JP2018148450A - Oscillator - Google Patents

Oscillator Download PDF

Info

Publication number
JP2018148450A
JP2018148450A JP2017042858A JP2017042858A JP2018148450A JP 2018148450 A JP2018148450 A JP 2018148450A JP 2017042858 A JP2017042858 A JP 2017042858A JP 2017042858 A JP2017042858 A JP 2017042858A JP 2018148450 A JP2018148450 A JP 2018148450A
Authority
JP
Japan
Prior art keywords
bits
dac
counter
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017042858A
Other languages
Japanese (ja)
Other versions
JP6850158B2 (en
Inventor
瞬 福島
Shun Fukushima
瞬 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2017042858A priority Critical patent/JP6850158B2/en
Priority to US15/912,630 priority patent/US10594305B2/en
Publication of JP2018148450A publication Critical patent/JP2018148450A/en
Application granted granted Critical
Publication of JP6850158B2 publication Critical patent/JP6850158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oscillator capable of improving an effective frequency spread while suppressing low-frequency noise in an audible band.SOLUTION: An oscillator 10 having a frequency spread function includes an oscillation circuit 101, a counter 2, a logic circuit 3 and a DAC (D/A converter) 4. The oscillation circuit 101 generates an oscillation signal CLK of an oscillation frequency having a rise/fall component rising and falling at one cycle and an offset component for each cycle and outputs the signal.SELECTED DRAWING: Figure 1

Description

本発明は、周波数拡散機能を有する発振器に関する。   The present invention relates to an oscillator having a frequency spreading function.

従来、DC−DCコンバータでは、スイッチングの周波数を固定すると、その周波数とその高調波にスイッチングによるノイズが集中して発生するという問題があった。そこで、従来、周波数拡散(スペクトラム拡散)機能を有する発振器をDC−DCコンバータに備えることが行われている。   Conventionally, in a DC-DC converter, when the switching frequency is fixed, there is a problem that noise due to switching is concentrated on the frequency and its harmonics. Therefore, conventionally, an oscillator having a frequency spread (spread spectrum) function is provided in a DC-DC converter.

周波数拡散機能を有する発振器の構成例を図1に示す。図1に示す発振器10は、発振回路101と、カウンタ2と、ロジック回路3と、DAC(D/Aコンバータ)4と、を備える。発振回路101は、ワンショット回路1と、エラーアンプ5と、カレントミラー回路CMと、トランジスタQ1と、抵抗R1と、コンデンサC1と、コンパレータCP1と、トランジスタM1と、を有する。発振回路101は、クロック信号CLK(発振信号)を生成して出力する。   A configuration example of an oscillator having a frequency spreading function is shown in FIG. An oscillator 10 illustrated in FIG. 1 includes an oscillation circuit 101, a counter 2, a logic circuit 3, and a DAC (D / A converter) 4. The oscillation circuit 101 includes a one-shot circuit 1, an error amplifier 5, a current mirror circuit CM, a transistor Q1, a resistor R1, a capacitor C1, a comparator CP1, and a transistor M1. The oscillation circuit 101 generates and outputs a clock signal CLK (oscillation signal).

カレントミラー回路CMは、トランジスタTr1とトランジスタTr2から構成される。トランジスタTr1、Tr2ともにpチャネルMOSFETにより構成される。トランジスタTr1、Tr2それぞれのゲートは、トランジスタTr1のドレインに接続される。トランジスタTr1、Tr2それぞれのソースは、電源電圧Vddの印加端に接続される。   The current mirror circuit CM includes a transistor Tr1 and a transistor Tr2. Both transistors Tr1 and Tr2 are configured by p-channel MOSFETs. The gates of the transistors Tr1 and Tr2 are connected to the drain of the transistor Tr1. The sources of the transistors Tr1 and Tr2 are connected to the application terminal of the power supply voltage Vdd.

トランジスタTr2のドレインは、コンデンサC1の一端に接続され、コンデンサC1の他端は、接地電位の印加端に接続される。トランジスタTr2のドレインとコンデンサC1の一端との接続点は、nチャネルMOSFETにより構成されるトランジスタM1のドレインに接続される。トランジスタM1のソースは、接地電位の印加端に接続される。   The drain of the transistor Tr2 is connected to one end of the capacitor C1, and the other end of the capacitor C1 is connected to a ground potential application end. A connection point between the drain of the transistor Tr2 and one end of the capacitor C1 is connected to the drain of the transistor M1 configured by an n-channel MOSFET. The source of the transistor M1 is connected to a ground potential application terminal.

また、トランジスタTr2のドレインとコンデンサC1の一端との接続点は、コンパレータCP1の非反転入力端子(+)にも接続される。コンパレータCP1の反転入力端子(−)は、参照電圧VREFの印加端に接続される。   The connection point between the drain of the transistor Tr2 and one end of the capacitor C1 is also connected to the non-inverting input terminal (+) of the comparator CP1. The inverting input terminal (−) of the comparator CP1 is connected to the application end of the reference voltage VREF.

コンパレータCP1の出力は、ワンショット回路1に入力される。ワンショット回路1は、コンパレータCP1の出力がHighレベルに立ち上がったタイミングで一定時間Highレベルとしたワンショットパルスを出力する回路である。ワンショット回路1は、ワンショットパルスとしてのクロック信号CLKを出力する。   The output of the comparator CP1 is input to the one-shot circuit 1. The one-shot circuit 1 is a circuit that outputs a one-shot pulse that is set to a high level for a certain time at the timing when the output of the comparator CP1 rises to a high level. The one-shot circuit 1 outputs a clock signal CLK as a one-shot pulse.

クロック信号CLKは、トランジスタM1のゲートに入力されると共に、カウンタ2にも入力される。カウンタ2のデジタル出力は、ロジック回路3を介してDAC4に入力される。DAC4は、入力されたデジタル信号をアナログ信号である参照電圧RTREFに変換してエラーアンプ5の非反転入力端子(+)に出力する。   The clock signal CLK is input to the gate of the transistor M1 and also input to the counter 2. The digital output of the counter 2 is input to the DAC 4 via the logic circuit 3. The DAC 4 converts the input digital signal into a reference voltage RTREF, which is an analog signal, and outputs it to the non-inverting input terminal (+) of the error amplifier 5.

エラーアンプ5の出力は、nチャネルMOSFETで構成されるトランジスタQ1のゲートに入力される。トランジスタQ1のドレインは、トランジスタTr1のドレインに接続される。トランジスタQ1のソースは、抵抗R1の一端と共に、エラーアンプ5の反転入力端子(−)に接続される。抵抗R1の他端は、接地電位の印加端に接続される。   The output of the error amplifier 5 is input to the gate of a transistor Q1 configured with an n-channel MOSFET. The drain of the transistor Q1 is connected to the drain of the transistor Tr1. The source of the transistor Q1 is connected to the inverting input terminal (−) of the error amplifier 5 together with one end of the resistor R1. The other end of the resistor R1 is connected to a ground potential application end.

このような構成である発振器10の動作について説明すると、エラーアンプ5とトランジスタQ1とから構成される回路により、トランジスタQ1のソースに生じる電圧RTは参照電圧RTREFと一致されるよう制御される。電圧RTと抵抗R1とにより、電流I1が生成される。すなわち、電流I1は、参照電圧RTREFに比例する。   The operation of the oscillator 10 having such a configuration will be described. The voltage RT generated at the source of the transistor Q1 is controlled to match the reference voltage RTREF by a circuit including the error amplifier 5 and the transistor Q1. A current I1 is generated by the voltage RT and the resistor R1. That is, the current I1 is proportional to the reference voltage RTREF.

電流I1がカレントミラー回路CM1によりミラーリングされることで、電流I2が生じる。電流I2は、コンデンサC1に流れる。電荷が放電されたコンデンサC1は、電流I2により充電される。このとき、コンデンサC1の電圧は、電流I2に比例した速度で上昇する。   The current I1 is generated by the current I1 being mirrored by the current mirror circuit CM1. The current I2 flows through the capacitor C1. The capacitor C1 from which the charge has been discharged is charged by the current I2. At this time, the voltage of the capacitor C1 rises at a speed proportional to the current I2.

