulfonic acid-based organic acids such as methanesulfonic acid that are widely used as anion components of plating solutions. . Further, silver inorganic salts such as silver nitrate and silver sulfate are easily dissolved in the plating solution, but there is a possibility that Ag counter ions (counter ions) such as nitrate ions and sulfate ions are accumulated, and the characteristics of the plating solution may be changed. It was.
In addition, when Ag is replenished by adding a high concentration solution of Ag to the plating bath, moisture and acid components are added simultaneously with Ag. Therefore, it is necessary to remove the solution from the plating bath and adjust the Ag concentration. Ag cannot be replenished. For this reason, it took time for the replenishment of Ag, and the efficiency in the case of continuous plating was poor.

一方、酸化銀は、スルホン酸系の有機酸に溶解させやすく、また硝酸銀や硫酸銀などの銀無機塩の場合と異なり、めっき液に無機塩が蓄積しないという利点があり、めっき液の組成を変動させずにAg成分のみを連続的に補給することができ、連続的にめっきを行う場合の効率が良くなる。
しかしながら、特許文献1に記載されているように、アルカリ性に調整した水溶液中に、銀塩の水溶液とアルカリ性の水溶液とを同時投入する方法によって得られた酸化銀微粒子はアルカリ性に調整した水溶液由来の不純物を含みやすい。このような酸化銀をAg成分の補給材として用いると、めっき液に不純物が蓄積されて、めっき液のpHが変動し、長期間にわたって安定にSn−Ag合金めっきを行うことが難しくなるおそれがある。
On the other hand, silver oxide is easy to dissolve in sulfonic acid organic acids, and unlike silver inorganic salts such as silver nitrate and silver sulfate, it has the advantage that inorganic salts do not accumulate in the plating solution. Only the Ag component can be continuously replenished without fluctuation, and the efficiency in the case of continuous plating is improved.
However, as described in Patent Document 1, silver oxide fine particles obtained by a method in which an aqueous solution of silver salt and an alkaline aqueous solution are simultaneously added to an aqueous solution adjusted to alkaline are derived from an aqueous solution adjusted to alkaline. Easy to contain impurities. When such silver oxide is used as a replenisher for the Ag component, impurities are accumulated in the plating solution, the pH of the plating solution may fluctuate, and it may be difficult to perform Sn-Ag alloy plating stably over a long period of time. is there.

この発明は、前述した事情に鑑みてなされたものであって、めっき液に溶解させても、そのめっき液の組成やpHを変動させにくく、めっき特性(例えば、めっきされたAgの組成バラつきやめっき高さの均一性等)を変化させにくい酸化銀、酸化銀ケーキおよび酸化銀の製造方法を提供することにある。   The present invention has been made in view of the above-described circumstances, and even when dissolved in a plating solution, the composition and pH of the plating solution are difficult to change, and plating characteristics (for example, the composition variation of plated Ag and An object of the present invention is to provide a silver oxide, a silver oxide cake, and a method for producing silver oxide, which are difficult to change the uniformity of plating height.

上記の課題を解決するために、本発明の酸化銀は、残留酸の含有量が100質量ppm以下であり、かつ、Na,K,Ca,Mg,Liの含有量が合計で100質量ppm以下であることを特徴としている。
本発明において、残留酸の含有量は、次のように定義される。
酸化銀をメタンスルホン酸水溶液(メタンスルホン酸濃度:60質量%)に溶解させて銀−メタンスルホン酸溶液を調製し、イオンクロマトグラムを用いて、この銀−メタンスルホン酸溶液に含まれる陰イオン(マトリックスとして含まれるメタンスルホン酸イオンを除く)のピークを検出し、検出されたピークに該当する成分の総量から酸化銀に含まれるメタンスルホン酸以外の酸の量を求める。次に、酸化銀を硝酸に溶解させて銀−硝酸溶液を調製し、イオンクロマトグラムを用いて、この銀−硝酸溶液に含まれるメタンスルホン酸のピークを検出し、検出されたピークから、酸化銀に含まれるメタンスルホン酸の量を求める。そして、酸化銀に含まれるメタンスルホン酸以外の酸の量と酸化銀に含まれるメタンスルホン酸の量の合計量を、残留酸の含有量とする。
このような構成とされた本発明の酸化銀は、残留酸の含有量が100質量ppm以下であり、かつ、Na,K,Ca,Mg,Liの含有量が合計で100質量ppm以下とされているので、めっき液に多量に溶解させても、めっき液の組成やpHを変動させにくく、めっき特性を変化させにくい。
In order to solve the above problems, the silver oxide of the present invention has a residual acid content of 100 mass ppm or less and a total content of Na, K, Ca, Mg, Li of 100 mass ppm or less. It is characterized by being.
In the present invention, the residual acid content is defined as follows.
Silver oxide is dissolved in a methanesulfonic acid aqueous solution (methanesulfonic acid concentration: 60% by mass) to prepare a silver-methanesulfonic acid solution, and an anion contained in the silver-methanesulfonic acid solution using an ion chromatogram. The peak (excluding methanesulfonic acid ions contained as a matrix) is detected, and the amount of acid other than methanesulfonic acid contained in silver oxide is determined from the total amount of components corresponding to the detected peak. Next, silver oxide is dissolved in nitric acid to prepare a silver-nitric acid solution, and an ion chromatogram is used to detect the peak of methanesulfonic acid contained in the silver-nitric acid solution. From the detected peak, oxidation is performed. The amount of methanesulfonic acid contained in silver is determined. Then, the total amount of the acid other than methanesulfonic acid contained in the silver oxide and the amount of methanesulfonic acid contained in the silver oxide is defined as the residual acid content.
The silver oxide of the present invention having such a structure has a residual acid content of 100 mass ppm or less and a total content of Na, K, Ca, Mg, Li is 100 mass ppm or less. Therefore, even if a large amount is dissolved in the plating solution, it is difficult to change the composition and pH of the plating solution, and it is difficult to change the plating characteristics.

本発明の酸化銀ケーキは、上述の酸化銀と水とを含有することを特徴としている。
このような構成とされた本発明の酸化銀ケーキは、上述の酸化銀を含むので、めっき液に多量に溶解させても、めっき液の組成やpHを変動させにくく、めっき特性を変化させにくい。また、酸化銀ケーキは、水分を含むので、乾燥した粉末と比較して飛散しにくく、作業性が向上する。さらに、酸化銀ケーキは、めっき液に投入したときは分散しやすく、めっき液に対する酸化銀の溶解速度が向上する。
The silver oxide cake of the present invention is characterized by containing the above-mentioned silver oxide and water.
Since the silver oxide cake of the present invention having such a structure contains the above-mentioned silver oxide, even if it is dissolved in a large amount in the plating solution, it is difficult to change the composition and pH of the plating solution, and it is difficult to change the plating characteristics. . Moreover, since a silver oxide cake contains a water | moisture content, it is hard to disperse | distribute compared with the dry powder, and workability | operativity improves. Furthermore, the silver oxide cake is easy to disperse when introduced into the plating solution, and the dissolution rate of silver oxide in the plating solution is improved.

