JP2018151378A - 位置検出装置 - Google Patents

位置検出装置

Info

Publication number
JP2018151378A
JP2018151378A JP2018017846A JP2018017846A JP2018151378A JP 2018151378 A JP2018151378 A JP 2018151378A JP 2018017846 A JP2018017846 A JP 2018017846A JP 2018017846 A JP2018017846 A JP 2018017846A JP 2018151378 A JP2018151378 A JP 2018151378A
Authority
JP
Japan
Prior art keywords
sensor
rotor
coil
voltage
induced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018017846A
Other languages
English (en)
Other versions
JP6684839B2 (ja
Inventor
ディルク・ホプフ
Hopf Dirk
ジノウ・ワン
Jinou Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of JP2018151378A publication Critical patent/JP2018151378A/ja
Application granted granted Critical
Publication of JP6684839B2 publication Critical patent/JP6684839B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

【課題】真空ポンプの磁気的に支承されたローターの迅速かつ信頼性の高い位置検出装置を提供する。
【解決手段】位置検出装置10において、ローターの磁石支承部の領域に設けられたセンサー装置12と、これに付設される制御及び/又は評価ユニット14を有し、各計測軸Siに沿ったローター移動を検出するセンサー装置12が、二つのセンサーコイル16,18を有する各一つのセンサーコイルユニットを有し、両方のセンサーコイル16,18における各計測軸Siに沿った各ローター移動の際に、逆方向のインダクタンス変化が生じるか又はインダクタンスが、両方のセンサーコイル16,18の一方においてのみ変化し、他方のセンサーコイルにおいては、基本的に変化しないままであるよう、センサーコイルが制御及び/又は評価ユニット14を介して、其々、周期的かつ電気的な励起信号Uextにより付勢可能であり、磁石支承部に対して相対的に配置されている。
【選択図】図6