コンデンサC1の電圧が上昇して参照電圧VREFに達すると、コンパレータCP1の出力がHighレベルに立ち上がり、ワンショット回路1は一定時間Highレベルとしたクロック信号CLKを出力する。クロック信号CLKによりトランジスタM1がオンとされ、コンデンサC1は放電される。これにより、クロック信号CLKの周波数(発振周波数)は、参照電圧RTREFに比例する。   When the voltage of the capacitor C1 rises and reaches the reference voltage VREF, the output of the comparator CP1 rises to a high level, and the one-shot circuit 1 outputs a clock signal CLK that is kept at a high level for a certain time. The transistor M1 is turned on by the clock signal CLK, and the capacitor C1 is discharged. Thereby, the frequency (oscillation frequency) of the clock signal CLK is proportional to the reference voltage RTREF.

カウンタ2は、クロック信号CLKのHighレベルへの立ち上がりをトリガとして、カウントを進める。カウンタ2は、カウントを進めたカウント値(デジタル信号)を出力してロジック回路3を介してDAC4に入力させ、DAC4の入力(デジタル信号)は変化する。DAC4は、変化した入力信号をD/A変換して、変化した参照電圧RTREFをエラーアンプ5に出力する。これにより、クロック信号CLKの周波数を変化させる。   The counter 2 advances the count by using the rising of the clock signal CLK to the high level as a trigger. The counter 2 outputs a count value (digital signal) obtained by increasing the count and inputs the count value (digital signal) to the DAC 4 via the logic circuit 3, and the input (digital signal) of the DAC 4 changes. The DAC 4 D / A converts the changed input signal and outputs the changed reference voltage RTREF to the error amplifier 5. Thereby, the frequency of the clock signal CLK is changed.

このような動作の繰り返しにより、発振器10は、クロック信号CLKの周波数を1周期ごとに変化させることができる。   By repeating such an operation, the oscillator 10 can change the frequency of the clock signal CLK for each period.

なお、上記に関連する従来技術の一例は、特許文献1に開示されている。   An example of the related art related to the above is disclosed in Patent Document 1.

特開2016−76918号公報Japanese Patent Laid-Open No. 2006-76918

ここで、図8に、発振器10におけるカウンタ2、ロジック回路3、およびDAC4の一構成例を示す。図8に示すカウンタ201はカウンタ2に対応し、DAC401はDAC4に対応し、XOR回路301A〜301Dはロジック回路3を構成する。   Here, FIG. 8 shows a configuration example of the counter 2, the logic circuit 3, and the DAC 4 in the oscillator 10. The counter 201 shown in FIG. 8 corresponds to the counter 2, the DAC 401 corresponds to the DAC 4, and the XOR circuits 301 </ b> A to 301 </ b> D constitute the logic circuit 3.

カウンタ201は、bit0〜bit4の5ビットからなるカウント値を出力する。また、DAC401は、bit0〜bit4の5ビットからなるデジタル信号が入力される。カウンタ201は、最上位ビットであるbit4を、直接的にDAC401の入力の最下位ビットであるbit0に入力させると共に、XOR回路301A〜301Dのそれぞれの一方の入力端子に入力させる。カウンタ201は、その他のビットであるbit0〜bit3を、それぞれXOR回路301A〜301Dの他方の入力端子に入力させる。XOR回路301A〜301Dの各出力は、DAC401のbit4〜bit1に入力される。   The counter 201 outputs a count value consisting of 5 bits of bit0 to bit4. The DAC 401 receives a digital signal composed of 5 bits of bit0 to bit4. The counter 201 directly inputs bit4, which is the most significant bit, to bit0, which is the least significant bit of the input of the DAC 401, and inputs it to one input terminal of each of the XOR circuits 301A to 301D. The counter 201 inputs other bits bit0 to bit3 to the other input terminals of the XOR circuits 301A to 301D, respectively. The outputs of the XOR circuits 301A to 301D are input to bit4 to bit1 of the DAC 401.

カウンタ201は、カウンタ値を「00000」から「11111」までカウントする。このとき、DAC401の入力の上位4ビットであるbit4〜bit1は、「0000」から「1111」までアップカウントされた後、「1111」から「0000」までダウンカウントされる。また、DAC401の入力の上位4ビットのアップカウントの間は、DAC401の入力の最下位ビットであるbit0は「0」であり、上記上位4ビットのダウンカウントの間は、上記bit0は「1」である。すなわち、DACの入力を10進数で表すと、0から30まで2ずつ上昇した後、31から1まで2ずつ下降する。   The counter 201 counts the counter value from “00000” to “11111”. At this time, the upper 4 bits of bit 4 to bit 1 of the input of the DAC 401 are up-counted from “0000” to “1111” and then down-counted from “1111” to “0000”. Also, bit 0, which is the least significant bit of the input of DAC 401, is “0” during the upper count of the upper 4 bits of the input of DAC 401, and bit 0 is “1” during the down count of the upper 4 bits. It is. That is, when the input of the DAC is represented by a decimal number, it increases by 2 from 0 to 30, and then decreases by 2 from 31 to 1.

DAC401は、bit0〜bit4からなるデジタル入力をD/A変換して、参照電圧RTREFを出力し、クロック信号CLKの周波数は参照電圧RTREFに比例する。従って、カウンタ201によるカウントに応じたクロック信号CLKの周波数の時間的推移は、図10に示す通りとなる。図10に示すように、周波数拡散の1周期T10において、クロック信号CLKの周波数は、クロック信号CLKの1周期ごとに徐々に上昇した後、1周期ごとに徐々に下降する。   The DAC 401 D / A converts the digital input consisting of bits 0 to 4 and outputs a reference voltage RTREF, and the frequency of the clock signal CLK is proportional to the reference voltage RTREF. Accordingly, the temporal transition of the frequency of the clock signal CLK corresponding to the count by the counter 201 is as shown in FIG. As shown in FIG. 10, in one cycle T10 of frequency spreading, the frequency of the clock signal CLK gradually increases for each cycle of the clock signal CLK and then gradually decreases for each cycle.

1周期T10において、クロック信号CLKの周波数は32個に分散されるので、周波数を十分に拡散して、ノイズのピークを抑制することができる。しかしながら、周波数拡散の1周期T10が長くなり、可聴帯域での低周波ノイズが発生するという問題がある。なお、周波数が32個に分散されたときに可聴帯域のノイズが生じることは一例であって、必ずしもこのようなノイズが生じるとは限らない。   In one cycle T10, the frequency of the clock signal CLK is distributed to 32, so that the frequency can be sufficiently diffused to suppress noise peaks. However, there is a problem that one period T10 of frequency spreading becomes long and low frequency noise occurs in the audible band. Note that noise in the audible band is generated when the frequencies are distributed to 32, and such noise is not always generated.

そこで、例えば、発振器10におけるカウンタ2、ロジック回路3、およびDAC4を図9に示すような構成にすることもできる。図9では、カウンタ202がカウンタ2に対応し、DAC402がDAC4に対応し、XOR回路302A、302Bからロジック回路3が構成される。   Therefore, for example, the counter 2, the logic circuit 3, and the DAC 4 in the oscillator 10 can be configured as shown in FIG. In FIG. 9, the counter 202 corresponds to the counter 2, the DAC 402 corresponds to the DAC 4, and the logic circuit 3 includes the XOR circuits 302A and 302B.

