JP2018149595A - 三次元的な物体を付加的に製造するための装置 - Google Patents

三次元的な物体を付加的に製造するための装置 Download PDF

Info

Publication number
JP2018149595A
JP2018149595A JP2017243678A JP2017243678A JP2018149595A JP 2018149595 A JP2018149595 A JP 2018149595A JP 2017243678 A JP2017243678 A JP 2017243678A JP 2017243678 A JP2017243678 A JP 2017243678A JP 2018149595 A JP2018149595 A JP 2018149595A
Authority
JP
Japan
Prior art keywords
energy beam
structural material
material layer
irradiation device
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017243678A
Other languages
English (en)
Other versions
JP6640825B2 (ja
Inventor
ペーター・ポンティラー−シュムラ
Pontiller-Schymura Peter
フェリックス・トルチェル
Trutschel Felix
ティム・デーラー
Doehler Tim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CL Schutzrechtsverwaltung GmbH
Original Assignee
CL Schutzrechtsverwaltung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CL Schutzrechtsverwaltung GmbH filed Critical CL Schutzrechtsverwaltung GmbH
Publication of JP2018149595A publication Critical patent/JP2018149595A/ja
Priority to JP2019236338A priority Critical patent/JP6928072B2/ja
Application granted granted Critical
Publication of JP6640825B2 publication Critical patent/JP6640825B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

【課題】三次元的な物体を付加的に製造するための改善された装置を提供すること。【解決手段】三次元的な物体を付加的に製造するための装置であって、エネルギービームを発生させる照射装置と、該照射装置の動作を制御する制御情報を生成するため、及び前記照射装置の動作を生成された制御情報に基づき制御するための制御装置とを含む前記装置において、制御装置が、第1の照射装置の動作を制御する第1の制御情報を生成するために設置されており、該第1の制御情報に基づき、第1の照射装置が、構造材料層の凝固化のための第1のエネルギービーム4aを発生させ、制御装置が、第2の照射装置の動作を制御する第2の制御情報を生成するために設置されており、該第2の制御情報に基づき、前記第2の照射装置が、構造材料層の熱的な予備処理及び/又は後処理のための第2のエネルギービーム4bを発生させる。【選択図】図2

