JP2018154064A - Molding method of composite material and molded article - Google Patents

Molding method of composite material and molded article Download PDF

Info

Publication number
JP2018154064A
JP2018154064A JP2017053893A JP2017053893A JP2018154064A JP 2018154064 A JP2018154064 A JP 2018154064A JP 2017053893 A JP2017053893 A JP 2017053893A JP 2017053893 A JP2017053893 A JP 2017053893A JP 2018154064 A JP2018154064 A JP 2018154064A
Authority
JP
Japan
Prior art keywords
composite material
molding method
thermoplastic resin
resin
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017053893A
Other languages
Japanese (ja)
Other versions
JP6866713B2 (en
Inventor
理 奥中
Osamu Okunaka
理 奥中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017053893A priority Critical patent/JP6866713B2/en
Publication of JP2018154064A publication Critical patent/JP2018154064A/en
Application granted granted Critical
Publication of JP6866713B2 publication Critical patent/JP6866713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a requirement of a molding method having less possibility of thermal deterioration and capability of easily obtaining a thin molded article from a composite material containing a thermoplastic resin and a carbon fiber.SOLUTION: There is provided a molding method for plastically processing a composite material containing a thermoplastic resin (A) and a carbon fiber (B) at a temperature equal to or higher than a glass transition point (Tg) and equal to or lower than Tg+120°C. The thermoplastic resin (A) is preferably obtained by plastic processing of a composite material containing a crystalline resin (A-1) at a temperature equal to or lower than a melting point thereof.SELECTED DRAWING: None

Description

本発明は、複合材料の成形方法および成形品に関する。   The present invention relates to a method for molding a composite material and a molded product.

炭素繊維及び炭素繊維複合材料は、引張強度・引張弾性率が高く、耐熱性、耐薬品性、疲労特性、耐摩耗性に優れる、線膨張係数が小さく寸法安定性に優れる、電磁波シールド性、X線透過性に富むなどの優れた特長を有していることから、スポーツ・レジャー、航空・宇宙、一般産業用途に幅広く適用されている。従来は、エポキシ樹脂などの熱硬化性樹脂を複合材料のマトリックスとすることが多かったが、最近、リサイクル性・高速成型性の観点から熱可塑性樹脂が注目されている。   Carbon fiber and carbon fiber composite material have high tensile strength / tensile modulus, excellent heat resistance, chemical resistance, fatigue characteristics, wear resistance, low linear expansion coefficient, excellent dimensional stability, electromagnetic shielding, X Because of its excellent features such as high line permeability, it is widely applied to sports and leisure, aerospace and general industrial applications. Conventionally, a thermosetting resin such as an epoxy resin is often used as a matrix of a composite material, but recently, a thermoplastic resin has attracted attention from the viewpoint of recyclability and high-speed moldability.

特許文献1〜3には、熱可塑性樹脂と炭素繊維からなる複合材料が開示されている。
特許文献1では、ポリプロピレンと炭素繊維からなる複合材料が開示されており、流動成形性の評価として、230℃で複合材料を予熱したスタンピング成形を行なっている。一般的にポリプロピレンのガラス転移温度は0℃、融点は180℃と言われており、融点以上の温度へ予熱した後に成形されている。
また特許文献2では、6ナイロンと炭素繊維からなる複合材料が開示されており、280℃で複合材料を予熱したスタンピング成形を行なっている。一般的に6ナイロンのガラス転移温度は50℃、融点は225℃と言われており、融点以上の温度へ予熱した後に成形されている。
特許文献3では、ポリカーボネートと炭素繊維を含む炭素長繊維含有樹脂材料が開示されており、シリンダー温度300℃で可塑化して射出成形を行なっている。一般的にポリカーボネートのガラス転移温度は145℃と言われており、ガラス転移温度より150℃以上高温で可塑化した後に成形されている。
Patent Documents 1 to 3 disclose composite materials made of a thermoplastic resin and carbon fibers.
In Patent Document 1, a composite material made of polypropylene and carbon fiber is disclosed, and stamping molding in which the composite material is preheated at 230 ° C. is performed as an evaluation of fluid moldability. In general, it is said that polypropylene has a glass transition temperature of 0 ° C. and a melting point of 180 ° C., and is molded after preheating to a temperature higher than the melting point.
Further, Patent Document 2 discloses a composite material made of 6 nylon and carbon fiber, and stamping is performed by preheating the composite material at 280 ° C. Generally, it is said that nylon 6 has a glass transition temperature of 50 ° C. and a melting point of 225 ° C., and is molded after preheating to a temperature higher than the melting point.
Patent Document 3 discloses a carbon long fiber-containing resin material containing polycarbonate and carbon fibers, and plasticizing at a cylinder temperature of 300 ° C. to perform injection molding. Generally, the glass transition temperature of polycarbonate is said to be 145 ° C., and it is molded after being plasticized at 150 ° C. or more higher than the glass transition temperature.

このように、熱可塑性樹脂と炭素繊維を含む複合材料を成形する場合に、ガラス転移温度より150℃以上高温への予熱や、融点以上への予熱の後に成形する事は一般的であり、広く実施されている。
しかしながらこれらの方法では、高温まで予熱するため、熱可塑性樹脂が熱劣化する恐れや、著しく軟化する事で取扱いが困難になる恐れがあった。
Thus, when molding a composite material containing a thermoplastic resin and carbon fiber, it is common to preheat to a temperature higher than 150 ° C. or higher than the glass transition temperature, or after preheating to a melting point or higher. It has been implemented.
However, since these methods preheat to a high temperature, there is a fear that the thermoplastic resin may be thermally deteriorated or that it may be difficult to handle due to significant softening.