ここで、本発明の酸化銀ケーキにおいては、含水率が1質量%以上20質量%以下の範囲内にあることが好ましい。
この場合、めっき液に投入したときの分散性が確実に高くなるので、めっき液に対する酸化銀の溶解速度をより向上させることができる。
Here, in the silver oxide cake of this invention, it is preferable that a moisture content exists in the range of 1 mass% or more and 20 mass% or less.
In this case, the dispersibility when introduced into the plating solution is reliably increased, so that the dissolution rate of silver oxide in the plating solution can be further improved.

本発明の酸化銀の製造方法は、純水が収容された反応槽と、銀塩水溶液と、アルカリ水溶液とを用意する工程と、前記反応槽に前記銀塩水溶液と前記アルカリ水溶液とを、前記反応槽内の前記純水と前記銀塩水溶液と前記アルカリ水溶液の混合物のpHが5.0以上8.0以下の範囲内となるように調整しながら添加して、酸化銀粒子を析出させる工程と、を有することを特徴としている。   The method for producing silver oxide of the present invention includes a step of preparing a reaction vessel containing pure water, a silver salt aqueous solution, and an alkaline aqueous solution, and adding the silver salt aqueous solution and the alkaline aqueous solution to the reaction vessel, The step of adding silver hydroxide particles by adjusting the pH of the mixture of the pure water, the silver salt aqueous solution and the alkaline aqueous solution in the reaction tank so that the pH is within the range of 5.0 or more and 8.0 or less. It is characterized by having.

このような構成とされた本発明の酸化銀の製造方法によれば、前記純水と前記銀塩水溶液と前記アルカリ水溶液の混合物のpHを5.0以上8.0以下の範囲内に調整しながら酸化銀粒子を析出させるので、酸やアルカリの混入量が少ない酸化銀を得ることができる。また、銀以外の微量の金属元素が水酸化物を生成して析出して混入することが起こりにくいので、得られる酸化銀の純度が高くなる。   According to the silver oxide production method of the present invention having such a configuration, the pH of the mixture of the pure water, the silver salt aqueous solution, and the alkaline aqueous solution is adjusted within the range of 5.0 or more and 8.0 or less. However, since silver oxide particles are precipitated, it is possible to obtain silver oxide with a small amount of acid or alkali. In addition, since trace amounts of metal elements other than silver are unlikely to form and precipitate hydroxides, the purity of the resulting silver oxide is increased.

ここで、本発明の酸化銀の製造方法においては、前記銀塩水溶液のpHが3.0以下であることが好ましい。
銀塩水溶液のpHが3.0を超える場合、銀塩の一部が、水酸化銀(酸化銀)として銀塩水溶液中に析出するおそれがある。この場合、析出した水酸化銀(酸化銀)は銀塩水溶液中の酸成分を含むことから、前記混合物のpHを5.0以上8.0以下の範囲内に調整しながら酸化銀粒子を析出させて得られる酸化銀の残留酸が増加するおそれがある。
Here, in the method for producing silver oxide of the present invention, the pH of the aqueous silver salt solution is preferably 3.0 or less.
When pH of silver salt aqueous solution exceeds 3.0, there exists a possibility that a part of silver salt may precipitate in silver salt aqueous solution as silver hydroxide (silver oxide). In this case, since the precipitated silver hydroxide (silver oxide) contains the acid component in the silver salt aqueous solution, the silver oxide particles are precipitated while adjusting the pH of the mixture within the range of 5.0 or more and 8.0 or less. There is a possibility that the residual acid of the silver oxide obtained by increasing the concentration of the silver oxide increases.

本発明によれば、めっき液に溶解させても、そのめっき液の組成やpHを変動させにくく、めっき特性を変化させにくい酸化銀、酸化銀ケーキおよび酸化銀の製造方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, even if it melt | dissolves in a plating solution, it is possible to provide the manufacturing method of the silver oxide, silver oxide cake, and silver oxide which are hard to change the composition and pH of the plating solution, and are hard to change a plating characteristic. It becomes.

以下に、本発明の実施形態である酸化銀、酸化銀ケーキおよび酸化銀の製造方法について説明する。
本実施形態に係る酸化銀、酸化銀ケーキは、例えば、Sn−Ag合金めっきの製造に用いるめっき液のAg成分の補給材として用いるものである。
Below, the manufacturing method of the silver oxide which is embodiment of this invention, a silver oxide cake, and silver oxide is demonstrated.
The silver oxide and silver oxide cake according to the present embodiment are used, for example, as a replenishment material for the Ag component of a plating solution used for the production of Sn—Ag alloy plating.

本実施形態に係る酸化銀は、残留酸の含有量が100質量ppm以下で、かつ、Na,K,Ca,Mg,Liの含有量が合計で100質量ppm以下とされている。
ここで、酸化銀に含まれる残留酸は、通常、酸化銀の製造の際に混入したものである。酸化銀の製造で使用される酸の例としては、硫酸、硝酸、アルカンスルホン酸、アリールスルホン酸、およびアルカノールスルホン酸が挙げられる。このような、酸が酸化銀に残留したものが残留酸である。
一方、酸化銀に含まれるNa,K,Ca,Mg,Liは、通常、酸化銀の製造の際に混入したものである。酸化銀の製造では、Na,K,Ca,Mg,Liの水酸化物、炭酸塩、炭酸水素塩が主に用いられる。Na,K,Ca,Mg,Liが酸化銀に含有されていることは、即ち、Na,K,Ca,Mg,Liの水酸化物、炭酸塩、炭酸水素塩が酸化銀に残留していることを示している。
The silver oxide according to this embodiment has a residual acid content of 100 mass ppm or less and a total content of Na, K, Ca, Mg, Li is 100 mass ppm or less.
Here, the residual acid contained in silver oxide is usually mixed during the production of silver oxide. Examples of acids used in the production of silver oxide include sulfuric acid, nitric acid, alkane sulfonic acid, aryl sulfonic acid, and alkanol sulfonic acid. Such an acid remaining in silver oxide is a residual acid.
On the other hand, Na, K, Ca, Mg and Li contained in silver oxide are usually mixed during the production of silver oxide. In the production of silver oxide, hydroxides, carbonates and hydrogen carbonates of Na, K, Ca, Mg and Li are mainly used. The fact that Na, K, Ca, Mg and Li are contained in silver oxide means that hydroxides, carbonates and hydrogen carbonates of Na, K, Ca, Mg and Li remain in silver oxide. It is shown that.