Description

本発明は、連続的で層ごとの選択的な照射と、これに伴う、エネルギービームによって凝固化可能な構造材料から成る構造材料層の連続的で層ごとの選択的な凝固化とによって三次元的な物体を付加的に製造する装置であって、それぞれ少なくとも1つのエネルギービームを発生させるために設置されている複数の照射装置と、該照射装置の動作を制御する制御情報を生成するために、及び前記照射装置の動作を生成された制御情報に基づき制御するために設置されている制御装置とを含む前記装置に関するものである。
三次元的な物体を付加的に製造するための装置は基本的に知られている。適当な装置を用いて、製造されるべき三次元的な物体は、連続的で層ごとの選択的な照射と、これに伴う、エネルギービームを用いて凝固化可能な構造材料から成る、製造されるべき物体の層に関連する断面に対応する範囲における構造材料層の連続的で層ごとの選択的な凝固化とによって付加的に構成される。
さらに、付加的に製造されるべき各物体のできる限り最適な特性を実現するために、選択的に凝固化されるべき、あるいは選択的に凝固化された構造材料層の焼きもどし(Temperierung)が合目的であることが知られている。適当な焼きもどしは、例えば、典型的には予備乾燥された、吸湿性の構造材料、すなわち例えばアルミニウムにおいて、ガス空隙、すなわち水素空隙を低減することに貢献し得る。
これまで、通常、選択的に凝固化されるべき、あるいは選択的に凝固化された構造材料層の焼きもどしは、構造チャンバを画成する構造モジュールに統合された加熱要素、すなわち例えば抵抗加熱要素を介して行われる。加熱要素は、例えば構造チャンバを底部側で画成する構造モジュールの底部プレートに統合されることが可能である。加熱要素を介して構造チャンバへ平坦に入れられる熱エネルギーは、構造チャンバ内に存在する、場合によっては予備乾燥された構造材料のある程度の焼きもどしに寄与する。
焼きもどしのこの原理は、いくつかの観点において更なる発展が必要である。これは、特に、構造材料の予備乾燥及び構造材料の局所的な焼きもどしを可能としないためである。加えて、適当な加熱要素による構造材料の焼きもどしは、新たな種類の、特に高溶融性の材料の処理に関して低すぎ得る焼きもどし限界値に制限されている。
本発明の基礎をなす課題は、上述のようなものに比して改善された、三次元的な物体を付加的に製造するための装置を提供することにある。
上記課題は、請求項1による三次元的な物体を付加的に製造するための装置によって解決される。これに従属する請求項は、装置の可能な実施形態に関するものである。
ここに記載された装置(「装置」)は、連続的で層ごとの選択的な照射と、エネルギービームを用いて凝固化可能な構造材料から成る、製造されるべき物体の層に関連する断面に対応する範囲における構造材料層の連続的で層ごとの選択的な凝固化とによる、三次元的な物体、すなわち例えば技術的な部材あるいは技術的な部材群を付加的に製造するために設置されている。構造材料は、粒子状あるいは粉体状の金属材料、合成樹脂材料及び/又はセラミック材料であり得る。選択的に凝固化されるべき各構造材料層の選択的な凝固化は、物体に関する構造データに基づきなされる。適当な構造データは、付加的に製造されるべき各物体の幾何学的−構造上の形状を示すものであり、例えば付加的に製造されるべき各物体の「スライスされた」CADデータを含むことができる。
装置は、例えば選択的レーザ溶融法(略してSLM法)を実行する装置として、又は選択的レーザ焼結法(略してSLS法)を実行する装置として形成されることが可能である。装置が選択的電子ビーム溶融法(selektiver Elektronenstrahlschmelzverfahren)(略してSEBS法)を実行するための装置として形成されることも考えられる。
装置は、付加的な構造工程の実行に典型的に必要な機能構成要素を含んでいる。これには、特に少なくとも1つの積層装置及び少なくとも1つの照射装置が含まれる。適当な積層装置は、選択的に凝固化されるべき構造材料層を装置の構造平面において形成するために設置されており、この構造平面では、連続的で層ごとの選択的な照射と、これに伴う、エネルギービームを用いて凝固化可能な構造材料から成る構造材料層の連続的で層ごとの選択的な凝固化とが行われるように設置されているとともに、このために、典型的には、構造平面に対して相対的に移動可能に支持された、特にブレード型あるいはブレード状の清掃要素を含んでいる。適当な照射装置は、装置の構造平面において、選択的に凝固化されるべき構造材料層の選択的な露光のために設置されている。適当な照射装置は、装置の構造平面における、選択的に凝固化されるべき構造材料層の選択的な照射のために設置されているとともに、このために、典型的にはエネルギービームを発生させるために設置されているエネルギービーム発生装置と、場合によってはスキャン装置と呼ばれるか、あるいはみなされる、エネルギービームを各構造材料層へ偏向させるために設置されているエネルギービーム偏向装置とを含んでいる。
ここに記載される装置は、複数の照射装置を含んでいる。各照射装置は、定義可能なエネルギービーム特性のエネルギービーム、すなわち特にレーザビームを発生させるために設置されたエネルギービーム発生装置を含んでいる。また、各照射装置は、固有のエネルギービーム発生装置によって発生されるエネルギービームを、各構造材料層の選択的に照射されるべき、あるいは選択的に凝固化されるべき範囲へ偏向させるために設置されたエネルギービーム偏向装置を含むことが可能である。(唯一の)エネルギービーム偏向装置が異なる照射装置の各エネルギービーム発生装置に割り当てられていることも考えられ、エネルギービーム偏向装置は、このエネルギービーム偏向装置に割り当てられたエネルギービーム発生装置によって発生されるエネルギービームを各構造材料層の選択的に照射されるべき、あるいは選択的に凝固化されるべき範囲へ偏向させるために設置されている。
装置は、ハードウェアにより、及び/又はソフトウェアにより実行される制御装置を含んでいる。この制御装置は、制御技術的に照射装置に割り当て可能であるか、あるいは割り当てられているとともに、照射装置の動作を制御する制御情報を発生させるために、及び適当に生成された制御情報に基づき照射装置の動作を制御するために設置されている。各照射装置の動作の制御は、特に、発生されるエネルギービームのエネルギービーム特性、すなわち例えばエネルギービーム強度及び/又はエネルギービーム焦点直径の制御と、発生されるエネルギービームの移動特性、すなわち例えば当該移動経路に沿ってエネルギービームが選択的に凝固化されるべき構造材料層にわたって移動する移動経路、あるいは例えばエネルギービームが選択的に凝固化されるべき構造材料層にわたって移動するエネルギービーム速度のようなエネルギービームの移動に関連する所定の移動パラメータの制御とを含んでいる。
更に明らかであるように、制御装置は、異なる照射装置に対する異なる制御情報を生成するために設置されており、その結果、異なる照射装置によって発生されるエネルギービームが、例えば1つ若しくは複数のエネルギービーム特性において、及び/又は1つ若しくは複数の移動特性において異なる。
具体的には、制御装置は、少なくとも1つの第1の照射装置の動作を制御するための第1の制御情報を生成するために設置されており、この制御情報に基づき、第1の照射装置が、構造材料層の連続的で層ごとの選択的な凝固化のための第1のエネルギービームを発生させる。制御装置の側で第1の照射装置として定義された照射装置は、第1の制御情報を基礎とする作動に基づいて、構造材料層の連続的で層ごとの選択的な凝固化のためのエネルギービームを発生させるように作動あるいは動作される。当然、制御装置の側で複数の照射装置を第1の照射装置として定義するか、あるいは動作されることが可能であり、したがって、これら照射装置は、それぞれ、第1の制御情報を基礎とする作動に基づいて、構造材料層の連続的で層ごとの選択的な凝固化のためのエネルギービームを発生させるように作動あるいは動作される。
さらに、制御装置は、少なくとも1つの第2の照射装置の動作を制御するための第2の制御情報を生成するために設置されており、この制御情報に基づき、第2の照射装置は、選択的に凝固化されるべき構造材料層の、特に構造材料層における選択的に凝固化されるべき範囲における熱的な予備処理のための第2のエネルギービーム、及び/又は選択的に凝固化された構造材料層の、特に構造材料層の選択的に凝固化された範囲における熱的な後処理のための第2のエネルギービームを発生させる。制御装置側で第2の照射装置として定義された照射装置は、選択的に凝固化されるべき構造材料層の、特に構造材料層における選択的に凝固化されるべき範囲における熱的な予備処理のための第2のエネルギービーム、及び/又は選択的に凝固化された構造材料層の、特に構造材料層の選択的に凝固化された範囲における熱的な後処理のための第2のエネルギービームを発生させるように、第2の制御情報を基礎とする作動に基づき、制御装置によって作動あるいは動作される。当然、制御装置の側で複数の照射装置を第2の照射装置として定義するか、あるいは動作されることが可能であり、したがって、これら照射装置は、それぞれ、第2の制御情報を基礎とする作動に基づき、選択的に凝固化されるべき構造材料層の熱的な予備処理のための、及び/又は選択的に凝固化された構造材料層の熱的な後処理のためのエネルギービームを発生させるように作動される。