Description

本発明は、少なくとも部分的に磁気的に支承されたローター、特に真空ポンプ、ターボ分子ポンプの少なくとも部分的に磁気的に支承されたローターの位置の検出の為の装置及び方法に関する。本発明は更に、真空ポンプ、特にターボ分子ポンプであって、そのような位置検出装置を有するものに関する。
例えばターボ分子ポンプのような真空ポンプは、様々な技術領域で使用され、各プロセスに必要な真空を達成する。ターボ分子ポンプは、ローター軸方向において互いに連続する複数のステーターディスクを有するステーターと、ローター軸を中心としてステーターに対して回転可能に支承されたローターを有する。ローターは、ローターシャフトと、ローターシャフトに設けられ、軸方向に連続し、そしてステーターディスクの間に配置される複数のローターディスクを有する。その際、ステーターディスクとローターディスクは、それぞれポンプ効果を発する構造を有している。
欧州特許出願公開第3064791A1号明細書 欧州特許出願公開第0237171A2号明細書
本発明は、冒頭に記載した形式の装置及び方法であって、少なくとも部分的に磁気的に支承された構想に回転するローター、特に真空ポンプの少なくとも部分的に磁気的に支承されたローターのようなものの可能な限り正確で、迅速かつ信頼性の高い非接触式の位置検出を可能とするものを提供することである。
この課題は、発明に従い、請求項1に記載の特徴を有する装置、請求項13に記載の特徴を有する方法、及び請求項12に記載の特徴を有する真空ポンプ、特にターボ分子ポンプによって解決される。発明に係る装置の好ましい実施形、及び発明に係る方法の好ましい態様は、下位の請求項、明細書、及び図面から生じる。
発明に係る装置は、ローターの磁石支承部の領域に配置された非接触式のセンサー装置と、これに付設された制御及び/又は評価ユニットを有する。その際、センサー装置は、各計測軸に沿ったローター移動の検出の為、少なくとも二つのセンサーコイルを有する各一つのセンサーコイルユニットを有する。センサーコイルは、制御及び/又は評価ユニットを介して、其々、周期的、電気的な励起信号を付勢可能である。更に、各計測軸に沿った各ローター移動の際に、両方のセンサーコイル内において、逆方向のインダクタンス変化が生じるか、又はインダクタンスが両方のセンサーコイルの一方のみにおいて変化し、そして他方のセンサーコイルにおいては少なくとも基本的に変化しないままであるよう、センサーコイルは、互いに相対的に、及び磁石支承部に対して相対的に配置されている。
センサーコイルとして、特に空芯コイル(独語:Luftspulen)が設けられていることが可能である。センサー装置は、特に、半径方向のローター移動、及び/又は、軸方向のローター移動の検出の為に設けられていることが可能である。その際、センサー装置は、少なくとも部分的に磁気的に支承されたローターの半径方向の位置の検出のため、特に複数の計測軸、例えば、互いに垂直な、ローター軸に対して垂直な平面内に位置する二つのx軸及びy軸のようなものに沿ったローターのずれの計測のため、そのような各計測軸に付設された複数のセンサーコイルユニット(それぞれ少なくとも二つのセンサーコイルを有する)を有することが可能である。
ローターの軸方向の位置の検出のため、センサー装置は、特に、少なくとも二つのセンサーコイルを有するセンサーコイルユニットを有することが可能である。センサーコイルは、ローター軸に対して平行なz軸に沿ったローターのずれの計測のために設けられている。
周期的、電気的な励起信号(例えば周期的な励起電圧であることが可能である)により、隣接する磁石支承部の各磁場にさらされるセンサーコイル内では、電流が誘導される。その値は、センサーコイルのインダクタンスに依存する。更に、各センサーコイルユニットの少なくとも一つのセンサーコイルのインダクタンスが、各計測軸の方向で計測したセンサーコイルの磁石支承部に対する間隔に依存しているので、コイル内に誘導される電流を介して、関連する計測軸に沿ったローターの各ずれが計測可能である。
その際、各センサーコイルは、好ましくは静的に配置されている(設けられている)。
発明に係る形成に基づいて、例えば真空ポンプ、好ましくはターボ分子ポンプの、高速で回転する、少なくとも部分的に磁気的に支承されたローターの位置は、正確、迅速、かつ高信頼性の方法で非接触式に検出されることが可能である。
両方のセンサーコイルのディファレンシャル式の配置において、各ローター移動の際に、両方のセンサーコイル内に反対方向のインダクタンス変化が生じる間、インダクタンスが両方のセンサーコイルの一方のみにおいて変化する絶対的コイル配置において、一つのセンサーコイルのみが計測コイルとして使用され、他方で、インダクタンスが変化しないままである他のセンサーコイルは、参照コイルとして使用される。
ディファレンシャル式のコイル配置においては、両方のセンサーコイルのインダクタンスは、其々、各計測軸の方向で測定した、各センサーコイルと隣接する磁石支承部の間の間隔に依存する。これと反対に、絶対的なセンサー配置においては、計測コイルとして使用されるセンサーコイルのインダクタンスのみが、各計測軸の方向で測定される、計測コイルと磁石支承部の間の間隔に依存する。
好ましくは、作動電流から誘導されるセンサー電圧を形成する為の手段が設けられている。作動電流は、各計測軸に付設される両方のセンサーコイル内に誘導される電流から生じる。その際、誘導されるセンサー電圧は、制御及び/又は評価ユニットを介して、関連するセンサー軸に沿った各ローター移動の検出のため、特に励起信号の周期ごとに少なくとも其々二回走査されている。各走査の為に、制御及び/又は評価ユニットは、特にアナログ/デジタル変換器を有することが可能である。
誘導されるセンサー電圧は、制御及び/又は評価ユニットを介して、励起信号の周期ごとに、例えば少なくとも其々二回、各最高点において、及び/又は各零交差点において走査される。
発明に係る装置の好ましい実施形に従い、制御及び/又は評価ユニットを介して、励起信号の周期ごとに、差動電圧の形成の為、特にセンサー電圧の反対方向の最高点値において得られる二つの走査値の間の差が発生可能である。その際、差動電圧の振幅に基づいて、関連する計測軸に沿ったローター移動の値、及び/又は、差動電圧の符号に基づいて、関連する計測軸に沿ったローター移動の方向が決定されることが可能である。
このようにして、誘導されるセンサー電圧から、特に、その値、及び/又は位相から、各ローター移動の為の必要な情報が導かれることが可能である。
周期的、電気的な励起信号は、例えば、少なくとも基本的にサイン形状、又はコサイン形状n信号による形成されていることが可能である。しかしまた、基本的に、周期的、電気的な励起信号は、サイン形状、又はコサイン形状と異なる形状を有することも可能である。特に、それによって隣接する磁石支承部の磁場にさらされるセンサーコイルにおいて、信頼できる程度に計測可能な電流が誘導されるよう、それが周期的であるのみならず、各周期内で十分可変でもあるということのみが保証されるべきであろう。
特に、誘導されるセンサー電圧の形成の為の手段が、変圧器を有すると有利である。この変圧器は、各センサーコイルユニットの少なくとも二つのセンサーコイルと入口側で得接続されており、そして出口側で、出口コイルを設けられている。出口コイルには、誘導されたセンサー電圧が印加可能である(独語:abgreifbar)。
変圧器は、両方のセンサーコイル内に誘導される電流から誘導されるセンサー電圧を形成するのに使用されるのみならず、これは、センサー信号の電気的な増幅の為にも使用されることが可能である。
発明に係る装置の目的にかなった別の実施形に従い、変圧器と、各計測軸に付設された少なくとも二つのセンサーコイルとの間に、制御及び/又は評価ユニットを介して駆動可能な、特にアナログ式のスイッチが設けられている。これを介して、変圧器は、変圧器の現在の各増幅ファクターの決定の為の検出運転の間、両方のセンサーコイルにより繰り返して、特に二つの固定された抵抗を有する抵抗装置(この抵抗装置は好ましくは一定のインピーダンスを有する)へと切替え可能である。
その際、制御及び/又は評価ユニットは、好ましくは、変圧器の現在の各増幅ファクターを、特に保存されているリファレンス値と比較することによって、変圧器の増幅ファクターの現在の各バリエーションを決定可能である。
好ましくは、制御及び/又は評価ユニットを介して、変圧器の増幅ファクターの決定された現在の各バリエーションに基づいて、検出運転の間に開始電圧として発生される誘導されたセンサー電圧が補正可能である。特に、変圧器の温度による誘導されたセンサー電圧への影響を補償するためである。同時に、これによって例えばシステムのトレランスも補償されることが可能である。
抵抗装置の固定された抵抗として、特に精密抵抗が設けられていることが可能である。
センサー装置、特に、各センサーコイルユニット、及び/又は制御及び/又は評価ユニットは、目的に適って、プリント基板上に設けられている。これは、これによって例えば予め組み立てられたユニットとして提供されることが可能である。
複数の計測軸に沿った、少なくとも部分的に磁気的に支承されたローターの位置の、非接触式の検出の為に、センサー装置は、相応して複数のセンサーコイルユニットを有することが可能である。これらセンサーコイルユニットは、其々少なくとも二つのセンサーコイルを有している。
好ましくは、各センサーコイルユニットは、ディファレンシャル式のコイル配置(この配置においては、半径方向の各移動の際に両方のセンサーコイル内に逆のインダクタンス変化が生じる)の形成の為に、隣接する磁石支承部の互いに向かい合った側に配置された二つのセンサーコイルを有する。これと反対に、各センサーコイルユニットは、絶対的なコイル配置(この配置においては軸方向の各ローター移動の際にインダクタンスが、両方のセンサーコイルの一方のみにおいて変化し、そしてリファレンスとして使用される他方のセンサーコイルは変化しないままである)の形成の為、異なる直径を有し、互いに同心円の複数のセンサーコイルにより形成されていることが可能である。