残留酸及びNa,K,Ca,Mg,Liの残留量の多い酸化銀を、めっき液のAg成分の補給材として用いると、めっき液の残留酸及びNa,K,Ca,Mg,Liの金属の水酸化物、炭酸塩、炭酸水素塩の含有量が増加して、めっき液の組成やpHが変動し、これに伴って、めっき特性が変化するおそれがある。
このため、酸化銀は、残留酸の含有量が50質量ppm以下で、かつ、Na,K,Ca,Mg,Liの含有量が合計で50質量ppm以下であることが好ましく、残留酸の含有量が10質量ppm以下で、かつ、Na,K,Ca,Mg,Liの含有量が合計で10質量ppm以下であることが更に好ましい。
なお、残留酸の含有量、及び、Na,K,Ca,Mg,Liの合計の含有量の下限は、特に限定されないが、0.1質量ppm以上であるとよい。この場合、酸化銀の凝集を防ぐ効果が得られ、長期保管時にも溶解性の維持が期待される。
When silver oxide having a large residual amount of residual acid and Na, K, Ca, Mg, Li is used as a supplement for the Ag component of the plating solution, the residual acid of the plating solution and the metal of Na, K, Ca, Mg, Li The content of the hydroxide, carbonate, and hydrogen carbonate increases, the composition and pH of the plating solution fluctuate, and the plating characteristics may change accordingly.
For this reason, the silver oxide preferably has a residual acid content of 50 mass ppm or less and a total content of Na, K, Ca, Mg, Li of 50 mass ppm or less. More preferably, the amount is 10 mass ppm or less, and the total content of Na, K, Ca, Mg, Li is 10 mass ppm or less.
The lower limit of the residual acid content and the total content of Na, K, Ca, Mg, and Li is not particularly limited, but is preferably 0.1 mass ppm or more. In this case, the effect of preventing aggregation of silver oxide is obtained, and the maintenance of solubility is expected even during long-term storage.

本実施形態の酸化銀は、残留酸およびNa,K,Ca,Mg,Li以外に不可避不純物を含有してもよい。但し、めっき液のAg成分の補給材として用いる酸化銀では、不純物として混入する金属の含有量は少ない方が好ましい。例えば、酸化銀の製造工程で混入し易いFe、Cr、Ni、Ti、Alなど含有量は10質量ppm以下であることが好ましい。これらの元素が10質量ppmを超えると、酸化銀を繰り返しめっき液に補給した場合、めっき液内で濃縮し、めっき物に混入するおそれがある。
また、環境から放出される微量のα線によってメモリ中のデータが書き換えられるソフトエラーの発生を抑制するために、半導体チップと基板とを接合するためのはんだでは、α線量を低減させることが求められている。従って、半導体チップと基板とを接合するためのはんだバンプの形成に用いるめっき液のAg成分の補給材として用いる酸化銀は、α線の発生要因となり得るPbの含有量が1質量ppm以下とすることが好ましく、更に好ましくは0.1質量ppm以下である。
The silver oxide of this embodiment may contain inevitable impurities in addition to the residual acid and Na, K, Ca, Mg, Li. However, in the silver oxide used as a replenishing material for the Ag component of the plating solution, it is preferable that the content of the metal mixed as an impurity is small. For example, it is preferable that the content of Fe, Cr, Ni, Ti, Al, etc., which is easily mixed in the silver oxide production process, is 10 mass ppm or less. When these elements exceed 10 ppm by mass, when silver oxide is repeatedly supplied to the plating solution, it may be concentrated in the plating solution and mixed into the plated product.
Moreover, in order to suppress the occurrence of a soft error in which data in the memory is rewritten by a small amount of α rays emitted from the environment, it is required to reduce the α dose in the solder for joining the semiconductor chip and the substrate. It has been. Therefore, the silver oxide used as a replenisher for the Ag component of the plating solution used to form the solder bump for joining the semiconductor chip and the substrate has a Pb content of 1 mass ppm or less that can cause α rays. Preferably, it is 0.1 mass ppm or less.

本実施形態に係る酸化銀ケーキは、上述の酸化銀と、水とを含有している。
本実施形態の酸化銀ケーキは、上述の酸化銀を含むので、めっき液に多量に溶解させても、そのめっき液の組成やpHを変動させにくく、めっき特性を変化させにくい。また、酸化銀ケーキは、水分を含むので、乾燥した粉末と比較して飛散しにくく、作業性が向上する。さらに、酸化銀ケーキは、酸化銀の微細な粒子と粒子との間に水分が存在しているので、めっき液に投入したときに、微細な粒子として分散し易い。このため酸化銀が溶解するまでの時間が、酸化銀の固体(粉末)を投入した場合と比較して顕著に短くなる。
The silver oxide cake which concerns on this embodiment contains the above-mentioned silver oxide and water.
Since the silver oxide cake of this embodiment contains the above-mentioned silver oxide, even if it is dissolved in a large amount in the plating solution, it is difficult to change the composition and pH of the plating solution, and it is difficult to change the plating characteristics. Moreover, since a silver oxide cake contains a water | moisture content, it is hard to disperse | distribute compared with the dry powder, and workability | operativity improves. Furthermore, since the silver oxide cake has moisture between the fine particles of silver oxide, it is easy to disperse as fine particles when put into the plating solution. For this reason, time until silver oxide melt | dissolves becomes remarkably short compared with the case where the solid (powder) of silver oxide is thrown in.

ここで、酸化銀ケーキの含水率は、1質量%以上20質量%以下であることが好ましい。含水率が1質量%未満では、上述の効果を得ることが難しくなるおそれがある。含水率が20質量%を超えると、酸化銀ケーキがスラリー状になり、作業性が低下するおそれがある。また、めっき液に添加した場合、めっき液の使用中に蒸発する水分量を超える多量の水分がめっき液に投入されることとなり、めっき液の組成を変化させるおそれがある。なお、含水率は、より好ましくは5質量%以上20質量%以下の範囲内である。   Here, the water content of the silver oxide cake is preferably 1% by mass or more and 20% by mass or less. If the water content is less than 1% by mass, it may be difficult to obtain the above-described effect. When the water content exceeds 20% by mass, the silver oxide cake becomes a slurry and the workability may be reduced. Further, when added to the plating solution, a large amount of water exceeding the amount of water that evaporates during use of the plating solution is introduced into the plating solution, which may change the composition of the plating solution. The water content is more preferably in the range of 5% by mass or more and 20% by mass or less.

また、酸化銀ケーキは、分散剤などの添加剤を含んでいてもよい。添加剤の含有量は、酸化銀スラリーの全体量に対して0.1質量ppm以上100質量ppm以下の範囲内にあることが好ましい。0.1質量ppm未満だと効果が無くなるおそれがあり、100質量ppmを超えると、酸化銀ケーキを繰り返しめっき液に補給した場合、めっき液内で濃縮し、めっき特性に悪影響を与えるおそれがある。分散剤としては、例えば、脂肪酸、脂肪酸塩、有機金属、保護コロイド等を用いることができる。脂肪酸の例としては、ステアリン酸、オレイン酸等が挙げられる。脂肪酸塩の例としては、ステアリン酸ナトリウム、オレイン酸カリウム等が挙げられる。有機金属の例としては、クエン酸マグネシウム、ジエチル亜鉛等が挙げられる。保護コロイドの例としては、ゼラチン、アルブミン等が挙げられる。   Moreover, the silver oxide cake may contain additives, such as a dispersing agent. The content of the additive is preferably in the range of 0.1 mass ppm to 100 mass ppm with respect to the total amount of the silver oxide slurry. If the amount is less than 0.1 ppm by mass, the effect may be lost. If the amount exceeds 100 ppm by mass, when the silver oxide cake is repeatedly supplied to the plating solution, it may concentrate in the plating solution and adversely affect the plating characteristics. . As the dispersant, for example, fatty acids, fatty acid salts, organic metals, protective colloids and the like can be used. Examples of fatty acids include stearic acid and oleic acid. Examples of the fatty acid salt include sodium stearate and potassium oleate. Examples of the organic metal include magnesium citrate and diethyl zinc. Examples of protective colloids include gelatin and albumin.