また炭素繊維複合材料は、従来板金などの金属を使っていた部品を代替するために、例えば2.5mm以下の薄肉での活用が検討される場合がある。
特許文献1の実施例では、厚さ4mmの複合材料を融点以上に予熱した後に金型内に運搬してプレス成形しているが、流動させるためには高いプレス圧力が必要であり、例えば1000cm以上といった大きな投影面積で、薄肉まで流動させる事は困難となる場合がある。
特許文献2の実施例1では、厚さ1.1mmの複合材料を予熱した後に金型内に運搬してプレス成形しているが、融点以上の高温では複合材料が十分に軟化すると考えられるため、運搬が困難になる場合がある。
特許文献3の実施例では、ガラス転移温度より150℃以上の高温で可塑化した後に金型内に射出成形しているが、例えば1000cm以上といった大きな投影面積で、薄肉成形品を射出成形する場合には、高い型締め圧が必要となり、困難となる場合がある。
In addition, in order to substitute a carbon fiber composite material, which has conventionally used a metal such as a sheet metal, there are cases where the use of a carbon fiber composite material with a thin wall of, for example, 2.5 mm or less is considered.
In the example of Patent Document 1, a composite material having a thickness of 4 mm is preheated to a melting point or higher and then transported into a mold and press-molded. In order to make it flow, a high press pressure is required. It may be difficult to flow to a thin wall with a large projected area of 2 or more.
In Example 1 of Patent Document 2, the composite material having a thickness of 1.1 mm is preheated and then transported into the mold and press-molded. However, it is considered that the composite material is sufficiently softened at a high temperature above the melting point. , Transportation may be difficult.
In the example of Patent Document 3, injection molding is performed in a mold after plasticizing at a temperature of 150 ° C. or higher from the glass transition temperature, but a thin molded product is injection molded with a large projected area of, for example, 1000 cm 2 or more. In some cases, a high mold clamping pressure is required, which may be difficult.

このような状況から、熱可塑性樹脂と炭素繊維を含む複合材料の成形方法として、より薄肉に対応し易い方法が求められていた。   Under such circumstances, there has been a demand for a method that can easily cope with a thin wall as a method for forming a composite material including a thermoplastic resin and carbon fibers.

WO15/122500号WO15 / 122500 WO10/013645号WO10 / 013645 特開2015−203060号JP2015-203060A

本発明は、熱可塑性樹脂と炭素繊維を含む複合材料から、熱劣化の恐れが少なく、かつ薄肉の成形品を得やすい成形方法を提供する。   The present invention provides a molding method in which a thin molded product can be easily obtained from a composite material containing a thermoplastic resin and carbon fibers with little risk of thermal degradation.

本発明者らは、特定の温度範囲で塑性加工する事で、薄肉でも成形し易い事を見出し、また特定の組成で特に成形し易い事を見出し、本発明を完成するに至った。即ち本発明の要旨は、以下の[1]〜[7]に存する。
〔1〕 熱可塑性樹脂(A)と炭素繊維(B)を含む複合材料を、ガラス転移点(Tg)以上、Tg+120℃以下の温度で塑性加工する成形方法。
〔2〕 前記塑性樹脂(A)が、晶性樹脂(A−1)を含む複合材料を融点以下の温度で塑性加工したものである上記〔1〕記載の成形方法。
〔3〕 熱可塑性樹脂(A)の50%以上が非晶性樹脂(A−2)である複合材料を塑性加工する、上記〔1〕または〔2〕に記載の成形方法。
〔4〕 塑性加工が、絞り加工または曲げ加工の何れかである上記〔1〕〜〔3〕のいずれかに記載の成形方法。
〔5〕 塑性加工した後に、ガラス転移点以下の温度で金型から取り出す、上記〔1〕〜〔4〕のいずれかに記載の成形方法。
〔6〕 複合材料の厚さが、0.4mm以上2.5mm以下である、上記〔1〕〜〔5〕のいずれかに記載の成形方法。
〔7〕 上記〔1〕〜〔6〕のいずれかに成形方法によって得られた成形品。
The inventors of the present invention have found that it is easy to mold even with a thin wall by plastic working in a specific temperature range, and that it is particularly easy to mold with a specific composition, and have completed the present invention. That is, the gist of the present invention resides in the following [1] to [7].
[1] A molding method in which a composite material including a thermoplastic resin (A) and a carbon fiber (B) is plastically processed at a temperature of a glass transition point (Tg) to Tg + 120 ° C.
[2] The molding method according to [1], wherein the plastic resin (A) is obtained by plastic processing of a composite material containing the crystalline resin (A-1) at a temperature equal to or lower than the melting point.
[3] The molding method according to [1] or [2], wherein a composite material in which 50% or more of the thermoplastic resin (A) is an amorphous resin (A-2) is plastically processed.
[4] The forming method according to any one of the above [1] to [3], wherein the plastic working is either drawing or bending.
[5] The molding method according to any one of the above [1] to [4], which is taken out from the mold at a temperature equal to or lower than the glass transition point after plastic working.
[6] The molding method according to any one of [1] to [5], wherein the composite material has a thickness of 0.4 mm to 2.5 mm.
[7] A molded product obtained by the molding method according to any one of [1] to [6].

本発明により、熱可塑性樹脂と炭素繊維を含む複合材料から、熱劣化の恐れが少なく、かつ薄肉の成形品を得やすい成形方法を提供することができる。   According to the present invention, it is possible to provide a molding method in which a thin molded product can be easily obtained from a composite material containing a thermoplastic resin and carbon fibers with little risk of thermal degradation.

本発明の実施例で用いた金型の概略断面を示す図である。It is a figure which shows the schematic cross section of the metal mold | die used in the Example of this invention.

(熱可塑性樹脂(A))
本発明で用いられる複合材料は、熱可塑性樹脂(A)を含む。樹脂成分の主成分が熱可塑性樹脂(A)であり、樹脂成分の95%以上が熱可塑性樹脂(A)である事が好ましく、樹脂成分が熱可塑性樹脂(A)からなる事がさらに好ましい。熱可塑性である事で、本発明の成形方法で成形し易い。
熱可塑性樹脂(A)としては、例えば、ポリプロピレン、6ナイロン、66ナイロン、610ナイロン、612ナイロン、12ナイロン、MXD6ナイロン、XD10ナイロン、9Tナイロン、10Tナイロン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド等の結晶性樹脂;ポリカーボネート、ABS、アクリル等の非晶性樹脂等が挙げられる。これらの熱可塑性樹脂(A)は、1種を単独で用いてもよく、2種以上を併用してもよい。
複合材料中の熱可塑性樹脂(A)の含有率は、複合材料100質量%中、30質量%以上80質量%以下が好ましく、40質量%以上70質量%以下がより好ましく、50質量%以上65質量%以下が更に好ましい。
複合材料中の熱可塑性樹脂(A)の含有率が30質量%以上であると、複合材料の成形性に優れる。また、熱可塑性樹脂組成物中の熱可塑性樹脂(A)の含有率が80質量%以下であると、炭素繊維(B)を十分配合できるため、成形品の機械特性に優れる。
(Thermoplastic resin (A))
The composite material used in the present invention contains a thermoplastic resin (A). The main component of the resin component is the thermoplastic resin (A), 95% or more of the resin component is preferably the thermoplastic resin (A), and the resin component is more preferably made of the thermoplastic resin (A). Being thermoplastic, it is easy to mold by the molding method of the present invention.
Examples of the thermoplastic resin (A) include polypropylene, 6 nylon, 66 nylon, 610 nylon, 612 nylon, 12 nylon, MXD6 nylon, XD10 nylon, 9T nylon, 10T nylon, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, and the like. Noncrystalline resins such as polycarbonate, ABS, and acrylic. These thermoplastic resins (A) may be used individually by 1 type, and may use 2 or more types together.
The content of the thermoplastic resin (A) in the composite material is preferably 30% by mass to 80% by mass, more preferably 40% by mass to 70% by mass, and more preferably 50% by mass to 65% by mass in 100% by mass of the composite material. A mass% or less is more preferable.
When the content of the thermoplastic resin (A) in the composite material is 30% by mass or more, the moldability of the composite material is excellent. Moreover, since carbon fiber (B) can fully be mix | blended as the content rate of the thermoplastic resin (A) in a thermoplastic resin composition is 80 mass% or less, it is excellent in the mechanical characteristic of a molded article.