図9に示す構成は、図8と基本的に同様であるが、カウンタ202の出力、およびDAC402の入力をともに3ビットとしている。カウンタ202は、「000」から「111」までカウントする。このとき、DAC402の入力の上位2ビットは「00」から「11」までアップカウントされた後、「11」から「00」までダウンカウントされる。DAC402の入力の最下位ビットは、上記アップカウントの間、「0」となり、上記ダウンカウントの間、「1」となる。従って、DAC402のデジタル入力を10進数で表すと、0から6まで2ずつ上昇した後、7から1まで2ずつ下降する。   The configuration shown in FIG. 9 is basically the same as that in FIG. 8, but both the output of the counter 202 and the input of the DAC 402 are 3 bits. The counter 202 counts from “000” to “111”. At this time, the upper 2 bits of the input of the DAC 402 are up-counted from “00” to “11” and then down-counted from “11” to “00”. The least significant bit of the input of the DAC 402 is “0” during the up-count and “1” during the down-count. Therefore, when the digital input of the DAC 402 is represented by a decimal number, it increases by 2 from 0 to 6, and then decreases by 2 from 7 to 1.

このような図9に示す構成を用いた場合の発振器10におけるクロック信号CLKの周波数の時間的推移は、図11に示す通りとなる。図11に示すように、周波数拡散の1周期T11において、周波数の上昇および下降が行われ、周波数は8個に分散される。周波数拡散の1周期T11は短くなるので、先述した図10に示す場合に比べて可聴帯域での低周波ノイズが生じることを抑制することができる。しかしながら、周波数は8個に分散され、十分には分散されないので、ノイズのピークが大きくなるという問題がある。すなわち、周波数拡散の効果が低下する。   The time transition of the frequency of the clock signal CLK in the oscillator 10 when the configuration shown in FIG. 9 is used is as shown in FIG. As shown in FIG. 11, in one cycle T11 of frequency spreading, the frequency is increased and decreased, and the frequency is dispersed into eight. Since one period T11 of frequency spreading becomes shorter, it is possible to suppress the occurrence of low frequency noise in the audible band as compared with the case shown in FIG. However, since the frequency is dispersed into 8 and not sufficiently dispersed, there is a problem that the noise peak becomes large. That is, the effect of frequency spreading is reduced.

上記状況に鑑み、本発明は、可聴帯域における低周波ノイズを抑制しつつ、周波数拡散の効果を向上させることのできる発振器を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide an oscillator capable of improving the effect of frequency spreading while suppressing low frequency noise in the audible band.

本発明の発振器は、1周期において上昇および下降する上昇・下降成分と、1周期ごとのオフセット成分と、を有する発振周波数の発振信号を出力する構成(第1の構成)としている。   The oscillator according to the present invention is configured to output an oscillation signal having an oscillation frequency having an ascending / descending component that rises and falls in one cycle and an offset component for each cycle (first configuration).

また、上記第1の構成において、前記発振信号を出力する発振回路と、
前記発振回路から出力される前記発振信号をカウントするカウンタと、
前記カウンタの出力と接続される入力を有するDAC(D/Aコンバータ)と、を備え、
前記DACの出力に基づいて前記発振回路は前記発振信号を生成し、
前記DACの入力は、上昇・下降成分を示す第1ビットと、オフセット成分を示す第2ビットと、を有し、
前記第1ビットは、前記カウンタの出力とロジック回路を介して、および/または直接的に接続されることとしてもよい(第2の構成)。
In the first configuration, an oscillation circuit that outputs the oscillation signal;
A counter that counts the oscillation signal output from the oscillation circuit;
A DAC (D / A converter) having an input connected to the output of the counter,
Based on the output of the DAC, the oscillation circuit generates the oscillation signal,
The input of the DAC has a first bit indicating an ascending / descending component and a second bit indicating an offset component,
The first bit may be connected to the output of the counter via a logic circuit and / or directly (second configuration).

上記第2の構成において、前記カウンタの出力、および前記DACの入力は、それぞれNビットで構成され、
前記カウンタの出力の下位Kビットは、前記DACの入力の上位Kビットに接続され、
前記カウンタの出力の前記下位Kビット以外の(N−K)ビットは、前記DACの入力の前記上位Kビット以外の(N−K)ビットに接続され、
前記DACの入力の前記上位Kビットは前記第1ビットであり、
前記DACの入力の前記(N−K)ビットは前記第2ビットであることとしてもよい(第3の構成)。
In the second configuration, the output of the counter and the input of the DAC are each configured with N bits,
The lower K bits of the counter output are connected to the upper K bits of the DAC input,
(NK) bits other than the lower K bits of the output of the counter are connected to (NK) bits other than the upper K bits of the input of the DAC,
The upper K bits of the input of the DAC are the first bits;
The (NK) bits of the input of the DAC may be the second bits (third configuration).

上記第3の構成において、前記カウンタの出力の前記下位Kビットにおける最上位ビットは、前記DACの入力の前記上位Kビットにおける最下位ビットに接続されると共に、XOR回路の一方の入力端に接続され、
前記カウンタの出力の前記下位Kビットにおける最上位ビット以外のビットは、前記DACの入力の前記上位Kビットにおける最下位ビット以外のビットに前記XOR回路を介して接続されることとしてもよい(第4の構成)。
In the third configuration, the most significant bit in the lower K bits of the output of the counter is connected to the least significant bit in the upper K bits of the input of the DAC and to one input terminal of the XOR circuit And
Bits other than the most significant bit in the lower K bits of the output of the counter may be connected to the bits other than the least significant bit in the upper K bits of the input of the DAC via the XOR circuit. 4 configuration).

また、上記第3または第4の構成において、前記カウンタの出力の前記(N−K)ビットは、前記DACの入力の前記(N−K)ビットに上位・下位の関係を反転させて接続されることとしてもよい(第5の構成)。   In the third or fourth configuration, the (NK) bits of the counter output are connected with the (NK) bits of the input of the DAC being inverted in an upper / lower relationship. It is good also as a thing (5th structure).

また、上記第2の構成において、
前記カウンタとは別のカウンタをさらに備え、
前記カウンタの出力は、Kビットで構成され、
前記DACの入力は、Nビットで構成され、
前記別のカウンタの出力は、(N−K)ビットで構成され、
前記カウンタは、アップカウントおよびダウンカウントを行い、
前記カウンタの出力は、前記DACの上位Kビットに接続され、
前記別のカウンタは、前記カウンタの出力の最上位ビットのエッジをカウントし、
前記別のカウンタの出力は、前記DACの入力の前記上位Kビット以外のビットに接続され、
前記DACの入力の前記上位Kビットは、前記第1ビットであり、
前記DACの入力の前記上位Kビット以外のビットは、前記第2ビットである、こととしてもよい(第6の構成)。
In the second configuration,
A counter different from the counter,
The output of the counter is composed of K bits,
The input of the DAC is composed of N bits,
The output of the other counter is composed of (N−K) bits,
The counter performs up-counting and down-counting,
The output of the counter is connected to the upper K bits of the DAC,
The other counter counts the edge of the most significant bit of the output of the counter;
The output of the other counter is connected to a bit other than the upper K bits of the input of the DAC,
The upper K bits of the input of the DAC are the first bits;
Bits other than the upper K bits of the input of the DAC may be the second bit (sixth configuration).

また、上記第6の構成において、前記カウンタの出力は、前記DACの上位Kビットに直接的に接続されることとしてもよい(第7の構成)。   In the sixth configuration, the output of the counter may be directly connected to the upper K bits of the DAC (seventh configuration).

また、上記第6または第7の構成において、前記別のカウンタの出力は、前記DACの入力の前記上位Kビット以外のビットに上位・下位の関係を反転させて接続されることとしてもよい(第8の構成)。   Further, in the sixth or seventh configuration, the output of the other counter may be connected by inverting the upper / lower relationship to bits other than the upper K bits of the input of the DAC ( Eighth configuration).

本発明の発振器によると、可聴帯域における低周波ノイズを抑制しつつ、周波数拡散の効果を向上させることができる。   According to the oscillator of the present invention, the effect of frequency spreading can be improved while suppressing low frequency noise in the audible band.