次に、本実施形態に係る酸化銀の製造方法について説明する。
本実施形態に係る酸化銀の製造方法は、純水が収容された反応槽と、銀塩水溶液と、アルカリ水溶液とを用意する工程と、前記反応槽に前記銀塩水溶液と前記アルカリ水溶液とを、前記反応槽内の前記純水と前記銀塩水溶液と前記アルカリ水溶液の混合物のpHが5.0以上8.0以下の範囲内となるように調整しながら添加して、酸化銀粒子を析出させる工程と、を有する。
Next, a method for producing silver oxide according to this embodiment will be described.
The method for producing silver oxide according to the present embodiment includes a step of preparing a reaction vessel containing pure water, a silver salt aqueous solution, and an alkaline aqueous solution, and adding the silver salt aqueous solution and the alkaline aqueous solution to the reaction vessel. And adding while adjusting the pH of the mixture of the pure water, the aqueous silver salt solution and the aqueous alkaline solution in the reaction tank to be within the range of 5.0 or more and 8.0 or less, thereby precipitating silver oxide particles And a step of causing.

銀塩水溶液は、銀塩を水に溶解させた水溶液である。銀塩の例としては、硫酸銀、硝酸銀、アルカンスルホン酸銀(例えば、メタンスルホン酸銀、エタンスルホン酸銀)、アリールスルホン酸銀(例えば、ベンゼンスルホン酸銀、フェノールスルホン酸銀、クレゾールスルホン酸銀、トルエンスルホン酸銀)、およびアルカノールスルホン酸銀(例えば、イセチオン酸銀)が挙げられる。これらの銀塩は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。銀塩水溶液は、酸化銀の生産効率の観点から、Ag濃度として50g/L以上であることが好ましい。Ag濃度の上限は銀塩の飽和濃度である。銀塩水溶液は、pHが3.0以下であることが好ましく、1.0以上3.0以下の範囲内にあることがより好ましく、2.0以上3.0以下の範囲内にあることが特に好ましい。銀塩水溶液のpHが3.0を超える場合、銀塩の一部が、水酸化銀(酸化銀)として銀塩水溶液中に析出するおそれがある。この場合、析出した水酸化銀(酸化銀)は銀塩水溶液中の酸成分を含むことから、得られる酸化銀の残留酸が増加するおそれがある。一方、銀塩水溶液のpHが低くなりすぎると、後の工程で使用するアルカリ水溶液の使用量が多くなり生産性が低下するおそれがある。   The silver salt aqueous solution is an aqueous solution in which a silver salt is dissolved in water. Examples of silver salts include silver sulfate, silver nitrate, silver alkane sulfonate (eg silver methane sulfonate, silver ethane sulfonate), silver aryl sulfonate (eg silver benzene sulfonate, silver phenol sulfonate, cresol sulfonic acid) Silver, silver toluene sulfonate), and silver alkanol sulfonate (e.g., silver isethionate). These silver salts may be used individually by 1 type, and may be used in combination of 2 or more type. The silver salt aqueous solution preferably has an Ag concentration of 50 g / L or more from the viewpoint of silver oxide production efficiency. The upper limit of Ag concentration is the saturation concentration of silver salt. The aqueous silver salt solution preferably has a pH of 3.0 or less, more preferably in the range of 1.0 to 3.0, and preferably in the range of 2.0 to 3.0. Particularly preferred. When pH of silver salt aqueous solution exceeds 3.0, there exists a possibility that a part of silver salt may precipitate in silver salt aqueous solution as silver hydroxide (silver oxide). In this case, since the precipitated silver hydroxide (silver oxide) contains an acid component in the silver salt aqueous solution, the residual acid of the obtained silver oxide may increase. On the other hand, when the pH of the aqueous silver salt solution is too low, the amount of the aqueous alkaline solution used in the subsequent step increases and the productivity may decrease.

アルカリ水溶液は、アルカリ性化合物を水に溶解させた水溶液である。アルカリ性化合物の例としては、Na,K,Ca,Mg,Liの水酸化物、炭酸塩、炭酸水素塩が挙げられる。これらのアルカリ性化合物は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
アルカリ水溶液は、アルカリ性化合物の濃度として0.5mol/L以上2mol/L以下の範囲内にあることが好ましい。アルカリ性化合物の濃度が上記の範囲内にあると、後の工程で銀塩水溶液に添加したとき、酸化銀の生産効率を維持しつつ、急激なpHの変化を抑制することができ、不純物の混入量が少ない高純度の酸化銀を安定して析出させることができる。
The alkaline aqueous solution is an aqueous solution in which an alkaline compound is dissolved in water. Examples of alkaline compounds include Na, K, Ca, Mg, Li hydroxides, carbonates, and bicarbonates. These alkaline compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
The alkaline aqueous solution is preferably in the range of 0.5 mol / L or more and 2 mol / L or less as the concentration of the alkaline compound. When the concentration of the alkaline compound is within the above range, when added to a silver salt aqueous solution in a later step, a rapid change in pH can be suppressed while maintaining the production efficiency of silver oxide, and impurities are mixed in. A small amount of high-purity silver oxide can be stably deposited.

本実施形態では、純水が収容されている反応槽に、上記の銀塩水溶液とアルカリ水溶液を添加する。このように銀塩水溶液とアルカリ水溶液を添加することによって、反応槽内の純水と銀塩水溶液とアルカリ水溶液の混合物のpHの急激な上昇を抑えつつ、酸化銀を析出させることができる。このため、銀以外の微量の金属元素が水酸化物を生成して析出することが抑制され、高純度の酸化銀を析出させることができる。   In the present embodiment, the above silver salt aqueous solution and alkaline aqueous solution are added to a reaction vessel in which pure water is accommodated. By adding the silver salt aqueous solution and the alkaline aqueous solution in this manner, silver oxide can be precipitated while suppressing a rapid increase in pH of the mixture of pure water, the silver salt aqueous solution, and the alkaline aqueous solution in the reaction vessel. For this reason, it is suppressed that trace amount metal elements other than silver generate | occur | produce and precipitate a hydroxide, and can precipitate highly purified silver oxide.