例えば、複数の計測軸に沿ったローター移動の検出のための拡張された絶対的なコイル配置も考え得る。この配置においては、異なる計測軸に付設された複数のコイルユニットが、其々、計測コイルとして使用される一つのセンサーコイルを有し、そして異なるコイルユニットのための共通の一つの参照コイルが設けられている。
センサーコイルは、特に、プラスチックの空芯コイルとして形成されていることが可能である。
発明に係る装置によって、高速回転し、少なくとも部分的に磁気的に支承された真空ポンプのローター位置は、正確、迅速、かつ信頼性を有する方法で非接触式に検出されることが可能である。
各計測軸に沿ったローター位置の計測のため、例えば二つの空芯コイルが設けられていることが可能である。これらは、ディファレンシャル式の配置として、又は絶対的な配置として設けられていることが可能である。ディファレンシャル式の配置においては、両方のセンサーコイルは互いに向かい合っている。これらは、特に静的に設けられていることが可能であり、そしてローターほ半径方向のずれの計測のため、特に、隣接する磁石支承部に対して平行に、又はローター軸に対して平行に向けられていることが可能である。各ローター移動は、同時に、一方のセンサーコイル内でのインダクタンス上昇と、他方のセンサーコイル内でのインダクタンス降下を引き起こす。絶対的な各コイル配置においては、コイル(そのインダクタンスが変化しないままのコイル)は、参照コイルとしてのみ使用される。計測コイルとして使用される他方のセンサーコイルのインダクタンスは、各計測軸の方向で計測した間隔(センサーコイルと、隣接する磁石支承部又はローターの間の間隔)に依存する。そのような絶対的なコイル配置においても、センサーコイルは特にここでもまた、静的に設けられていることが可能である。絶対的なコイル配置を有するローターの軸方向のずれの計測の為、各センサーコイルユニットの両方のセンサーコイルは、例えば、異なる直径を有し得、そして特に、隣接する磁石支承部に対して同軸方向に、又はローター軸に対して同軸方向に向けられていることが可能である。
両方のバリエーションにおいて、各センサーコイルユニットの両方のセンサーコイル内に誘導される電流から、差動電流が生じる。その振幅及び位相はローターの位置に応じる。差動電流は、変圧器を介してセンサー電圧に変換されることが可能である。これは、例えば、少なくとも周期ごとに、例えば最高点において、又は零交差点において、例えばアナログ/デジタル変換器によって走査されることが可能である。制御及び/又は評価ユニットの相応するソフトウェア、又はポログラムングによって、両方の電圧から、差動電圧が形成されることが可能である。これは、ローターの物理的な位置の直接の写像(独語:Abbildung)を表す。
システムのトレランスと熱ドリフトを補償するため、特にアナログ式のスイッチを介して、センサーコイルの代わりに精密抵抗からなる独立した分岐が繰り返し、増幅回路、又は変圧器へと切り替えられる。この切り替えは、短時間で増幅・補正値を探出するために行われる。計測値評価は、周期的に行われることができる。その際、振動するアナログスイッチによって、補正の為の計測値とローターの実際の位置値が交互に検出されることが可能である。計測順序及びセンサー励起電圧の相応する選択によって、補正値検出と計測値検出の理想的かつ迅速な相互作用が可能となる。その際、計測サイクル中の励起信号は、位相においても振幅においても、何度もシステマチックに変化されることができる。可能な限り最高の計測安全性を獲得するためである。
ローターの半径方向の移動の検出の為に、例えば二つのディファレンシャル式のセンサーコイルユニットが設けられていることが可能である。これらを介して、ローター軸に対して垂直な面内で、互いに垂直な二つの計測軸に沿った各ローター移動が計測されることが可能である。ディファレンシャル式のセンサーコイルユニットにおいては、センサーコイルのインダクタンスは、其々、計測軸に沿ったローター位置に依存している。ローターの軸方向の移動の検出の為に、例えば、絶対的なセンサーコイルユニットが設けられていることが可能である。これを介して、ローター軸に平行な軸に沿った各ローター移動が計測されることが可能である。この場合、計測コイルのインダクタンスのみが、計測軸に沿ったローター位置に依存し、他方で、参照コイルのインダクタンスは、ローターの位置に依存せず同じままである。その際、例えばセンサーコイルユニットが設けられていることが可能である。そのセンサーコイルは、プリント基板コイルとして形成されていることが可能である。両方の場合において、センサーコイルは、特に空芯コイル、例えばプラスチック空芯コイルとして形成されていることが可能である。
計測生信号の従来の電気的な増幅器と反対に、発明に従い、変圧器を介して電磁的な増幅が行われることが可能である。これによって、高い増幅(程度)のみならず、極めて低いノイズレベルも達成される。変圧器の磁気的コアの温度による増幅ファクターの影響は、特にアナログ式のスイッチによりスイッチを入れることが可能である抵抗装置を介して補償されることが可能である。このため、スイッチは制御及び/又は評価ユニットの制御信号に基づいて、測定運転の間、各計測軸に付設される、変化するインピーダンスの両方のコイルと、例えば、二つの固定的な抵抗を有する、一定のインピーダンスの抵抗装置の間を切り替えられることが可能である。
測定システムのスイッチを入れる際に、開始電圧は一定のインピーダンスのもとリファレンスとして保存されることが可能である。測定運転の間、周期的に、一定のインピーダンスへと切り替えられることが可能である。一定のインピーダンスにおける現在の開始電圧と、保存されたリファレンスから、増幅ファクターの現在のバリエーションが決定されることが可能である。これによってセンサー運転からの開始電圧が、測定結果が変圧器の温度に依存しないように補正されることが可能である。
発明に係る真空ポンプ、特にターボ分子ポンプは、ステーター、ローターに対して回転軸を中心として回転可能に支承されたローター、及び発明に係るローター位置検出装置を有する。ローターの支承は、一又は複数の領域で磁石支承部によって行われることが可能である。特に、磁石支承部による支承部箇所と、ローラー支承部による別の支承部箇所が形成される、いわゆるハイブリッド支承が行われることが可能である。しかしまた、ローターの純粋な磁石支承も行われ得る。
特に発明に従い、ローターは、図1から5のターボ分子真空ポンプの為に他の箇所に説明されているように支承されていることが可能である。
本発明に係る、少なくとも部分的に磁気的に支承されたローターの位置の検出、特に真空ポンプ、好ましくはターボ分子真空ポンプの少なくとも部分的に磁気的に支承されたローターの位置の検出の為の方法は、各計測軸に沿ったローター移動の検出の為、ローターの磁石支承部の領域に設けられる非接触式のセンサー装置の各センサーコイルユニットの少なくとも二つのセンサーコイルが、其々、周期的、電気的な励起信号によって付勢され、そして互いに相対的に、及び磁石支承部に対して相対的に、各計測軸に沿ったローター移動の際に、両方のセンサーコイル内において、反対方向のインダクタンス変化が生ずるか、又はインダクタンスが、両方のセンサーコイルの一方内のみにおいて変化し、そして他方のセンサーコイル内においては少なくとも基本的に変化しないままである点において際立っている。
好ましくは、各計測軸に付設された両方のセンサーコイル内で誘導される電流から生ずる作動電流から、誘導されるセンサー電圧が形成される。誘導されるセンサー電圧は、関連するセンサー軸に沿った各ローター移動の検出のため、特に励起信号の周期ごとに、其々、少なくとも二度走査される。
発明に係る方法の目的に適った実践的な態様に従い、励起信号の周期ごとに、差動電圧の形成の為、特に誘導されるセンサー電圧の反対方向の最高点において得られる二つの走査値の間の差が発生させられ、そして差動電圧の振幅に基づいて、関連する計測軸に沿ったローター移動の値、及び/又は差動電圧の符号に基づいて、関連する計測軸に沿ったローター移動の方向が決定される。
本発明を、以下に実施例に基づき、図面を参照しつつ詳細に説明する。
ターボ分子ポンプの斜視図 図1のターボ分子ポンプの下面の図 図2に示された切断線A−Aに沿うターボ分子ポンプの断面図 図2に示された切断線B−Bに沿うターボ分子ポンプの断面図 図2に示された切断線C−Cに沿うターボ分子ポンプの断面図 発明に係る位置検出装置の、ディファレンシャル式のコイル配置を有する例示的なセンサーコイルユニットの簡略図 発明に係る位置検出装置の例示的な実施形の簡略図。位置検出装置は各一つのディファレンシャル式のコイル配置を有する二つのセンサーコイルユニット(半径方向のローター移動の非接触の検出の為のもの)を有する。 発明に係る位置検出装置の、絶対的なコイル配置を有する例示的なセンサーコイルユニットの簡略図 発明に係る位置検出装置の例示的な実施形の簡略図。位置検出装置は、絶対的なコイル配置を有するセンサーコイルユニット(軸方向のローター移動の非接触の検出のためのもの)を有し、その際、センサーコイルは、同心円の導体板コイルとして形成されている。 複数の計測軸に沿ったローター移動の検出の為の、例示的に拡張された絶対的なコイル配置の簡略図。その際、異なる計測軸に付設されたコイルユニットが、其々、計測コイルとして使用されるセンサーコイルを有し、そして異なるコイルユニットの為に共通の一つの参照コイルが設けられている。 幾何学的な中央から正の方向にローター一がずれた際の、電気的な励起信号、センサーコイル内に誘導される電流、作動電流、及び誘導されるセンサー電圧の例示的な信号形状の図。 幾何学的な中央からローター位置が負の方向にずれた際の、電気的な励起信号、センサーコイル内に誘導される電流、作動電流、及び誘導されるセンサー電圧の例示的な信号形状の図 発明に係る位置検出装置の例示的な温度補償サーキットの簡略図 発明に係る位置検出装置の、例示的で、完全な計測サイクル(複数の補償サイクル及び検出サイクルを有する計測サイクル)の簡略図