本発明の実施形態に係る発振器の一構成例を示す図である。It is a figure showing an example of 1 composition of an oscillator concerning an embodiment of the present invention. 本発明の第1実施形態に係るカウンタおよびDACを用いた構成を示す図である。It is a figure which shows the structure using the counter and DAC which concern on 1st Embodiment of this invention. 本発明の第2実施形態に係るカウンタおよびDACを用いた構成を示す図である。It is a figure which shows the structure using the counter and DAC which concern on 2nd Embodiment of this invention. 本発明の第1実施形態に係るカウンタの出力ビット、およびDACの入力ビットの推移を示す表である。It is a table | surface which shows transition of the output bit of the counter which concerns on 1st Embodiment of this invention, and the input bit of DAC. 本発明の第2実施形態に係るカウンタの出力ビット、およびDACの入力ビットの推移を示す表である。It is a table | surface which shows transition of the output bit of the counter which concerns on 2nd Embodiment of this invention, and the input bit of DAC. 本発明の第1実施形態に係るクロック信号の周波数の時間的推移を示す図である。It is a figure which shows the time transition of the frequency of the clock signal which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るクロック信号の周波数の時間的推移を示す図である。It is a figure which shows the time transition of the frequency of the clock signal which concerns on 2nd Embodiment of this invention. 本発明との第1比較例に係るカウンタおよびDACを用いた構成を示す図である。It is a figure which shows the structure using the counter and DAC which concern on the 1st comparative example with this invention. 本発明との第2比較例に係るカウンタおよびDACを用いた構成を示す図である。It is a figure which shows the structure using the counter and DAC which concern on the 2nd comparative example with this invention. 本発明との第1比較例に係るクロック信号の周波数の時間的推移を示す図である。It is a figure which shows the time transition of the frequency of the clock signal which concerns on the 1st comparative example with this invention. 本発明との第2比較例に係るクロック信号の周波数の時間的推移を示す図である。It is a figure which shows the time transition of the frequency of the clock signal which concerns on the 2nd comparative example with this invention.

以下に本発明の一実施形態について図面を参照して説明する。本発明の一実施形態に係る発振器の構成は、先述した図1に示す発振器10の構成と基本的に同様である。発振器10自体の構成は、先に説明をしたので、ここでは詳述を省く。以下では、発振器10におけるカウンタ2、ロジック回路3、およびDAC4の構成に関する実施形態について説明する。   An embodiment of the present invention will be described below with reference to the drawings. The configuration of the oscillator according to the embodiment of the present invention is basically the same as the configuration of the oscillator 10 shown in FIG. Since the configuration of the oscillator 10 itself has been described above, a detailed description thereof will be omitted here. Hereinafter, an embodiment relating to the configuration of the counter 2, the logic circuit 3, and the DAC 4 in the oscillator 10 will be described.

<第1実施形態>
本発明の第1実施形態に係るカウンタ2、ロジック回路3、およびDAC4の具体的構成を図2に示す。図2に示すカウンタ21はカウンタ2に対応し、DAC41はDAC4に対応し、XOR回路31A、31Bからロジック回路3が構成される。
<First Embodiment>
A specific configuration of the counter 2, the logic circuit 3, and the DAC 4 according to the first embodiment of the present invention is shown in FIG. The counter 21 shown in FIG. 2 corresponds to the counter 2, the DAC 41 corresponds to the DAC 4, and the logic circuit 3 includes the XOR circuits 31A and 31B.

カウンタ21は、bit0〜bit4の5ビットからなるカウント値を出力する。また、DAC41は、bit0〜bit4の5ビットからなるデジタル信号が入力される。カウンタ21の出力の下位3ビット(bit0〜bit2)をDAC41の入力の上位3ビット(bit2〜bit4)に接続する。カウンタ21の出力の下位3ビットのうち最上位のビットであるbit2を、DAC41の入力の上位3ビットのうち最下位のビットであるbit2に直接的に接続する。また、カウンタ21の出力のbit2は、XOR回路31A、31Bの各一方の入力端にも接続される。   The counter 21 outputs a count value consisting of 5 bits of bit0 to bit4. The DAC 41 receives a digital signal consisting of 5 bits of bit0 to bit4. The lower 3 bits (bit0 to bit2) of the output of the counter 21 are connected to the upper 3 bits (bit2 to bit4) of the input of the DAC 41. Bit 2 which is the most significant bit among the lower 3 bits of the output of the counter 21 is directly connected to bit 2 which is the least significant bit among the upper 3 bits of the input of the DAC 41. The output bit 2 of the counter 21 is also connected to one input terminal of each of the XOR circuits 31A and 31B.

カウンタ21の出力の下位3ビットのうちbit1は、XOR回路31Aの他方の入力端に接続される。カウンタ21の出力の下位3ビットのうちbit0は、XOR回路31Bの他方の入力端に接続される。XOR回路31Aの出力は、DAC41の入力のbit4に接続される。XOR回路31Bの出力は、DAC41の入力のbit3に接続される。すなわち、カウンタ21の出力の下位3ビットにおける最上位ビット以外のビット(bit1、bit0)は、DAC41の入力の上位3ビットにおける最下位ビット以外のビット(bit4、bit3)にXOR回路31A、31Bを介して接続される。   Of the lower 3 bits of the output of the counter 21, bit1 is connected to the other input terminal of the XOR circuit 31A. Of the lower 3 bits of the output of the counter 21, bit0 is connected to the other input terminal of the XOR circuit 31B. The output of the XOR circuit 31A is connected to the input bit 4 of the DAC 41. The output of the XOR circuit 31B is connected to the input bit 3 of the DAC 41. That is, the bits other than the most significant bit (bit1, bit0) in the lower 3 bits of the output of the counter 21 have XOR circuits 31A and 31B added to the bits (bit4, bit3) other than the least significant bit in the upper 3 bits of the input of the DAC 41. Connected through.

つまり、カウンタ21の出力の下位3ビットのうち最上位ビット以外のビットのうち最上位のもの(bit1)は、DAC41の入力の上位3ビットのうち最下位ビット以外のビットのうち最上位のもの(bit4)にXOR回路31Aを介して接続される。カウンタ21の出力の下位3ビットのうち最上位ビット以外のビットのうち最上位のものから1ビットずつシフトするたびに、シフトしたビット(bit0)は、DAC41の入力の上位3ビットのうち最下位ビット以外のビットのうち最上位のものから1ビットずつシフトしたビット(bit3)にXOR回路31Bを介して接続される。   That is, the most significant bit (bit 1) of the lower 3 bits of the output of the counter 21 other than the most significant bit is the most significant bit of the higher 3 bits of the input of the DAC 41 other than the least significant bit. (Bit 4) is connected via the XOR circuit 31A. Each time one bit is shifted from the most significant bit among the lower 3 bits of the output of the counter 21 from the most significant bit, the shifted bit (bit 0) is the least significant bit of the upper 3 bits of the input of the DAC 41. A bit (bit 3) shifted bit by bit from the most significant bit other than the bits is connected via the XOR circuit 31B.

また、カウンタ21の出力の上位2ビットのうちbit4は、DAC41の入力の下位2ビットのうちbit0に接続され、カウンタ21の出力のbit3は、DAC41の入力のbit1に接続される。すなわち、カウンタ21の出力の上位2ビット(bit4、bit3)と、DAC41の入力の下位2ビット(bit1、bit0)は、上位・下位の関係を反転させて接続する。すなわち、カウンタ21の出力の下位3ビット以外の2(=5−3)ビットは、DAC41の入力の上位3ビット以外の2(=5−3)ビットに接続される。   Of the upper 2 bits of the output of the counter 21, bit 4 is connected to bit 0 of the lower 2 bits of the input of the DAC 41, and bit 3 of the output of the counter 21 is connected to the bit 1 of the input of the DAC 41. That is, the upper 2 bits (bit4, bit3) of the output of the counter 21 and the lower 2 bits (bit1, bit0) of the input of the DAC 41 are connected by inverting the upper / lower relationship. That is, 2 (= 5-3) bits other than the lower 3 bits of the output of the counter 21 are connected to 2 (= 5-3) bits other than the upper 3 bits of the input of the DAC 41.