本実施形態では、反応槽内の純水と銀塩水溶液とアルカリ水溶液の混合物のpHが5.0以上8.0以下の範囲内となるように調整しながら、銀塩水溶液とアルカリ水溶液とを添加する。反応槽内の混合物のpHが上記の範囲内にあると、析出する酸化銀に混入する酸およびアルカリの量を低減させることができる。反応槽内の混合物のpHが5.0未満であると、生成する酸化銀に酸が混入しやすくなるおそれがある。一方、銀塩水溶液のpHが8.0を超えると、生成する酸化銀にアルカリが混入しやすくなるおそれがある。また、反応槽内の混合物のpHが高くなると、銀以外の微量の金属元素が水酸化物を生成して析出しやすくなるおそれがある。
また、反応槽内の混合物全体のpHを均一にし、局所的にpHが5.0以上8.0以下の範囲内から逸脱しにくくするため、撹拌を行いながら銀塩水溶液及びアルカリ水溶液を添加することが好ましい。撹拌はスターラーを用いて200rpm〜2000rpmの範囲内で行うとよい。
In this embodiment, the silver salt aqueous solution and the alkaline aqueous solution are adjusted while adjusting the pH of the mixture of pure water, the silver salt aqueous solution, and the alkaline aqueous solution in the reaction tank to be in the range of 5.0 or more and 8.0 or less. Added. When the pH of the mixture in the reaction vessel is within the above range, the amount of acid and alkali mixed in the precipitated silver oxide can be reduced. If the pH of the mixture in the reaction vessel is less than 5.0, the acid may be easily mixed into the silver oxide produced. On the other hand, when the pH of the silver salt aqueous solution exceeds 8.0, alkali may be easily mixed into the produced silver oxide. Moreover, when the pH of the mixture in the reaction vessel is increased, a trace amount of metal elements other than silver may be likely to form hydroxides and precipitate.
Moreover, in order to make the pH of the entire mixture in the reaction vessel uniform and make it difficult for the pH to locally deviate from the range of 5.0 or more and 8.0 or less, a silver salt aqueous solution and an alkaline aqueous solution are added while stirring. It is preferable. Stirring may be performed within a range of 200 rpm to 2000 rpm using a stirrer.

また、酸化銀の生産性を向上させるためには、反応槽内の混合物のpHは6.0以上7.5以下の範囲内とすることが好ましい。
一方、金属、特にPbが水酸化物として混入することを抑えるためには、銀塩水溶液のpHは5.0以上7.0以下の範囲内とすることが好ましい。
また、反応槽内の混合物の液温は、5℃以上50℃以下の範囲内にあることが好ましい。5℃未満では、酸化銀が析出しにくくなり、生産性が悪化するおそれがある。50℃を超えると、銀塩水溶液とアルカリ水溶液の反応性が上昇し、反応槽内のpHを5.0以上8.0以下とすることが難しくなるおそれがある。
In order to improve the productivity of silver oxide, the pH of the mixture in the reaction vessel is preferably in the range of 6.0 to 7.5.
On the other hand, the pH of the aqueous silver salt solution is preferably in the range of 5.0 or more and 7.0 or less in order to suppress the metal, particularly Pb, from being mixed in as a hydroxide.
Moreover, it is preferable that the liquid temperature of the mixture in a reaction tank exists in the range of 5 to 50 degreeC. If it is less than 5 degreeC, it becomes difficult to precipitate silver oxide and there exists a possibility that productivity may deteriorate. When it exceeds 50 degreeC, the reactivity of silver salt aqueous solution and alkaline aqueous solution will rise, and there exists a possibility that it may become difficult to make pH in a reaction tank into 5.0 or more and 8.0 or less.

なお、本実施形態で得られる酸化銀の粒径は、通常、0.01μm以上100μm以下の範囲内である。粒径が0.01μm未満であると酸化銀の粉末が飛散し易くなったり、乾燥・回収やめっき液への補給時の作業性が悪くなるおそれがある。一方、粒径が100μmを超えると、酸化銀のめっき液への溶解速度が低下するおそれがある。酸化銀の粒径は、好ましくは0.1μm以上10μm以下の範囲内である。   In addition, the particle diameter of the silver oxide obtained by this embodiment is in the range of 0.01 micrometer or more and 100 micrometers or less normally. If the particle size is less than 0.01 μm, the silver oxide powder may be easily scattered, and the workability during drying / recovery or replenishment to the plating solution may be deteriorated. On the other hand, if the particle diameter exceeds 100 μm, the dissolution rate of silver oxide in the plating solution may be reduced. The particle size of silver oxide is preferably in the range of 0.1 μm to 10 μm.

反応槽内の混合物中に析出した酸化銀粒子は、デカンテーション、遠心分離、加圧ろ過、減圧ろ過などの通常の固液分離方法によって、回収することができる。
回収した酸化銀は、水で十分に洗浄して、表面に付着している酸やアルカリを除去することが好ましい。ただし、遠心分離、加圧ろ過、減圧ろ過など、過度の荷重がかかる場合は、酸化銀粒子が凝集し、洗浄が十分に行われない可能性があるので、デカンテーション、で固液分離を行うことが好ましい。
The silver oxide particles deposited in the mixture in the reaction tank can be recovered by a normal solid-liquid separation method such as decantation, centrifugation, pressure filtration, and vacuum filtration.
The recovered silver oxide is preferably washed thoroughly with water to remove acids and alkalis adhering to the surface. However, when excessive load is applied such as centrifugal separation, pressure filtration, vacuum filtration, etc., silver oxide particles may aggregate and washing may not be performed sufficiently. So, solid-liquid separation is performed by decantation. It is preferable.

酸化銀を乾燥粉末として利用する場合は、酸化銀の自己分解を抑えるために、洗浄後の酸化銀を50℃以下で乾燥することが好ましい。   When silver oxide is used as a dry powder, the washed silver oxide is preferably dried at 50 ° C. or lower in order to suppress the self-decomposition of silver oxide.

以上のような構成とされた本実施形態の酸化銀は、残留酸の含有量が100質量ppm以下であり、かつ、Na,K,Ca,Mg,Liの含有量が合計で100質量ppm以下とされているので、めっき液に多量に溶解させても、そのめっき液の組成やpHを変動させにくく、めっき特性を変化させにくい。   The silver oxide of the present embodiment configured as described above has a residual acid content of 100 mass ppm or less and a total content of Na, K, Ca, Mg, Li of 100 mass ppm or less. Therefore, even if a large amount is dissolved in the plating solution, it is difficult to change the composition and pH of the plating solution, and it is difficult to change the plating characteristics.

本実施形態の酸化銀ケーキは、上述の酸化銀と水とを含有するので、めっき液に多量に溶解させても、そのめっき液の組成やpHを変動させにくく、めっき特性を変化させにくい。また、酸化銀ケーキは、水分を含むので、乾燥した粉末と比較して飛散しにくく、めっき液に投入する際の作業性が向上する。さらに、酸化銀ケーキは、めっき液に投入したときは分散しやすく、めっき液に対する酸化銀の溶解速度が向上する。またさらに、酸化銀ケーキは冷凍保管することによって、空気との接触による酸化銀の変質を長期間にわたって抑制することができる。これは、酸化銀の表面が氷(凍結した酸化銀ケーキ中の水分)で被覆されることによって、酸化銀と空気との接触面積が小さくなるためであると考えられる。   Since the silver oxide cake of this embodiment contains the above-mentioned silver oxide and water, even if it is dissolved in a large amount in the plating solution, it is difficult to change the composition and pH of the plating solution, and it is difficult to change the plating characteristics. In addition, since the silver oxide cake contains moisture, it is less likely to scatter compared to the dried powder, and the workability when being added to the plating solution is improved. Furthermore, the silver oxide cake is easy to disperse when introduced into the plating solution, and the dissolution rate of silver oxide in the plating solution is improved. Furthermore, by storing the silver oxide cake in a frozen state, deterioration of the silver oxide due to contact with air can be suppressed over a long period of time. This is considered to be because the contact area between the silver oxide and the air is reduced by covering the surface of the silver oxide with ice (water in the frozen silver oxide cake).