本発明が意図されていることが可能である図1に示されたターボ分子ポンプ111は、インレットフランジ113によって取り囲まれるポンプインレット115を有する。ポンプインレットには、公知の方法で図示されないレシーバーが接続されることが可能である。レシーバーからのガスは、ポンプインレット115を介してレシーバーから吸引され、そしてポンプを通してポンプアウトレット117へと搬送されることが可能である。これには、予真空ポンプ(例えばロータリーベーンポンプのようなもの)が接続されていることが可能である。
インレットフランジ113は、図1の真空ポンプの向きにおいて、真空ポンプ111のハウジングの上側の端部を形成する。ハウジング119は、下部分121を有する。これには、側方にエレクトロニクスハウジング123が設けられている。エレクトロニクスハウジング123内には、電気的、及び/又は電子的な真空ポンプ111のコンポーネントが入れられている。これは例えば、真空ポンプ内に配置された電動モーター125の駆動の為のものである。エレクトロニクスハウジング123は、アクセサリの為の複数の接続部127を設けられている。その上、データインターフェース129、例えばRS485スタンダードに従うものと、電流供給接続部131がエレクトロニクスハウジング123に設けられている。
ターボ分子ポンプ111のハウジング119には、フラットインレット133、特にフラットバルブの形式のものが設けられている。下部分121の領域には、更に、シールガス接続部135が設けられている。これは、洗浄ガス接続部とも称される。これを介して、ポンプによってモーター室137内に搬送されるガスに対する電動モーター125の保護の為の洗浄ガスが、運ばれることが可能である。モーター室137内には、真空ポンプ111内の電動モーター125が入れられている。下部分121内には、更に、二つの冷却媒体接続部139が設けられている。その際、冷却媒体の為の冷却媒体接続部の一方はインレットとして、そして冷却媒体接続部の他方は、アウトレットとして設けられている。これは、冷却目的で真空ポンプ内に導かれることができる。
真空ポンプの下側の面141は、起立面として使用されるので、真空ポンプ11は下側面141状に起立して運転されることが可能である。しかしまた、真空ポンプ111は、インレットフランジ113を介してレシーバーに固定されることも可能である。これによっていわば懸吊・懸架されて運転されることができる。その上、真空ポンプ111は、図1に示されているのとことなるように向けられているとき、これが運転されることが可能であるよう形成されていることも可能である。下側面141が、下に向かってでなく、当該側の方に向けて、又は上に向けられて配置されることも可能である真空ポンプの実施形も実現可能である。
図2に表されている下側面141には、いくつかのスクリュー143が設けられている。これによって、ここでは更に特定されない真空ポンプの部材が互いに固定されている。例えば、支承部カバー145が下側面141に固定されている。
下側面141には、更に複数の固定孔147が設けられている。これを介して、ポンプ111が、例えば当接面に固定されることが可能である。
図2から5には、冷却媒体配管148が表されている。この中で、冷却媒体接続部139を介して導入及び導出される冷却媒体が循環されることが可能である。
図3から5の断面図に示すように、真空ポンプは、複数のポンプ段を有する。ポンプインレット115におよぶプロセスガスをポンプアウトレット117に搬送するためのものである。
ハウジング119内には、ローター149が設けられている。これは、回転軸151を中心として回転可能なローターシャフト153を有している。
ターボ分子ポンプ111は、ポンプ効果を奏するよう互いにシリアルに接続された複数のターボ分子ポンプ段を有する。これは、ローターシャフト153に固定された半径方向の複数のローターディスク155と、ローターディスク155の間に配置され、ハウジング119内に固定されて複数のステーターディスク157を有する。その際、ローターディスク155、および隣接するステーターディスク157は、各一のポンプ段を形成する。ステーターディスク157は、スペーサーリング159によって所望の軸方向間隔に互いに保持されている。
真空ポンプは、その上、軸方向において互いに入れ子式に配置され、そしてポンプ効果を奏するよう互いにシリアルに接続されたホルベックポンプ段を有している。ホルベックポンプ段のローターは、ローターシャフト153に設けられたローターハブ161と、ローターハブ161に固定され、そしてこれによって担持されるシリンダー側面形状の二つのホルベックロータースリーブ163,166を有する。これらは、回転軸151に対して同軸に向けられており、そして半径方向で互いに入れ子式に接続されている。更に、二つのシリンダー側面形状のホルベックステータースリーブ167,169が設けられている。これらは、どうように回転軸151に対して同軸に向けられており、半径歩行でみて互いに入れ子式に接続されている。
ホルベックポンプ段のポンプ効果を発する表面は、ホルベックロータースリーブ163,165とホルベックステータースリーブ167,169の側面によって、つまり半径方向内側面及び/又は外側面形成されている。外側のホルベックステータースリーブ167の半径方向内側面は、外側のホルベックロータースリーブ163の半径方向外側面と、半径方向のホルベック間隙171を形成しつつ向かい合っており、そしてこれともに、ターボ分子ポンプ段に続く第一のホルベックポンプ段を形成する。外側のホルベックロータースリーブ163の半径方向内側面は、内側のホルベックステータースリーブ169の半径方向外側面と、半径方向のホルベック間隙173を形成しつつ向かい合っており、そしてこれとともに、第二のホルベックポンプ段を形成する。内側のホルベックスタータースリーブ169の半径方向内側面は、内側のホルベックロータースリーブ165の半径方向外側面と半径方向のホルベック間隙175を形成しつつ向かい合っており、そしてこれと共に、第三のホルベックポンプ段を形成する。
ホルベックロータースリーブ163の下側の端部には、半径方向に推移するチャネルが設けられていることが可能である。これを介して、半径方向外側に位置するホルベック間隙171が中央のホルベック間隙173と接続されている。更に、内側のホルベックステータースリーブ169の上側の端部には、半径方向に推移するチャネルが設けられていることが可能である。これを介して、中央のホルベック間隙173が半径方向内側のホルベック間隙175と接続されている。これによって、互いに入れ子式に接続されたホルベックポンプ段が、互いにシリアルに接続される。半径方向内側に位置するホルベックロータースリーブ165の下側の端部は、更に、アウトレット117への接続チャネル179を設けられていることが可能である。
ホルベックステータースリーブ163,165の上述したポンプ効果を発する表面は、其々、回転軸151の周りを軸方向にらせん形状に推移する複数のホルベック溝を有する。他方で、ホルベックロータースリーブ163,165の向かい合った側面は滑らかに形成されており、そしてガスを真空ポンプ111の運転の為、ホルベック溝内へと促進する。
ローターシャフト153の回転可能な支承の為に、ローラー支承部181がポンプアウトレット117の領域に設けられ、そして永久磁石支承部183がポンプインレット115の領域内に設けられている。
ローラー支承部181の領域内には、ローターシャフト153に円すい形のスプラッシュナット185が設けられている。これは、ローラー支承部181の方に向かって増加する外直径を有している。スプラッシュナット185は、少なくとも一つのスキマー(作動媒体貯蔵部のスキマー)と滑り接触している。作動媒体貯蔵部は、互いに積層された吸収性の複数のディスク187を有する。これは、ローラー支承部181の為の作動媒体、例えば潤滑剤を染み込ませられている。
真空ポンプ11の運転中、作動媒体を毛細管効果によって作動媒体貯蔵部からスキマーを介して、回転するスプラッシュナット185へと伝達する。そして遠心力によってスプラッシュナット185に沿って大きくなる外直径185(スプラッシュナット92の外直径)の方へと、ローラー支承部181に向かって搬送される。そこで例えば潤滑機能を発揮する。ローラー支承部181と作動媒体貯蔵部は、槽形状のインサート189と支承部カバー145によって真空ポンプ内にはめ込まれている。
永久磁石支承部183は、ローター側の支承半部191とステーター側の支承半部193を有する。これらは、其々、リング積層部を有する。リング積層部は、軸方向に連続して積層された永久磁石の複数のリング195,197から成っている。リングマグネット195,197は、互いに半径方向の支承間隙199を形成しつつ互いに向かい合っている。その際、ローター側のリングマグネット195は半径方向外側に配置され、そしてステーター側のリングマグネット197は半径方向内側に配置されている。支承間隙199内に存在する磁場は、磁気的な反発力をリングマグネット195,197の間に引き起こす。これは、ローターシャフト153の半径方向の支承を実現する。ローター側のリングマグネット195は、ローターシャフト153の担持部分201によって担持されている。これはリングマグネット195を半径方向外側で取り囲んでいる。ステーター側のリングマグネット197は、ステーター側の担持部分により担持されている。これは、リングマグネット197を通って延在し、そしてハウジング119の半径方向の支柱に懸架されている。回転軸151に平行に、ローター側のリングマグネット195が担持部分203と連結あされたカバー要素207によって固定されている。ステーター側のリングマグネット197は、回転軸151に平行に、一方の方向で担持部分203と接続される固定リングによって、及び担持部分203と接続される固定リング211によって固定されている。固定リング211とリングマグネット197の間には、更にさらばね213が設けられていることが可能である。