このような図2に示す構成において、カウンタ21がカウントした場合でのカウンタ21の出力ビット、DAC41の入力ビットの推移を図4に示す。なお、図4に示す表において、右端の列はDAC41の入力を10進数で表した数値を示す。   FIG. 4 shows the transition of the output bits of the counter 21 and the input bits of the DAC 41 when the counter 21 counts in the configuration shown in FIG. In the table shown in FIG. 4, the rightmost column indicates numerical values representing the input of the DAC 41 in decimal numbers.

カウンタ21は、「00000」から「11111」までカウントする。「00000」から「00111」までのカウント(第1のカウントと称す)の間、DAC41の入力ビットの上位3ビットは「000」から「111」まで上昇した後、「001」まで下降する。DAC41の入力ビットの同様の上昇下降は、カウンタ21による「01000」から「01111」まで(第2のカウントと称す)、「10000」から「10111」まで(第3のカウントと称す)、および「11000」から「11111」まで(第4のカウントと称す)の各カウントの間でも行われる。すなわち、DAC41の入力の上位3ビットは、上昇・下降成分を示すビット(第1ビット)に該当する。   The counter 21 counts from “00000” to “11111”. During the count from “00000” to “00111” (referred to as the first count), the upper 3 bits of the input bits of the DAC 41 rise from “000” to “111” and then fall to “001”. The same rise and fall of the input bits of the DAC 41 are caused by the counter 21 from “01000” to “01111” (referred to as the second count), from “10000” to “10111” (referred to as the third count), and “ It is also performed between each count from “11000” to “11111” (referred to as a fourth count). That is, the upper 3 bits of the input of the DAC 41 correspond to a bit (first bit) indicating an ascending / descending component.

このとき、DAC41の入力の下位2ビットは、第1のカウントでは「00」、第2のカウントでは「10」、第3のカウントでは「01」、第4のカウントでは「11」となる。すなわち、DAC41の入力の下位2ビットは、オフセット成分を示すビット(第2ビット)に該当する。   At this time, the lower 2 bits of the input of the DAC 41 are “00” in the first count, “10” in the second count, “01” in the third count, and “11” in the fourth count. That is, the lower 2 bits of the input of the DAC 41 correspond to a bit (second bit) indicating an offset component.

これにより、第1カウントにおいて、DAC41の入力の10進数で表した値は、0から24まで8ずつ上昇した後、28から4まで8ずつ下降する。第2のカウントにおいては、上記10進数で表した値は、2から26まで8ずつ上昇した後、30から6まで8ずつ下降する。第2のカウントでのDAC41の入力の下位2ビット「10」は、第1のカウントでのDAC41の入力の下位2ビット「00」を基準として10進数では「+2」のオフセットを有する。従って、第2のカウントでは第1のカウントを基準として、DAC41の入力の10進数の値は同様の上昇下降を維持しつつ「+2」のオフセットを有することとなる。   Thereby, in the first count, the value represented by the decimal number of the input of the DAC 41 increases by 8 from 0 to 24 and then decreases by 8 from 28 to 4. In the second count, the decimal value increases by 8 from 2 to 26 and then decreases by 8 from 30 to 6. The lower 2 bits “10” of the input of the DAC 41 in the second count have an offset of “+2” in the decimal number with reference to the lower 2 bits “00” of the input of the DAC 41 in the first count. Accordingly, in the second count, the decimal value input to the DAC 41 has an offset of “+2” while maintaining the same rise and fall with the first count as a reference.

同様に、第3のカウントではDAC41の入力の下位2ビットが「01」となるので、第1のカウントを基準としてDAC41の入力の10進数の値は「+1」のオフセットを有することとなる。これにより、第3のカウントでは、DAC41の入力を10進数で表した値は、1から25まで8ずつ上昇した後、29から5まで8ずつ下降する。   Similarly, since the lower 2 bits of the input of the DAC 41 are “01” in the third count, the decimal value of the input of the DAC 41 has an offset of “+1” with reference to the first count. As a result, in the third count, the value representing the input of the DAC 41 in decimal number increases by 8 from 1 to 25 and then decreases by 8 from 29 to 5.

同様に、第4のカウントではDAC41の入力の下位2ビットが「11」となるので、第1のカウントを基準としてDAC41の入力の10進数の値は「+3」のオフセットを有することとなる。これにより、第4のカウントでは、DAC41の入力を10進数で表した値は、3から27まで8ずつ上昇した後、31から7まで8ずつ下降する。   Similarly, since the lower 2 bits of the input of the DAC 41 are “11” in the fourth count, the decimal value of the input of the DAC 41 has an offset of “+3” on the basis of the first count. As a result, in the fourth count, the value representing the input of the DAC 41 in decimal number increases by 8 from 3 to 27 and then decreases by 8 from 31 to 7.

DAC41は、bit0〜bit4からなるデジタル入力をD/A変換して、参照電圧RTREFを出力し、クロック信号CLKの周波数は参照電圧RTREFに比例する。従って、カウンタ21によるカウントに応じたクロック信号CLKの周波数の時間的推移は、図6に示す通りとなる。   The DAC 41 D / A converts the digital input composed of bit 0 to bit 4 and outputs a reference voltage RTREF, and the frequency of the clock signal CLK is proportional to the reference voltage RTREF. Therefore, the temporal transition of the frequency of the clock signal CLK corresponding to the count by the counter 21 is as shown in FIG.

図6において、1周期T1〜T4は、第1のカウント〜第4のカウントのそれぞれに対応する期間である。このように、1周期T2〜T4ではそれぞれ、1周期T1を基準として、クロック信号CLKの周波数は同様の上昇下降を維持しつつ異なるオフセットを有する。すなわち、クロック信号CLK(発振信号)の周波数(発振周波数)は、1周期において上昇・下降する上昇・下降成分と、1周期ごとのオフセット成分と、を有する。   In FIG. 6, one period T1 to T4 is a period corresponding to each of the first count to the fourth count. Thus, in each of the periods T2 to T4, the frequency of the clock signal CLK has a different offset while maintaining the same rise and fall with respect to the one period T1. That is, the frequency (oscillation frequency) of the clock signal CLK (oscillation signal) has an ascending / descending component that rises and falls in one cycle and an offset component for each cycle.

図6では、クロック信号CLKの1クロック分の周波数の1/8、1/16、および1/32の各周波数のノイズが生じるが、そのうち1/8の周波数のノイズが支配的となるため、可聴領域における低周波ノイズが生じることを抑制することができる。   In FIG. 6, noise of each frequency of 1/8, 1/16, and 1/32 of the frequency of one clock of the clock signal CLK occurs, but noise of 1/8 of the frequency becomes dominant. Generation of low frequency noise in the audible region can be suppressed.

また、図6において示す破線は、1周期T1〜T4において生じる周波数のレベルを示す。このように、本実施形態では、1周期T1〜T4からなる周期において、32個の周波数に周波数は分散される。従って、十分な周波数拡散によってノイズのピークを抑制することができる。   Moreover, the broken line shown in FIG. 6 shows the level of the frequency which arises in 1 period T1-T4. As described above, in the present embodiment, the frequency is distributed to 32 frequencies in a cycle including one cycle T1 to T4. Therefore, noise peaks can be suppressed by sufficient frequency spreading.

このように、本実施形態では、可聴帯域における低周波ノイズを抑制しつつ、周波数拡散の効果を向上させることができる。   Thus, in this embodiment, the effect of frequency spreading can be improved while suppressing low frequency noise in the audible band.

<第2実施形態>
本発明の第2実施形態に係るカウンタ2、およびDAC4の具体的構成を図3に示す。図3に示す第1カウンタ22はカウンタ2に対応し、DAC42はDAC4に対応する。なお、本実施形態では、ロジック回路3は構成されない。また、第1カウンタ22とDAC42の間に、第1カウンタ22とは別の第2カウンタ50が設けられる。
Second Embodiment
FIG. 3 shows specific configurations of the counter 2 and the DAC 4 according to the second embodiment of the present invention. The first counter 22 shown in FIG. 3 corresponds to the counter 2, and the DAC 42 corresponds to the DAC 4. In the present embodiment, the logic circuit 3 is not configured. Further, a second counter 50 different from the first counter 22 is provided between the first counter 22 and the DAC 42.