したがって、装置により、制御装置によって生成される適当な制御情報に基づき、異なる照射装置を意図的に異なる機能によって「覆う」ことが可能である。このとき、少なくとも1つの照射装置は、第1の照射装置として定義あるいは動作されることができ、その結果、この照射装置は、構造材料層の選択的な凝固化のためのエネルギービームを発生させる。このとき、少なくとも1つの他の照射装置は、第2の照射装置として定義あるいは動作されることができ、その結果、この照射装置は、構造材料層の熱的な予備処理あるいは後処理ためのエネルギービームを発生させる。以下では、構造材料層の熱的な予備処理あるいは後処理は、構造材料層の焼きもどしともいう。
装置の照射装置を構造材料層の焼きもどしのために用いる、このように開かれた可能性により、これまでの通常の加熱要素では不可能な、目的をもちつつ局所的な構造材料層の焼きもどしと、構造材料の加熱条件及び冷却条件の目的をもちつつ局所的な制御あるいは溶融条件及び凝固条件の目的をもちつつ局所的な制御とが可能となる。このようにして例えば所定の組織を調整することができるため、加熱条件及び冷却条件あるいは溶融条件及び凝固条件の目的をもった制御により、製造されるべき物体の構造上の特性へのアクティブな影響が及ぼされ得る。同様に、構造材料の予備乾燥も可能である。
照射装置を構造材料層の焼きもどしのために用いる可能性により、構造チャンバ内にある構造材料の継続的で時間のかかる焼きもどしが不要であるため、構造材料層の焼きもどしのためにかなりわずかなエネルギーの消費で済むことが更に可能である。
加えて、構造材料層の目的をもった局所的な焼きもどしにより、構造チャンバ、構造チャンバに熱的に結合された装置の機能構成要素及び構造チャンバ内に存在するあらかじめ付加的に構成された物体部分のこれまでの通常の熱的な負荷が最小に低減される。なぜなら、構造材料の焼きもどしのための熱エネルギーの入力を焼き戻しされるべき構造材料範囲へ限定することが可能であるためである。場合によっては再度用いられるべき、あるいは再度利用されるべき、凝固化されていない構造材料の熱的な負荷も最小に低減されている。したがって、構造材料は、試験によって示すことができたように、構造材料における不都合な酸素含有量の増大につながり得る継続的な焼きもどしにさらされない。さらに、装置の異なる機能構成要素内の、又はこれら機能構成要素間の温度勾配の形成が最小に低減されているため、機能構成要素の異なる熱膨張へ戻されるべき個々の機能構成要素の「変動」が不可能であるか、ほぼ不可能である。
したがって、全体として、冒頭に記載した従来技術に比して改善された装置が存在する。
装置あるいはこの装置により実行される方法の別の実施形態に言及する前に、第1又は第2の照射装置としての照射装置の各定義は、典型的には変更可能であり、すなわち固定してあらかじめ設定されていないことに留意すべきである。したがって、制御装置は、第1の構造材料層の選択的な凝固化の範囲における少なくとも1つの所定の照射装置を第1の照射装置として定義するとともにこれに対応して動作させ、同一の照射装置を第1の構造材料層とは異なる別の構造材料層の選択的な凝固化の範囲において第2の照射装置として定義するとともにこれに対応して動作させるように設置されることができる。また、制御装置も、構造材料層の第1の範囲の選択的な凝固化の範囲における少なくとも1つの所定の照射装置を第1の照射装置として定義するとともにこれに対応して動作させ、同一の照射装置を構造材料層の第1の範囲とは異なる別の範囲の選択的な凝固化の範囲において第2の照射装置として定義するとともにこれに対応して動作させるように設置されることができる。したがって、照射装置は、1つ又は同一の構造プロセスの実行の範囲において、1回又は複数回第1の照射装置として、すなわち構造材料の選択的な凝固化のための照射装置として用いられることができ、及び1回又は複数回第2の照射装置として、すなわち構造材料層の焼きもどしのための照射装置として用いられることができる。
以下において「第1の照射装置」が言及される場合には、これは、制御装置の側において、少なくとも一時的に第1の照射装置として作動あるいは動作される装置の照射装置と理解される。同様に、以下において「第2の照射装置」が言及される場合には、これは、制御装置の側において、少なくとも一時的に第2の照射装置として作動あるいは動作される装置の照射装置と理解される。
後述するように、制御装置は、第2の制御情報を生成するために設置されることができ、この制御情報に基づき、第2の照射装置によって発生される第2のエネルギービームが、第1の照射装置によって発生される第1のエネルギービームのように、同一又は同一でない移動経路に沿って、選択的に凝固化されるべき、又は凝固化された構造材料層にわたってガイド可能であるか、又はガイドされている。したがって、第2の照射装置は、第2のエネルギービームを発生させるために設置されることができ、第2のエネルギービームは、第1の照射装置によって発生される第1のエネルギービームと同一又は同一でない移動経路に沿って、選択的に凝固化されるべき、又は凝固化された構造材料層にわたってガイド可能であるか、又はガイドされている。
制御装置は、特に第2の制御情報を生成するために設置されることができ、この第2の制御情報に基づき、第2の照射装置によって発生される第2のエネルギービームが、所定の、特に同期化された場所的な、及び/又は時間的な先行又は遅れを有する第1の照射装置によって発生される第1のエネルギービームに先行して、又は遅れて第1の照射装置によって発生される第1のエネルギービームと同一の移動経路に沿って、選択的に凝固化されるべき、又は凝固化された構造材料層にわたってガイド可能であるか、又はガイドされている。したがって、第2の照射装置は、第1の照射装置によって発生される第1のエネルギービームのように、第1の照射装置によって発生される第1のエネルギービームに先行して、又は遅れて、同一の移動経路に沿って選択的に凝固化されるべき、又は凝固化された構造材料層にわたってガイドされている第2のエネルギービームを生成するために設置されることができる。
したがって、少なくとも1つの第2のエネルギービームは、所定の場所的な、及び/又は時間的な先行をもって第1のエネルギービームに先行して同一の移動経路に沿って構造材料層にわたってガイドされ、これにより、例えば構造材料の加熱特性あるいは溶融特性のコントロールされた影響あるいは制御の目的のために、特に第2のエネルギービームの具体的な場所的な、及び/又は時間的な先行によって目的をもって制御可能な、第1のエネルギービームを用いて凝固化されるべき構造材料の予備焼きもどしが得られる。一般的に、適当な予備焼きもどしにより、構造材料の(局所的な)予備加熱が可能であり、この予備加熱により、例えば特に高溶融性の構造材料の処理あるいは構造材料の乾燥が可能である。
これに代えて、又はこれに加えて、第2のエネルギービームは、所定の場所的な、及び/又は時間的な遅れを有する第1のエネルギービームに遅れて同一の移動経路に沿って構造材料層にわたってガイドされることができ、これにより、例えば構造材料の冷却特性あるいは凝固特性のコントロールされた影響あるいは制御の目的のために、特に第2のエネルギービームの具体的な場所的な、及び/又は時間的な遅れによって目的をもって制御可能な、第1のエネルギービームを用いて凝固化されるべき構造材料の再焼きもどし(Nachtemperierung)が得られる。一般的に、適当な再焼きもどしにより、倍によっては亀裂形成につながる機械的な応力と、特に気体細孔(Gasporen)の拡散による物体におけるガス空隙あるいは水素空隙の低減が可能である。
同様のことは、装置1が、第2の照射装置として動作可能な、又は動作する複数の照射装置を含んでいるケースに当てはまる。この場合、制御装置は第2の制御情報を生成するように設置されることができ、この第2の制御情報に基づき、各第2の照射装置によって発生される第2のエネルギービームが、第1の照射装置によって発生される第1のエネルギービームのように、それぞれ定義可能な、又は定義された、特に同期化された場所的な、及び/又は時間的な先行又は遅れを有する第1の照射装置によって発生される第1のエネルギービームに先行して、又は遅れて同一の移動経路に沿って選択的に凝固化されるべき、又は凝固化される構造材料層にわたってガイド可能であるか、又はガイドされている。したがって、装置は複数の第2の照射装置を含むことができ、これら第2の照射装置は、第1の照射装置によって発生される第1のエネルギービームのように、第1の照射装置によって発生される第1のエネルギービームに先行又は遅れて、同一の移動経路に沿って選択的に凝固化されるべき、又は凝固化される構造材料層にわたってガイド可能であるか、又はガイドされている複数の第1のエネルギービームを発生させるために設置されている。