磁石支承部の内部には、緊急用又は安全用支承部215が設けられている。これは、真空ポンプの通常の運転では非接触で空転し、そしてローター149がステーターに対して半径方向に過剰に偏向した際に初めて係合するに至り、ローター149のための半径方向のストッパーを形成する。ローター側の構造がステーター側の構造と衝突するのを防止するためである。安全用支承部215は、潤滑されていないローラー支承部として形成されており、そしてローター、及び/又はステーターと半径方向の間隙を形成する。この間隙は、安全用支承部215が通常運転中は、係合外であることを実現する。安全用支承部215が係合する半径方向の偏向は、十分大きくとられているので、安全用支承部215は真空ポンプの通常の運転では係合せず、そして同時に十分小さいので、ローター側の構造がステーター側の構造と衝突することがあらゆる状況で防止される。
真空ポンプ111は、ローター149の回転駆動の為の電動モーター125を有する。電動モーター125のアンカーは、ローター149によって形成されている。そのローターシャフト153は、モーターステーター217を通って延在している。モーターステーター217を通って延在するローターシャフト153の部分には、永久磁石装置が半径方向外側に配置されているか、又は埋め込まれて配置されていることが可能である。モーターステーター217とモーターステーター217を通って延在するローター149の部分の間には、中間空間219が設けられている。この中間九九間は、半径方向のモーター間隙を有する。これを介してモーターステーター217と永久磁石が駆動トルク伝達のため磁気的に影響することが可能である。
モーターステーター217は、ハウジング内、電動モーター125の為に設けられるモーター室137内に固定されている。シールガス接続部135を介して、シールガス(洗浄ガスとも称され、そして例えば空気又は窒素であることが可能である)がモーター室137内へと至る。シールガスを介して、電動モーター125がプロセスガス(例えば腐食性に作用するプロセスガスの部分)から保護されることが可能である。モーター室13は、ポンプアウトレット117を介して真空引きされることも可能である。つまりモーター室137内は、少なくとも近似的に、ポンプアウトレット117に接続される予真空ポンプによって引き起こされる真空圧となっている。
ローターハブ161とモーター室137の間を画成する壁部221は、更に一つのいわゆる、それ自体公知であるラビリンスシール223を設けられていることが可能である。特に、半径方向外側に位置するホルベックポンプ段に対するモーター室217のより良好なシールを達成するためである。
図6から14は、発明に係る装置10の様々な例示的な実施形を示す。装置10は、少なくとも部分的に磁気的に支承されたローター22、特に少なくとも部分的に磁気的に支承された真空ポンプのローターの位置の検出の為の装置である。その際、位置検出装置10は、図1から5と関連した記載したように、例えば真空ポンプのローターの位置の検出の為に使用されることが可能である。
位置検出装置10は、ローターの磁石支承部の領域、特に図1から5の真空ポンプの永久磁石支承部183の領域に設けられた非接触式のセンサー装置12と、これに付設される制御ユニット及び/又は評価ユニット14を有する。図1から5に表されている真空ポンプの位置検出装置10の使用の際に、位置検出装置10の制御ユニット及び/又は評価ユニット14は、真空ポンプの制御ユニット内に統合されて、又はこれと分離されて設けられていることが可能である。
センサー装置12は、各計測軸Siに沿ったローター移動の検出の為、各一つのセンサーコイルユニットを有する。センサーコイルユニットは、空芯コイルとして形成された二つのセンサーコイル16,18から成っている。センサーコイルは、制御ユニット及び/又は評価ユニとt14によって其々周期的電気的な励起信号Uextを付勢可能であり、そして、各計測軸Siに沿った各ローター移動の際に両方のセンサーコイル16,18内に、逆方向のインダクタンス変化が生じるか、又はインダクタンスが、両方のセンサーコイル16,18の一方のみにおいて変化し、そして他方のセンサーコイルにおいては少なくとも基本的に変化しないままである(図8から10参照)よう、互いに、及び隣接する磁石支承部183に対して配置されている。
位置検出装置10は、其々、差動電流idiffからの誘導されたセンサー電圧Usenの形成の為の手段20を有する。差動電流は、各計測軸Siに付設された両方のセンサーコイル16,18内に誘導される電流i1,i2から生ずる(特に図6、8、10及び13参照)。そのように形成、誘導されるセンサー電圧Usenは、関連するセンサー軸Siに沿った各ローター移動の検出の為の制御及び/又は評価ユニット14を介して、励起信号Uextの周期ごとに其々少なくとも二回、走査されることが可能である。
その際、誘導されるセンサー電圧Usenは、制御及び/又は評価ユニット14を介して励起信号Uextの周期ごとに、それずれ少なくとも二回、特に、各最高点(独語:Scheitel)において、及び/又は、各零交差点(独語:Nulldurchgang)において走査されることが可能である。
制御及び/又は評価ユニット14は、其々、差動電圧の形成のため励起信号Uextの周期ごとに、誘導されたセンサー電圧Usenの例えば反対の最高点値において得られる二つの走査値の間の差が発生可能であり、そして、差動電圧の振幅に基づいて、関連する計測軸Siに沿ったローター移動の値が決定可能であり、及び/又は、差動電圧の符号に基づいて、関連する計測軸Siに沿ったローター移動の方向が決定可能である(特に図11及び12参照)よう形成されていることが可能である。
図11及び12から見て取れるように、周期的、電気的な励起信号Uextは、例えば、少なくとも基本的にサイン形状、またはコサイン形状の信号、例えば相応する励起電圧によって形成されていることが可能である。しかし基本的に、周期的、電気的な励起信号Uextは、サイン形状、又はコサイン形状と異なる形状を有することも可能である。各最高点においての代わりに、走査は、例えば、周期的、電気的な励起信号Uextの各零交差点において行われることも可能である。
特に図6から8,10及び12に見て取れるように、作動電流idiff(誘導電流i1,i2から生ずる)から誘導されるセンサー電圧Usenの形成の為の手段は、変圧器20を有し得る。変圧器は、入口側で両方のセンサーコイル16,18と接続されており、そして出口側で出口コイル24を有する。その際、両方のセンサーコイル16,18は、入口側で差動電流idiff(両図11及び12も参照のこと)が誘導電流i1,i2から生じるよう変圧器20に接続されている。更に、変圧器20は、電気的な増幅器としても、差動電流idffを誘導されるセンサー電圧Usenへ変換する変換器としても使用される。
センサー装置12、及び/又は制御及び/又は評価ユニット14は、プリント基板26上に設けられていることが可能である(図7及び図10参照)。
複数の計測軸Siに沿った少なくとも部分的に磁気的に支承されたローター22の位置の非接触式の検出の為、センサー装置12は、相応して複数のセンサーコイルユニットを有する。センサーコイルユニットは其々、特に空芯コイルとして形成された二つのセンサーコイル16,18から成っている(図6から9参照)。
図6は、計測軸Siに付設された例示的なセンサーコイルユニットを示す。センサーコイルユニットはディファレンシャル式のコイル配置を有している。この配置においては、両方のコイル16,18(其々、周期的、電気的な励起信号Uextを付勢される)は、互いに相対的に、そして隣接する磁石支承部、又はローター22に対して、計測軸Siの方向の各ローター移動の際に、逆のインダクタンス変化が生じるよう配置されている。
ローター22の半径方向の移動の検出のため、図7に従い、例えば、両方の計測軸xおよびyの何れもに、各一つのそのようなディファレンシャル式の、二つのセンサーコイル16x、18x又は16y,18yから成るコイル配置が付設されていることが可能である。各センサーコイルユニットの両方のセンサーコイル16,18のインダクタンスは、よって、其々、計測軸Siの方向で測定した、磁石支承部又はローター22からのその間隔に応ずるものである。
図8は、計測軸Siに付設された例示的なセンサーコイルユニットを示す。これは絶対的なコイル配置を有している。この配置において、其々周期的、電気的な励起信号Uextを付勢される両方のセンサーコイル16,18は、互いに、そして隣接する磁石支承部又はローター22に対して、インダクタンスが、両方のセンサーコイル16,18の一方のみにおいて変化し、そして他方のセンサーコイルにおいては変化しないままであるように配置されている。
ローター22の軸方向の移動の検出の為、図9に従い例示的に計測軸z(ローター軸に相当する)に、二つのセンサーコイル16z,18zからなるそのような絶対的なコイル配置が付設されていることが可能である。この図9に表される実施例においては、この絶対的なセンサーコイル配置は、例えば二つのセンサーコイル16z,18zを有する。センサーコイルは、プリント基板26上に設けられ、互いに対しても、計測軸z又はローター軸に対しても同心円であり、異なる直径を有している。その際、センサーコイル16zは、計測コイルとして、そしてセンサーコイル18zは、参照コイルとして使用される。計測コイル16zのインダクタンスは、この場合、磁石支承部、又はローターの計測軸zの方向で計測した間隔、又はローター軸の方向で計測した間隔に依存する。参照コイル18zのインダクタンスは一定のままである。