(結晶性樹脂(A−1))
熱可塑性樹脂(A)は、結晶性樹脂(A−1)を含むことが好ましい。
結晶性樹脂(A−1)としては、ポリプロピレン、6ナイロン、66ナイロン、610ナイロン、612ナイロン、12ナイロン、MXD6ナイロン、XD10ナイロン、9Tナイロン、10Tナイロン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド等が挙げられる。耐熱性、成形性のバランスから、6ナイロン、66ナイロン、610ナイロン、612ナイロン、12ナイロン、MXD6ナイロン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、が好ましく、吸湿による物性低下が少なく比較的安価な事から、ポリブチレンテレフタレート、ポリエチレンテレフタレートが好ましい。
熱可塑性樹脂(A)中の結晶性樹脂(A−1)の配合量は、50%以下が好ましく、5%以上40%以下がさらに好ましく、15%以上30%以下が最も好ましい。
結晶性樹脂(A−1)を含むことで、ガラス転移点以上であっても、べたつきが少なく、ハンドリングし易い。
(Crystalline resin (A-1))
The thermoplastic resin (A) preferably contains a crystalline resin (A-1).
Examples of the crystalline resin (A-1) include polypropylene, 6 nylon, 66 nylon, 610 nylon, 612 nylon, 12 nylon, MXD6 nylon, XD10 nylon, 9T nylon, 10T nylon, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, and the like. Is mentioned. From the balance of heat resistance and moldability, 6 nylon, 66 nylon, 610 nylon, 612 nylon, 12 nylon, MXD6 nylon, polybutylene terephthalate, and polyethylene terephthalate are preferable. Polybutylene terephthalate and polyethylene terephthalate are preferable.
The blending amount of the crystalline resin (A-1) in the thermoplastic resin (A) is preferably 50% or less, more preferably 5% or more and 40% or less, and most preferably 15% or more and 30% or less.
By including the crystalline resin (A-1), even if it is above the glass transition point, there is little stickiness and it is easy to handle.

(非晶性樹脂(A−2))
熱可塑性樹脂(A)は、非晶性樹脂(A−2)を含むことが好ましい。
非晶性樹脂(A−2)としては、ポリカーボネート、ABS、アクリル、ポリスチレン、ポリフェニレンエーテル等が挙げられる。ガラス転移温度が高く耐熱性が高い点から、ポリカーボネートが好ましい。
非晶性樹脂(A−2)は、熱可塑性樹脂(A)の50%以上である事が好ましい。さらに好ましくは60%以上95%以下であり、もっとも好ましくは70%以上85%以下である。非晶性樹脂(A−2)がこの範囲であると、塑性加工し易い。
また熱可塑性樹脂(A)は、成形性に優れる事から、結晶性樹脂(A−1)と非晶性樹脂(A−2)を含むポリマーアロイが好ましい。また、成形性と機械特性のバランスに優れる事から、ポリカーボネート/ポリブチレンテレフタレートアロイ、ポリカーボネート/ポリエチレンテレフタレートアロイがさらに好ましい。
(Amorphous resin (A-2))
The thermoplastic resin (A) preferably contains an amorphous resin (A-2).
Examples of the amorphous resin (A-2) include polycarbonate, ABS, acrylic, polystyrene, polyphenylene ether, and the like. Polycarbonate is preferred because of its high glass transition temperature and high heat resistance.
The amorphous resin (A-2) is preferably 50% or more of the thermoplastic resin (A). More preferably, it is 60% or more and 95% or less, and most preferably 70% or more and 85% or less. When the amorphous resin (A-2) is within this range, plastic processing is easy.
The thermoplastic resin (A) is preferably a polymer alloy containing a crystalline resin (A-1) and an amorphous resin (A-2) because it is excellent in moldability. Further, polycarbonate / polybutylene terephthalate alloy and polycarbonate / polyethylene terephthalate alloy are more preferable because of excellent balance between moldability and mechanical properties.