このとき、制御装置は、構造材料層へ入るべき、又は入る、それぞれ第2の照射装置によってそれぞれ発生される第2のエネルギービームのエネルギー入力を、第1の照射装置によって発生されるエネルギービームに対する各第2のエネルギービームの場所的な、及び/又は時間的な先行又は遅れに依存して制御するために設置されることが可能である。したがって、各第2のエネルギービームを介して構造材料層へ入るべき、又は入るエネルギー入力は(ほぼ)適宜に変更可能であるため、各第2のエネルギービームの各エネルギー入力の制御によって、(ほぼ)適宜の、あるいは(ほぼ)適宜に変更可能な温度プロファイル、すなわち例えば均一に、又は不均一に上昇又は下降する温度勾配が実現され得る。
例えば、第1の照射装置によって発生される第1のエネルギービームに対してより大きな場所的な、及び/又は時間的な先行又は遅れを有する、構造材料層へ入れられるべき、又は入れられる第2のエネルギービームのエネルギー入力は、第1の照射装置によって発生される第1のエネルギービームに対してより小さな場所的な、及び/又は時間的な先行又は遅れを有する、構造材料層へ入れられるべき、又は入れられる第2のエネルギービームのエネルギー入力よりもわずかであり得る。このようなことは、構造材料の加熱特性あるいは冷却特性に局所的に目的をもって影響を与えることができる所定の温度プロファイルの実現の例示的な可能性である。
上記においては、第1及び第2のエネルギービームの移動が1つかつ同一の移動経路においてなされる変形例が記載されており、少なくとも1つの第2のエネルギービームは、所定の場所的な、及び/又は時間的な先行あるいは遅れをもって第1のエネルギービームに先行あるいは遅れてガイドされているか、又はガイドされる。
以下に、同様に考えることが可能で、特に上述のものを組合せ可能な変形例が記載されており、この変形例によれば、第1及び第2のエネルギービームの移動が異なる移動経路において行われ、少なくとも1つの第2のエネルギービームが、所定の場所的な、及び/又は時間的なずれをもって第1のエネルギービーム対して側方に、特に平行にずらされてガイドされているか、又はガイドされる。
したがって、制御装置は、(これに代えて、又はこれに加えて)第2の制御情報を生成するように設置されることができ、この第2の制御情報に基づき、第2の照射装置によって発生される第2のエネルギービームが所定の場所的な、及び/又は時間的なずれをもって、当該移動経路に沿って第1のエネルギービーム4aが構造材料層にわたってガイド可能であるか、又はガイドされる移動経路に対して側方に、特に平行にずらされて、選択的に凝固化されるべきか、又は凝固化された構造材料層にわたってガイドされている。したがって、第2の照射装置は、第1の照射装置によって発生される第1のエネルギービーム、すなわち第1の照射装置によって発生される第1のエネルギービームとは異なる移動経路に対して側方にずらされて、選択的に凝固化されるべき、又は凝固化された構造材料層にわたってガイドされる第2のエネルギービームを発生させるために設置されることが可能である。
したがって、第2のエネルギービームは、所定の場所的な、及び/又は時間的なずれをもって、第1のエネルギービームの移動経路に対して側方にずらされて構造材料層にわたってガイドされることができ、これにより、同様に、例えば構造材料の加熱特性あるいは溶融特性のコントロールされた影響あるいは制御の目的のために、特に第2のエネルギービームの具体的な場所的な、及び/又は時間的なずれによって目的をもって制御可能な、第1のエネルギービームを用いて凝固化されるべきあるいは凝固化された構造材料の予備焼きもどしあるいは再焼きもどしが得られる。
ここでも、同様のことが、装置が第2の照射装置として動作可能な、又は動作する複数の照射装置を含むケースについても当てはまる。この場合、制御装置は第2の制御情報を生成するように設置されることができ、この第2の制御情報に基づき、各第2の照射装置によって発生される第2のエネルギービームが所定の場所的な、及び/又は時間的なずれをもって、当該移動経路に沿って第1のエネルギービームが構造材料層にわたってガイド可能であるか、又はガイドされる移動経路に対して側方に、特に平行にずらされて、凝固化されるべき、又は凝固化された構造材料層にわたってガイドされている。したがって、装置は複数の第2の照射装置を含むことができ、これら第2の照射装置は、固有の移動経路において、第1の照射装置によって発生されるエネルギービームに対して側方にずらされて選択的に凝固化されるべき、又は凝固化された構造材料層にわたってガイド可能であるか、又はガイドされる複数の第2のエネルギービームを発生させるために設置されている。
制御装置は、ここでも、構造材料層へ入る、それぞれ第2の照射装置によってそれぞれ発生される第2のエネルギービームのエネルギー入力を、第1のエネルギービームの移動経路に対する各第2のエネルギービームの場所的な、及び/又は時間的なずれに依存して制御するために設置されることが可能である。このようにしても、各第2のエネルギービームを介して構造材料層へ入るエネルギー入力は(ほぼ)適宜に変更可能であるため、各第2のエネルギービームの各エネルギー入力の適当な制御によって、(ほぼ)適宜の、あるいは(ほぼ)適宜に変更可能な温度プロファイル、すなわち例えば均一に、又は不均一に上昇又は下降する温度勾配が実現され得る。
例えば、第1の照射装置によって発生される第1のエネルギービームに対してより大きな場所的な、及び/又は時間的なずれを有する、構造材料層へ入れられるべき、又は入れられる第2のエネルギービームのエネルギー入力は、第1の照射装置によって発生される第1のエネルギービームに対してより小さな場所的な、及び/又は時間的なずれを有する、構造材料層へ入れられるべき、又は入れられる第2のエネルギービームのエネルギー入力よりもわずかであり得る。このようにして、ここでも、例えば、構造材料の加熱特性あるいは冷却特性に局所的に目的をもって影響を与えることができる所定の温度プロファイルの実現の可能性が与えられる。
第2のエネルギービームがこれに先行して、若しくは遅れて、又は第1のエネルギービームに対して相対的な側方のずれをもってガイドされているか、又はガイドされるかにかかわらず、第2のエネルギービームが、構造材料層へのエネルギービームのエネルギー入力に影響を与える少なくとも1つのエネルギービームパラメータにおいて第1のエネルギービームとは異なることが当てはまる。第2のエネルギービームは、例えばエネルギービーム強度及び/又はエネルギービーム焦点直径及び/又はエネルギービームが構造材料層にわたってガイドされるエネルギービーム速度において、第1のエネルギービームと異なり得る。各エネルギー入力における区別は、典型的には、第2のエネルギービームのエネルギー入力が第2のエネルギービームによる構造材料3の溶融が不可能であるほどわずかであるという条件で行われる。したがって、第2のエネルギービームは、典型的には、第1のエネルギービームよりもわずかなエネルギービーム強度及び/又は第1のエネルギービームよりも大きなエネルギービーム焦点直径を有している。
装置は検出装置を含むことが可能であり、この検出装置は、構造材料層、選択的に凝固化されるべき、あるいは選択的に凝固化された構造材料層の特に選択的に凝固化されるべき、あるいは選択的に凝固化された範囲の少なくとも1つの特性を検出するために、及び選択的に凝固化されるべき、あるいは選択的に凝固化された構造材料層の少なくとも1つの検出された特性を示す検出情報を生成するために設置されている。適当な特性は、例えば温度又は装置状態、特に選択的に凝固化されるべき、あるいは選択的に凝固化された範囲の溶融状の状態であり得る。その結果、検出装置を介して局所的な溶融槽(「Meltpool」)を検出することが可能である。検出装置は、例えば光学的な検出装置、すなわち特にカメラ装置であり得るか、あるいは少なくとも1つのこのようなものを検出装置が含むことが可能である。
制御装置は、構造材料層への各エネルギービームのエネルギー入力に影響を与える、第2のエネルギービームのエネルギービームパラメータを検出情報によって示される凝固化されるべき、又は凝固化された構造材料層の特性に依存して制御するために設置されることが可能である。適当な検出情報によって示される構造材料層の各特性によって、特にリアルタイムで、より正確にコントロールされる構造材料層の加熱特性あるいは溶融特性又は冷却特性あるいは凝固特性の影響が1つ又は複数の第2のエネルギービームを用いて実現され得る。
本発明は、装置のほかに、連続的で層ごとの選択的な照射と、これに伴う、エネルギービーム4aを用いて凝固化可能な構造材料3の連続的で層ごとの選択的な凝固化とによって、三次元的な物体2を付加的に製造するための方法であって、それぞれ定義可能なエネルギービーム特性の少なくとも1つのエネルギービームを発生させるために設置されている複数の照射装置が用いられる方法に関するものである。この方法は、少なくとも1つの第1の照射装置が、制御装置によって生成される、構造材料層の連続的で層ごとの選択的な凝固化のための第1のエネルギービームを発生させるための第1の制御情報に基づいて動作され、少なくとも1つの第2の照射装置が、制御装置によって生成される、特に構造材料層の選択的に凝固化される範囲における、選択的に凝固化される構造材料層の熱的な予備処理のための第2のエネルギービーム及び/又は特に構造材料層の選択的に凝固化される範囲において、選択的に凝固化される構造材料層の熱的な後処理(Nachbehandlung)のための第2のエネルギービームを発生させるための第2の制御情報に基づいて動作される。例えば選択的レーザ溶融法(略してSLM法)、選択的レーザ焼結法(略してSLS法)又は選択的電子ビーム溶融法(selektiver Elektronenstrahlschmelzverfahren)(略してSEBS法)であり得るコの方法は、上述の装置によって実行されることが可能である。装置に関連した全ての実施は、方法についても同様に当てはまり、また逆も同様である。