図6および7または8および9に表された両方の実施例では、各作動電流idiffが、各計測軸Siに付設される両方のセンサーコイル16,18内で誘導される電流i1,i2から生ずる(図11及び図12参照)。その際、関連するセンサー軸Siに沿った、各ローター移動の検出の為の変圧器20の出口に発生する誘導されるセンサー電圧Usenは、図11及び12に表されるように、例えば励起信号Uextの周期ごとに、少なくとも二度走査されることが可能である。その際、周期的、電気的な励起信号Uextは、この場合、例えばサイン形状の、又はコサイン形状の電圧によって形成されている。冒頭に既に述べたように、しかしまた、サイン形状、又はコサイン形状と異なる、周期的・電気的な励起信号の形状も考え得る。
図11および12に表されているように、誘導されたセンサー電流Usenは、制御及び/又は評価ユニット14を介して励起信号Uextの周期ごとに、例えば少なくとも二度、各最高点において走査されることが可能である。しかし例えば、各零交差点においての走査もまた考え得る。
更に、この場合、制御及び/又は評価ユニット14を介して、励起信号Uextの周期ごとに、差動電圧UAn UBnの形成のため、例えば、誘導されるセンサー電圧の逆向きの二つの最高点において得られる走査値UAnとUBnの間の差が発生させられる。差動電圧の振幅に基づいて、関連する計測軸Siに沿ったローター移動の値が決定されることが可能である。関連する計測軸Siに沿ったローター移動の方向は、代替として、又は基本的に、符号、又は差動電圧に基づいて決定されることが可能である。
図11は、電気的な励起信号Uext、センサーコイル16,18内で誘導される電流i1,i2、作動電流idff、及び誘導されるセンサー電圧Usenの例示的な信号形状を示す。幾何学的な中心からローター位置が正の方向にずれている際のものである。
図12も、ここでもまた、電気的な励起信号、Uext,センサーコイル16,18内に誘導される電流i1,i2、作動電流idiff、及び走査される誘導されたセンサー電圧Usenの信号形状を示す。その際、しかしこの場合、幾何学的な中心からローター位置が負の方向へのずれが存在している。
誘導されるセンサー電圧Usenは、表された実施例においては、電気的な励起信号Uextと同様の信号形状を有する。その際、しかし、誘導されたセンサー電圧Usenの振幅は、各計測軸Siに沿ったローターの位置ずれに比例している。異なるずれ方向によって、誘導されるセンサー電圧Usenは、電気的な励起信号に対して、又は励起電圧Uextに対して同位相又は逆位相である。誘導されるセンサー電圧Usenを、最高点UAn,UBnにおいて二度走査することによって、計測出口Uposn=UAn UBnが生じる。これは、磁石支承部、またはローターの物理的位置を表す。
図10は、例示的な、拡張された絶対的コイル配置(又はコイル装置、独語:Spulenanordnung)を示す。複数の計測軸Siに沿ったローター移動の検出の為のものである。その際、異なる計測軸Siに付設されるコイルユニットは、計測コイルとして使用される各一つのセンサーコイル16iを有し、そして異なるコイルユニットに対して共通の一つの参照コイル18が設けられている。異なるコイルユニットから、付設された変圧器20を介して、上述した方法で相応する誘導された電圧Usenが生ずる。
図13は発明に係る位置検出装置10の例示的な温度補償サーキットを示す。これに従い、変圧器20と各計測軸Siに付設された両方のセンサーコイル16,18の間に、制御及び/又は評価ユニット14を介して制御可能な、特にアナログ式のサーキット28が設けられていることが可能である。このサーキット28を介して、変圧器20は、変圧器20の現在の各増幅ファクターを決定するための検出運転の間、両方のセンサーコイル16,18によって、繰り返し、特に二つの固定した抵抗30,32を有する抵抗装置34(一定のインピーダンスの抵抗装置34)へと切り替えられることが可能である。
制御及び/又は評価ユニット14を介して、特に保存されているリファレンス値との変圧器20の決定される現在の各増幅ファクターの比較に基づいて、変圧器20の増幅ファクターの現在の各バリエーションが決定されることが可能である。決定されたバリエーションに基づいて、制御及び/又は評価ユニット14を介して、引き続いて、検出運転の間に開始電圧として発生させられた誘導されたセンサー電圧Usenは補正されることが可能である。特に変圧器20の温度とシステムのトレランスによって生じる影響を、誘導されるセンサー電圧Usenにおいて補償するためである。抵抗装置34の固定された抵抗30,32として、特に精密抵抗として設けられていることが可能である。
温度補償サーキットがこの場合、例えばディファレンシャル式のコイル配置を有するセンサーコイルユニットと関連して設けられている一方で、相応する温度補償サーキットは、絶対的なコイル配置を有するセンサーコイルユニットと関連しても設けられていることも可能である。特に、位置検出装置10は、少なくとも基本的にここでもまた、上述したように形成されていることが可能である。よって、この場合、計測生信号の従来の電気的な増幅においてと違って、発明に従い、電磁的な増幅が変圧器20を介して行われる。これによって高い増幅及び極めて低いノイズレベルが生じる。
図13に表されたトレランスの補償とシステムの温度影響の補償に使用される温度補償サーキットにおいては、スイッチ28が制御及び/又は評価ユニット14の相応する制御信号を介して、計測の間に、変化するインピーダンスを有する両方のセンサーコイル16,18と、一定のインピーダンスを有する抵抗装置34の両方の固定された抵抗30,32の間を切り替えられることが可能である。
計測システムのスイッチを入れる際に、一定のインピーダンスにおける開始電圧がリファレンスとして保存されることが可能である。計測運転の間、周期的に、一定のインピーダンスに切り替えられることが可能である。一定のインピーダンスにおける現在の開始電圧と、保存されたリファレンスから、増幅ファクターの現在のバリエーションが決定されることが可能である。これによって、センサー運転からの開始電圧は、後調整される、又は補正されることが可能であるので、変圧器の温度に依存しない計測結果が得られる。
図14は、例示的な複数の補償サイクルと検出サイクルを有する完全な計測サイクルを示す。その際、温度補償の為の補償サイクルの間、一定のインピーダンスが生じ、これと反対に検出サイクルの間は、変化するインピーダンスとなる。図14から見て取れるように、計測システムのスイッチを入れる際、まず抵抗装置34が接続されることが可能である。各計測サイクルの間、一定のインピーダンスの補償サイクルと可変のインピーダンスの検出サイクルが交互に提唱されることが可能である。図11及び12に表される例示的な信号形状が、図14にも表されている。垂直方向の矢印によって各走査点がマーキングされている。
様々な実施形と関連して挙げられたセンサーコイルは、其々、静的に、各磁石支承部の領域に配置されていることが可能である。図6及び7に表された形式のディファレンシャル式の各コイル配置において、各計測軸Siに付設された両方のセンサーコイル16,18は、特に、其々、隣接する磁石支承部の軸に対して平行、又はローター軸に対して平行に向けられていることが可能である。これと反対に、図8および9に表された形式の絶対的な各コイル配置において、計測軸zに付設された両方のセンサーコイル16,18は、特に、隣接する磁石支承部に対して同軸に、又はローター軸に対して同軸に配置されていることが可能であり、そして異なる直径を有することが可能である。
発明に係る各位置検出装置10は、例えば図1から5と関連して説明された形式の真空ポンプに、及び特に、その永久磁石支承部に付設されていることが可能である。
10 位置検出装置
12 センサー装置
14 制御及び/又は評価ユニット
16 センサーコイル
18 センサーコイル
20 誘導されたセンサー電圧の発生の為の手段、変圧器
22 ローター
24 出口コイル
26 プリント基板
28 スイッチ
30 抵抗
32 抵抗
34 抵抗装置
111 ターボ分子ポンプ
113 インレットフランジ
115 ポンプインレット
117 ポンプアウトレット
119 ハウジング
121 下部分
123 エレクトロニクスハウジング
125 電動モーター
127 アクセサリ接続部
129 データインターフェース
131 電源供給接続部
133 フラットインレット又はフローインレット(独語:Fluteinlass)
135 シールガス接続部
137 モーター室
139 冷却媒体接続部
141 下側面
143 ねじ
145 支承部カバー
147 固定孔
148 冷却媒体配管
149 ローター
151 回転軸
153 ローターシャフト
155 ローターディスク
157 ステーターディスク
159 スペーサーリング
161 ローターハブ
163 ホルベックロータースリーブ
165 ホルベックロータースリーブ
167 ホルベックステータースリーブ
169 ホルベックステータースリーブ
171 ホルベック間隙
173 ホルベック間隙
175 ホルベック間隙
179 接続チャネル
181 ローラー支承部
183 永久磁石支承部
185 スプラッシュナット
187 ディスク
189 インサート
191 支承半部
193 支承半部
195 リングマグネット
197 リングマグネット
199 支承間隙
201 担持部分
203 担持部分
205 半径方向の支柱
207 カバー要素
209 支持リング
211 固定リング
213 さらばね
215 緊急用又は安全用支承部
217 モーターステーター
219 中間空間
221 壁部
223 ラビリンスシール