さらに、本実施形態の酸化銀の製造方法によれば、反応槽内の純水と銀塩水溶液とアルカリ水溶液の混合物のpHを5.0以上8.0以下の範囲内に調整しながら、銀塩水溶液とアルカリ水溶液とを添加して、酸化銀粒子を析出させるので、酸やアルカリの混入量が少ない酸化銀を得ることができる。また、銀以外の微量の金属元素が水酸化物を生成して析出して混入することが起こりにくいので、得られる酸化銀の純度が高くなる。   Furthermore, according to the method for producing silver oxide of the present embodiment, while adjusting the pH of a mixture of pure water, a silver salt aqueous solution, and an alkaline aqueous solution in the reaction vessel to a range of 5.0 or more and 8.0 or less, Since the silver oxide particles are precipitated by adding the salt aqueous solution and the alkaline aqueous solution, it is possible to obtain silver oxide with a small amount of acid or alkali mixed therein. In addition, since trace amounts of metal elements other than silver are unlikely to form and precipitate hydroxides, the purity of the resulting silver oxide is increased.

[本発明例1]
純水に硝酸銀(関東化学社製、特級)を溶解させて、Ag濃度が100g/Lの硝酸銀水溶液を調製した。また、純水に水酸化ナトリウム(関東化学社製、特級)を溶解させて、水酸化ナトリウム濃度が1mol/Lの水酸化ナトリウム水溶液を調製した。
[Invention Example 1]
Silver nitrate (manufactured by Kanto Chemical Co., Ltd., special grade) was dissolved in pure water to prepare an aqueous silver nitrate solution having an Ag concentration of 100 g / L. Further, sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., special grade) was dissolved in pure water to prepare a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 1 mol / L.

反応槽(HARIO社製、1000mLビーカー)に純水500mLを入れ、pHメータ(HORIBA社製、ダブルジャンクション形比較電極)と撹拌機(スターラー:アズワン社製、撹拌子サイズ:φ40mm、撹拌条件:500rpm)を設置した。次いで、撹拌機で反応槽内の純水を撹拌しながら、銀塩水溶液として上記の硝酸銀水溶液を、アルカリ水溶液として上記の水酸化ナトリウム水溶液を、滴下ポンプ(アズワン社製)を使用して滴下した。滴下は、硝酸銀水溶液を5mL/minの速度で滴下しながら、水酸化ナトリウム水溶液を反応槽内のpHが5.0以上5.5以下の範囲内となるように調整しながら約5mL/minの速度で滴下した。硝酸銀水溶液と水酸化ナトリウム水溶液は、反応槽内の混合物の量が1000mLとなるまで滴下した。また、滴下中の反応槽内の混合物の液温は20℃になるように調整した。   500 mL of pure water was put into a reaction vessel (HARIO, 1000 mL beaker), a pH meter (HORIBA, double junction type reference electrode) and a stirrer (stirrer: Aswan, stirring bar size: 40 mm, stirring condition: 500 rpm ) Was installed. Next, while stirring pure water in the reaction vessel with a stirrer, the above silver nitrate aqueous solution was dropped as an aqueous silver salt solution, and the above sodium hydroxide aqueous solution was dropped as an alkaline aqueous solution using a dropping pump (manufactured by AS ONE). . The dropping is carried out while dropping a silver nitrate aqueous solution at a rate of 5 mL / min, and adjusting the sodium hydroxide aqueous solution so that the pH in the reaction vessel is within the range of 5.0 or more and 5.5 or less. It was dripped at a speed. The aqueous silver nitrate solution and aqueous sodium hydroxide solution were added dropwise until the amount of the mixture in the reaction tank reached 1000 mL. Moreover, the liquid temperature of the mixture in the reaction tank during dripping was adjusted so that it might become 20 degreeC.

硝酸銀水溶液及び水酸化ナトリウム水溶液の滴下終了後、さらに撹拌を10分間続けて、析出した酸化銀粒子を熟成させた。熟成後、撹拌機を止めて、デカンテーションにより、析出した酸化銀粒子を回収した。回収した酸化銀粒子を500mLビーカーを用いて200mLの純水に再分散させ、デカンテーションする洗浄工程を3度繰り返し、最終デカンテーション後の酸化銀粒子を50℃で乾燥して、本発明例1の酸化銀を得た。   After completion of the dropwise addition of the aqueous silver nitrate solution and aqueous sodium hydroxide solution, stirring was further continued for 10 minutes to age the precipitated silver oxide particles. After ripening, the stirrer was stopped and the precipitated silver oxide particles were recovered by decantation. The recovered silver oxide particles are redispersed in 200 mL of pure water using a 500 mL beaker, and the decantation washing process is repeated three times. The silver oxide particles after the final decantation are dried at 50 ° C. Of silver oxide was obtained.

[本発明例2〜11、比較例1〜2]
銀塩水溶液は、下記表1に示す銀塩を用いて調製した銀塩水溶液(Ag濃度:100g/L)を用いた。アルカリ水溶液は、下記表1に示すアルカリ性化合物を用いて調製したアルカリ水溶液(アルカリ性化合物濃度:1mol/L)を用いた。また、反応槽内のpHは下記表1に記載の通りとなるようにした。上記以外は、本発明例1と同様にして、酸化銀を得た。
なお、本発明例4では、最終デカンテーション後の酸化銀粒子を乾燥する際に、乾燥条件を40℃、1時間とし、その後全体を均一に混ぜ、含水率が10質量%となったことを確認して、酸化銀ケーキとした。
[Invention Examples 2-11, Comparative Examples 1-2]
As the silver salt aqueous solution, a silver salt aqueous solution (Ag concentration: 100 g / L) prepared using the silver salt shown in Table 1 below was used. As the alkaline aqueous solution, an alkaline aqueous solution (alkaline compound concentration: 1 mol / L) prepared using an alkaline compound shown in Table 1 below was used. The pH in the reaction vessel was as shown in Table 1 below. Except for the above, silver oxide was obtained in the same manner as Example 1 of the present invention.
In Example 4 of the present invention, when the silver oxide particles after the final decantation were dried, the drying conditions were set to 40 ° C. for 1 hour, and then the whole was uniformly mixed, and the water content became 10% by mass. The silver oxide cake was confirmed.

[評価]
本発明例1〜11および比較例1〜2で得られた酸化銀について、溶解速度、残留酸含有量、Na,K,Ca,Mg,Liの合計含有量、Pb含有量を下記の方法により測定した。その結果を表1に示す。
[Evaluation]
For the silver oxides obtained in Invention Examples 1 to 11 and Comparative Examples 1 and 2, the dissolution rate, residual acid content, total content of Na, K, Ca, Mg, Li, and Pb content were determined by the following methods. It was measured. The results are shown in Table 1.