本発明を、図面における実施例に基づいて詳細に説明する。
一実施例による装置の原理図である。 構造材料層にわたってガイドされる複数のエネルギービームの原理図である。 構造材料層にわたってガイドされる複数のエネルギービームの原理図である。 構造材料層にわたってガイドされる複数のエネルギービームの原理図である。 構造材料層にわたってガイドされる複数のエネルギービームの原理図である。
図1には、一実施例による装置1の原理図が示されている。装置1は、連続的で層ごとの選択的な照射と、これに伴う、エネルギービームすなわち特にレーザビームによって凝固化可能な構造材料3すなわち例えば金属粉体から成る構造材料層の連続的で層ごとの選択的な凝固化とによって、三次元的な物体2、すなわち特に技術的な部材あるいは技術的な部材群の付加的な製造に用いられる。凝固化されるべき各構造材料層の選択的な凝固化は、物体に関連した構造データに基づいてなされる。適当な構造データは、付加的に製造されるべき各物体2の幾何学的な、あるいは幾何学的−構造上の形状を示すとともに、製造されるべき物体2の例えば「スライスされた」CADデータを含むことができる。装置1は、LaserCUSING(登録商標)装置として、すなわち選択的レーザ溶融法(略してSLM法)を実行するための装置として形成されることができる。
装置1は、付加的な構造工程を実行するための機能構成要素として積層装置5を含んでいる。積層装置5は、選択的に照射されるべき、あるいは選択的に凝固化されるべき構造材料層を装置1の構造平面E内で形成するために設置されているとともに、このために装置1の構造平面Eに対して相対的に移動可能に支持された、特にブレード型あるいはブレード状の積層要素(不図示)を含んでいる。
装置1は、付加的な構造工程を実行するための別の機能構成要素として、複数の、すなわち図1に図示された実施例では2つの照射装置6,7を含んでいる。各照射装置6,7は、定義可能なエネルギービーム特性のエネルギービーム4a,4b、すなわち特にレーザビームを発生させるために設置されたエネルギービーム発生装置8,9と、このエネルギービーム発生装置に光学的に結合された、エネルギービーム4a,4bを各構造材料層へ偏向させるために設置されたエネルギービーム偏向装置10,11とを含んでいる。(唯一の)エネルギービーム偏向装置が異なる照射装置6,7の各エネルギービーム発生装置8,9に割り当てられていることも考えられる。
また、図1に示された実施例では、配量モジュール12、構造モジュール13及びオーバーフローモジュール14が図示されており、これらモジュールは、装置1の不活性化可能なプロセスチャンバ15の下方の範囲へドッキング(angedockt)されている。上記モジュールは、装置1のプロセスチャンバ15の下方の範囲も形成することが可能である。
装置1は、照射装置6,7に制御技術的に割り当てられたハードウェアによって、及び/又はソフトウェアによって実行される制御装置16を含んでいる。制御装置16は、照射装置6,7の動作を制御する制御情報を生成するために、及び生成された適当な制御情報に基づいて照射装置6,7の動作を制御するために設置されている。各照射装置6,7の動作の制御は、特に各照射装置6,7を介して発生されるエネルギービーム4a,4bのエネルギービーム特性及び移動特性を含んでいる。制御装置16は、異なる照射装置6,7のための異なる制御情報を生成するように設置されているため、異なる照射装置6,7によって発生されるエネルギービーム4a,4bは、例えば1つ若しくは複数のエネルギービーム特性において、及び/又は1つ若しくは複数の移動特性において異なっている。
制御装置16は、第1の照射装置、すなわち例えば図において左側の照射装置6の動作を制御するための第1の制御情報を生成するために設置されており、この制御情報に基づき、第1の照射装置が、構造材料層の連続的で層ごとの選択的な凝固化のための第1のエネルギービーム4aを発生させる。制御装置16の側で第1の照射装置として定義された照射装置6は、第1の制御情報を基礎とする作動に基づいて、構造材料層の連続的で層ごとの選択的な凝固化のためのエネルギービーム4aを発生させるように作動あるいは動作される。
さらに、制御装置16は、少なくとも1つの第2の照射装置、すなわち例えば図において右側の照射装置7の動作を制御するための第2の制御情報を生成するために設置されており、この制御情報に基づき、第2の照射装置は、特に構造材料層における選択的に凝固化されるべき範囲において選択的に凝固化されるべき構造材料層を熱的に予備処理するための第2のエネルギービーム4b、及び/又は選択的に凝固化された構造材料層の、特に構造材料層の選択的に凝固化された範囲における熱的な後処理のための第2のエネルギービーム4bを発生させる。制御装置16側で第2の照射装置として定義された照射装置7は、特に構造材料層における選択的に凝固化されるべき範囲において選択的に凝固化されるべき構造材料層を熱的に予備処理するための第2のエネルギービーム4b、及び/又は選択的に凝固化された構造材料層の、特に構造材料層の選択的に凝固化された範囲における熱的な後処理のための第2のエネルギービーム4bを発生させるように、第2の制御情報を基礎とする作動に基づき、制御装置16によって作動あるいは動作される。
したがって、装置1により、制御装置16によって生成される適当な制御情報に基づき、異なる照射装置6,7を意図的に異なる機能によって「覆う」ことが可能である。このとき、1つの(又は複数の)照射装置6は、第1の照射装置として定義あるいは動作されることができ、その結果、この照射装置は、構造材料層の選択的な凝固化のためのエネルギービーム4aを発生させる。このとき、1つの(又は複数の)他の照射装置7は、第2の照射装置として定義あるいは動作されることができ、その結果、この照射装置は、構造材料層の熱的な予備処理あるいは後処理(「焼きもどし(Temperierung)」)ためのエネルギービーム4bを発生させる。
照射装置、すなわち例えば照射装置7を構造材料層の焼きもどしのために用いる、このように開かれた可能性により、目的をもちつつ局所的な構造材料層の焼きもどしと、構造材料3の加熱条件及び冷却条件の目的をもちつつ局所的な制御あるいは溶融条件及び凝固条件の目的をもちつつ局所的な制御とが可能となる。このようにして例えば所定の組織を調整することができるため、加熱条件及び冷却条件あるいは溶融条件及び凝固条件の目的をもった制御により、製造されるべき物体2の構造上の特性へのアクティブな影響が及ぼされ得る。
第1又は第2の照射装置としての照射装置6,7の各定義は、変更可能であり、すなわち固定してあらかじめ設定されていない。したがって、制御装置16は、第1の構造材料層の選択的な凝固化の範囲における所定の照射装置6,7を第1の照射装置として定義するとともにこれに対応して動作させ、同一の照射装置6,7を第1の構造材料層とは異なる別の構造材料層の選択的な凝固化の範囲において第2の照射装置として定義するとともにこれに対応して動作させるように設置されている。また、制御装置16も、構造材料層の第1の範囲の選択的な凝固化の範囲における所定の照射装置6,7を第1の照射装置として定義するとともにこれに対応して動作させ、同一の照射装置6,7を構造材料層の第1の範囲とは異なる別の範囲の選択的な凝固化の範囲において第2の照射装置として定義するとともにこれに対応して動作させるように設置されている。したがって、照射装置6,7は、1つ又は同一の構造プロセスの実行の範囲において、1回又は複数回第1の照射装置として、すなわち構造材料の選択的な凝固化のための照射装置として用いられることができ、及び1回又は複数回第2の照射装置として、すなわち構造材料層の焼きもどしのための照射装置として用いられることができる。
以下において「第1の照射装置」が言及される場合には、これは、制御装置16の側において、少なくとも一時的に第1の照射装置として作動あるいは動作される照射装置6,7と理解される。同様に、以下において「第2の照射装置」が言及される場合には、これは、制御装置16の側において、少なくとも一時的に第2の照射装置として作動あるいは動作される照射装置6,7と理解される。