(炭素繊維(B))
本発明に用いられる複合材料は、炭素繊維(B)を含む。炭素繊維としては、PAN系炭素繊維や、ピッチ系炭素繊維が挙げられるが、PAN系炭素繊維が好ましい。
ここでPAN系炭素繊維とは、「アクリロニトリルを主成分として重合させたポリアクリルニトリル系樹脂からなる繊維を、不融化させて、さらに炭化させて生成した実質的に炭素のみからなるフィラメント繊維」を主たる成分として構成される繊維の集合体であることを意味する。PAN系炭素繊維は、低密度及び高比強度といった利点がある。
PAN系炭素繊維を構成するフィラメント繊維の最大フェレ径をPAN系炭素繊維の直径とした場合、PAN系炭素繊維の直径は1μm以上20μm以下が好ましく、4μm以上15μm以下がさらに好ましく、特に好ましくは5μm以上8μm以下である。
PAN系炭素繊維は、長繊維、チョップドファイバー、ミルドファイバーを用いる事ができるが、所望の機械特性や加工性を得るために、質量平均長さを制御する観点から、長繊維や、チョップドファイバーが好ましい。
以上のような性質を有するPAN系炭素繊維として好適に用いられている市販品としては、パイロフィル(登録商標)チョップドファイバー TR06U、TR06UL,TR06NE、TR06NL、MR06NE、MR03NE、長繊維 TR50S 15L、TRH50 18M、TRH50 60M、TRW40 50L、MR60H 24P、HR40 12M(以上、商品名、三菱レイヨン社製)などが挙げられる。
複合材料中の炭素繊維(B)の含有率は、複合材料100質量%中、20質量%以上70質量%以下が好ましく、30質量%以上60質量%以下がより好ましく、35質量%以上50質量%以下が更に好ましい。
複合材料中の炭素繊維(B)の含有率が20質量%以上であると、成形品の機械特性に優れる。また、熱可塑性樹脂組成物中の炭素繊維(B)の含有率が70質量%以下であると、熱可塑性樹脂(A)を十分配合できるため、成形性に優れる。
複合材料中の炭素繊維(B)の質量平均繊維長に特に制限は無いが、機械特性の観点から0.1mm以上が好ましく、10mm以上がさらに好ましい。また成形性の観点から、50mm以下が好ましく。30mm以下がさらに好ましい。
(Carbon fiber (B))
The composite material used in the present invention contains carbon fiber (B). Examples of carbon fibers include PAN-based carbon fibers and pitch-based carbon fibers, with PAN-based carbon fibers being preferred.
Here, the PAN-based carbon fiber is a “filament fiber made of substantially carbon only, which is produced by infusifying and carbonizing a fiber made of a polyacrylonitrile-based resin polymerized with acrylonitrile as a main component”. It means an aggregate of fibers constituted as a main component. PAN-based carbon fibers have the advantages of low density and high specific strength.
When the maximum ferret diameter of the filament fiber constituting the PAN-based carbon fiber is the diameter of the PAN-based carbon fiber, the diameter of the PAN-based carbon fiber is preferably 1 μm or more and 20 μm or less, more preferably 4 μm or more and 15 μm or less, and particularly preferably 5 μm. It is 8 μm or less.
As the PAN-based carbon fiber, long fiber, chopped fiber, and milled fiber can be used. From the viewpoint of controlling the mass average length in order to obtain desired mechanical properties and processability, long fibers and chopped fibers are used. preferable.
Commercially available products suitably used as PAN-based carbon fibers having the above properties include Pyrofil (registered trademark) chopped fibers TR06U, TR06UL, TR06NE, TR06NL, MR06NE, MR03NE, long fibers TR50S 15L, TRH50 18M, TRH50 60M, TRW40 50L, MR60H 24P, HR40 12M (above, trade name, manufactured by Mitsubishi Rayon Co., Ltd.) and the like.
The content of the carbon fiber (B) in the composite material is preferably 20% by mass to 70% by mass, more preferably 30% by mass to 60% by mass, and more preferably 35% by mass to 50% by mass in 100% by mass of the composite material. % Or less is more preferable.
When the content of the carbon fiber (B) in the composite material is 20% by mass or more, the mechanical properties of the molded product are excellent. Moreover, since a thermoplastic resin (A) can fully be mix | blended as the content rate of the carbon fiber (B) in a thermoplastic resin composition is 70 mass% or less, it is excellent in a moldability.
Although there is no restriction | limiting in particular in the mass mean fiber length of the carbon fiber (B) in a composite material, 0.1 mm or more is preferable from a viewpoint of mechanical characteristics, and 10 mm or more is further more preferable. Moreover, from a viewpoint of a moldability, 50 mm or less is preferable. More preferably, it is 30 mm or less.

(複合材料)
本発明に用いられる複合材料は、熱可塑性樹脂(A)と炭素繊維(B)以外に、必要に応じて他の添加剤を含んでも良い。他の添加剤としては、例えば、着色剤、酸化防止剤、金属不活性材、カーボンブラック、造核剤、離型剤、滑剤、帯電防止剤、光安定剤、紫外線吸収剤、ガラス繊維、無機フィラー、耐衝撃性改質剤、溶融張力向上剤、難燃剤、可塑剤等が挙げられる。これらの他の添加剤は、1種を単独で用いても良く、2種以上を併用しても良い。
複合材料中の他の添加剤の含有率は、複合材料や成形品の本来の性能を損なわないことから、複合材料100質量%中、0質量%以上10質量%以下が好ましく、0質量%以上5質量%以下がより好ましく、0質量%以上3質量%以下が更に好ましい。
複合材料の厚さは、0.4mm以上2.5mm以下が好ましく、0.5mm以上1.7mm以下がさらに好ましい。0.4mm以上である事で、複合材料の優れた機械特性を活かす事ができる。また、2.5mm以下であれば、より薄肉軽量な成形品を得る事ができる。
複合材料の製造方法に特に制限はないが、熱可塑性樹脂(A)と炭素繊維(B)からなるプリプレグを積層する方法や、熱可塑性樹脂(A)と炭素繊維(B)からなるペレットを射出成形する方法、熱可塑性樹脂(A)と炭素繊維(B)からなるペレットを押出成形する方法等が挙げられる。ペレットを用いる場合に、より大きな面積の複合材料を効率的に得るためには、押出成形が好ましい。
(Composite material)
The composite material used in the present invention may contain other additives as necessary in addition to the thermoplastic resin (A) and the carbon fiber (B). Other additives include, for example, colorants, antioxidants, metal inert materials, carbon black, nucleating agents, mold release agents, lubricants, antistatic agents, light stabilizers, UV absorbers, glass fibers, inorganic Examples include fillers, impact modifiers, melt tension improvers, flame retardants, and plasticizers. These other additives may be used alone or in combination of two or more.
The content of other additives in the composite material is preferably 0% by mass or more and 10% by mass or less, and preferably 0% by mass or more in 100% by mass of the composite material, since the original performance of the composite material or molded product is not impaired. 5 mass% or less is more preferable, and 0 mass% or more and 3 mass% or less are still more preferable.
The thickness of the composite material is preferably 0.4 mm or greater and 2.5 mm or less, and more preferably 0.5 mm or greater and 1.7 mm or less. By being 0.4 mm or more, the excellent mechanical properties of the composite material can be utilized. Moreover, if it is 2.5 mm or less, a thinner and lighter molded product can be obtained.
There are no particular restrictions on the method of manufacturing the composite material, but a method of laminating a prepreg made of thermoplastic resin (A) and carbon fiber (B), or a pellet made of thermoplastic resin (A) and carbon fiber (B) is injected. Examples of the molding method include a method of extruding a pellet made of the thermoplastic resin (A) and the carbon fiber (B). When pellets are used, extrusion molding is preferred in order to efficiently obtain a composite material having a larger area.