Si 計測軸
Uext 周期的かつ電気的な励起信号、励起電圧
Usen 誘導されるセンサー電圧
i1 誘導される電流
i2 誘導される電流
idiff 差動電流

Claims (15)

  1. 少なくとも部分的に磁気的に支承されたローター(22)、特に真空ポンプ、好ましくはターボ分子真空ポンプの少なくとも部分的に磁気的に支承されたローターの位置の検出の為の装置(10)であって、ローター(22)の磁石支承部(183)の領域に設けられた非接触式のセンサー装置(12)と、これに付設される制御及び/又は評価ユニット(14)を有し、その際、各計測軸(Si)に沿ったローター移動の検出の為のセンサー装置(12)が、少なくとも二つのセンサーコイル(16,18)を有する各一つのセンサーコイルユニットを有し、両方のセンサーコイル(16,18)における各計測軸(Si)に沿った各ローター移動の際に、逆方向のインダクタンス変化が生じるか、又はインダクタンスが、両方のセンサーコイル(16,18)の一方においてのみ変化し、そして他方のセンサーコイルにおいては、少なくとも基本的に変化しないままであるよう、前記センサーコイルが、制御及び/又は評価ユニット(14)を介して、其々、周期的かつ電気的な励起信号(Uext)により付勢可能であり、かつ互いに相対的に、及び磁石支承部(183)に対して相対的に配置されていることを特徴とする装置。
  2. 各計測軸(Si)に付設された両方のセンサーコイル(16,18)内で誘導される電流(i1,i2)から生じる差動電流(idiff)からの誘導されたセンサー電圧(Usen)の形成の為の手段(20)が設けられており、その際、誘導されるセンサー電圧(Usen)が関連するセンサー軸(Si)に沿った各ローター移動の検出の為の制御及び/又は評価ユニット(14)を介して走査可能であり、特に励起信号(Uext)の周期ごとに其々少なくとも二回走査可能であることを特徴とする請求項1に記載の装置。
  3. 制御及び/又は評価ユニット(14)が、差動電圧の形成の為、励起信号(Uext)の周期ごとに、特に誘導されるセンサー電圧(Usen)の反対方向の最高点値において得られる二つの走査値の差を発生可能であり、そして差動電圧の振幅に基づいて、関連する計測軸(Si)に沿ったローター移動の値が、及び/又は差動電圧の符号に基づいて、関連する計測軸(Si)に沿ったローター移動の方向が決定可能であることを特徴とする請求項1または2に記載の装置。
  4. 周期的、電気的な励起信号(Uext)が、少なくとも基本的にサイン形状、若しくはコサイン形状の信号により形成されており、又は、サイン形状、若しくはコサイン形状と異なる形状を有することを特徴とする請求項1から3のいずれか一項に記載の装置。
  5. センサー電圧(Usen)形成の為の手段が、入口側で両方のセンサーコイル(16,18)と接続されており、そして出口側で、出口コイル(24)を有する変圧器(20)を有することを特徴とする請求項1から4のいずれか一項に記載の装置。
  6. 変圧器と、各計測軸(Si)に付設された両方のセンサーコイル(16,18)の間に、制御及び/又は評価ユニット(14)を介して制御可能な、特にアナログ式のスイッチ(28)が設けられており、これを介して、変圧器(20)が、変圧器(20)の現在の各増幅ファクターの決定の為、検出運転の間、センサーコイル(16,18)から、特に二つの固定された抵抗(20,32)を有し、好ましくは一定のインピーダンスを有する抵抗装置(34)へと繰り返し切り替え可能であることを特徴とする請求項5に記載の装置。
  7. 制御及び/又は評価ユニット(14)が、変圧器(20)の決定された現在の各増幅ファクターを、特に保存されたリファレンス値と比較することに基づいて、変圧器(20)の増幅ファクターの現在の各バリエーションを決定可能であることを特徴とする請求項6に記載の装置。
  8. 特に、変圧器(20)の温度によって引き起こされる、誘導されるセンサー電圧(Usen)への影響を補償するために、制御及び/又は評価ユニット(14)が、変圧器(20)の増幅ファクターの決定された現在の各バリエーションに基づいて、検出運転の間、開始電圧として発生される誘導されるセンサー電圧(Usen)を補正可能であることを特徴とする請求項7に記載の装置。
  9. センサー装置(12)、特に、各センサーコイルユニット(16,18)、及び/又は制御及び/又は評価ユニット(14)がプリント基板(26)上に設けられていることを特徴とする請求項1から8のいずれか一項に記載の装置。
  10. 複数の計測軸(Si)に沿った、少なくとも部分的に磁気的に支承されたローター(22)の位置の非接触式の検出の為、センサー装置(12)が、其々少なくとも二つのセンサーコイル(16,18)を有する、相応して複数のセンサーコイルユニットを有することを特徴とする請求項1から9のいずれか一項に記載の装置。
  11. 両方のセンサーコイル(16,18)内において、各半径方向のローター移動の際に反対方向のインダクタンス変化が生じるディファレンシャル式のコイル配置の形成の為、各センサーコイルユニットが、隣接する磁石支承部(183)の互いに向かい合った側に配置された二つのセンサーコイル(16,18)を有すること、及び/又は、軸方向の各ローター移動の際に、インダクタンスが、両方のセンサーコイル(16,18)のうちの一方のみにおいて変化し、そしてリファレンスとして使用される他方のセンサーコイル内では変化しないままである絶対的なコイル配置の形成の為、各センサーコイルユニットが、異なる直径の互いに同心円のセンサーコイル(16,18)により形成されていることを特徴とする請求億1から10のいずれか一項に記載の装置。
  12. 真空ポンプ、特にターボ分子ポンプであって、ステーター、及びローター軸(18)を中心としてスターターに対して相対的に回転可能に支承されたローターを有し、そしてローターの位置の検出の為の請求項1から11の少なくとも一項に記載の装置(10)を有する真空ポンプ。
  13. 少なくとも部分的に磁気的に支承されたローター(22)の位置の検出、特に真空ポンプ、好ましくはターボ分子真空ポンプの少なくとも部分的に支承されたローターの位置の検出の為の方法であって、各計測軸(Si)に沿ったローター移動の検出のため、ローター(22)の磁石支承部(183)の領域に設けられた非接触式のセンサー装置(12)の各センサーコイルユニットの少なくとも二つのセンサーコイル(16,18)が、其々、周期的、電気的な励起信号(Uext)を付勢され、そしてお互いに、及び磁石支承部(18(183)に対して、各計測軸(Si)に沿った各ローター移動の際に、両方のセンサーコイル(16,18)内で反対方向のインダクタンス変化が生じるか、又はインダクタンスが、両方のセンサーコイル(16,18)の一方内のみにおいて変化し、そして他方のセンサーコイル内では少なくとも基本的に変化しないままであるよう設けられていることを特徴とする方法。
  14. 各計測軸(Si)に付設されたセンサーコイル(16,18)の両方内で誘導される電流(i1,i2)から生じる差動電流(idiff)から、誘導されるセンサー電圧(Usen)が形成され、その際、誘導されるセンサー電圧(Usen)が、関連するセンサー軸(Si)に沿った各ローター移動の検出の為、走査される、特に励起信号(Uext)の周期ごとに其々、少なくとも二回走査されることを特徴とする請求項13に記載の方法。
  15. 励起信号(Uext)の周期ごとに、差動電圧の形成の為、特に誘導されるセンサー電圧(Usen)の反対方向の最高点において得られる走査値の間の差が生じ、そして差動電圧の振幅に基づいて、関連する計測軸(Si)に沿ったローター移動の値が決定され、及び/又は差動電圧の符号に基づいて、関連する計測軸(Si)に沿ったローター移動の方向が決定されることを特徴とする請求項13または14に記載の方法。
JP2018017846A 2017-02-09 2018-02-05 位置検出装置 Active JP6684839B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17155321.7 2017-02-09
EP17155321.7A EP3361102B1 (de) 2017-02-09 2017-02-09 Positionserfassungsvorrichtung