カウンタ22は、bit0〜bit2の3ビットからなるカウント値を出力する。また、DAC42は、bit0〜bit4の5ビットからなるデジタル信号が入力される。第2カウンタ50は、DAC42の入力ビット数から第1カウンタ22の出力ビット数を差し引いた2ビットからなるカウント値を出力する。   The counter 22 outputs a count value composed of 3 bits of bit0 to bit2. The DAC 42 receives a digital signal composed of 5 bits of bit0 to bit4. The second counter 50 outputs a 2-bit count value obtained by subtracting the number of output bits of the first counter 22 from the number of input bits of the DAC 42.

第1カウンタ22の出力の3ビット(bit0〜bit2)は、DAC42の入力の上位3ビット(bit2〜bit4)に直接的に接続される。第2カウンタ50は、第1カウンタ22の出力の最上位ビット(bit2)の立上りエッジをカウントする。第2カウンタ50は、2ビット(bit0、bit1)からなるカウント値を出力する。第2カウンタ50の出力の各ビットは、DAC42の入力の下位2ビット(bit0、bit1)と上位・下位の関係を反転させて接続する。   The 3 bits (bit0 to bit2) of the output of the first counter 22 are directly connected to the upper 3 bits (bit2 to bit4) of the input of the DAC 42. The second counter 50 counts the rising edge of the most significant bit (bit 2) of the output of the first counter 22. The second counter 50 outputs a count value composed of 2 bits (bit0, bit1). Each bit of the output of the second counter 50 is connected to the lower two bits (bit0, bit1) of the input of the DAC 42 by inverting the upper / lower relationship.

このような図3に示す構成において、第1カウンタ22がカウントした場合での第1カウンタ22および第2カウンタ50の各出力ビット、DAC42の入力ビットの推移を図5に示す。なお、図5に示す表において、右端の列はDAC42の入力を10進数で表した数値を示す。   FIG. 5 shows the transition of the output bits of the first counter 22 and the second counter 50 and the input bits of the DAC 42 when the first counter 22 counts in the configuration shown in FIG. In the table shown in FIG. 5, the rightmost column indicates numerical values representing the input of the DAC 42 in decimal numbers.

第1カウンタ22は、「100」から「111」までアップカウントした後、「001」までダウンカウントし、その後「011」までアップカウントする(以後、第1のカウントと称する)。その後、再度、「100」から「111」までアップカウントした後、「001」までダウンカウントし、その後「011」までアップカウントする(以後、第2のカウントと称する)。その後、再度、「100」から「111」までアップカウントした後、「001」までダウンカウントし、その後「011」までアップカウントする(以後、第3のカウントと称する)。その後、再度、「100」から「111」までアップカウントした後、「001」までダウンカウントし、その後「011」までアップカウントする(以後、第4のカウントと称する)。   The first counter 22 counts up from “100” to “111”, then counts down to “001”, and then counts up to “011” (hereinafter referred to as “first count”). After that, after counting up again from “100” to “111”, it counts down to “001” and then counts up to “011” (hereinafter referred to as a second count). After that, after counting up again from “100” to “111”, it counts down to “001” and then counts up to “011” (hereinafter referred to as a third count). After that, after counting up again from “100” to “111”, it counts down to “001” and then counts up to “011” (hereinafter referred to as the fourth count).

第2カウンタ50の出力は「00」から始まり、第2カウンタ50は、第1カウンタ22の出力が「011」から「100」に切替わったとき、すなわち、第1のカウントから第2のカウントに変わると同時に、bit2の立上りエッジをカウントして、出力を「01」とする。さらに第2のカウントから第3のカウントに変わると同時に、bit2の立上りエッジをカウントして、出力を「10」とする。さらに第3のカウントから第4のカウントに変わると同時に、bit2の立上りエッジをカウントして、出力を「11」とする。さらに第4のカウントから第0のカウントに変わると同時に、bit2の立上りエッジをカウントして、出力を「00」とする。   The output of the second counter 50 starts from “00”, and the second counter 50 is changed when the output of the first counter 22 is switched from “011” to “100”, that is, from the first count to the second count. At the same time, the rising edge of bit 2 is counted and the output is set to “01”. Further, at the same time as the change from the second count to the third count, the rising edge of bit 2 is counted and the output is set to “10”. Further, at the same time when the third count is changed to the fourth count, the rising edge of bit 2 is counted and the output is set to “11”. Further, at the same time as the change from the fourth count to the zeroth count, the rising edge of bit 2 is counted and the output is set to “00”.

第1のカウントの間、DAC42の入力の上位3ビットは、第1カウンタ22の出力と同様に上昇および下降する。このとき、DAC42の入力の下位2ビットは、順に「00」の値をとる。また、第2のカウントの間、DAC42の入力の上位3ビットは、第1カウンタ22の出力と同様に上昇および下降する。この上昇および下降は、第1のカウントの間の上昇および下降と同じものである。このとき、DAC42の入力の下位2ビットは、順に「10」の値をとる。また、第3のカウントの間、DAC42の入力の上位3ビットは、第1カウンタ22の出力と同様に上昇および下降する。この上昇および下降は、第1のカウントの間の上昇および下降と同じものである。このとき、DAC42の入力の下位2ビットは、順に「01」の値をとる。また、第4のカウントの間、DAC42の入力の上位3ビットは、第1カウンタ22の出力と同様に上昇および下降する。この上昇および下降は、第1のカウントの間の上昇および下降と同じものである。このとき、DAC42の入力の下位2ビットは、順に「11」の値をとる。すなわち、DAC42の入力の上位3ビットは、上昇・下降成分を示すビット(第1ビット)に該当し、DAC42の入力の上位3ビット以外のビットは、オフセット成分を示すビット(第2ビット)に該当する。   During the first count, the upper 3 bits of the input of the DAC 42 rise and fall in the same manner as the output of the first counter 22. At this time, the lower 2 bits of the input of the DAC 42 sequentially take the value “00”. Further, during the second count, the upper 3 bits of the input of the DAC 42 rise and fall in the same manner as the output of the first counter 22. This rise and fall is the same as the rise and fall during the first count. At this time, the lower 2 bits of the input of the DAC 42 sequentially take a value of “10”. Further, during the third count, the upper 3 bits of the input of the DAC 42 rise and fall in the same manner as the output of the first counter 22. This rise and fall is the same as the rise and fall during the first count. At this time, the lower 2 bits of the input of the DAC 42 sequentially take a value of “01”. Further, during the fourth count, the upper 3 bits of the input of the DAC 42 rise and fall in the same manner as the output of the first counter 22. This rise and fall is the same as the rise and fall during the first count. At this time, the lower 2 bits of the input of the DAC 42 sequentially take a value of “11”. That is, the upper 3 bits of the input of the DAC 42 correspond to the bit (first bit) indicating the rising / falling component, and the bits other than the upper 3 bits of the input of the DAC 42 are the bits (second bit) indicating the offset component. Applicable.

第2のカウントでのDAC42の入力の下位2ビット「10」は、第1のカウントでのDAC42の入力の下位2ビット「00」を基準として10進数では「+2」のオフセットを有する。第3のカウントでのDAC42の入力の下位2ビット「01」は、第1のカウントでのDAC42の入力の下位2ビット「00」を基準として10進数では「+1」のオフセットを有する。第4のカウントでのDAC42の入力の下位2ビット「11」は、第1のカウントでのDAC42の入力の下位2ビット「00」を基準として10進数では「+3」のオフセットを有する。   The lower 2 bits “10” of the input of the DAC 42 in the second count have an offset of “+2” in decimal notation with respect to the lower 2 bits “00” of the input of the DAC 42 in the first count. The lower two bits “01” of the input of the DAC 42 in the third count have an offset of “+1” in decimal notation with respect to the lower two bits “00” of the input of the DAC 42 in the first count. The lower 2 bits “11” of the input of the DAC 42 in the fourth count have an offset of “+3” in decimal notation with respect to the lower 2 bits “00” of the input of the DAC 42 in the first count.