それぞれ構造材料層にわたって案内される複数のエネルギービーム4a,4bの原理図を示す図2以降から明らかなように、制御装置16は、第2の制御情報を生成するために設置されており、この第2の制御情報に基づき、第2の照射装置によって発生される第2のエネルギービーム4bが、第1のエネルギービーム4aのように、所定の、特に同期化された場所的な、及び/又は時間的な先行(図2参照)又は遅れ(図3参照)を有する第1のエネルギービーム4aに先行して、又は遅れて同一の移動経路(矢印で示唆された移動ベクトル参照)に沿って構造材料層にわたってガイドされている。したがって、第2のエネルギービーム4bは、所定の場所的な、及び/又は時間的な先行(図2において場所的な先行について符号「+Δx」で示唆されており、「+Δt」で時間的な先行が示唆されている)をもって第1のエネルギービーム4aに先行して同一の移動経路に沿って構造材料層にわたってガイドされ、これにより、例えば構造材料3の加熱特性あるいは溶融特性のコントロールされた影響あるいは制御の目的のために、特に第2のエネルギービーム4bの具体的な場所的な、及び/又は時間的な先行によって目的をもって制御可能な、第1のエネルギービーム4aを用いて凝固化されるべき構造材料3の予備焼きもどしが得られる。適当な先行が図2に示されている。
これに代えて、又はこれに加えて、第2のエネルギービーム4bは、所定の場所的な、及び/又は時間的な遅れ(図3において場所的な遅れについて符号「−Δx」で示唆されており、時間的な遅れについて「−Δt」で示唆されている)を有する第1のエネルギービーム4aに遅れて同一の移動経路に沿って構造材料層にわたってガイドされ、これにより、例えば構造材料3の冷却特性あるいは凝固特性のコントロールされた影響あるいは制御の目的のために、特に第2のエネルギービーム4bの具体的な場所的な、及び/又は時間的な遅れによって目的をもって制御可能な、第1のエネルギービーム4aを用いて凝固化されるべき構造材料3の再焼きもどし(Nachtemperierung)が得られる。適当な遅れが図3に示されており、ここでは選択的かつ追加的に適当な先行も可能であることが点線で図示されている。
同様のことが、図5に図示されたケースにも当てはまり、このケースでは、装置1が、第2の照射装置として動作可能な、又は動作する複数の照射装置6,7を含んでいる。この場合、制御装置16は第2の制御情報を生成するように設置されており、この第2の制御情報に基づき、各第2の照射装置によって発生される第2のエネルギービーム4bが、第1のエネルギービーム4aのように、所定の、特に同期化された場所的な、及び/又は時間的な先行又は遅れを有する第1のエネルギービーム4aに先行して、又は遅れて同一の移動経路に沿って構造材料層にわたってガイド可能であるか、又はガイドされている。図3と同様に、ここでは選択的な遅れが点線で図示されている。
このとき、制御装置16は、構造材料層へ入る、それぞれ第2の照射装置によってそれぞれ発生される第2のエネルギービーム4bのエネルギー入力を、第1の照射装置によって発生されるエネルギービーム4aに対する各第2のエネルギービーム4bの場所的な、及び/又は時間的な先行又は遅れに依存して制御するために設置されることが可能である。したがって、各第2のエネルギービーム4bを介して構造材料層へ入るエネルギー入力は(ほぼ)適宜に変更可能であるため、各第2のエネルギービーム4bの各エネルギー入力の制御によって、(ほぼ)適宜の、あるいは(ほぼ)適宜に変更可能な温度プロファイル、すなわち例えば均一に、又は不均一に上昇又は下降する温度勾配が実現され得る。
図4には同様に考えられる変形例が記載されており、この変形例によれば、第1及び第2のエネルギービーム4a,4bの移動が異なる移動経路において行われ、少なくとも1つの第2のエネルギービーム4bが、所定の場所的な、及び/又は時間的なずれ(図4において、第1のエネルギービーム4aの右方において場所的なずれについて符号「+Δx」で示唆され、「+Δt」で時間的なずれが示唆されており、第1のエネルギービーム4aの左方において場所的なずれについて符号「−Δx」で示唆され、「−Δt」で時間的なずれが示唆されている。)をもって第1のエネルギービーム4aに対して側方に、特に平行にずらされてガイドされているか、又はガイドされる。
したがって、制御装置16は、第2の制御情報を生成するように設置されることができ、この第2の制御情報に基づき、第2の照射装置によって発生される第2のエネルギービーム4bが所定の場所的な、及び/又は時間的なずれをもって、当該移動経路に沿って第1のエネルギービーム4aが構造材料層にわたってガイドされる移動経路に対して側方に、特に平行にずらされて、構造材料層にわたってガイドされている。したがって、第2のエネルギービーム4bは、所定の場所的な、及び/又は時間的なずれをもって、第1のエネルギービーム4aの移動経路に対して側方にずらされて構造材料層にわたってガイドされることができ、これにより、同様に、例えば構造材料3の加熱特性あるいは溶融特性のコントロールされた影響あるいは制御の目的のために、特に第2のエネルギービーム4bの具体的な場所的な、及び/又は時間的なずれによって目的をもって制御可能な、第1のエネルギービーム4aを用いて凝固化されるべきあるいは凝固化された構造材料3の予備焼きもどしあるいは再焼きもどしが得られる。
ここでも、同様のことが、装置1が第2の照射装置として動作可能な、又は動作する複数の照射装置6,7を含むケースについても当てはまる。この場合、制御装置16は第2の制御情報を生成するように設置されており、この第2の制御情報に基づき、各第2の照射装置によって発生される第2のエネルギービーム4bが所定の場所的な、及び/又は時間的なずれをもって、当該移動経路に沿って第1のエネルギービーム4aが構造材料層にわたってガイドされる移動経路に対して側方に、特に平行にずらされて、構造材料層にわたってガイドされている。
制御装置16は、ここでも、構造材料層へ入る、それぞれ第2の照射装置によってそれぞれ発生される第2のエネルギービーム4bのエネルギー入力を、第1のエネルギービーム4aの移動経路に対する各第2のエネルギービーム4bの場所的な、及び/又は時間的なずれに依存して制御するために設置されることが可能である。このようにしても、各第2のエネルギービーム4bを介して構造材料層へ入るエネルギー入力は(ほぼ)適宜に変更可能であるため、各第2のエネルギービーム4bの各エネルギー入力の適当な制御によって、(ほぼ)適宜の、あるいは(ほぼ)適宜に変更可能な温度プロファイル、すなわち例えば均一に、又は不均一に上昇又は下降する温度勾配が実現され得る。
一般的に、第2のエネルギービーム4bが、構造材料層へのエネルギービーム4bのエネルギー入力に影響を与える少なくとも1つのエネルギービームパラメータにおいて第1のエネルギービーム4aとは異なることが当てはまる。第2のエネルギービーム4bは、例えばエネルギービーム強度及び/又はエネルギービーム焦点直径及び/又はエネルギービーム4bが構造材料層にわたってガイドされるエネルギービーム速度において、第1のエネルギービーム4aと異なり得る。各エネルギー入力における区別は、典型的には、第2のエネルギービーム4bのエネルギー入力が第2のエネルギービーム4bによる構造材料3の溶融が不可能であるほどわずかであるという条件で行われる。
図1に戻り、装置1が例えばカメラ装置として形成された検出装置17を含むことが可能であることが明らかであり、この検出装置は、構造材料層、特に選択的に凝固化されるべき、あるいは選択的に凝固化された構造材料層の範囲の少なくとも1つの特性を検出するために、及び構造材料層の少なくとも1つの検出された特性を示す検出情報を生成するために設置されている。適当な特性は、例えば温度又は装置状態、特に選択的に凝固化されるべき、あるいは選択的に凝固化された範囲の溶融状の状態であり得る。その結果、検出装置17を介して局所的な溶融槽18(図2以降参照)を検出することが可能である。
制御装置16は、構造材料層への各エネルギービームのエネルギー入力に影響を与える、第2のエネルギービーム4bの少なくとも1つのエネルギービームパラメータを検出情報によって示される構造材料層の特性に依存して制御するために設置されることが可能である。適当な検出情報によって示される構造材料層の各特性によって、特にリアルタイムで、より正確にコントロールされる構造材料層の加熱特性あるいは溶融特性又は冷却特性あるいは凝固特性の影響が1つ又は複数の第2のエネルギービーム4bを用いて実現され得る。
図1に示された装置1によって、連続的で層ごとの選択的な照射と、これに伴う、エネルギービーム4aを用いて凝固化可能な構造材料3の連続的で層ごとの選択的な凝固化とによって、三次元的な物体2を付加的に製造するための方法を実行であり、複数の照射装置6,7が用いられる。この方法は、第1の照射装置が、制御装置16によって生成される、構造材料層の連続的で層ごとの選択的な凝固化のための第1のエネルギービーム4aを発生させるための第1の制御情報に基づいて動作され、第2の照射装置が、制御装置16によって生成される、特に構造材料層の選択的に凝固化される範囲における、選択的に凝固化される構造材料層の熱的な予備処理のための第2のエネルギービーム4b及び/又は特に構造材料層の選択的に凝固化される範囲において、選択的に凝固化される構造材料層の熱的な後処理(Nachbehandlung)のための第2のエネルギービーム4bを発生させるための第2の制御情報に基づいて動作されることを特徴とする。