(塑性加工)
本発明の成形方法は、塑性加工である。
ここで塑性加工とは、延伸、鍛造、絞り、曲げ加工であり、これらを組み合わせた方法も含む。好ましくは、曲げ加工、絞り加工であり、さらに好ましくは曲げ加工である。
本発明の塑性加工では、曲げ加工機等の従来板金加工で用いられている加工機を用いる事が可能であるが、より複雑な成形品を効率的に生産する観点から、金型を用いたプレス加工が好ましい。
金型を用いる場合、複合材料をTg以上Tg+120℃以下の温度に予熱した後に、金型内に運搬し、金型を閉じる事で所望の塑性加工を行う方法が好ましい。金型の温度に特に制限はないが、高い生産性を求める場合には、Tg以下の温度が好ましい。また、少量の加工であれば、Tg以上の温度の金型を用いて塑性加工した後に、金型をTg以下に冷やしてから取り出す方法が容易である。
(Plastic processing)
The forming method of the present invention is plastic working.
Here, the plastic working includes stretching, forging, drawing, and bending, and includes a combination of these methods. Bending and drawing are preferable, and bending is more preferable.
In the plastic working of the present invention, it is possible to use a processing machine used in conventional sheet metal processing such as a bending machine, but from the viewpoint of efficiently producing a more complicated molded product, a mold was used. Press working is preferred.
In the case of using a mold, a method of performing desired plastic working by preheating the composite material to a temperature of Tg or more and Tg + 120 ° C. and then transporting it into the mold and closing the mold is preferable. Although there is no restriction | limiting in particular in the temperature of a metal mold | die, When calculating | requiring high productivity, the temperature below Tg is preferable. In addition, for a small amount of processing, it is easy to take out the plastic mold after cooling it to Tg or lower after plastic processing using a mold having a temperature of Tg or higher.

(加工温度)
本発明の成形方法では、ガラス転移点(Tg)以上、Tg+120℃以下で塑性加工する。Tg+20℃以上が好ましく、Tg+30℃以上がさらに好ましい。また、Tg+80℃以下が好ましく、Tg+70℃以下がさらに好ましい。
また、熱可塑性樹脂(A)が結晶性樹脂(A−1)を含む場合には、融点(Tm)以下が好ましく、Tm−40℃以下がさらに好ましい。
この範囲では、より加工性に優れる。
ここでガラス転移点(Tg)、融点(Tm)は、複合材料の一部を切出し、示差走査熱量計(DSC)により、10℃/分の速度で昇温しながら測定した値である。
本発明の成形方法で金型を用いる場合、Tg以上であっても、Tgに近い温度であれば変形が少なく金型から取り出す事が可能であるが、安定した成形のためには、成形品の表面の温度がTg以下になってから金型から取り出す事が好ましい。Tg以上で取出した場合には、金型から取り出した後に変形が生じ、所望の寸法精度が得られない場合がある。取り出し時の金型の温度は、Tg以下が好ましく、Tg−5℃以下がさらに好ましい。
(Processing temperature)
In the molding method of the present invention, plastic working is performed at a glass transition point (Tg) or higher and Tg + 120 ° C. or lower. Tg + 20 ° C. or higher is preferable, and Tg + 30 ° C. or higher is more preferable. Moreover, Tg + 80 degrees C or less is preferable and Tg + 70 degrees C or less is more preferable.
Moreover, when thermoplastic resin (A) contains crystalline resin (A-1), melting | fusing point (Tm) or less is preferable and Tm-40 degrees C or less is more preferable.
In this range, the processability is more excellent.
Here, the glass transition point (Tg) and the melting point (Tm) are values measured by cutting out a part of the composite material and raising the temperature at a rate of 10 ° C./min by a differential scanning calorimeter (DSC).
When a mold is used in the molding method of the present invention, even if it is Tg or higher, it can be removed from the mold with little deformation at a temperature close to Tg. It is preferable to take out from the mold after the temperature of the surface becomes lower than Tg. In the case of taking out at Tg or more, deformation may occur after taking out from the mold, and a desired dimensional accuracy may not be obtained. The temperature of the mold at the time of taking out is preferably Tg or less, and more preferably Tg-5 ° C or less.

(成形品)
本発明の成形品は、複合材料を塑性加工する事によって得られるが、その50%以上の面積において、複合材料の厚さの90%以上の厚さが好ましく、複合材料の厚さと等しい事が好ましい。本発明の成形方法では、厚さの変化を伴う加工も可能であるが、より高い加圧力が必要となるため、加工費用が高くなる恐れがある。
成形品の平均厚さは、0.4mm以上2mm以下が好ましく、0.5mm以上1.7mm以下がさらに好ましい。
(Molding)
The molded article of the present invention can be obtained by plastic processing of a composite material, and in an area of 50% or more, a thickness of 90% or more of the thickness of the composite material is preferable, and it may be equal to the thickness of the composite material. preferable. In the molding method of the present invention, processing with a change in thickness is possible, but higher pressurizing force is required, which may increase the processing cost.
The average thickness of the molded product is preferably 0.4 mm or more and 2 mm or less, and more preferably 0.5 mm or more and 1.7 mm or less.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

(ガラス転移点、融点の測定)
複合材料をニッパーで切断し、約10mgをアルミニウム容器に精秤し、示差走査熱量計(機種名「DSC7020」、SII社製)を用いて測定した。280℃に加熱した後に−40℃まで急冷し、その後に−40℃から280℃まで10℃/分の昇温条件で測定する事で、ガラス転移点、融点を測定した。
(Measurement of glass transition point and melting point)
The composite material was cut with a nipper and about 10 mg was precisely weighed in an aluminum container and measured using a differential scanning calorimeter (model name “DSC7020”, manufactured by SII). After heating to 280 ° C., the glass transition point and the melting point were measured by rapidly cooling to −40 ° C. and then measuring from −40 ° C. to 280 ° C. under a temperature rising condition of 10 ° C./min.