(溶解時間)
試料の酸化銀を10g量り取る。100mLビーカーに、濃度60質量%のメタンスルホン酸水溶液を100g投入し、その水溶液を撹拌(スターラー:アズワン社製、撹拌子サイズ:φ10mm、撹拌条件:200rpm)しながら、その水溶液中に、量り取った酸化銀を投入した。次いで、酸化銀を目視で観察しながら、酸化銀を投入してから、その酸化銀が完全に溶解し、消失するまでの時間を計測した。溶解速度(g/秒)を、下記の式より算出した。なお、投入開始時のメタンスルホン酸水溶液の液温は25℃とした。ただし、本発明例4で得られた酸化銀ケーキに関しては酸化銀相当で10gとなるように11.1g測り取って、同様の評価を行った。
溶解速度(g/秒)=酸化銀の質量(g)/酸化銀が消失するまでの時間(秒)
(Dissolution time)
Weigh 10 g of the sample silver oxide. A 100 mL beaker was charged with 100 g of a 60% by mass methanesulfonic acid aqueous solution, and the aqueous solution was weighed into the aqueous solution while stirring (stirrer: As One, stirring bar size: φ10 mm, stirring condition: 200 rpm). Silver oxide was added. Next, while observing the silver oxide visually, the time from when the silver oxide was added to when the silver oxide was completely dissolved and disappeared was measured. The dissolution rate (g / sec) was calculated from the following formula. The liquid temperature of the methanesulfonic acid aqueous solution at the start of charging was 25 ° C. However, for the silver oxide cake obtained in Invention Example 4, 11.1 g was measured so as to be 10 g equivalent to silver oxide, and the same evaluation was performed.
Dissolution rate (g / sec) = mass of silver oxide (g) / time until silver oxide disappears (second)

(残留酸の含有量)
上記溶解速度の測定と同様にして、酸化銀10gをメタンスルホン酸水溶液(メタンスルホン酸濃度:60質量%)100gに溶解させて、銀−メタンスルホン酸溶液を調製した。調製した銀−メタンスルホン酸溶液を純水で100倍に希釈した。次いで、イオンクロマトグラム(Thermo Scientific社製、ICS−5000+)を用いて、希釈した銀−メタンスルホン酸溶液に含まれる陰イオン(マトリックスとして含まれるメタンスルホン酸イオンを除く)のピークを検出し、検出されたピークに該当する成分の総量から、酸化銀に含まれるメタンスルホン酸以外の酸の量(A)を求めた。なお、イオンクロマトグラムの条件としては、分離カラム:AS15、カラム温度:35℃、溶離液:38mMKOH水溶液、溶離液流量:1.2mL/min、試料注入量:25μm、検出器:電気伝導度、サプレッサー電流値:113mAとした。
次に、メタンスルホン酸水溶液の代わりに硝酸を用いたこと以外は、上記溶解速度の測定と同様にして、酸化銀10gを硝酸100gに溶解させて銀−硝酸溶液を調製した。
調製した銀−硝酸溶液を純水で100倍に希釈した。次いで、同様にイオンクロマトグラムを用いて、希釈した銀−硝酸溶液に含まれるメタンスルホン酸のピークを検出し、検出されたピークから、酸化銀に含まれるメタンスルホン酸の量(B)を求めた。
そして、酸化銀に含まれるメタンスルホン酸以外の酸の量(A)と酸化銀に含まれるメタンスルホン酸の量(B)の合計量((A)+(B))を、残留酸の含有量とした。
(Residual acid content)
In the same manner as the measurement of the dissolution rate, 10 g of silver oxide was dissolved in 100 g of a methanesulfonic acid aqueous solution (methanesulfonic acid concentration: 60% by mass) to prepare a silver-methanesulfonic acid solution. The prepared silver-methanesulfonic acid solution was diluted 100 times with pure water. Then, using an ion chromatogram (Thermo Scientific, ICS-5000 +), the peak of the anion (excluding the methanesulfonate ion included as a matrix) contained in the diluted silver-methanesulfonate solution was detected, From the total amount of components corresponding to the detected peak, the amount (A) of acid other than methanesulfonic acid contained in silver oxide was determined. The conditions of the ion chromatogram are as follows: separation column: AS15, column temperature: 35 ° C., eluent: 38 mM KOH aqueous solution, eluent flow rate: 1.2 mL / min, sample injection amount: 25 μm, detector: electrical conductivity, Suppressor current value: 113 mA.
Next, a silver-nitric acid solution was prepared by dissolving 10 g of silver oxide in 100 g of nitric acid in the same manner as in the measurement of the dissolution rate except that nitric acid was used instead of the methanesulfonic acid aqueous solution.
The prepared silver-nitric acid solution was diluted 100 times with pure water. Next, similarly, using the ion chromatogram, the peak of methanesulfonic acid contained in the diluted silver-nitric acid solution is detected, and the amount (B) of methanesulfonic acid contained in the silver oxide is obtained from the detected peak. It was.
And the total amount ((A) + (B)) of the amount (A) of acid other than methanesulfonic acid contained in silver oxide and the amount (B) of methanesulfonic acid contained in silver oxide is contained in the residual acid. The amount.

(Na,K,Ca,Mg,Liの合計含有量)
上記溶解速度の測定と同様にして、酸化銀10gをメタンスルホン酸水溶液(メタンスルホン酸濃度:60質量%)100gに溶解させて、銀−メタンスルホン酸溶液を調製した。次いで、調製した銀−メタンスルホン酸溶液中のNa,K,Ca,Mg,Liの含有量を、ICP発光分光分析装置(Agilent Technologies社製725−ES)を用いて測定した。
(Total content of Na, K, Ca, Mg, Li)
In the same manner as the measurement of the dissolution rate, 10 g of silver oxide was dissolved in 100 g of a methanesulfonic acid aqueous solution (methanesulfonic acid concentration: 60% by mass) to prepare a silver-methanesulfonic acid solution. Next, the contents of Na, K, Ca, Mg, and Li in the prepared silver-methanesulfonic acid solution were measured using an ICP emission spectroscopic analyzer (725-ES manufactured by Agilent Technologies).

(Pb含有量)
上記残留酸の含有量の測定と同様にして、酸化銀10gを硝酸100gに溶解させて銀−硝酸溶液を調製した。次いで、調製した銀−硝酸溶液中のPbの含有量を、ICP−MS(Agilent Technologies社製、7700X)を用いて測定した。
(Pb content)
In the same manner as the measurement of the residual acid content, 10 g of silver oxide was dissolved in 100 g of nitric acid to prepare a silver-nitric acid solution. Next, the content of Pb in the prepared silver-nitric acid solution was measured using ICP-MS (manufactured by Agilent Technologies, 7700X).