Claims (16)

  1. 連続的で層ごとの選択的な照射と、これに伴う、エネルギービームによって凝固化可能な構造材料(3)から成る構造材料層の連続的で層ごとの選択的な凝固化とによって三次元的な物体(2)を付加的に製造するための装置(1)であって、
    −それぞれ少なくとも1つのエネルギービームを発生させるために設置されている複数の照射装置(6,7)と、
    −該照射装置(6,7)の動作を制御する制御情報を生成するために、及び前記照射装置(6,7)の動作を生成された制御情報に基づき制御するために設置されている制御装置(16)と
    を含む前記装置において、
    前記制御装置(16)が、少なくとも1つの第1の照射装置の動作を制御するための第1の制御情報を生成するために設置されており、該第1の制御情報に基づき、前記第1の照射装置が、構造材料層の連続的で層ごとの選択的な凝固化のための第1のエネルギービーム(4a)を発生させること、及び
    前記制御装置(16)が、少なくとも1つの第2の照射装置の動作を制御するための第2の制御情報を生成するために設置されており、該第2の制御情報に基づき、前記第2の照射装置が、選択的に凝固化されるべき構造材料層の、特に前記構造材料層の選択的に凝固化される範囲における熱的な予備処理のための第2のエネルギービーム(4b)及び/又は選択的に凝固化された構造材料層の、特に前記構造材料層の選択的に凝固化される範囲における熱的な後処理のための第2のエネルギービーム(4b)を発生させること
    を特徴とする装置。
  2. 前記制御装置(16)が第2の制御情報を生成するために設置されており、該第2の制御情報に基づき、前記第2の照射装置によって発生されるエネルギービーム(4b)が、前記第1の照射装置によって発生される第1のエネルギービーム(4a)に対して所定の場所的な、及び/又は時間的な先行又は遅れをもって先行して、又は遅れて、前記第1の照射装置によって発生される第1のエネルギービーム(4a)と同一の移動経路に沿って、選択的に凝固化されるか、又は凝固化された構造材料層にわたってガイド可能であるか、又はガイドされていることを特徴とする請求項1に記載の装置。
  3. 当該装置が、第2の照射装置として動作可能又は動作する複数の照射装置(6,7)を含んでおり、前記制御装置(16)が第2の制御情報を生成するために設置されており、該第2の制御情報に基づき、各第2の照射装置によって発生される第2のエネルギービーム(4b)が、前記第1の照射装置によって発生される第1のエネルギービーム(4a)に対してそれぞれ所定の場所的な、及び/又は時間的な先行又は遅れをもって先行して、又は遅れて、前記第1の照射装置によって発生される第1のエネルギービーム(4a)と同一の移動経路に沿って、選択的に凝固化されるか、又は凝固化された構造材料層にわたってガイド可能であるか、又はガイドされていることを特徴とする請求項1又は2に記載の装置。
  4. 前記制御装置(16)が、構造材料層へ入れられるべき、又は入れられた、各第2の照射装置によって発生されるエネルギービーム(4b)のエネルギー入力を、前記第1の照射装置によって発生される前記第1のエネルギービーム(4a)に対する前記各第2のエネルギービーム(4b)の前記場所的な、及び/又は時間的な先行又は遅れに依存して制御するために設置されていることを特徴とする請求項3に記載の装置。
  5. 構造材料層へ入れられるべき、又は入れられる、前記第1の照射装置によって発生される第1のエネルギービーム(4a)に対してより大きな場所的な、及び/又は時間的な先行又は遅れを有する第2のエネルギービーム(4b)のエネルギー入力が、前記構造材料層へ入れられるべき、又は入れられる、前記第1の照射装置によって発生される前記第1のエネルギービーム(4a)に対してより小さな場所的な、及び/又は時間的な先行又は遅れを有する別の第2のエネルギービーム(4b)のエネルギー入力よりも小さいことを特徴とする請求項4に記載の装置。
  6. 前記制御装置(16)が第2の制御情報を生成するために設置されており、該第2の制御情報に基づき、前記第2の照射装置によって発生される第2のエネルギービーム(4b)が、所定の場所的な、及び/又は時間的なずれをもって、特に第1の照射装置によって発生される前記第1のエネルギービーム(4a)が選択的に凝固化されるべき構造材料層にわたって当該移動経路に沿ってガイド可能であるか、又はガイドされている移動経路に対して側方に、特に平行に、選択的に凝固化されるべき、又は凝固化される構造材料層にわたってガイド可能であるか、又はガイドされていることを特徴とする請求項1〜5のいずれか1項に記載の装置。
  7. 当該装置が、第2の照射装置として動作可能又は動作する複数の照射装置(6,7)を含んでおり、前記制御装置(16)が第2の制御情報を生成するために設置されており、該第2の制御情報に基づき、各第2の照射装置によって発生される第2のエネルギービーム(4b)が、所定の場所的な、及び/又は時間的なずれをもって、第1の照射装置によって発生される前記第1のエネルギービーム(4a)が選択的に凝固化されるべき構造材料層にわたって当該移動経路に沿ってガイド可能であるか、又はガイドされている移動経路に対して側方に、特に平行に、選択的に凝固化されるべき、又は凝固化される構造材料層にわたってガイド可能であるか、又はガイドされていることを特徴とする請求項1〜6のいずれか1項に記載の装置。
  8. 前記制御装置(16)が、構造材料層へ入れられるべき、又は入れられた、各第2の照射装置によって発生される第2のエネルギービーム(4b)のエネルギー入力を、前記第1の照射装置によって発生される前記第1のエネルギービーム(4a)の前記移動経路に対する前記各第2のエネルギービーム(4b)の前記場所的な、及び/又は時間的なずれに依存して制御するために設置されていることを特徴とする請求項7に記載の装置。
  9. 構造材料層へ入れられるべき、又は入れられた、前記第1の照射装置によって発生される第1のエネルギービーム(4a)の前記移動経路に対して側方へのより大きな場所的な、及び/又は時間的なずれを有する第2のエネルギービーム(4b)のエネルギー入力が、前記構造材料層へ入れられるべき、又は入れられる、前記第1の照射装置によって発生される前記第1のエネルギービーム(4a)の前記移動経路に対して側方へのより小さな場所的な、及び/又は時間的なずれを有する別の第2のエネルギービーム(4b)のエネルギー入力よりも小さいことを特徴とする請求項8に記載の装置。
  10. 前記第2の照射装置によって発生される前記第2のエネルギービーム(4b)が、構造材料層への各エネルギービームのエネルギー入力に影響を与える少なくとも1つのエネルギービームパラメータにおいて、前記第1の照射装置によって発生される前記第1のエネルギービーム(4a)とは異なっていることを特徴とする請求項1〜9のいずれか1項に記載の装置。
  11. 前記第2の照射装置によって発生される前記第2のエネルギービーム(4b)が、エネルギービーム強度及び/又はエネルギービーム焦点直径及び/又は前記エネルギービームを構造材料層にわたってガイドするエネルギービーム速度において、前記第1の照射装置によって発生される前記第1のエネルギービーム(4a)とは異なっていることを特徴とする請求項10に記載の装置。
  12. 選択的に凝固化されるべき、又は選択的に凝固化される構造材料層、特に選択的に凝固化されるべき、又は選択的に凝固化される構造材料層の選択的に凝固化されるべき、又は選択的に凝固化される範囲の少なくとも1つの特性を検出するために、及び選択的に凝固化されるべき、又は選択的に凝固化される構造材料層の検出された前記少なくとも1つの特性を示す検出情報を生成するために設置された検出装置(17)が設けられていることを特徴とする請求項1〜11のいずれか1項に記載の装置。
  13. 前記制御装置(16)が、構造材料層への各エネルギービームのエネルギー入力に影響を与える、前記第2の照射装置によって発生される第2のエネルギービーム(4b)の少なくとも1つのエネルギービームパラメータを、選択的に凝固化されるべき、又は凝固化される構造材料層の検出情報によって示される特性に依存して制御するために設置されていることを特徴とする請求項12に記載の装置。
  14. 前記制御装置(16)が、第1の構造材料層の選択的な凝固化の範囲において所定の照射装置(6,7)を第1の照射装置として動作させ、前記第1の構造材料層とは異なる別の構造材料層の選択的な凝固化の範囲において同一の照射装置(6,7)を第2の照射装置として動作させるために設置されていることを特徴とする請求項1〜13のいずれか1項に記載の装置。
  15. 前記制御装置(16)が、構造材料層の第1の範囲の選択的な凝固化の範囲において所定の照射装置(6,7)を第1の照射装置として動作させ、前記構造材料層の第1の範囲とは異なる別の範囲の選択的な凝固化の範囲において同一の照射装置(6,7)を第2の照射装置として動作させるために設置されていることを特徴とする請求項1〜14のいずれか1項に記載の装置。
  16. 特に請求項1〜15のいずれか1項に記載の装置(1)を用いて、連続的で層ごとの選択的な照射と、これに伴う、エネルギービームによって凝固化可能な構造材料(3)成る構造材料層の連続的で層ごとの選択的な凝固化とによって、三次元的な物体(2)を付加的に製造するための方法であって、それぞれ所定のエネルギービーム特性の少なくとも1つのエネルギービームを発生させるために設置されている複数の照射装置(6,7)が使用される、前記方法において、
    少なくとも1つの第1の照射装置が、制御装置(16)によって生成される、構造材料層の連続的で層ごとの選択的な凝固化のための第1のエネルギービーム(4a)を発生させるための第1の制御情報に基づいて動作され、
    少なくとも1つの第2の照射装置が、制御装置(16)によって生成される、選択的に凝固化されるべき構造材料層の、特に構造材料層の選択的に凝固化されるべき範囲における、熱的な予備処理のための第2のエネルギービーム(4b)及び/又は選択的に凝固化された構造材料層の、特に構造材料層の選択的に凝固化された範囲における、熱的な後処理のための第2のエネルギービーム(4b)に基づいて動作される
    ことを特徴とする方法。
JP2017243678A 2017-03-09 2017-12-20 三次元的な物体を付加的に製造するための装置 Expired - Fee Related JP6640825B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236338A JP6928072B2 (ja) 2017-03-09 2019-12-26 三次元的な物体を付加的に製造するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017105056.6 2017-03-09
DE102017105056.6A DE102017105056A1 (de) 2017-03-09 2017-03-09 Vorrichtung zur additiven Herstellung dreidimensionaler Objekte