(取扱い性)
ステンレス板上で加工温度となった複合材料を軍手で運ぶ際の取扱い性を、以下の基準で評価した。
○:容易に運ぶ事ができる。
△:表面がざらつき、やや運び難い。
×:軟らかすぎて運び難い。
(Handability)
The handling property when carrying a composite material at a processing temperature on a stainless steel plate with a gloves was evaluated according to the following criteria.
○: Can be carried easily.
Δ: The surface is rough and slightly difficult to carry.
X: It is too soft to carry.

(加工性)
加工性を以下の基準で評価した。
○:成形品に割れやヒビ等が無く良好である。
△:成形品にヒビが発生するが、割れない。
×:成形品が割れる。
(Processability)
Workability was evaluated according to the following criteria.
○: Good with no cracks or cracks in the molded product.
Δ: Cracking occurs in the molded product, but it does not break.
X: The molded product breaks.

(外観)
成形品外観を以下の基準で評価した。
○:形状や表面外観に異常が無く、良好。
△:概略形状は良好だが、表面に凹凸が発生。
×:形状不良。
(appearance)
The appearance of the molded product was evaluated according to the following criteria.
○: Good with no abnormality in shape and surface appearance.
Δ: The rough shape is good, but the surface is uneven.
X: Shape defect.

(原料)
熱可塑性ポリエステル樹脂(A−1):ポリブチレンテレフタレート樹脂(商品名「ノバデュラン5008」、三菱エンジニアリングプラスチック(株)製)
ポリカーボネート樹脂(A−2−1):ポリカーボネート樹脂(商品名「ユーピロンH−4000」、三菱エンジニアリングプラスチック(株)製)
ポリカーボネート樹脂(A−2−2):ポリカーボネート樹脂(商品名「ノバレックス7020IR」、三菱エンジニアリングプラスチック(株)製)
炭素繊維(B−1):PAN系炭素繊維(商品名「パイロフィル TR50S」、三菱レイヨン(株)製)
炭素繊維(B−2):PAN系炭素繊維(商品名「パイロフィル TR06UL」、三菱レイヨン(株)製、繊維長6mm、チョップドファイバー)
耐衝撃性改良剤:シリコーン−アクリル複合ゴム系耐衝撃性改良剤(商品名「メタブレン S−2006」、三菱レイヨン(株)製)
(material)
Thermoplastic polyester resin (A-1): Polybutylene terephthalate resin (trade name “Novaduran 5008”, manufactured by Mitsubishi Engineering Plastics)
Polycarbonate resin (A-2-1): Polycarbonate resin (trade name “Iupilon H-4000”, manufactured by Mitsubishi Engineering Plastics)
Polycarbonate resin (A-2-2): Polycarbonate resin (trade name “NOVAREX 7020IR”, manufactured by Mitsubishi Engineering Plastics)
Carbon fiber (B-1): PAN-based carbon fiber (trade name “Pyrofil TR50S”, manufactured by Mitsubishi Rayon Co., Ltd.)
Carbon fiber (B-2): PAN-based carbon fiber (trade name “Pyrofil TR06UL”, manufactured by Mitsubishi Rayon Co., Ltd., fiber length 6 mm, chopped fiber)
Impact resistance improver: Silicone-acrylic composite rubber impact resistance improver (trade name “METABREN S-2006”, manufactured by Mitsubishi Rayon Co., Ltd.)

(参考例1)0.5mm厚の複合材料(X−1)の製造
ポリカーボネート樹脂(A−2−1)80質量部、熱可塑性ポリエステル樹脂(A−1)20質量部、耐衝撃性改良剤 5質量部、安定剤 0.9質量部を二軸押出機で混練してPC/PBTアロイのペレットを得た。
(Reference Example 1) Production of 0.5 mm thick composite material (X-1) 80 parts by mass of polycarbonate resin (A-2-1), 20 parts by mass of thermoplastic polyester resin (A-1), impact resistance improver 5 parts by mass and 0.9 parts by mass of a stabilizer were kneaded with a twin screw extruder to obtain PC / PBT alloy pellets.

このペレットと炭素繊維(B−1)を特許文献1記載の方法に従って複合化し、炭素繊維を44%含む、厚さ0.5mmの複合材料(X−1)を得た。ガラス転移点 97℃、融点 210℃であった。   This pellet and carbon fiber (B-1) were compounded according to the method described in Patent Document 1, and a composite material (X-1) having a thickness of 0.5 mm containing 44% carbon fiber was obtained. The glass transition point was 97 ° C. and the melting point was 210 ° C.

(参考例2)0.6mm厚の複合材料(X−2)の製造
ポリカーボネート樹脂(A−2−2)76質量部、熱可塑性ポリエステル樹脂(A−1)19質量部、耐衝撃性改良剤 5質量部、安定剤 0.4質量部を二軸押出機のメインフィーダーから供給し、炭素繊維(B−2)67質量部をサイドフィーダーから供給し、ダイスから出たストランドを水冷した後にストランドカッターでカットし、ペレット状の熱可塑性樹脂組成物(Y)を得た。
ここで得られた熱可塑性樹脂組成物(Y)を、シリンダー温度270℃、金型温度100℃で射出成形した後に、2枚のステンレス板に挟んで、270℃に設定したプレス成形機で厚さ0.6mmになるように圧縮し、その後80℃に設定したプレス成形機で冷却した後にステンレス板の間から取り出して、炭素繊維を40%含む、厚さ0.6mmの複合材料(X−2)を得た。ガラス転移点 104℃、融点 210℃であった。
(Reference Example 2) Manufacture of 0.6 mm thick composite material (X-2) 76 parts by mass of polycarbonate resin (A-2-2), 19 parts by mass of thermoplastic polyester resin (A-1), impact resistance improver 5 parts by mass, stabilizer 0.4 parts by mass are supplied from the main feeder of the twin screw extruder, 67 parts by mass of carbon fiber (B-2) are supplied from the side feeder, and the strands coming out of the die are cooled with water and then strands. It cut with the cutter and obtained the pellet-shaped thermoplastic resin composition (Y).
The thermoplastic resin composition (Y) obtained here was injection-molded at a cylinder temperature of 270 ° C. and a mold temperature of 100 ° C., and then sandwiched between two stainless steel plates and thickened with a press molding machine set at 270 ° C. Compressed to a thickness of 0.6 mm, then cooled by a press molding machine set at 80 ° C. and then taken out from between the stainless steel plates, a composite material (X-2) having a thickness of 0.6 mm containing 40% carbon fiber Got. The glass transition point was 104 ° C and the melting point was 210 ° C.