これにより、DAC42の入力の10進数での値は、第1のカウントの間の「16」から「28」まで「4」ずつ上昇し、「4」まで「4」ずつ下降し、「12」まで「4」ずつ上昇することに対応して、第2のカウントの間では第1のカウントを基準として「+2」のオフセットにより「18」から「30」まで「4」ずつ上昇し、「6」まで「4」ずつ下降し、「14」まで「4」ずつ上昇することに対応する。   As a result, the decimal value of the input of the DAC 42 increases by “4” from “16” to “28” during the first count, decreases by “4” to “4”, and “12”. Corresponding to an increase of “4” until “4”, and an increase of “4” from “18” to “30” by an offset of “+2” with reference to the first count between the second count and “6” "4" to "14" and "4" to "14".

そして、第3のカウントの間では第1のカウントを基準として「+1」のオフセットにより「17」から「29」まで「4」ずつ上昇し、「5」まで「4」ずつ下降し、「13」まで「4」ずつ上昇することに対応する。   Then, during the third count, with the offset of “+1” with respect to the first count, the value increases from “17” to “29” by “4”, decreases to “5” by “4”, and decreases to “13”. Corresponds to increasing by “4”.

さらに、第4のカウントの間では第1のカウントを基準として「+3」のオフセットにより「19」から「31」まで「4」ずつ上昇し、「7」まで「4」ずつ下降し、「15」まで「4」ずつ上昇することに対応する。   Further, during the fourth count, the offset increases by “4” from “19” to “31” by “+3” with respect to the first count, and decreases by “4” until “7”. Corresponds to increasing by “4”.

カウンタ22によるカウントに応じたクロック信号CLKの周波数の時間的推移は、図7に示す通りとなる。   The time transition of the frequency of the clock signal CLK corresponding to the count by the counter 22 is as shown in FIG.

図7において、1周期T5〜T8は、第1のカウント〜第4のカウントのそれぞれに対応する期間である。このように、1周期T6〜T8では、1周期T5を基準として、クロック信号CLKの周波数は同様の上昇下降を維持しつつオフセットを有する。すなわち、クロック信号CLK(発振信号)の周波数(発振周波数)は、1周期において上昇および下降する上昇・下降成分と、1周期ごとのオフセット成分と、を有する。   In FIG. 7, one cycle T5 to T8 is a period corresponding to each of the first count to the fourth count. In this way, in one cycle T6 to T8, the frequency of the clock signal CLK has an offset while maintaining the same rise and fall with reference to the one cycle T5. That is, the frequency (oscillation frequency) of the clock signal CLK (oscillation signal) has an ascending / descending component that rises and falls in one cycle and an offset component for each cycle.

図7では、クロック信号CLKの1クロック分の周波数の1/12の周波数のノイズが支配的となるため、可聴領域における低周波ノイズが生じることを抑制することができる。   In FIG. 7, noise having a frequency that is 1/12 of the frequency of one clock of the clock signal CLK is dominant, so that it is possible to suppress the occurrence of low-frequency noise in the audible region.

また、図7において示す破線は、1周期T5〜T8において生じる周波数のレベルを示す。このように、本実施形態では、1周期T5〜T8からなる周期において、28個の周波数に周波数は分散される。従って、十分な周波数拡散によってノイズのピークを抑制することができる。   Moreover, the broken line shown in FIG. 7 shows the level of the frequency generated in one cycle T5 to T8. As described above, in the present embodiment, the frequency is distributed to 28 frequencies in a cycle including one cycle T5 to T8. Therefore, noise peaks can be suppressed by sufficient frequency spreading.

このように、本実施形態であっても、可聴帯域における低周波ノイズを抑制しつつ、周波数拡散の効果を向上させることができる。   Thus, even in the present embodiment, the effect of frequency spreading can be improved while suppressing low frequency noise in the audible band.

<その他の変形例>
以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は、種々の変形が可能である。
<Other variations>
As mentioned above, although embodiment of this invention was described, if it is in the range of the meaning of this invention, embodiment can be variously deformed.

例えば、上記第1実施形態で説明した図2の構成では、XOR回路31A、31Bを設けているが、XOR回路を設けずにカウンタ21のbit2、bit1、bit0をそれぞれ、DAC41の入力のbit2、bit4、bit3に直接的に接続してもよい。これにより、上昇・下降成分を示すDAC41の入力の上位3ビットは、「000」から「110」まで上昇した後、「001」まで下降してから「111」まで再度上昇することとなる。このようにしても、本発明の目的を達成することができる。   For example, in the configuration of FIG. 2 described in the first embodiment, the XOR circuits 31A and 31B are provided, but without the XOR circuit, the bit2, bit1, and bit0 of the counter 21 are respectively set to the input bit2 of the DAC 41, You may connect directly to bit4 and bit3. As a result, the upper 3 bits of the input of the DAC 41 indicating the ascending / descending component rise from “000” to “110”, descend to “001”, and then rise again to “111”. Even in this way, the object of the present invention can be achieved.

また、上記第1実施形態において、オフセット成分を示すDAC41の入力の下位2ビットは、カウンタ21の出力の上位2ビットと上位・下位の関係を反転させずに接続してもよい。   In the first embodiment, the lower 2 bits of the input of the DAC 41 indicating the offset component may be connected without inverting the upper / lower relationship with the upper 2 bits of the output of the counter 21.

また、上記第2実施形態(図3)において、上昇・下降成分を示すDAC42の上位3ビットは、第1カウンタ22の出力ビットのそれぞれとインバータを介して接続されてもよい。これにより、DAC42の上位3ビットは下降の後、上昇して再度下降する値となるが、本発明の目的は達成される。上記インバータは、ロジック回路3を構成することとなる。   In the second embodiment (FIG. 3), the upper 3 bits of the DAC 42 indicating the rising / falling component may be connected to each of the output bits of the first counter 22 via an inverter. As a result, the upper 3 bits of the DAC 42 become values that rise and then fall again after falling, but the object of the present invention is achieved. The inverter constitutes the logic circuit 3.

本発明は、例えば、DC−DCコンバータに用いる発振器に利用することができる。   The present invention can be used for an oscillator used for a DC-DC converter, for example.

1 ワンショット回路
2 カウンタ
3 ロジック回路
4 DAC(D/Aコンバータ)
5 エラーアンプ
10 発振器
101 発振回路
CM カレントミラー回路
Tr1、Tr2 トランジスタ
Q1 トランジスタ
C1 コンデンサ
M1 トランジスタ
CP1 コンパレータ
R1 抵抗
21 カウンタ
41 DAC
31A、31B XOR回路
22 第1カウンタ
42 DAC
50 第2カウンタ
201、202 カウンタ
301A〜301D、302A、302B XOR回路
401、402 DAC
1 One-shot circuit 2 Counter 3 Logic circuit 4 DAC (D / A converter)
5 Error Amplifier 10 Oscillator 101 Oscillator Circuit CM Current Mirror Circuit Tr1, Tr2 Transistor Q1 Transistor C1 Capacitor M1 Transistor CP1 Comparator R1 Resistor 21 Counter 41 DAC
31A, 31B XOR circuit 22 First counter 42 DAC
50 Second counter 201, 202 Counter 301A to 301D, 302A, 302B XOR circuit 401, 402 DAC

Claims (8)