Publications (2)

Publication Number Publication Date
JP2018151378A true JP2018151378A (ja) 2018-09-27
JP6684839B2 JP6684839B2 (ja) 2020-04-22

Family

ID=58009720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017846A Active JP6684839B2 (ja) 2017-02-09 2018-02-05 位置検出装置

Country Status (2)

Country Link
EP (1) EP3361102B1 (ja)
JP (1) JP6684839B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132140A (ja) * 2018-01-29 2019-08-08 国立大学法人九州工業大学 回転機
CN112211908A (zh) * 2020-10-10 2021-01-12 珠海格力电器股份有限公司 磁轴承的电流控制方法、装置及系统
JP2021032157A (ja) * 2019-08-23 2021-03-01 エドワーズ株式会社 真空ポンプ及び真空ポンプに用いられる電磁石ユニット

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018006699U1 (de) 2018-11-27 2022-03-08 Voith Patent Gmbh Turboverdichter
DE102020132249B4 (de) 2020-12-04 2023-01-26 Edc Electronic Design Chemnitz Gmbh Turboverdichter
CN113833685B (zh) * 2021-11-26 2022-03-22 北京中科科仪股份有限公司 一种分子泵主轴攒量测量装置及测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225986A (ja) * 1986-03-12 1987-10-03 エルデツク コ−ポレイシヨン 物体の接近感知方法及び接近センサ
JP2005240952A (ja) * 2004-02-27 2005-09-08 Ebara Corp 磁気軸受装置及びターボ型真空ポンプ
US20130251502A1 (en) * 2012-03-20 2013-09-26 World Heart Corporation Method and Apparatus for Sensing of Levitated Rotor Position
WO2013153892A1 (ja) * 2012-04-13 2013-10-17 村田機械株式会社 位置検出器
JP2016161132A (ja) * 2015-03-02 2016-09-05 プファイファー・ヴァキューム・ゲーエムベーハー 本体部分を非接触式に保持する磁気軸受及び方法と本体部分の位置変位を検出する装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225986A (ja) * 1986-03-12 1987-10-03 エルデツク コ−ポレイシヨン 物体の接近感知方法及び接近センサ
JP2005240952A (ja) * 2004-02-27 2005-09-08 Ebara Corp 磁気軸受装置及びターボ型真空ポンプ
US20130251502A1 (en) * 2012-03-20 2013-09-26 World Heart Corporation Method and Apparatus for Sensing of Levitated Rotor Position
WO2013153892A1 (ja) * 2012-04-13 2013-10-17 村田機械株式会社 位置検出器
JP2016161132A (ja) * 2015-03-02 2016-09-05 プファイファー・ヴァキューム・ゲーエムベーハー 本体部分を非接触式に保持する磁気軸受及び方法と本体部分の位置変位を検出する装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132140A (ja) * 2018-01-29 2019-08-08 国立大学法人九州工業大学 回転機
JP7050284B2 (ja) 2018-01-29 2022-04-08 国立大学法人九州工業大学 回転機及び変位検出センサ
JP2021032157A (ja) * 2019-08-23 2021-03-01 エドワーズ株式会社 真空ポンプ及び真空ポンプに用いられる電磁石ユニット
WO2021039478A1 (ja) * 2019-08-23 2021-03-04 エドワーズ株式会社 真空ポンプ及び真空ポンプに用いられる電磁石ユニット
JP7454928B2 (ja) 2019-08-23 2024-03-25 エドワーズ株式会社 真空ポンプ及び真空ポンプに用いられる電磁石ユニット
CN112211908A (zh) * 2020-10-10 2021-01-12 珠海格力电器股份有限公司 磁轴承的电流控制方法、装置及系统
CN112211908B (zh) * 2020-10-10 2022-04-05 珠海格力电器股份有限公司 磁轴承的电流控制方法、装置及系统

Also Published As

Publication number Publication date
EP3361102A1 (de) 2018-08-15
JP6684839B2 (ja) 2020-04-22
EP3361102B1 (de) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6684839B2 (ja) 位置検出装置
US7564670B2 (en) Vacuum pump
KR100712673B1 (ko) 무브러시 모터의 제어회로, 무센서 무브러시 모터의제어회로, 무브러시 모터장치, 무센서 무브러시 모터장치및 진공펌프장치
US7429133B2 (en) Instrumented antifriction bearing and electrical motor equipped therewith
CA2369956C (en) Rotor device
US9853525B2 (en) Magnetic bearing assembly and arrangement of position sensors for a magnetic bearing assembly
US3650581A (en) Bearing systems
CN108374800B (zh) 磁轴承控制装置及真空泵
FI121625B (fi) Mittausjärjestely, sähkökäyttö ja hissijärjestelmä
US20110116733A1 (en) Roller bearing arrangement with a sensor unit
Looser et al. An active magnetic damper concept for stabilization of gas bearings in high-speed permanent-magnet machines
JP6926386B2 (ja) 誘導センサを用いるマルチレベル回転リゾルバー
US10683893B2 (en) Magnetic bearing device and vacuum pump
JP2001201362A (ja) 回転検出装置
US20050121987A1 (en) Encapsulated motor
JP4275444B2 (ja) アブソリュートエンコーダ付軸受
KR101291577B1 (ko) 등속운동용 자기 베어링 시스템
JPH04366716A (ja) 回転角センサ
US8299781B2 (en) Reactance sensors of radial position for magnetic bearings and bearingless drives
WO2003028194A1 (en) Linear motor with transducer arrangement
US20050261868A1 (en) Device for detecting the speed and the position of a rotating shaft
JP7050284B2 (ja) 回転機及び変位検出センサ
JP2004328822A (ja) モータ制御装置、モータ装置、真空ポンプ、補正電流値計測装置、及びモータ制御方法
JP2014045548A (ja) 磁気軸受型真空ポンプ
JP2021038744A (ja) 真空ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6684839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250