(参考例3)2mm厚の複合材料(X−3)の製造
(参考例2)のペレット状で得られた熱可塑性樹脂組成物(Y)を、シリンダー温度270℃、金型温度100℃の条件で、100mm×100mm×2mmのキャビティを有する金型を用いて射出成形する事で、炭素繊維を40%含む、厚さ2mmの複合材料(X−3)を得た。ガラス転移点 104℃、融点 210℃であった。
(Reference Example 3) Production of 2 mm-thick composite material (X-3) The thermoplastic resin composition (Y) obtained in the pellet form of (Reference Example 2) was subjected to a cylinder temperature of 270 ° C and a mold temperature of 100 ° C. Under conditions, a composite material (X-3) having a thickness of 2 mm containing 40% carbon fiber was obtained by injection molding using a mold having a cavity of 100 mm × 100 mm × 2 mm. The glass transition point was 104 ° C and the melting point was 210 ° C.

(実施例1)複合材料(X−1)のプレス機を使った曲げ加工
図1に記載の概略断面を有する金型を150℃に加熱し、その一方で70mm(下型の凸部は60mm)に切断した複合材料(X−1)を150℃の金属板上で予熱した。金型の上型(キャビティ側)を外し、複合材料(X−1)を下型(コア側)の上に置き、手で軽く押しつけた後に、その上に上型を置き、プレス成形した。金型が閉じきってすぐに、80℃に設定したプレス機に金型ごと移動し、加圧したまま100℃以下になるまで冷却した。その後に金型を開き、成形品を得た。天面の厚さは0.5mmであり、端部は曲げ加工されており、外観は平滑であった。
(Example 1) Bending using a pressing machine for composite material (X-1) A mold having a schematic cross section shown in Fig. 1 was heated to 150 ° C, while 70 mm (the convex part of the lower mold was 60 mm). ) Was preheated on a metal plate at 150 ° C. The upper mold (cavity side) of the mold was removed, and the composite material (X-1) was placed on the lower mold (core side) and lightly pressed by hand, and then the upper mold was placed thereon and press-molded. Immediately after the mold was completely closed, the mold was moved to a press set at 80 ° C. and cooled to 100 ° C. or lower while being pressurized. Thereafter, the mold was opened to obtain a molded product. The thickness of the top surface was 0.5 mm, the end portion was bent, and the appearance was smooth.

(実施例2)複合材料(X−2)のプレス機を使った曲げ加工
複合材料(X−1)の代わりに複合材料(X−2)を用いる点を除いては、実施例1と同様に実施し、成形品を得た。天面の厚さは1mmであり、端部は曲げ加工されており、外観は平滑であった。
(Example 2) Bending using a pressing machine for composite material (X-2) Same as Example 1 except that composite material (X-2) is used instead of composite material (X-1) The molded product was obtained. The thickness of the top surface was 1 mm, the end was bent, and the appearance was smooth.

(実施例3)複合材料(X−1)の曲げ加工
複合材料(X−2)を70×25mmに切断し、140℃の金属板上で予熱した。これを軍手で掴んで、曲げ加工機(ミニシャーベンダー MSB−8(株式会社東洋アソシエイツ製))にセットし、直ちに曲げ加工を実施し、成型品を得た。
(Example 3) Bending process of composite material (X-1) The composite material (X-2) was cut into 70 x 25 mm and preheated on a metal plate at 140 ° C. This was grabbed with a hand and set on a bending machine (Mini Shear Bender MSB-8 (manufactured by Toyo Associates)) and immediately bent to obtain a molded product.

(実施例4〜11)複合材料の曲げ加工
複合材料の種類と加工温度を表1に記載の通りに変更する点を除いては、実施例3と同様に実施し、成型品を得た。
(Examples 4 to 11) Bending of composite material Except for changing the type of composite material and the processing temperature as shown in Table 1, the same procedure as in Example 3 was performed to obtain a molded product.

(比較例1〜2)複合材料の低温での曲げ加工
複合材料の種類と加工温度を表1に記載の通りに変更する点を除いては、実施例3と同様に実施したが、曲げ加工の際に複合材料が割れてしまい、成型品が得られなかった。
(Comparative Examples 1 and 2) Bending at a low temperature of the composite material The bending was performed in the same manner as in Example 3 except that the type of composite material and the processing temperature were changed as shown in Table 1. At this time, the composite material was broken, and a molded product could not be obtained.

(比較例3〜4)複合材料の高温での曲げ加工
複合材料の種類と加工温度を表1に記載の通りに変更する点を除いては、実施例3と同様に実施したが、複合材料が軟らかいため、曲げ加工機に運ぶ際に掴んだ部分の周辺が大きく変形してしまった。曲げ加工は可能なものの、加工部分以外が大きく変形した。
(Comparative Examples 3-4) Bending at high temperature of composite material The composite material was carried out in the same manner as in Example 3 except that the type of composite material and the processing temperature were changed as shown in Table 1. Because of the softness, the area around the gripped part was greatly deformed when transported to the bending machine. Although bending is possible, the parts other than the processed part were greatly deformed.

以上から明らかなように、実施例1〜11は、曲げ加工可能であった。特に実施例1〜7は好ましい範囲内のため、加工性や外観が特に優れていた。比較例1〜2は、加工温度が低すぎるために、複合材料の軟化が不十分であり、曲げ加工できずに割れてしまった。比較例3〜4は、加工温度が高すぎるために複合材料が軟らかくなりすぎ取扱い辛かった。   As is clear from the above, Examples 1 to 11 could be bent. In particular, since Examples 1 to 7 were within a preferable range, workability and appearance were particularly excellent. In Comparative Examples 1 and 2, since the processing temperature was too low, the composite material was insufficiently softened, and could not be bent and cracked. In Comparative Examples 3 and 4, since the processing temperature was too high, the composite material was too soft and difficult to handle.

Claims (7)

熱可塑性樹脂(A)と炭素繊維(B)を含む複合材料を、ガラス転移点(Tg)以上、Tg+120℃以下の温度で塑性加工する成形方法。   A molding method in which a composite material containing a thermoplastic resin (A) and a carbon fiber (B) is plastically processed at a temperature of a glass transition point (Tg) or higher and Tg + 120 ° C. or lower. 前記塑性樹脂(A)が、晶性樹脂(A−1)を含む複合材料を融点以下の温度で塑性加工したものである請求項1記載の成形方法。   The molding method according to claim 1, wherein the plastic resin (A) is obtained by plastic working a composite material containing the crystalline resin (A-1) at a temperature equal to or lower than the melting point. 熱可塑性樹脂(A)の50%以上が非晶性樹脂(A−2)である複合材料を塑性加工する、請求項1または2に記載の成形方法。   The molding method according to claim 1 or 2, wherein a composite material in which 50% or more of the thermoplastic resin (A) is an amorphous resin (A-2) is plastically processed. 塑性加工が、絞り加工または曲げ加工の何れかである請求項1〜3のいずれかに記載の成形方法。   The forming method according to claim 1, wherein the plastic working is either drawing or bending. 塑性加工した後に、ガラス転移点以下の温度で金型から取り出す、請求項1〜4のいずれかに記載の成形方法。   The shaping | molding method in any one of Claims 1-4 which takes out from a metal mold | die at the temperature below a glass transition point after carrying out plastic working. 複合材料の厚さが、0.4mm以上2.5mm以下である、請求項1〜5のいずれかに記載の成形方法。   The shaping | molding method in any one of Claims 1-5 whose thickness of a composite material is 0.4 mm or more and 2.5 mm or less. 請求項1〜6のいずれかの成形方法によって得られた成形品。   A molded product obtained by the molding method according to claim 1.
JP2017053893A 2017-03-21 2017-03-21 Composite material molding method and molded product Active JP6866713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017053893A JP6866713B2 (en) 2017-03-21 2017-03-21 Composite material molding method and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053893A JP6866713B2 (en) 2017-03-21 2017-03-21 Composite material molding method and molded product

Publications (2)

Publication Number Publication Date
JP2018154064A true JP2018154064A (en) 2018-10-04
JP6866713B2 JP6866713B2 (en) 2021-04-28

Family

ID=63716011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053893A Active JP6866713B2 (en) 2017-03-21 2017-03-21 Composite material molding method and molded product

Country Status (1)

Country Link
JP (1) JP6866713B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154900A (en) * 1991-12-09 1993-06-22 Teijin Ltd Curved-face molded piece and production thereof
JPH06296634A (en) * 1993-04-19 1994-10-25 Teijin Ltd Prosthetic leg
JP2011122080A (en) * 2009-12-11 2011-06-23 Umg Abs Ltd Thermoplastic resin composition and resin molding therefrom
JP2015091930A (en) * 2013-10-01 2015-05-14 三菱レイヨン株式会社 Plate material for apparatus, apparatus and manufacturing method of apparatus
WO2015122500A1 (en) * 2014-02-14 2015-08-20 三菱レイヨン株式会社 Fiber-reinforced plastic and production method therefor
JP2016172322A (en) * 2015-03-16 2016-09-29 三菱レイヨン株式会社 Method for producing fiber-reinforced thermoplastic resin-molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154900A (en) * 1991-12-09 1993-06-22 Teijin Ltd Curved-face molded piece and production thereof
JPH06296634A (en) * 1993-04-19 1994-10-25 Teijin Ltd Prosthetic leg
JP2011122080A (en) * 2009-12-11 2011-06-23 Umg Abs Ltd Thermoplastic resin composition and resin molding therefrom
JP2015091930A (en) * 2013-10-01 2015-05-14 三菱レイヨン株式会社 Plate material for apparatus, apparatus and manufacturing method of apparatus
WO2015122500A1 (en) * 2014-02-14 2015-08-20 三菱レイヨン株式会社 Fiber-reinforced plastic and production method therefor
JP2016172322A (en) * 2015-03-16 2016-09-29 三菱レイヨン株式会社 Method for producing fiber-reinforced thermoplastic resin-molded article

Also Published As

Publication number Publication date
JP6866713B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
JP6245362B2 (en) Fiber-reinforced composite material molded article and method for producing the same
WO2015083707A1 (en) Fiber-reinforced resin laminate
KR20160121503A (en) Carbon fiber reinforced molding material and molded body
WO2012117975A1 (en) Injection formed body and fabrication method for same
KR20150079895A (en) Pellet mixture, carbon fiber-reinforced polypropylene resin composition, molded body, and method for producing pellet mixture
JP2016079337A (en) Carbon fiber-reinforced plastic and method for producing the same
CN110144085A (en) A kind of high endurance glass fiber reinforced polypropylene composite material and preparation method thereof
JP6086161B2 (en) Manufacturing method of fiber reinforced thermoplastic resin composite, manufacturing method of fiber reinforced thermoplastic resin tape, manufacturing method of press molding material, manufacturing supplement of molded product, unidirectional prepreg, and molded product
TW201703969A (en) Method for producing molded article by press molding thermoplastic resin sheet or film
JP6866713B2 (en) Composite material molding method and molded product
JP2017105865A (en) Sheet-like molded article and manufacturing method therefor
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
JP2016163989A (en) Method for producing press-molded body, and method for producing press-molded body
US20220009179A1 (en) Method for producing press-molded body
JP2017210616A (en) Fiber-containing resin structure, manufacturing method of fiber-containing resin structure, fiber-reinforced resin cured product and fiber-reinforced resin mold
Shamprasad et al. Mechanical properties of natural fiber reinforced polylactide composites: A review
JP2014113713A (en) Fiber reinforced thermoplastic resin random sheet and production method thereof
JP7447930B2 (en) Fiber-reinforced thermoplastic resin molding material, pellets and manufacturing method thereof
JP4976610B2 (en) Method for producing a long fiber reinforced thermoplastic resin molding
CN111844823B (en) Discontinuous fiber reinforced thermoplastic composite material prefabricated sheet and preparation method thereof
JP2016093997A (en) Method for producing reinforced fiber pellet, reinforced fiber pellet and molding
CN108864664B (en) Long fiber reinforced thermoplastic composite material and preparation method thereof
Santi et al. 3D-PAPER: CELLULOSIC-FILLED ECO-COMPOSITE MATERIAL FOR ENHANCED 3D PRINTING POSSIBILITIES
Antoniades Investigation into the effect of printing temperatures on material properties of fused filament fabricated components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R151 Written notification of patent or utility model registration

Ref document number: 6866713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151