Figure 2018154549
Figure 2018154549

本発明例1〜11の酸化銀は、残留酸の含有量、Na,K,Ca,Mg,Liの合計含有量、Pb含有量が低くなった。特に、アルカリ水溶液添加時の銀塩水溶液のpHが7.0以下とされた本発明例1〜4、7〜11 の酸化銀は、Pb含有量が低くなった。また、酸化銀がケーキ状態とされた本発明例4は、溶解速度が顕著に速くなった。
これに対して、アルカリ水溶液添加時の銀塩水溶液のpHが4.5以上4.9以下とされた比較例1の酸化銀は、残留酸の含有量が多くなった。また、アルカリ水溶液添加時の銀塩水溶液のpHが8.1以上8.5以下とされた比較例2の酸化銀は、Na,K,Ca,Mg,Liの含有量とPb含有量が多くなった。
In the silver oxides of Invention Examples 1 to 11, the residual acid content, the total content of Na, K, Ca, Mg, and Li and the Pb content were low. In particular, the silver oxides of Invention Examples 1 to 4 and 7 to 11 in which the pH of the silver salt aqueous solution when the alkaline aqueous solution was added was 7.0 or less had a low Pb content. In addition, in Invention Example 4 in which silver oxide was in a cake state, the dissolution rate was remarkably increased.
On the other hand, the silver oxide of Comparative Example 1 in which the pH of the silver salt aqueous solution when the alkaline aqueous solution was added was 4.5 or more and 4.9 or less had a high content of residual acid. In addition, the silver oxide of Comparative Example 2 in which the pH of the silver salt aqueous solution at the time of adding the alkaline aqueous solution is 8.1 or more and 8.5 or less has a large content of Na, K, Ca, Mg, Li and a Pb content. became.

Claims (5)

残留酸の含有量が100質量ppm以下であり、かつ、Na,K,Ca,Mg,Liの含有量が合計で100質量ppm以下であることを特徴とする酸化銀。   Silver oxide characterized by having a residual acid content of 100 mass ppm or less and a total content of Na, K, Ca, Mg, Li of 100 mass ppm or less. 請求項1に記載の酸化銀と、水とを含有することを特徴とする酸化銀ケーキ。   A silver oxide cake comprising the silver oxide according to claim 1 and water. 含水率が1質量%以上20質量%以下の範囲内にあることを特徴とする請求項2に記載の酸化銀ケーキ。   The silver oxide cake according to claim 2, wherein the water content is in the range of 1% by mass or more and 20% by mass or less. 純水が収容された反応槽と、銀塩水溶液と、アルカリ水溶液とを用意する工程と、
前記反応槽に前記銀塩水溶液と前記アルカリ水溶液とを、前記反応槽内の前記純水と前記銀塩水溶液と前記アルカリ水溶液の混合物のpHが5.0以上8.0以下の範囲内となるように調整しながら添加して、酸化銀粒子を析出させる工程と、
を有することを特徴とする酸化銀の製造方法。
Preparing a reaction vessel containing pure water, a silver salt aqueous solution, and an alkaline aqueous solution;
The silver salt aqueous solution and the alkali aqueous solution are placed in the reaction tank, and the pH of the mixture of the pure water, the silver salt aqueous solution, and the alkali aqueous solution in the reaction tank is in the range of 5.0 or more and 8.0 or less. Adding while adjusting so as to precipitate silver oxide particles,
A method for producing silver oxide, comprising:
前記銀塩水溶液のpHが3.0以下であることを特徴とする請求項4記載の酸化銀の製造方法。   The method for producing silver oxide according to claim 4, wherein the silver salt aqueous solution has a pH of 3.0 or less.
JP2018033393A 2017-03-15 2018-02-27 Manufacturing method of silver oxide, silver oxide cake and silver oxide Active JP7052411B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017050550 2017-03-15
JP2017050550 2017-03-15

Publications (2)

Publication Number Publication Date
JP2018154549A true JP2018154549A (en) 2018-10-04
JP7052411B2 JP7052411B2 (en) 2022-04-12

Family

ID=63716118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033393A Active JP7052411B2 (en) 2017-03-15 2018-02-27 Manufacturing method of silver oxide, silver oxide cake and silver oxide

Country Status (1)

Country Link
JP (1) JP7052411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088168A1 (en) * 2019-11-04 2021-05-14 宁德新能源科技有限公司 Lithium supplement material and positive electrode comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188974A (en) * 1996-11-08 1998-07-21 Dowa Mining Co Ltd Silver oxide for battery and its manufacture as well as battery using the same
JP2003268462A (en) * 2002-03-15 2003-09-25 Mitsubishi Materials Corp Method for recovering noble metal from copper electrolysis slime
JP2004265865A (en) * 2003-02-13 2004-09-24 Dowa Mining Co Ltd Silver oxide powder for alkaline battery, and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188974A (en) * 1996-11-08 1998-07-21 Dowa Mining Co Ltd Silver oxide for battery and its manufacture as well as battery using the same
JP2003268462A (en) * 2002-03-15 2003-09-25 Mitsubishi Materials Corp Method for recovering noble metal from copper electrolysis slime
JP2004265865A (en) * 2003-02-13 2004-09-24 Dowa Mining Co Ltd Silver oxide powder for alkaline battery, and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088168A1 (en) * 2019-11-04 2021-05-14 宁德新能源科技有限公司 Lithium supplement material and positive electrode comprising same

Also Published As

Publication number Publication date
JP7052411B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
JP5807377B2 (en) Stannous oxide powder for supplying Sn component to Sn alloy plating solution and method for producing the same
TWI585220B (en) Cu nuclear ball
JP6121090B2 (en) Method for producing stannous oxide powder for replenishing Sn component to Sn alloy plating solution and stannous oxide powder produced by the method
JP5384719B2 (en) High purity copper sulfonate aqueous solution and method for producing the same
CN101065518A (en) Gold plating liquid and gold plating method
TW201615898A (en) Method For Manufacturing High Purity Tin, Electrowinning Apparatus For High Purity Tin And High Purity Tin
CN106887581B (en) Zinc electrode material and preparation and application thereof
JP2009132571A (en) STANNOUS OXIDE POWDER FOR SUPPLYING Sn COMPONENT INTO Sn ALLOY PLATING LIQUID
JP6657991B2 (en) Stannous oxide powder and method for producing stannous oxide powder
US8216438B2 (en) Copper anode or phosphorous-containing copper anode, method of electroplating copper on semiconductor wafer, and semiconductor wafer with low particle adhesion
JP2018154549A (en) Silver oxide, silver oxide cake and manufacturing method of silver oxide
JP2017002401A (en) Silver-coated copper powder
JP2014173157A (en) Recovery method of metal from powdery scrap
Goh et al. Electrodeposition of lead‐free solder alloys
Kazimierczak et al. Electrodeposition of tin-zinc-bismuth alloys from aqueous citrate-EDTA baths
US3419484A (en) Electrolytic preparation of semiconductor compounds
CN105247111B (en) The manufacture method of plating product
TWI756694B (en) How to dissolve tin monoxide
JP5981821B2 (en) Tin recovery method
JP5561201B2 (en) Method for producing electric cobalt or electric nickel
JP2006299369A (en) Tin alloy used for replenishing stannous ions, method for replenishing stannous ions using it, and electrolytic tin-plating method
Roy Electrochemical gold deposition from non-toxic electrolytes
JP5250173B2 (en) Method for producing nickel hydroxide
KR101738535B1 (en) Tin-based electroplating solution for solder bump
TW201609558A (en) Solder ball and method of making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7052411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150