1周期において上昇および下降する上昇・下降成分と、1周期ごとのオフセット成分と、を有する発振周波数の発振信号を出力することを特徴とする発振器。   An oscillator characterized by outputting an oscillation signal having an oscillation frequency having an ascending / descending component that rises and falls in one cycle and an offset component for each cycle. 前記発振信号を出力する発振回路と、
前記発振回路から出力される前記発振信号をカウントするカウンタと、
前記カウンタの出力と接続される入力を有するDAC(D/Aコンバータ)と、を備え、
前記DACの出力に基づいて前記発振回路は前記発振信号を生成し、
前記DACの入力は、上昇・下降成分を示す第1ビットと、オフセット成分を示す第2ビットと、を有し、
前記第1ビットは、前記カウンタの出力とロジック回路を介して、および/または直接的に接続される、請求項1に記載の発振器。
An oscillation circuit for outputting the oscillation signal;
A counter that counts the oscillation signal output from the oscillation circuit;
A DAC (D / A converter) having an input connected to the output of the counter,
Based on the output of the DAC, the oscillation circuit generates the oscillation signal,
The input of the DAC has a first bit indicating an ascending / descending component and a second bit indicating an offset component,
The oscillator according to claim 1, wherein the first bit is connected to the output of the counter via a logic circuit and / or directly.
前記カウンタの出力、および前記DACの入力は、それぞれNビットで構成され、
前記カウンタの出力の下位Kビットは、前記DACの入力の上位Kビットに接続され、
前記カウンタの出力の前記下位Kビット以外の(N−K)ビットは、前記DACの入力の前記上位Kビット以外の(N−K)ビットに接続され、
前記DACの入力の前記上位Kビットは前記第1ビットであり、
前記DACの入力の前記(N−K)ビットは前記第2ビットである、請求項2に記載の発振器。
The counter output and the DAC input are each composed of N bits,
The lower K bits of the counter output are connected to the upper K bits of the DAC input,
(NK) bits other than the lower K bits of the output of the counter are connected to (NK) bits other than the upper K bits of the input of the DAC,
The upper K bits of the input of the DAC are the first bits;
The oscillator according to claim 2, wherein the (N−K) bits of the input of the DAC are the second bits.
前記カウンタの出力の前記下位Kビットにおける最上位ビットは、前記DACの入力の前記上位Kビットにおける最下位ビットに接続されると共に、XOR回路の一方の入力端に接続され、
前記カウンタの出力の前記下位Kビットにおける最上位ビット以外のビットは、前記DACの入力の前記上位Kビットにおける最下位ビット以外のビットに前記XOR回路を介して接続される、請求項3に記載の発振器。
The most significant bit in the lower K bits of the output of the counter is connected to the least significant bit in the upper K bits of the input of the DAC and to one input terminal of the XOR circuit,
The bit other than the most significant bit in the lower K bits of the output of the counter is connected to a bit other than the least significant bit in the upper K bits of the input of the DAC via the XOR circuit. Oscillator.
前記カウンタの出力の前記(N−K)ビットは、前記DACの入力の前記(N−K)ビットに上位・下位の関係を反転させて接続される、請求項3または請求項4に記載の発振器。   5. The (NK) bit of the counter output is connected to the (NK) bit of the DAC input by inverting the upper / lower relationship. Oscillator. 前記カウンタとは別のカウンタをさらに備え、
前記カウンタの出力は、Kビットで構成され、
前記DACの入力は、Nビットで構成され、
前記別のカウンタの出力は、(N−K)ビットで構成され、
前記カウンタは、アップカウントおよびダウンカウントを行い、
前記カウンタの出力は、前記DACの上位Kビットに接続され、
前記別のカウンタは、前記カウンタの出力の最上位ビットのエッジをカウントし、
前記別のカウンタの出力は、前記DACの入力の前記上位Kビット以外のビットに接続され、
前記DACの入力の前記上位Kビットは、前記第1ビットであり、
前記DACの入力の前記上位Kビット以外のビットは、前記第2ビットである、請求項2に記載の発振器。
A counter different from the counter,
The output of the counter is composed of K bits,
The input of the DAC is composed of N bits,
The output of the other counter is composed of (N−K) bits,
The counter performs up-counting and down-counting,
The output of the counter is connected to the upper K bits of the DAC,
The other counter counts the edge of the most significant bit of the output of the counter;
The output of the other counter is connected to a bit other than the upper K bits of the input of the DAC,
The upper K bits of the input of the DAC are the first bits;
The oscillator according to claim 2, wherein bits other than the upper K bits of the input of the DAC are the second bits.
前記カウンタの出力は、前記DACの上位Kビットに直接的に接続される、請求項6に記載の発振器。   The oscillator of claim 6, wherein the output of the counter is directly connected to the upper K bits of the DAC. 前記別のカウンタの出力は、前記DACの入力の前記上位Kビット以外のビットに上位・下位の関係を反転させて接続される、請求項6または請求項7に記載の発振器。   8. The oscillator according to claim 6, wherein an output of the another counter is connected to a bit other than the upper K bits of the input of the DAC by inverting an upper / lower relationship.
JP2017042858A 2017-03-07 2017-03-07 Oscillator Active JP6850158B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017042858A JP6850158B2 (en) 2017-03-07 2017-03-07 Oscillator
US15/912,630 US10594305B2 (en) 2017-03-07 2018-03-06 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042858A JP6850158B2 (en) 2017-03-07 2017-03-07 Oscillator

Publications (2)

Publication Number Publication Date
JP2018148450A true JP2018148450A (en) 2018-09-20
JP6850158B2 JP6850158B2 (en) 2021-03-31

Family

ID=63591704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042858A Active JP6850158B2 (en) 2017-03-07 2017-03-07 Oscillator

Country Status (1)

Country Link
JP (1) JP6850158B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208037A (en) * 2002-12-25 2004-07-22 Fujitsu Ltd Spread spectrum clock generating circuit
JP2006197308A (en) * 2005-01-14 2006-07-27 Renesas Technology Corp Clock generation method and clock generation circuit
JP2011147122A (en) * 2010-01-13 2011-07-28 Samsung Electronics Co Ltd Spread spectrum clock generator and electronic device including the same
JP2012257370A (en) * 2011-06-08 2012-12-27 Nippon Soken Inc Power conversion apparatus
JP2016076918A (en) * 2014-10-03 2016-05-12 株式会社リコー Spread spectrum clock generation device and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208037A (en) * 2002-12-25 2004-07-22 Fujitsu Ltd Spread spectrum clock generating circuit
JP2006197308A (en) * 2005-01-14 2006-07-27 Renesas Technology Corp Clock generation method and clock generation circuit
JP2011147122A (en) * 2010-01-13 2011-07-28 Samsung Electronics Co Ltd Spread spectrum clock generator and electronic device including the same
JP2012257370A (en) * 2011-06-08 2012-12-27 Nippon Soken Inc Power conversion apparatus
JP2016076918A (en) * 2014-10-03 2016-05-12 株式会社リコー Spread spectrum clock generation device and electronic apparatus

Also Published As

Publication number Publication date
JP6850158B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP5786388B2 (en) Switching power supply device with low-voltage malfunction prevention circuit
US10594303B2 (en) Temperature sensor circuit and semiconductor device including the same
US7944262B2 (en) Duty correction circuit
TWI508451B (en) Sawtooth wave generating circuit and switch mode power supply device having the same
JP2008124726A (en) Ramp generating circuit and a/d converter
JP5486221B2 (en) DC-DC converter control circuit, DC-DC converter and electronic apparatus
JP5461852B2 (en) Self-adjusting oscillator
JP2009071613A (en) Output circuit
US10693482B2 (en) Time-to-voltage converter with extended output range
US10594305B2 (en) Oscillator
JP6354937B2 (en) Drive circuit, integrated circuit device, and charge pump circuit control method
JP2010245675A (en) Oscillation circuit and switching power supply using the same
JP2018148450A (en) Oscillator
JP2014048681A (en) Power source device
JP2019068366A (en) A/d conversion circuit
JP6850159B2 (en) Oscillator
JP2010206990A (en) Circuit and method for controlling power-supply voltage, and dc-dc converter
JP4616362B2 (en) D / A converter circuit
JP5440143B2 (en) Voltage addition circuit and D / A conversion circuit
JP5941244B2 (en) Clock generation circuit, power supply system, and clock signal frequency changing method
JP2009232169A (en) Semiconductor integrated circuit
JP2005286821A (en) Pulse count detection circuit
JP2016025825A (en) Power circuit
JP2013187716A (en) Voltage-controlled oscillator
JP2013162152A (en) Oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210305

R150 Certificate of patent or registration of utility model

Ref document number: 6850158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150