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019236338A Division JP6928072B2 (ja) 2017-03-09 2019-12-26 三次元的な物体を付加的に製造するための方法

Publications (2)

Publication Number Publication Date
JP2018149595A true JP2018149595A (ja) 2018-09-27
JP6640825B2 JP6640825B2 (ja) 2020-02-05

Family

ID=59298335

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017243678A Expired - Fee Related JP6640825B2 (ja) 2017-03-09 2017-12-20 三次元的な物体を付加的に製造するための装置
JP2019236338A Active JP6928072B2 (ja) 2017-03-09 2019-12-26 三次元的な物体を付加的に製造するための方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019236338A Active JP6928072B2 (ja) 2017-03-09 2019-12-26 三次元的な物体を付加的に製造するための方法

Country Status (5)

Country Link
US (1) US11911959B2 (ja)
EP (2) EP3372404B1 (ja)
JP (2) JP6640825B2 (ja)
CN (2) CN112277320A (ja)
DE (1) DE102017105056A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088114A1 (ja) * 2017-10-31 2019-05-09 株式会社Ihi 三次元造形装置及び三次元造形方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014016679A1 (de) * 2014-11-12 2016-05-12 Cl Schutzrechtsverwaltungs Gmbh Verfahren und Vorrichtung zur Belichtungssteuerung einer selektiven Lasersinter- oder Laserschmelzvorrichtung
DE102018128266A1 (de) * 2018-11-12 2020-05-14 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum Bestrahlen eines Materials mit einem Energiestrahl
EP3718746A1 (en) * 2019-04-02 2020-10-07 Concept Laser GmbH Apparatus for additively manufacturing three-dimensional objects
GB201918601D0 (en) * 2019-12-17 2020-01-29 Renishaw Plc Powder bed fusion additive manufacturing methods and apparatus
US11752558B2 (en) 2021-04-16 2023-09-12 General Electric Company Detecting optical anomalies on optical elements used in an additive manufacturing machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064048A1 (en) * 2012-02-27 2015-03-05 Compagnie Generale Des Etablissements Michelin Method and apparatus for producing three-dimensional objects with improved properties
JP2015193883A (ja) * 2014-03-31 2015-11-05 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法
WO2016075803A1 (ja) * 2014-11-14 2016-05-19 株式会社ニコン 造形装置及び造形方法
JP2016151740A (ja) * 2015-02-19 2016-08-22 ホーチキ株式会社 支持装置
US20160250717A1 (en) * 2013-03-21 2016-09-01 Siemens Aktiengesellschaft Method for laser melting with at least one working laser beam
US20170008126A1 (en) * 2014-02-06 2017-01-12 United Technologies Corporation An additive manufacturing system with a multi-energy beam gun and method of operation

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393482A (en) * 1993-10-20 1995-02-28 United Technologies Corporation Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
US20050237895A1 (en) * 2004-04-23 2005-10-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method for manufacturing semiconductor device
US8071912B2 (en) * 2005-11-16 2011-12-06 Technolines, Lp Engineered wood fiber product substrates and their formation by laser processing
EP2335848B1 (de) * 2009-12-04 2014-08-20 SLM Solutions GmbH Optische Bestrahlungseinheit für eine Anlage zur Herstellung von Werkstücken durch Bestrahlen von Pulverschichten mit Laserstrahlung
DE102010050531A1 (de) * 2010-09-08 2012-03-08 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung zumindest eines Bauteilbereichs
US10124410B2 (en) * 2010-09-25 2018-11-13 Ipg Photonics Corporation Methods and systems for coherent imaging and feedback control for modification of materials
DE102010048335A1 (de) 2010-10-13 2012-04-19 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung
DE202011003443U1 (de) * 2011-03-02 2011-12-23 Bego Medical Gmbh Vorrichtung zur generativen Herstellung dreidimensionaler Bauteile
CN105188993A (zh) * 2013-03-15 2015-12-23 麦特法布公司 用于增材制造装置的料盒和方法
CN109177153B (zh) * 2013-06-10 2021-03-30 瑞尼斯豪公司 选择性激光固化设备和方法
US10252333B2 (en) * 2013-06-11 2019-04-09 Renishaw Plc Additive manufacturing apparatus and method
US10532556B2 (en) * 2013-12-16 2020-01-14 General Electric Company Control of solidification in laser powder bed fusion additive manufacturing using a diode laser fiber array
CN104190928A (zh) * 2014-08-18 2014-12-10 中国科学院重庆绿色智能技术研究院 一种多波长激光选区快速成形系统及方法
WO2016026706A1 (en) * 2014-08-20 2016-02-25 Etxe-Tar, S.A. Method and system for additive manufacturing using a light beam
WO2016096407A1 (en) * 2014-12-15 2016-06-23 Arcam Ab Method and apparatus for additive manufacturing using a two dimensional angular coordinate system
DE102015202964A1 (de) * 2015-02-18 2016-08-18 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
JP6170175B2 (ja) * 2015-03-23 2017-07-26 技術研究組合次世代3D積層造形技術総合開発機構 レーザ加熱制御機構、レーザ加熱制御方法、レーザ加熱制御プログラムおよび3次元造形装置
CN107708969B (zh) * 2015-06-10 2020-07-28 Ipg光子公司 多光束增材制造
DE102015119745A1 (de) * 2015-11-16 2017-05-18 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung eines dreidimensionalen Objekts
US20170145586A1 (en) * 2015-11-23 2017-05-25 Hobart Brothers Company System and method for single crystal growth with additive manufacturing
US11141809B2 (en) * 2015-12-04 2021-10-12 Raytheon Company Electron beam additive manufacturing
US10583529B2 (en) * 2015-12-17 2020-03-10 Eos Of North America, Inc. Additive manufacturing method using a plurality of synchronized laser beams
US20180141160A1 (en) * 2016-11-21 2018-05-24 General Electric Company In-line laser scanner for controlled cooling rates of direct metal laser melting
US10583530B2 (en) * 2017-01-09 2020-03-10 General Electric Company System and methods for fabricating a component with laser array
US11325207B2 (en) * 2017-01-20 2022-05-10 General Electric Company Systems and methods for additive manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064048A1 (en) * 2012-02-27 2015-03-05 Compagnie Generale Des Etablissements Michelin Method and apparatus for producing three-dimensional objects with improved properties
US20160250717A1 (en) * 2013-03-21 2016-09-01 Siemens Aktiengesellschaft Method for laser melting with at least one working laser beam
US20170008126A1 (en) * 2014-02-06 2017-01-12 United Technologies Corporation An additive manufacturing system with a multi-energy beam gun and method of operation
JP2015193883A (ja) * 2014-03-31 2015-11-05 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法
WO2016075803A1 (ja) * 2014-11-14 2016-05-19 株式会社ニコン 造形装置及び造形方法
JP2016151740A (ja) * 2015-02-19 2016-08-22 ホーチキ株式会社 支持装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088114A1 (ja) * 2017-10-31 2019-05-09 株式会社Ihi 三次元造形装置及び三次元造形方法
JPWO2019088114A1 (ja) * 2017-10-31 2020-07-30 株式会社Ihi 三次元造形装置及び三次元造形方法
US11780159B2 (en) 2017-10-31 2023-10-10 Ihi Corporation Additive manufacturing device and additive manufacturing method

Also Published As

Publication number Publication date
JP6640825B2 (ja) 2020-02-05
EP3372404A1 (de) 2018-09-12
US20180257140A1 (en) 2018-09-13
US11911959B2 (en) 2024-02-27
CN112277320A (zh) 2021-01-29
DE102017105056A1 (de) 2018-09-13
CN108568971B (zh) 2020-11-03
JP6928072B2 (ja) 2021-09-01
EP3372404B1 (de) 2021-08-25
EP3909750A1 (de) 2021-11-17
CN108568971A (zh) 2018-09-25
JP2020073288A (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
JP2018149595A (ja) 三次元的な物体を付加的に製造するための装置
CN105562688B (zh) 通过选择性的激光熔化来制造构件
US9636775B2 (en) Composite beam generator and powder melting or sintering method using the same
US9925724B2 (en) Additive manufacturing system and method of additive manufacture utilizing layer-by-layer thermo-mechanical analysis
JP2020514140A (ja) 付加製造装置における材料の予熱
US20170113410A1 (en) Apparatus and method for manufacturing three-dimensional objects
CN110267796B (zh) 增材制造系统及方法
JP2019526704A (ja) 付加製造を含む方法およびシステム、ならびに付加製造された物品
WO2015120168A1 (en) An additive manufacturing system with a multi-energy beam gun and method of operation
US11396175B2 (en) Method and device for producing a three-dimensional object
US20200376556A1 (en) Additive manufacturing method with controlled solidification and corresponding device
JP2020097786A (ja) 三次元の物体を付加製造するための装置
US11267048B2 (en) Method for additively manufacturing at least one three-dimensional object
CN112041766A (zh) 生成用于增材制造的装置的控制数据的方法和装置
US20180259732A1 (en) Exposure device for an apparatus for the additive production of three-dimensional objects
JP6734307B2 (ja) 三次元物体の付加的製造装置及び方法とシステム
CN111163883B (zh) 用于在增材制造中利用连续定义的制造参数照射粉末层的方法
EP3517276B1 (en) Method for additively manufacturing a three-dimensional object
JP6787870B2 (ja) 三次元的な物体を付加的に製造するための方法
US10960606B2 (en) Controlling heating in additive manufacturing
JP2018065378A (ja) 三次元的な物体を付加的に製造するための装置
JP2019123226A (ja) 3次元の物体を付加製造する装置を動作させる方法
JP2022000343A (ja) 3次元物体の付加製造のための少なくとも1つの装置を操作する方法
EP3597397A1 (en) A method and system for layerwise production of a tangible object
Joshi et al. Metal Additive Manufacturing Processes–Laser and Electron Beam Powder Bed Fusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190329

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

R150 Certificate of patent or registration of utility model

Ref document number: 6640825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees