JP2018147981A - Electric module and method for manufacturing the same - Google Patents

Electric module and method for manufacturing the same Download PDF

Info

Publication number
JP2018147981A
JP2018147981A JP2017040391A JP2017040391A JP2018147981A JP 2018147981 A JP2018147981 A JP 2018147981A JP 2017040391 A JP2017040391 A JP 2017040391A JP 2017040391 A JP2017040391 A JP 2017040391A JP 2018147981 A JP2018147981 A JP 2018147981A
Authority
JP
Japan
Prior art keywords
electrode
sealing material
conductive film
dye
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017040391A
Other languages
Japanese (ja)
Other versions
JP6918521B2 (en
Inventor
壮一郎 鈴木
Soichiro Suzuki
壮一郎 鈴木
泰博 稲垣
Yasuhiro Inagaki
泰博 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2017040391A priority Critical patent/JP6918521B2/en
Publication of JP2018147981A publication Critical patent/JP2018147981A/en
Application granted granted Critical
Publication of JP6918521B2 publication Critical patent/JP6918521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electric module capable of satisfactorily preventing the occurrence of an operation failure.SOLUTION: An electric module comprises: a first electrode 21 and a second electrode 22 opposed to the first electrode with a gap therebetween; and an electrolyte solution 15 provided between the first electrode 21 and the second electrode 22. The electrolyte solution 15 is sealed by a sealant 9 provided between the first electrode 21 and the second electrode 22 and a seal part arranged by bonding a first base material 1 of the first electrode 21 with a second base material 6 of the second electrode 22. The peel strength of the first electrode 21 and sealant 9, and the peel strength of the second electrode 22 and sealant 9 are each 0.05 kgf/10 mm or more.SELECTED DRAWING: Figure 2

Description

本発明は、電気モジュールおよび電気モジュールの製造方法に関する。   The present invention relates to an electric module and a method for manufacturing the electric module.

近年、クリーンな発電源として、光エネルギーを直接かつ即時に電力に変換することができ、二酸化炭素などの汚染物質を排出しない太陽電池が注目されている。その中でも、色素増感太陽電池は、高い変換効率を有し、比較的簡易な方法により製造され、かつ原材料の単価が安価であるため、次世代太陽電池として期待されている。   In recent years, solar cells that can directly and immediately convert light energy into electric power as a clean power generation source and that do not emit pollutants such as carbon dioxide have attracted attention. Among them, dye-sensitized solar cells are expected as next-generation solar cells because they have high conversion efficiency, are manufactured by a relatively simple method, and the unit price of raw materials is low.

最近では、色素増感太陽電池をはじめとする太陽電池の実用化に向けて、ロール・ツー・ロール方式(以下、RtoR方式と記載する)を導入した連続生産が検討されている。RtoR方式を導入した色素増感太陽電池の製造においては、例えば、第一基材における第二基材側の面に第一導電膜が設けられ、第一導電膜における第二基材側の面の所定の領域に半導体層および電解質と封止材が設けられ、第一電極が形成される。また、第二基材における第一基材側の面に第二導電膜が設けられ、第二導電膜における第一基材側の面に触媒層が設けられることによって、第二電極が形成される。その後、半導体層と触媒層が対向している状態で、第一電極と第二電極とが貼り合わされる。このようにして製造された色素増感太陽電池は、色素増感太陽電池の使用目的などに合わせて、所望の位置に絶縁処理され、所望の大きさに切り出される。   Recently, continuous production using a roll-to-roll method (hereinafter referred to as an RtoR method) has been studied for the practical application of solar cells including dye-sensitized solar cells. In the manufacture of a dye-sensitized solar cell using the RtoR method, for example, a first conductive film is provided on the second base material side surface of the first base material, and the second base material side surface of the first conductive film is provided. The semiconductor layer, the electrolyte, and the sealing material are provided in the predetermined region, and the first electrode is formed. Further, the second electrode is formed by providing the second conductive film on the surface of the second substrate on the first substrate side and providing the catalyst layer on the surface of the second conductive film on the first substrate side. The Thereafter, the first electrode and the second electrode are bonded together with the semiconductor layer and the catalyst layer facing each other. The dye-sensitized solar cell thus manufactured is insulated at a desired position and cut out to a desired size in accordance with the purpose of use of the dye-sensitized solar cell.

例えば、特許文献1には、対向する第一電極および第二電極の所定の部分に超音波振動を付与し、第一基材と第二基材とを溶着することによってシール部を形成し、第一電極および第二電極の所定の部分を封止および絶縁する工程を有する電気モジュールの製造方法が開示されている。   For example, in Patent Document 1, ultrasonic vibration is applied to predetermined portions of the first electrode and the second electrode facing each other, and a seal portion is formed by welding the first base material and the second base material, A method of manufacturing an electric module having a step of sealing and insulating predetermined portions of the first electrode and the second electrode is disclosed.

国際公開第2014/030736号International Publication No. 2014/0303076

RtoR方式を用いた色素増感太陽電池などの電気モジュールの製造においては、触媒層としてp−トルエンスルホン酸をドープしたポリ(3,4−エチレンジオキシチオフェン(PEDOT)のように、封止材との剥離強度が比較的低い材質を用いる場合がある。その場合、特許文献1に開示されているように超音波融着によって第一電極および第二電極の所定の部分を封止および絶縁すると、色素増感太陽電池の動作不良が生じることがあった。   In the manufacture of electrical modules such as dye-sensitized solar cells using the RtoR method, a sealing material such as poly (3,4-ethylenedioxythiophene (PEDOT) doped with p-toluenesulfonic acid as a catalyst layer In such a case, if a predetermined portion of the first electrode and the second electrode is sealed and insulated by ultrasonic fusion as disclosed in Patent Document 1, In some cases, malfunction of the dye-sensitized solar cell may occur.

本発明者は、鋭意検討する中で、半導体層と触媒層とを対向させた状態で第一電極と第二電極とを重ね合わせ、超音波振動を付与すると、超音波付与部分の封止材が超音波付与部分の外方に押し出されることに着目した。また、本発明者は、超音波付与部分から押し出された封止材は、超音波付与部分に隣接する封止材や該封止材に密着している第一電極や第二電極を押圧するとともに、超音波付与部分に隣接する封止材と第一電極/第二電極との界面に押し入りやすいことにも着目した。そして、本発明者は、超音波付与部分から押し出された封止材によって超音波付与部分に隣接する封止材が第一電極/第二電極から剥離することで、封止材と第一電極/第二電極との間に空隙が生じ、封止材を挟んで隣り合う電解質同士が接触する、あるいは電解質が封止材同士の間の配線に接触し、色素増感太陽電池の動作不良が生じるとの知見、および所定以上の剥離強度で封止材と該封止材に隣接する構造(すなわち、第一電極および第二電極)とを貼り合わせることで超音波付与部分に隣接する封止材が第一電極/第二電極から剥離することを抑えられるとの知見を見出し、本発明に至った。   The present inventor has conducted an intensive study, superposing the first electrode and the second electrode in a state where the semiconductor layer and the catalyst layer are opposed to each other, and applying ultrasonic vibration, thereby sealing the ultrasonic wave application portion. It was noted that was pushed out of the ultrasonic wave application part. Further, the present inventor presses the sealing material extruded from the ultrasonic wave application portion against the sealing material adjacent to the ultrasonic wave application portion or the first electrode and the second electrode that are in close contact with the sealing material. At the same time, attention was paid to the fact that the sealing material adjacent to the ultrasonic wave application portion and the interface between the first electrode and the second electrode are easily pushed into. And this inventor is the sealing material and 1st electrode because the sealing material adjacent to an ultrasonic application part peels from a 1st electrode / 2nd electrode by the sealing material extruded from the ultrasonic application part. / A gap is formed between the second electrode and the electrolytes adjacent to each other with the sealing material in between, or the electrolyte contacts the wiring between the sealing materials, resulting in malfunction of the dye-sensitized solar cell. Sealing adjacent to the ultrasonic wave application portion by bonding the sealing material and the structure adjacent to the sealing material (that is, the first electrode and the second electrode) with the knowledge that they occur and a peel strength of a predetermined level or more The inventors have found that the material can be prevented from peeling from the first electrode / second electrode, and have reached the present invention.

本発明は、上述の事情を鑑みてなされたものであり、動作不良の発生を良好に防止する電気モジュールおよび電気モジュールの製造方法を提供する。   The present invention has been made in view of the above-described circumstances, and provides an electrical module and a method for manufacturing the electrical module that can prevent occurrence of malfunctions.

本発明に係る電気モジュールは、第一電極と、前記第一電極と間隔をあけて対向する第二電極と、前記第一電極と前記第二電極との間に設けられた電解質と、を備え、前記第一電極は、第一基材と、前記第一基材における前記第二電極側の面に設けられた第一導電膜と、前記第一導電膜における前記第二電極側の面の半導体層配置領域に設けられた半導体層と、を有し、前記第二電極は、第二基材と、前記第二基材における前記第一電極側の面に設けられた第二導電膜と、前記第二導電膜における前記第一電極側の面の少なくとも一部に設けられた触媒層と、を有し、前記電解質は前記第一電極と前記第二電極との間に設けられた封止材および前記第一基材と前記第二基材とが貼り合わされたシール部によって封止され、前記第一電極と前記封止材との剥離強度および前記第二電極と前記封止材との剥離強度が0.05kgf/10mm以上であることを特徴とする。   An electrical module according to the present invention includes a first electrode, a second electrode facing the first electrode with a space therebetween, and an electrolyte provided between the first electrode and the second electrode. The first electrode includes a first base material, a first conductive film provided on the second electrode side surface of the first base material, and a second electrode side surface of the first conductive film. A semiconductor layer provided in the semiconductor layer arrangement region, wherein the second electrode is a second base material, and a second conductive film provided on the first electrode side surface of the second base material, A catalyst layer provided on at least a part of the surface of the second conductive film on the first electrode side, and the electrolyte is provided between the first electrode and the second electrode. Sealed by a sealing portion in which the stopper and the first base material and the second base material are bonded together, the first electrode and the Peel strength between the peel strength and the second electrode and the sealing material between the sealing material is characterized in that at 0.05 kgf / 10 mm or more.

上述の構成によれば、第一電極と封止材との剥離強度および第二電極と封止材との剥離強度が0.05kgf/10mm以上であるので、封止材が第一電極および第二電極と良好に密着し、封止材が第一電極および第二電極から剥離し難くなっている。そのため、シール部を形成するために超音波が付与される超音波付与部分から押し出された封止材が超音波付与部分に隣接する部分の封止材を第一電極および第二電極に沿った方向から押圧する、また超音波付与部分に隣接する封止材と第一電極および第二電極との界面に押し入ろうとしても、封止材と第一電極/第二電極との剥離や封止材と第一電極/第二電極との間に空隙が生じ難くなる。したがって、封止材を挟んで隣り合う電解質同士が接触すること、および電解質が封止材同士の間の配線に接触することを防止し、色素増感太陽電池の動作不良の発生を防ぐことができる。   According to the above configuration, since the peel strength between the first electrode and the sealing material and the peel strength between the second electrode and the sealing material are 0.05 kgf / 10 mm or more, the sealing material is the first electrode and the first electrode. The two electrodes are satisfactorily adhered, and the sealing material is difficult to peel off from the first electrode and the second electrode. Therefore, the sealing material extruded from the ultrasonic wave application portion to which ultrasonic waves are applied to form the seal portion is arranged along the first electrode and the second electrode at the portion adjacent to the ultrasonic wave application portion. Even if an attempt is made to push into the interface between the first electrode and the second electrode that is pressed from the direction and adjacent to the ultrasonic wave application portion, the sealing material and the first electrode / second electrode are separated or sealed. It becomes difficult to generate a gap between the material and the first electrode / second electrode. Therefore, it is possible to prevent the electrolytes adjacent to each other across the sealing material, and the electrolyte from contacting the wiring between the sealing materials, and prevent the malfunction of the dye-sensitized solar cell. it can.

上述の電気モジュールでは、前記触媒層は前記第二導電膜における前記第一電極側の面全体に設けられていてもよい。   In the electric module described above, the catalyst layer may be provided on the entire surface of the second conductive film on the first electrode side.

上述の構成によれば、第二導電膜における第一電極側の面の構成がそろっているので、第二電極の製造工程が簡易になり、第二電極および電気モジュールが容易に得られる。   According to the above-described configuration, since the configuration of the surface on the first electrode side in the second conductive film is uniform, the manufacturing process of the second electrode is simplified, and the second electrode and the electric module can be easily obtained.

上述の電気モジュールでは、前記触媒層は前記シール部に設けられていなくてもよい。   In the electric module described above, the catalyst layer may not be provided on the seal portion.

触媒層として、例えば電気モジュールに多用されるp−トルエンスルホン酸をドープしたポリ(3,4−エチレンジオキシチオフェン)(PEDOT)のように、封止材との剥離強度が比較的低い材質が用いられる場合がある。このような場合でも、上述の構成によれば、触媒層はシール部に設けられていないので、シール部では封止材が第一電極および第二電極(すなわち、第一導電膜および第二導電膜)と良好に密着可能になる。そのため、超音波付与部分において第一電極および第二電極に対して超音波振動が付与されても、超音波付与部分の封止材は、第一電極および第二電極から剥離し難くなり、超音波付与部分から押し出され難くなる。そのため、超音波付与部分に隣接する封止材は、第一電極および第二電極から剥離し難くなり、超音波付与部分に隣接する封止材が第一電極および第二電極と良好に密着した状態が保持される。また、封止材と第一電極および第二電極との間に空隙が生じ難くなる。   As the catalyst layer, for example, a material having a relatively low peel strength from the sealing material, such as poly (3,4-ethylenedioxythiophene) (PEDOT) doped with p-toluenesulfonic acid frequently used in electric modules. May be used. Even in such a case, according to the above-described configuration, since the catalyst layer is not provided in the seal portion, the sealing material is the first electrode and the second electrode (that is, the first conductive film and the second conductive material) in the seal portion. Film). Therefore, even if ultrasonic vibration is applied to the first electrode and the second electrode in the ultrasonic wave application portion, the sealing material of the ultrasonic wave application portion is difficult to peel off from the first electrode and the second electrode. It becomes difficult to be pushed out from the sound wave application portion. Therefore, the sealing material adjacent to the ultrasonic wave application portion is difficult to peel off from the first electrode and the second electrode, and the sealing material adjacent to the ultrasonic wave application portion is in good contact with the first electrode and the second electrode. State is maintained. Moreover, it becomes difficult to produce a space | gap between a sealing material, a 1st electrode, and a 2nd electrode.

上述の電気モジュールでは、前記触媒層は前記封止材の位置に設けられていなくてもよい。   In the above electric module, the catalyst layer may not be provided at the position of the sealing material.

上述の構成によれば、封止材は、触媒層に接しないので、第一電極および第二電極(すなわち、第一導電膜および第二導電膜)と良好に密着可能になる。したがって、触媒層の材質として封止材との剥離強度が比較的低い材質が用いられ、超音波付与部分において第一電極および第二電極に対して超音波振動が付与されても、超音波付与部分の封止材および超音波付与部分に隣接する封止材は、第一電極および第二電極から剥離し難くなり、超音波付与部分に隣接する封止材が第一電極および第二電極と良好に密着した状態が保持される。また、封止材と第一電極および第二電極との間に空隙が生じ難くなる。   According to the above-described configuration, the sealing material does not contact the catalyst layer, and thus can be satisfactorily adhered to the first electrode and the second electrode (that is, the first conductive film and the second conductive film). Therefore, a material having a relatively low peel strength from the sealing material is used as the material of the catalyst layer, and even if ultrasonic vibration is applied to the first electrode and the second electrode in the ultrasonic wave application portion, ultrasonic wave application is performed. The sealing material adjacent to the part sealing material and the ultrasonic wave application part is difficult to peel off from the first electrode and the second electrode, and the sealing material adjacent to the ultrasonic wave application part is separated from the first electrode and the second electrode. Good adhesion is maintained. Moreover, it becomes difficult to produce a space | gap between a sealing material, a 1st electrode, and a 2nd electrode.

上述の電気モジュールでは、前記封止材の幅が0.3mm以上7mm以下であってもよい。   In the electric module described above, the width of the sealing material may be not less than 0.3 mm and not more than 7 mm.

一般に封止材の幅が小さくなるほど、封止材と第一電極および第二電極との間に空隙が形成される頻度、すなわち電解液の液漏れが発生する頻度は高くなる。一方、封止材の幅が充分に大きければ、超音波付与部分から押し出された封止材によって超音波付与部分に隣接する封止材と第一電極および第二電極との密着度が弱まっても、幅方向中央の封止材と第一導電膜/触媒層との密着は保持され、色素増感太陽電池の動作不良が生じる可能性は減じられる。上述の構成によれば、封止材の幅が0.3mm以上7mm以下であっても、第一電極と封止材との剥離強度および第二電極と封止材との剥離強度が0.05kgf/10mm未満である場合に比べ、封止材が第一電極および第二電極から剥離し難く、封止材と第一電極および第二電極との間に空隙が生じ難くなるという効果が高まる。   Generally, the smaller the width of the sealing material, the higher the frequency with which voids are formed between the sealing material and the first electrode and the second electrode, that is, the frequency with which electrolyte leakage occurs. On the other hand, if the width of the sealing material is sufficiently large, the degree of adhesion between the sealing material adjacent to the ultrasonic wave application portion and the first electrode and the second electrode is weakened by the sealing material extruded from the ultrasonic wave application portion. However, the close contact between the sealing material at the center in the width direction and the first conductive film / catalyst layer is maintained, and the possibility of malfunction of the dye-sensitized solar cell is reduced. According to the above-described configuration, even when the width of the sealing material is 0.3 mm or more and 7 mm or less, the peel strength between the first electrode and the sealant and the peel strength between the second electrode and the sealant are 0. Compared with the case where the thickness is less than 05 kgf / 10 mm, the sealing material is less likely to be peeled off from the first electrode and the second electrode, and the effect that voids are less likely to occur between the sealing material and the first electrode and the second electrode is enhanced. .

本発明に係る電気モジュールの製造方法は、上述の電気モジュールを製造する電気モジュールの製造方法であって、前記第一電極と間隔をあけて前記第二電極を対向させ、前記第一電極の前記第一導電膜における前記第二電極側の面の電解質配置領域に前記電解質を設ける工程と、前記第一電極の前記第一導電膜における前記第二電極側の面の前記電解質配置領域とは異なる部分に封止材を設ける工程と、前記第一電極と前記封止材とを貼り合わせるとともに前記第二電極と前記封止材とを貼り合わせ、前記第一電極と前記封止材との剥離強度および前記第二電極と前記封止材との剥離強度を0.05kgf/10mm以上とする工程と、所定の位置で前記第一基材と前記第二基材とを貼り合わせて前記シール部を形成する工程と、を備えていることを特徴とする。   An electrical module manufacturing method according to the present invention is an electrical module manufacturing method for manufacturing the above-described electrical module, wherein the second electrode is opposed to the first electrode with a gap therebetween, and the first electrode The step of providing the electrolyte in the electrolyte arrangement region on the second electrode side surface of the first conductive film is different from the electrolyte arrangement region on the second electrode side surface of the first conductive film of the first electrode. A step of providing a sealing material on the part, and bonding the first electrode and the sealing material together, bonding the second electrode and the sealing material, and peeling the first electrode and the sealing material The step of setting the strength and the peel strength between the second electrode and the sealing material to 0.05 kgf / 10 mm or more, and bonding the first base material and the second base material at a predetermined position to form the seal portion Forming a step, And wherein the Rukoto.

上述の構成によれば、第一電極と封止材との剥離強度および第二電極と封止材との剥離強度を0.05kgf/10mm以上とするので、封止材が第一電極または第二電極と良好に密着可能になる。したがって、上述のように、封止材が第一電極および第二電極から剥離し難く、封止材と第一電極および第二電極との間に空隙が生じ難くなる。したがって、封止材を挟んで隣り合う電解質同士が接触すること、および電解質が封止材同士の間の配線に接触することを防止し、色素増感太陽電池の動作不良を防ぐことができる。   According to the configuration described above, the peel strength between the first electrode and the sealing material and the peel strength between the second electrode and the sealing material are 0.05 kgf / 10 mm or more. Good contact with the two electrodes becomes possible. Therefore, as described above, the sealing material is hardly peeled off from the first electrode and the second electrode, and a gap is hardly generated between the sealing material and the first electrode and the second electrode. Therefore, it can prevent that electrolytes adjacent on both sides of a sealing material contact and the electrolyte contact the wiring between sealing materials, and can prevent the malfunction of a dye-sensitized solar cell.

本発明に係る電気モジュール及び電気モジュールの製造方法によれば、動作不良の発生を良好に防止することができる。   According to the electric module and the method for manufacturing the electric module according to the present invention, it is possible to satisfactorily prevent the occurrence of malfunction.

本発明を適用した第一実施形態の電気モジュールの構成を示す平面図である。It is a top view which shows the structure of the electric module of 1st embodiment to which this invention is applied. 本発明を適用した第一実施形態の電気モジュールの構成を示す図であり、図1に示すXA−XA線で矢視した断面図である。It is a figure which shows the structure of the electric module of 1st embodiment to which this invention is applied, and is sectional drawing seen by the XA-XA line | wire shown in FIG. 本発明を適用した第一実施形態の電気モジュールの構成を示す図であり、図1に示すY−Y線で矢視した断面図である。It is a figure which shows the structure of the electric module of 1st embodiment to which this invention is applied, and is sectional drawing seen by the arrow at the YY line shown in FIG. 本発明を適用した第一実施形態の電気モジュールの製造装置の概略側面図である。It is a schematic side view of the electric module manufacturing apparatus of the first embodiment to which the present invention is applied. 本発明を適用した第一実施形態の電気モジュールの製造方法における絶縁処理を行う前の状態を示す斜視図である。It is a perspective view which shows the state before performing the insulation process in the manufacturing method of the electric module of 1st embodiment to which this invention is applied. 本発明を適用した第一実施形態の電気モジュールの製造方法における絶縁処理を行う前の状態を示す断面図である。It is sectional drawing which shows the state before performing the insulation process in the manufacturing method of the electric module of 1st embodiment to which this invention is applied. 本発明を適用した第一実施形態の電気モジュールの製造方法における絶縁処理を行っている途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of performing the insulation process in the manufacturing method of the electric module of 1st embodiment to which this invention is applied. 本発明を適用した第二実施形態の電気モジュールの構成を示す平面図である。It is a top view which shows the structure of the electric module of 2nd embodiment to which this invention is applied. 本発明を適用した第二実施形態の電気モジュールの構成を示す図であり、図8に示すXB−XB線で矢視した断面図である。It is a figure which shows the structure of the electric module of 2nd embodiment to which this invention is applied, and is sectional drawing seen from the XB-XB line | wire shown in FIG.

以下、本発明を適用した電気モジュールおよび電気モジュールの製造方法の実施形態について、図面を参照して説明する。なお、以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率などは実際のものと同一とは限らず、適宜変更することができる。   Embodiments of an electric module and an electric module manufacturing method to which the present invention is applied will be described below with reference to the drawings. The drawings used in the following description are schematic, and the length, width, thickness ratio, and the like are not necessarily the same as actual ones, and can be changed as appropriate.

以下では、本発明に係る電気モジュールの一例として、RtoR方式を用いて製造されるフィルム型の色素増感太陽電池を挙げて、説明する。
なお、本発明を適用した電気モジュールは、色素増感太陽電池に限定されず、封止材を介在させて所定の二枚の電極同士を貼り合わせ、貼り合わせた電極の外方から何らかの方法で力を加える、または押圧することによって絶縁処理が施されるものであればよく、色素増感太陽電池以外の電気モジュールを全て含んでいる。また、本発明に係る電気モジュールは、RtoR方式を用いて製造されるもの、すなわち基材を所定の方向に搬送しつつ、連続的に製造されるものに限定されず、予め切り分けられた基材毎にセル構造が形成されるものも含んでいる。
Hereinafter, as an example of the electric module according to the present invention, a film type dye-sensitized solar cell manufactured using the RtoR method will be described and described.
The electric module to which the present invention is applied is not limited to a dye-sensitized solar cell, and a predetermined two electrodes are bonded to each other with a sealing material interposed therebetween. Any electrical module other than the dye-sensitized solar cell may be used as long as the insulation treatment is performed by applying force or pressing. In addition, the electrical module according to the present invention is not limited to one manufactured using the RtoR method, that is, continuously manufactured while transporting the base material in a predetermined direction. This includes a cell structure formed every time.

(第一実施形態)
[電気モジュールの構成]
図1及び図2に示すように、本発明を適用した第一実施形態の色素増感太陽電池(電気モジュール)20Aは、第一電極21と、第一電極21と間隔をあけて対向する第二電極22と、第一電極21と第二電極22との間に設けられた封止材9と、電解液(電解質)15と、を備えている。
(First embodiment)
[Configuration of electrical module]
As shown in FIGS. 1 and 2, a dye-sensitized solar cell (electric module) 20 </ b> A according to the first embodiment to which the present invention is applied has a first electrode 21 and a first electrode 21 facing the first electrode 21 with a gap. A two-electrode 22, a sealing material 9 provided between the first electrode 21 and the second electrode 22, and an electrolytic solution (electrolyte) 15 are provided.

第一電極21は、第一基材1と、第一基材1における第二電極22側の面1aに設けられた第一導電膜3と、第一導電膜3における第二電極22側の面3aに設けられた半導体層10と、を有している。   The first electrode 21 includes the first base material 1, the first conductive film 3 provided on the surface 1 a on the second electrode 22 side of the first base material 1, and the second electrode 22 side of the first conductive film 3. And a semiconductor layer 10 provided on the surface 3a.

第一基材1は、第一導電膜3、配線7、封止材9の基台となる部材である。第一基材1は、RtoR方式を用いた太陽電池の連続生産に適用できる適度な柔軟性を有し、大面積フィルム状に形成可能な材質であれば特に限定されない。第一基材1としては、例えば、ポリエチレンテレフタレート(PET)、アクリル、ポリカーボネート、ポリエチレンナフタレート(PEN)、ポリイミドなどの透明の樹脂材料が挙げられる。   The first base material 1 is a member that serves as a base for the first conductive film 3, the wiring 7, and the sealing material 9. The 1st base material 1 will not be specifically limited if it has the moderate softness | flexibility applicable to the continuous production of the solar cell using a RtoR system, and can be formed in a large area film form. Examples of the first substrate 1 include transparent resin materials such as polyethylene terephthalate (PET), acrylic, polycarbonate, polyethylene naphthalate (PEN), and polyimide.

第一導電膜3は、第一基材1における第二電極22側の面1aの全体に亘って成膜されている。第一導電膜3としては、例えば、酸化スズ(ITO)、酸化亜鉛などが挙げられる。なお、製造対象の色素増感太陽電池の構成に応じて、第一基材1における第二電極22側の面1aには、適宜絶縁処理が施されていてもよい。また、第一導電膜3や上述の絶縁処理は、第一基材1における第二電極22側の面1aに沿って非連続的に形成されていても構わない。   The first conductive film 3 is formed over the entire surface 1 a on the second electrode 22 side of the first base material 1. Examples of the first conductive film 3 include tin oxide (ITO) and zinc oxide. In addition, according to the structure of the dye-sensitized solar cell to be manufactured, the surface 1a on the second electrode 22 side of the first base material 1 may be appropriately subjected to insulation treatment. The first conductive film 3 and the above-described insulation treatment may be formed discontinuously along the surface 1a on the second electrode 22 side of the first base material 1.

半導体層10は、第一導電膜3における第二電極22側の面3aの電解質配置領域R1内に形成されている。電解質配置領域R1は、第一基材1の搬送方向(所定の方向)P1及び搬送方向P1に直交する第一基材1における幅方向P2において、互いに間隔を空けて設けられている。以下、搬送方向P1において、始点側を上流側とし、終点側を下流側として説明する。   The semiconductor layer 10 is formed in the electrolyte arrangement region R1 of the surface 3a on the second electrode 22 side in the first conductive film 3. Electrolyte arrangement | positioning area | region R1 is provided at intervals in the conveyance direction (predetermined direction) P1 of the 1st base material 1, and the width direction P2 in the 1st base material 1 orthogonal to the conveyance direction P1. Hereinafter, in the transport direction P1, the start point side is described as the upstream side, and the end point side is described as the downstream side.

半導体層10は、例えば、増感色素から電子を受け取り輸送する機能を有する金属酸化物からなる多孔質層に増感色素が担持されることで所謂染色された状態で形成されている。このような金属酸化物としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)などが挙げられる。 The semiconductor layer 10 is formed in a so-called dyed state by, for example, supporting a sensitizing dye on a porous layer made of a metal oxide having a function of receiving and transporting electrons from the sensitizing dye. Examples of such metal oxides include titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ).

上述の増感色素は、有機色素または金属錯体色素で構成されている。有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系などの各種有機色素などが挙げられる。金属錯体色素としては、例えば、ルテニウム錯体などが挙げられる。   The above-described sensitizing dye is composed of an organic dye or a metal complex dye. Examples of organic dyes include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene. Examples of the metal complex dye include a ruthenium complex.

第二電極22は、第二基材6と、第二基材6における第一電極21側の面6aに設けられた第二導電膜8と、第二導電膜8における第一電極21側の面8aの少なくとも一部に設けられた触媒層16と、を有している。   The second electrode 22 includes the second base 6, the second conductive film 8 provided on the first electrode 21 side surface 6 a of the second base 6, and the first electrode 21 side of the second conductive film 8. And a catalyst layer 16 provided on at least a part of the surface 8a.

第二基材6は、第二導電膜8、触媒層16の基台となる部材である。第二基材6は、第一基材1と同様に、RtoR方式を用いた太陽電池の連続生産に適用できる適度な柔軟性を有し、大面積フィルム状に形成可能な材質であれば特に限定されない。第二基材6としては、第一基材1と同様の樹脂材料が挙げられる。   The second substrate 6 is a member that becomes a base for the second conductive film 8 and the catalyst layer 16. As with the first base material 1, the second base material 6 has an appropriate flexibility that can be applied to continuous production of solar cells using the RtoR method, and is particularly a material that can be formed into a large-area film. It is not limited. As the 2nd base material 6, the resin material similar to the 1st base material 1 is mentioned.

第二導電膜8は、第二基材6における第一電極21側の面6aの全体に亘って成膜されている。第二導電膜8としては、第一導電膜3と同様の化合物などが挙げられる。なお、製造対象の色素増感太陽電池の構成に応じて、第二基材6における第一電極21側の面6aには、適宜絶縁処理が施されていてもよい。また、第二導電膜8や上述の絶縁処理は、第二基材6における第一電極21側の面6aに沿って非連続的に形成されていても構わない。   The second conductive film 8 is formed over the entire surface 6 a on the first electrode 21 side of the second base material 6. Examples of the second conductive film 8 include the same compounds as the first conductive film 3. In addition, according to the structure of the dye-sensitized solar cell to be manufactured, the surface 6a on the first electrode 21 side of the second base material 6 may be appropriately subjected to insulation treatment. In addition, the second conductive film 8 and the above-described insulation treatment may be formed discontinuously along the surface 6 a on the first electrode 21 side in the second base material 6.

触媒層16は、第二導電膜8における第一電極21側の面8aの全体に亘って形成されている。触媒層16としては、PEDOT、プラチナ、ITO、ポリアニリン、カーボンなどが挙げられる。   The catalyst layer 16 is formed over the entire surface 8 a of the second conductive film 8 on the first electrode 21 side. Examples of the catalyst layer 16 include PEDOT, platinum, ITO, polyaniline, and carbon.

幅方向P2において、第一電極21の第一導電膜3における第二電極22側の面3aに設けられた半導体層10に隣り合うように、電解質配置領域R1とは異なる領域R2に互いに間隔をあけて封止材9,9が設けられている。封止材9の幅は、電解質配置領域R1の幅や封止材9の材質などを勘案して適切に設定されているが、例えば0.3mm以上7mm以下であることが好ましく、5mm以下であることがより好ましい。封止材9の幅が0.3mm以上であることで、幅方向P2において封止材9を挟んで隣り合う電解液15と配線7とが良好に離間される。また、封止材9の幅が7mm以下であることで、色素増感太陽電池20Aの大型化が抑えられる。   In the width direction P <b> 2, the region R <b> 2 different from the electrolyte disposition region R <b> 1 is spaced from each other so as to be adjacent to the semiconductor layer 10 provided on the surface 3 a on the second electrode 22 side of the first conductive film 3 of the first electrode 21. Sealing materials 9, 9 are provided. The width of the sealing material 9 is appropriately set in consideration of the width of the electrolyte arrangement region R1, the material of the sealing material 9, and the like, but is preferably 0.3 mm or more and 7 mm or less, for example, 5 mm or less. More preferably. When the width of the sealing material 9 is 0.3 mm or more, the adjacent electrolytic solution 15 and the wiring 7 are favorably separated with the sealing material 9 interposed therebetween in the width direction P2. Moreover, the enlargement of 20 A of dye-sensitized solar cells is suppressed because the width | variety of the sealing material 9 is 7 mm or less.

封止材9は、第一電極21と第二電極22とを貼り合わせて接着するための樹脂などを含む。封止材9としては、例えば熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂のうち少なくとも一種を含む樹脂材料が挙げられる。なお、第一電極21と封止材9との剥離強度および第二電極22と封止材9との剥離強度を0.05kgf/10mm以上とすることをふまえ、封止材9を構成する素材は、封止材9に密着する第一導電膜3および触媒層16のそれぞれの材質に合わせて適当に決められていることが好ましい。   The sealing material 9 includes a resin or the like for bonding and bonding the first electrode 21 and the second electrode 22 together. Examples of the sealing material 9 include a resin material including at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin. In addition, the material which comprises the sealing material 9 considering that the peeling strength of the 1st electrode 21 and the sealing material 9 and the peeling strength of the 2nd electrode 22 and the sealing material 9 shall be 0.05 kgf / 10mm or more. Is preferably determined in accordance with the respective materials of the first conductive film 3 and the catalyst layer 16 that are in close contact with the sealing material 9.

幅方向P2において、領域R2に配されている封止材9同士の間には、配線7が設けられている。配線7は、半導体層10と触媒層16とを含む複数のセル構造C同士を接続するための導電構造である。配線7としては、導通可能な素材であれば特に限定されず、例えば、公知の導電材、導電ペースト、導電性微粒子と接着剤の混合物などが挙げられる。なお、配線7には、封止材9と同様の材料からなるバインダーを用いてもよい。なお、色素増感太陽電池20Aを所望のパターンで切り出す際に配線7を容易に切断可能とする観点から、配線7としては、例えばエポキシ樹脂やフェノール樹脂などの接着剤に適量の導電粒子を混合した導通ペーストが好ましい。   In the width direction P2, wirings 7 are provided between the sealing materials 9 arranged in the region R2. The wiring 7 is a conductive structure for connecting a plurality of cell structures C including the semiconductor layer 10 and the catalyst layer 16. The wiring 7 is not particularly limited as long as it is a conductive material, and examples thereof include a known conductive material, conductive paste, a mixture of conductive fine particles and an adhesive. Note that a binder made of the same material as the sealing material 9 may be used for the wiring 7. From the viewpoint of easily cutting the wiring 7 when the dye-sensitized solar cell 20A is cut out in a desired pattern, as the wiring 7, for example, an appropriate amount of conductive particles is mixed in an adhesive such as epoxy resin or phenol resin. Conductive paste is preferred.

色素増感太陽電池20Aには、上述の第一電極21と第二電極22とが貼り合わされたシール部25が設けられている。
図3に示すように、シール部25は、例えば超音波融着のように第一電極21および第二電極22の外方から例えば超音波融着などの方法を用いて厚み方向に力を加える、または押圧することによって、第一基材1および第二基材6が直接圧着し、電気的に絶縁された部分である。なお、図示していないが、第一基材1と第二基材6との間に、僅かに第一導電膜3、第二導電膜8、半導体層10、電解液(電解質)15および触媒層16が介在している場合があるが、これらはシール部25において分断され、シール部25に隣接する空間S同士を接続するものではない。
The dye-sensitized solar cell 20A is provided with a seal portion 25 in which the first electrode 21 and the second electrode 22 are bonded together.
As shown in FIG. 3, the seal portion 25 applies a force in the thickness direction from the outside of the first electrode 21 and the second electrode 22 using a method such as ultrasonic fusion, for example, as in ultrasonic fusion. Or the first base material 1 and the second base material 6 are directly pressed and electrically insulated by pressing. In addition, although not shown in figure, between the 1st base material 1 and the 2nd base material 6, the 1st electrically conductive film 3, the 2nd electrically conductive film 8, the semiconductor layer 10, electrolyte solution (electrolyte) 15, and a catalyst slightly Although the layer 16 may be interposed, these are divided at the seal portion 25 and do not connect the spaces S adjacent to the seal portion 25.

封止材9とシール部25とで囲まれた電解質配置領域R1の空間Sには、電解液(電解質)15が封止されている。
電解液15としては、例えば、アセトニトリル、ヨウ化ジメチルプロピルイミダゾリウム又はヨウ化ブチルメチルイミダゾリウムなどのイオン液体などの液体成分に、ヨウ化リチウムなどの支持電解質とヨウ素とが混合された溶液(具体的には、プロピオニトリルなどの非水系溶剤)などが挙げられる。
An electrolyte solution (electrolyte) 15 is sealed in the space S of the electrolyte arrangement region R1 surrounded by the sealing material 9 and the seal portion 25.
Examples of the electrolytic solution 15 include a solution in which a supporting electrolyte such as lithium iodide and iodine are mixed in a liquid component such as ionic liquid such as acetonitrile, dimethylpropylimidazolium iodide, or butylmethylimidazolium iodide (specifically, Specifically, non-aqueous solvents such as propionitrile).

色素増感太陽電池20Aは、封止材9における第二電極22側の面9aが触媒層16における第一電極21側の面16aに当接し、封止材9における第一電極21側の面9bが第一導電膜3における第二電極22側の面3aに当接している。
第一電極21の第一導電膜3と封止材9との剥離強度および第二電極22の触媒層16と封止材9との剥離強度は、少なくとも0.05kgf/10mm以上1kgf/10mm以下とされており、0.1kg/10mm以上1kgf/10mm以下であることが好ましく、0.2kg/10mm以上1kgf/10mm以下であることがより好ましい。第一電極21の第一導電膜3と封止材9との剥離強度および第二電極22の触媒層16と封止材9との剥離強度が0.05kgf/10mm以上であることにより、超音波融着を行う場合でも、融着される部分近傍における封止材の破壊または剥離を防止することができる。また、第一電極21の第一導電膜3と封止材9との剥離強度および第二電極22の触媒層16と封止材9との剥離強度が0.05kgf/10mmより大きくなると、封止材の硬度が上昇し、フレキシブル性が損なわれる虞、または色素増感太陽電池20Aの屈曲時に第一導電膜3等にダメージが入る虞がある。
In the dye-sensitized solar cell 20 </ b> A, the surface 9 a on the second electrode 22 side in the sealing material 9 abuts on the surface 16 a on the first electrode 21 side in the catalyst layer 16, and the surface on the first electrode 21 side in the sealing material 9. 9b is in contact with the surface 3a of the first conductive film 3 on the second electrode 22 side.
The peel strength between the first conductive film 3 and the sealing material 9 of the first electrode 21 and the peel strength between the catalyst layer 16 and the sealing material 9 of the second electrode 22 are at least 0.05 kgf / 10 mm to 1 kgf / 10 mm. It is preferably 0.1 kg / 10 mm or more and 1 kgf / 10 mm or less, and more preferably 0.2 kg / 10 mm or more and 1 kgf / 10 mm or less. When the peel strength between the first conductive film 3 and the sealing material 9 of the first electrode 21 and the peel strength between the catalyst layer 16 and the sealing material 9 of the second electrode 22 are 0.05 kgf / 10 mm or more, Even when sonic fusion is performed, the sealing material can be prevented from being broken or peeled off in the vicinity of the portion to be fused. Further, when the peel strength between the first conductive film 3 and the sealing material 9 of the first electrode 21 and the peel strength between the catalyst layer 16 and the sealing material 9 of the second electrode 22 are larger than 0.05 kgf / 10 mm, the sealing is performed. There is a possibility that the hardness of the stopper increases and the flexibility is impaired, or the first conductive film 3 and the like may be damaged when the dye-sensitized solar cell 20A is bent.

[電気モジュールの製造方法]
本発明を適用した電気モジュールの製造方法は、図4に例示する製造装置30等を用いて所定の方向P1に沿って連続的に搬送される第一電極21と所定の方向P3に沿って連続的に搬送される第二電極22とを貼り合わせることにより製造可能な色素増感太陽電池20Aの製造方法である。
[Manufacturing method of electrical module]
The manufacturing method of the electric module to which the present invention is applied is continuous along the predetermined direction P3 with the first electrode 21 continuously conveyed along the predetermined direction P1 using the manufacturing apparatus 30 illustrated in FIG. It is a manufacturing method of 20 A of dye-sensitized solar cells which can be manufactured by bonding together the 2nd electrode 22 conveyed automatically.

色素増感太陽電池20Aの製造方法は、第一電極21と間隔をあけて第二電極22を対向させ、第一電極21の第一導電膜3における第二電極22側の面3aの電解質配置領域R1に電解液15を設ける工程と、第一電極21の第一導電膜3における第二電極22側の面3aの電解質配置領域R1とは異なる領域R2に封止材を設ける工程と、第一電極21と第二電極22とを重ね合わせ、第一電極21と封止材9とを貼り合わせるとともに第二電極22と封止材9とを貼り合わせ、第一電極21と封止材9との剥離強度および第二電極22と封止材9との剥離強度を0.05kgf/10mm以上とする工程と、所定の位置F25で第一基材1と第二基材6とを貼り合わせてシール部25を形成する工程と、を備えている。
以下、上述の各工程について、図4を参照し、説明する。
In the method of manufacturing the dye-sensitized solar cell 20A, the second electrode 22 is opposed to the first electrode 21 with a space therebetween, and the electrolyte arrangement of the surface 3a on the second electrode 22 side of the first conductive film 3 of the first electrode 21 is arranged. A step of providing the electrolytic solution 15 in the region R1, a step of providing a sealing material in a region R2 different from the electrolyte arrangement region R1 of the surface 3a on the second electrode 22 side of the first conductive film 3 of the first electrode 21, The first electrode 21 and the second electrode 22 are overlapped, the first electrode 21 and the sealing material 9 are bonded together, the second electrode 22 and the sealing material 9 are bonded together, and the first electrode 21 and the sealing material 9 are bonded together. And the step of setting the peel strength between the second electrode 22 and the sealing material 9 to 0.05 kgf / 10 mm or more, and bonding the first base material 1 and the second base material 6 at a predetermined position F25 And a step of forming the seal portion 25.
Hereinafter, each process described above will be described with reference to FIG.

まず、不図示のRtoR方式を用いた装置を用いて、第一基材1を所定の方向に沿って連続的に搬送しながら、公知のスパッタリング法や印刷法等により、第一基材1において所定の方向P1に沿って第二電極22に対向する面1aに第一導電膜3を形成する。続いて、公知のエアロゾルデポジション法(Aerosol Deposition method:AD法)等により、第一導電膜3において所定の方向P1に沿って第二電極22に対向する面3aの電解質配置領域R1内に酸化チタン等の金属酸化物からなる多孔質層を形成する。さらに、該多孔質層に増感色素を担持することで、半導体層10を形成する。このようにして面1aのそれぞれの所定の領域に第一導電膜3および半導体層10が形成された第一基材1を、面1aを外側に向けてロール状に巻き取り、ロール状の第一電極21とする。   First, using a device using an RtoR method (not shown), the first substrate 1 is conveyed by a known sputtering method or printing method while continuously conveying the first substrate 1 along a predetermined direction. The first conductive film 3 is formed on the surface 1a facing the second electrode 22 along a predetermined direction P1. Subsequently, oxidation is performed in the electrolyte arrangement region R1 of the surface 3a facing the second electrode 22 along the predetermined direction P1 in the first conductive film 3 by a known aerosol deposition method (Aerosol Deposition method: AD method) or the like. A porous layer made of a metal oxide such as titanium is formed. Furthermore, the semiconductor layer 10 is formed by carrying a sensitizing dye on the porous layer. In this way, the first base material 1 in which the first conductive film 3 and the semiconductor layer 10 are formed in each predetermined region of the surface 1a is wound up in a roll shape with the surface 1a facing outward, One electrode 21 is used.

不図示のRtoR方式を用いた装置を用いて、上述のロール状の第一電極21とは別途、第二基材6を所定の方向に沿って連続的に搬送しながら、公知のスパッタリング法や印刷法等により、第二基材6において所定の方向P3に沿って第一電極21に対向する面6aの全体に触媒層16を形成し、面6aを内側に向けてロール状に巻き取り、ロール状の第二電極22とする。   Using a device using an RtoR system (not shown), separately from the roll-shaped first electrode 21, while continuously transporting the second substrate 6 along a predetermined direction, a known sputtering method or By the printing method or the like, the catalyst layer 16 is formed on the entire surface 6a facing the first electrode 21 along the predetermined direction P3 in the second substrate 6, and the surface 6a is wound in a roll shape with the surface 6a facing inward. The second electrode 22 is a roll.

図4に示すように、製造装置30にロール状の第一電極21を設置し、第一電極21を所定の方向P1に巻き出し、巻き出した第一電極21の第一導電膜3に対して必要に応じて絶縁処理を施す。   As shown in FIG. 4, the roll-shaped 1st electrode 21 is installed in the manufacturing apparatus 30, the 1st electrode 21 is unwound in the predetermined | prescribed direction P1, and with respect to the 1st electrically conductive film 3 of the unwound 1st electrode 21 Apply insulation treatment if necessary.

次に、搬送ロール46を第一電極21における第一基材1の面1aとは反対側の面1bに当て、第一電極21を所定の方向P1に沿って搬送する。搬送ロール46に対向するように配置された電解液塗布装置32の塗布口から、電解液15の粘性や第一基材1の搬送速度等を勘案した適切な流量で電解液15を排出させ、第一導電膜3における第二電極22側の面3a側に設けられた半導体層10を含む電解質配置領域R1に電解液15を塗布する。   Next, the transport roll 46 is applied to the surface 1b of the first electrode 21 opposite to the surface 1a of the first substrate 1, and the first electrode 21 is transported along a predetermined direction P1. The electrolyte solution 15 is discharged at an appropriate flow rate taking into consideration the viscosity of the electrolyte solution 15, the conveyance speed of the first substrate 1, and the like, from the application port of the electrolyte solution application device 32 disposed so as to face the conveyance roll 46. The electrolyte solution 15 is applied to the electrolyte arrangement region R1 including the semiconductor layer 10 provided on the surface 3a side of the first conductive film 3 on the second electrode 22 side.

次に、所定の方向P1に沿って搬送される第一電極21に対して封止材塗布装置34の塗布口から、封止材9の粘性や第一電極21の搬送速度等を勘案した適切な流量で封止材9を排出させ、第一電極21の第一導電膜3における第二電極22側の面3aの所定の領域R2に封止材9を塗布する。   Next, the first electrode 21 transported along the predetermined direction P1 is appropriately taken into account from the coating port of the sealing material coating device 34, for example, the viscosity of the sealing material 9 and the transport speed of the first electrode 21. The sealing material 9 is discharged at a high flow rate, and the sealing material 9 is applied to a predetermined region R2 of the surface 3a on the second electrode 22 side of the first conductive film 3 of the first electrode 21.

次に、所定の方向P1に沿って搬送される第一電極21に対して配線形成装置36の配線材料排出口から、配線材料の粘性や第一基材1の搬送速度等を勘案した適切な流量で配線材料を排出させ、第一基材1の所定の領域に配線7を形成する。   Next, from the wiring material discharge port of the wiring forming device 36 to the first electrode 21 transported along the predetermined direction P1, the appropriateness considering the viscosity of the wiring material, the transport speed of the first base material 1, and the like are taken into account. The wiring material is discharged at a flow rate, and the wiring 7 is formed in a predetermined region of the first base material 1.

次に、製造装置30にロール状の第二電極22を設置し、第二電極22を所定の方向P3に巻き出し、巻き出した第二電極22の第二導電膜8および触媒層16に対して必要に応じて絶縁処理を施す。   Next, the roll-shaped second electrode 22 is installed in the manufacturing apparatus 30, the second electrode 22 is unwound in a predetermined direction P3, and the second conductive film 8 and the catalyst layer 16 of the unwound second electrode 22 are removed. Apply insulation treatment if necessary.

次に、第一押圧ロール60と下方に配置された第二押圧ロール62との間に、略水平な方向P1に沿って、電解液15、封止材9および配線7が設けられた第一電極21を導入するとともに、斜め上方の方向P3から第二電極22を導入し、第一電極21と第二電極22とを重ね合わせる。続いて、重ね合わせた第一電極21と第二電極22とを第一押圧ロール60と第二押圧ロール62との間を通過させ、第一電極21および第二電極22を互いに押圧する。   Next, the electrolyte solution 15, the sealing material 9, and the wiring 7 are provided along the substantially horizontal direction P1 between the 1st press roll 60 and the 2nd press roll 62 arrange | positioned below. While introducing the electrode 21, the 2nd electrode 22 is introduce | transduced from the diagonally upward direction P3, and the 1st electrode 21 and the 2nd electrode 22 are piled up. Subsequently, the overlapped first electrode 21 and second electrode 22 are passed between the first pressing roll 60 and the second pressing roll 62 to press the first electrode 21 and the second electrode 22 together.

押圧された状態の第一電極21および第二電極22に対して不図示のUVランプ等を用いて紫外線を照射するなどの方法により、封止材9を硬化させ、第一電極21と封止材9とを貼り合わせるとともに、第二電極22と封止材9とを貼り合わせる。この際、第一電極21と封止材9との剥離強度および第二電極22と封止材9との剥離強度を0.05kgf/10mm以上1kgf/10mm以下とする。上述のように、第一電極21と封止材9との剥離強度および第二電極22と封止材9との剥離強度を、0.1kg/10mm以上1kgf/10mm以下とすることが好ましく、0.2kg/10mm以上1kgf/10mm以下とすることがより好ましい。   The sealing material 9 is cured by a method such as irradiating the pressed first electrode 21 and the second electrode 22 with ultraviolet rays using a UV lamp (not shown) or the like to seal the first electrode 21 and the second electrode 22. The material 9 is bonded together, and the second electrode 22 and the sealing material 9 are bonded together. At this time, the peel strength between the first electrode 21 and the sealing material 9 and the peel strength between the second electrode 22 and the sealing material 9 are set to 0.05 kgf / 10 mm or more and 1 kgf / 10 mm or less. As described above, the peel strength between the first electrode 21 and the sealing material 9 and the peel strength between the second electrode 22 and the sealing material 9 are preferably 0.1 kg / 10 mm or more and 1 kgf / 10 mm or less, More preferably, it is 0.2 kg / 10 mm or more and 1 kgf / 10 mm or less.

第一電極21および第二電極22と封止材9とを貼り合わせた位置から下流側には、貼り合わせた第一電極21および第二電極22に対して超音波を付与するための超音波付与部71と、超音波付与部71に対向する台座72が配置されている。超音波付与部71は、先端(すなわち、第二電極22に当接可能な部分)に向かって例えばテーパ状をなしている。図6に示すように、超音波付与部71の先端部71aには、厚さ方向の断面視において複数の凹凸が形成されている。台座72は、超音波付与部71の先端と略同じ大きさで形成されている。台座72における超音波付与部71と対向する先端部72a(すなわち、第一電極21に当接可能な部分)には、厚さ方向の断面視において複数の凹凸が形成されている。
超音波付与部71は、台座72に対して近接離間可能に配置されている。また、超音波付与部71の先端部71aの凹凸と、台座72の先端部72aの凹凸とはほぼ同じ形状になっており、互いに噛み合わせられるようになっている。
From the position where the first electrode 21 and the second electrode 22 and the sealing material 9 are bonded together, the ultrasonic waves for applying ultrasonic waves to the bonded first electrode 21 and second electrode 22 are provided downstream. A providing unit 71 and a pedestal 72 facing the ultrasonic wave applying unit 71 are arranged. The ultrasonic wave imparting unit 71 has, for example, a taper shape toward the tip (that is, a portion that can contact the second electrode 22). As shown in FIG. 6, a plurality of projections and depressions are formed on the distal end portion 71 a of the ultrasonic wave application portion 71 in a cross-sectional view in the thickness direction. The pedestal 72 is formed to have substantially the same size as the tip of the ultrasonic wave application unit 71. A plurality of projections and depressions are formed in a cross-sectional view in the thickness direction at the distal end portion 72a (that is, a portion capable of contacting the first electrode 21) facing the ultrasonic wave application portion 71 in the pedestal 72.
The ultrasonic wave imparting unit 71 is disposed so as to be able to approach and separate from the pedestal 72. Moreover, the unevenness | corrugation of the front-end | tip part 71a of the ultrasonic provision part 71 and the unevenness | corrugation of the front-end | tip part 72a of the base 72 are substantially the same shapes, and it can mesh | engage now.

第一電極21および第二電極22と封止材9とを貼り合わせた後に、所定の位置F25,…,F25において(図1参照)、すなわち、貼り合された第一電極21と第二電極22により電解質配置領域R1に形成された空間を所定の方向P1に沿って複数のセルC,…,Cに区画する境界において、図5および図6に示すように、超音波付与部71を台座72に近接させ、第二電極22の第二基材6の面6bから、貼り合された第一電極21と第二電極22に超音波振動を付与する。   After bonding the first electrode 21 and the second electrode 22 and the sealing material 9, at the predetermined positions F25,..., F25 (see FIG. 1), that is, the bonded first electrode 21 and second electrode. As shown in FIGS. 5 and 6, the ultrasonic wave application unit 71 is placed on the base at the boundary that divides the space formed in the electrolyte arrangement region R1 by 22 into a plurality of cells C,..., C along a predetermined direction P1. The ultrasonic vibration is applied to the bonded first electrode 21 and second electrode 22 from the surface 6 b of the second base 6 of the second electrode 22.

上述のように超音波振動を付与すると、図7に示すように、第一基材1と第二基材6との間に設けられた第一導電膜3、半導体層10、封止材9、配線7、第二導電膜8および触媒層16が、超音波振動により移動する。例えば、第一導電膜3、半導体層10、封止材9、配線7、第二導電膜8および触媒層16のうち比較的融点が低いものがあれば、そのものは超音波振動によって溶融し、ホーン圧によって元々配置されていた位置から押しのけられて移動する。また、第一導電膜3、半導体層10、封止材9、配線7、第二導電膜8および触媒層16のうち金属のような剛体があれば、該剛体は超音波振動によって破壊され、破壊された粒径が比較的小さければ拡散(移動)する。その結果、第一基材1と第二基材6との間に設けられた封止材9をはじめとする構造物が超音波付与部分に隣接する部分に押し出されるとともに、封止材9をはじめとする前述の構造物においてクラックが生じ、図3に示すように第一基材1における第二電極22側の面1aと第二基材6における第一電極21側の面6aとが当接する。そして、第一基材2と第二基材6が超音波振動により溶融して互いに溶着し、超音波付与部71の先端部71aおよび台座72の先端部72aのそれぞれの凹凸とほぼ同じ凹凸状の断面形状を有するシール部25が形成される。また、封止材9とシール部25によって囲まれ、互いに分割された複数のセルC,…,Cが形成される。   When ultrasonic vibration is applied as described above, as shown in FIG. 7, the first conductive film 3, the semiconductor layer 10, and the sealing material 9 provided between the first base material 1 and the second base material 6. The wiring 7, the second conductive film 8, and the catalyst layer 16 are moved by ultrasonic vibration. For example, if the first conductive film 3, the semiconductor layer 10, the sealing material 9, the wiring 7, the second conductive film 8, and the catalyst layer 16 have relatively low melting points, they themselves melt by ultrasonic vibration, It moves away from the position where it was originally placed by the horn pressure. Further, if there is a rigid body such as a metal among the first conductive film 3, the semiconductor layer 10, the sealing material 9, the wiring 7, the second conductive film 8, and the catalyst layer 16, the rigid body is destroyed by ultrasonic vibration, If the destroyed particle size is relatively small, it will diffuse (move). As a result, the structure including the sealing material 9 provided between the first base material 1 and the second base material 6 is extruded to a portion adjacent to the ultrasonic wave application portion, and the sealing material 9 is As shown in FIG. 3, the first substrate 1 has a surface 1a on the second electrode 22 side and a surface 6a on the first electrode 21 side in the second substrate 6 as shown in FIG. Touch. And the 1st base material 2 and the 2nd base material 6 fuse | melt by ultrasonic vibration, and it mutually welds, The uneven | corrugated shape substantially the same as each unevenness | corrugation of the front-end | tip part 71a of the ultrasonic provision part 71 and the front-end | tip part 72a of the base 72 The seal part 25 having the cross-sectional shape is formed. Further, a plurality of cells C,..., C surrounded by the sealing material 9 and the seal portion 25 and divided from each other are formed.

以上の工程により、図1から図3に示す色素増感太陽電池20Aを製造することができる。この後、必要に応じて、色素増感太陽電池20Aから所望のパターンで実際に使用される色素増感太陽電池を切り出してもよい。   Through the above steps, the dye-sensitized solar cell 20A shown in FIGS. 1 to 3 can be manufactured. Thereafter, if necessary, the dye-sensitized solar cell actually used in a desired pattern may be cut out from the dye-sensitized solar cell 20A.

以上説明した第一実施形態の色素増感太陽電池20Aおよび色素増感太陽電池20Aの製造方法では、例えば第一導電膜3および触媒層16などの第一電極21および第二電極22のそれぞれの材質との剥離強度が良好に高くなるように封止材9を構成する素材を適当に選択する、あるいは第一電極21および第二電極22と封止材9との貼り合わせ時の条件を適当に選択するなどによって、第一電極21と封止材9との剥離強度および第二電極22と封止材9との剥離強度を0.05kgf/10mm以上とする。これにより、封止材9が第一電極21および第二電極22から剥離し難くなっている。そのため、シール部25を形成する際に、第一電極21および第二電極22に超音波が付与された場合に、図7に示すように超音波付与部分から押し出された封止材9が超音波付与部分に隣接する部分の封止材9を第一電極21および第二電極22に沿った方向から押圧する、また超音波付与部分に隣接する封止材9と第一電極21および第二電極22との界面に押し入ろうとしても、封止材9と第一電極21/第二電極22との剥離を防止し、封止材9と第一電極21/第二電極22との間に空隙が生じることを防止することができる。したがって、シール部25を挟んで隣り合うセルC,Cの電解液15同士が接触すること、および電解液15が封止材9同士の間の配線7に接触することを防止し、動作不良の発生を良好に防ぐことができる。   In the method for manufacturing the dye-sensitized solar cell 20A and the dye-sensitized solar cell 20A according to the first embodiment described above, for example, the first electrode 21 and the second electrode 22 such as the first conductive film 3 and the catalyst layer 16 respectively. The material constituting the sealing material 9 is appropriately selected so that the peel strength with the material is satisfactorily high, or the conditions for bonding the first electrode 21 and the second electrode 22 to the sealing material 9 are appropriate. Is selected, the peel strength between the first electrode 21 and the sealing material 9 and the peel strength between the second electrode 22 and the sealing material 9 are set to 0.05 kgf / 10 mm or more. Thereby, the sealing material 9 is difficult to peel from the first electrode 21 and the second electrode 22. Therefore, when the seal portion 25 is formed, when an ultrasonic wave is applied to the first electrode 21 and the second electrode 22, the sealing material 9 pushed out from the ultrasonic wave applying portion as shown in FIG. The portion of the sealing material 9 adjacent to the sound wave applying portion is pressed from the direction along the first electrode 21 and the second electrode 22, and the sealing material 9 adjacent to the ultrasonic wave applying portion, the first electrode 21 and the second electrode. Even if an attempt is made to push into the interface with the electrode 22, the separation between the sealing material 9 and the first electrode 21 / second electrode 22 is prevented, and between the sealing material 9 and the first electrode 21 / second electrode 22. It is possible to prevent the generation of voids. Therefore, the electrolytic solutions 15 of the cells C and C adjacent to each other with the seal portion 25 in between are prevented from contacting each other, and the electrolytic solution 15 is prevented from contacting the wiring 7 between the sealing materials 9. Generation | occurrence | production can be prevented favorably.

また、第一実施形態の色素増感太陽電池20Aでは、触媒層16が第二導電膜8における第一電極21側の面8aの全体に設けられているので、第二導電膜8における第一電極21側の面8aの構成がそろっており、また触媒層16のパターニングなどが必要なくなり、第二電極22の製造工程が簡易になり、第二電極22および色素増感太陽電池20Aを容易に得ることができる。   Moreover, in the dye-sensitized solar cell 20A of the first embodiment, the catalyst layer 16 is provided on the entire surface 8a of the second conductive film 8 on the first electrode 21 side. The configuration of the surface 8a on the electrode 21 side is complete, the patterning of the catalyst layer 16 is not necessary, the manufacturing process of the second electrode 22 is simplified, and the second electrode 22 and the dye-sensitized solar cell 20A can be easily formed. Can be obtained.

また、第一実施形態の色素増感太陽電池20Aでは、封止材9の幅が0.3mm以上7mm以下であれば、上述の作用効果によって第一電極21および第二電極22と封止材9との間に空隙が形成される頻度、すなわち電解液15の液漏れおよび漏電が発生する頻度を抑え、複数のセルCのそれぞれに電解液15を確実に封止し、かつ色素増感太陽電池20Aの全体面積に対する複数のセルCの占める面積を高くすることができる。   In the dye-sensitized solar cell 20A of the first embodiment, if the width of the sealing material 9 is 0.3 mm or more and 7 mm or less, the first electrode 21 and the second electrode 22 and the sealing material are obtained by the above-described effects. The frequency with which gaps are formed between the cells 9, that is, the frequency with which the electrolyte solution 15 leaks and leaks, is suppressed, the electrolyte solution 15 is reliably sealed in each of the plurality of cells C, and the dye-sensitized solar cell The area occupied by the plurality of cells C with respect to the entire area of the battery 20A can be increased.

(第二実施形態)
次いで、本発明を適用した第二実施形態の色素増感太陽電池(電気モジュール)20Bについて、図8および図9を参照し、説明する。なお、図8および図9に示す第二実施形態の色素増感太陽電池20Bの構成要素において、上述した第一実施形態の色素増感太陽電池20Aの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Second embodiment)
Next, a dye-sensitized solar cell (electric module) 20B according to a second embodiment to which the present invention is applied will be described with reference to FIGS. In addition, in the component of the dye-sensitized solar cell 20B of the second embodiment shown in FIGS. 8 and 9, the same component as the component of the dye-sensitized solar cell 20A of the first embodiment described above is the same. The description is omitted.

[電気モジュールの構成]
色素増感太陽電池20Bは、色素増感太陽電池20Aと同様の構成要素を備えている。
ただし、色素増感太陽電池20Bにおいては、触媒層16は、シール部25に設けられておらず、封止材9の位置にも設けられていない。すなわち、図9に示すように、触媒層16は、封止材9およびシール部25によって囲まれた複数のセルC,…,Cと同じ位置に設けられている。
[Configuration of electrical module]
The dye-sensitized solar cell 20B includes the same components as the dye-sensitized solar cell 20A.
However, in the dye-sensitized solar cell 20 </ b> B, the catalyst layer 16 is not provided in the seal portion 25 and is not provided in the position of the sealing material 9. That is, as shown in FIG. 9, the catalyst layer 16 is provided at the same position as the plurality of cells C,..., C surrounded by the sealing material 9 and the seal portion 25.

したがって、封止材9における第二電極22側の面9aが第二導電膜8における第一電極21側の面8aに当接し、封止材9における第一電極21側の面9bは第一導電膜3における第二電極22側の面3aに当接している。第一電極21の第一導電膜3と封止材9との剥離強度および第二電極22の第二導電膜8と封止材9との剥離強度は、0.05kgf/10mm以上とされている。
なお、第一電極21と封止材9との剥離強度および第二電極22と封止材9との剥離強度を0.05kgf/10mm以上とすることをふまえ、封止材9を構成する素材は、封止材9に密着する第一導電膜3および第二導電膜8のそれぞれの材質に合わせて適当に決められていることが好ましい。
Therefore, the surface 9a on the second electrode 22 side of the sealing material 9 is in contact with the surface 8a on the first electrode 21 side of the second conductive film 8, and the surface 9b on the first electrode 21 side of the sealing material 9 is the first surface 9b. The conductive film 3 is in contact with the surface 3a on the second electrode 22 side. The peel strength between the first conductive film 3 and the sealing material 9 of the first electrode 21 and the peel strength between the second conductive film 8 and the sealant 9 of the second electrode 22 are 0.05 kgf / 10 mm or more. Yes.
In addition, the material which comprises the sealing material 9 considering that the peeling strength of the 1st electrode 21 and the sealing material 9 and the peeling strength of the 2nd electrode 22 and the sealing material 9 shall be 0.05 kgf / 10mm or more. Is preferably determined in accordance with the materials of the first conductive film 3 and the second conductive film 8 that are in close contact with the sealing material 9.

[電気モジュールの製造方法]
図8および図9に示す色素増感太陽電池20Bの製造方法は、第二基材6を所定の方向に沿って連続的に搬送しながら、第二基材6において所定の方向P1に沿って第一電極21に対向する面6aの全体ではなく、シール部25を形成する領域を除く電解質配置領域R1に触媒層16を形成すること以外は、色素増感太陽電池20Bの製造方法と同様である。
[Manufacturing method of electrical module]
In the method for manufacturing the dye-sensitized solar cell 20B shown in FIGS. 8 and 9, the second substrate 6 is continuously conveyed along the predetermined direction while the second substrate 6 is continuously conveyed along the predetermined direction P1. The method is the same as the method for manufacturing the dye-sensitized solar cell 20B except that the catalyst layer 16 is formed not in the entire surface 6a facing the first electrode 21 but in the electrolyte arrangement region R1 excluding the region where the seal portion 25 is formed. is there.

以上説明した第二実施形態の色素増感太陽電池20Bおよび色素増感太陽電池20Bの製造方法によれば、触媒層16はシール部25に設けられていないので、シール部25では封止材9が第一電極21の第一導電膜3および第二電極22の第二導電膜8と良好に密着する。したがって、触媒層16として、例えば電気モジュールに多用されるPEDOTのように、封止材9との剥離強度が比較的低い材質が用いられた場合でも、超音波付与部分において第一電極21および第二電極22に対して超音波振動が付与された際に、超音波付与部分の封止材9を第一電極21および第二電極22から剥離し難くし、超音波付与部分から押し出され難くすることができる。このように触媒層16の形成位置を適当に選択し、封止材9と貼り合わせる構成要素を封止材9との剥離強度が0.05kgf/10mm以上となるものにすることによっても、超音波付与部分に隣接する封止材9は、第一電極21および第二電極22から剥離し難くなる。これにより、超音波付与部分に隣接する封止材9が第一電極21および第二電極22と良好に密着した状態を容易に保持し、封止材9と第一電極21および第二電極22との間に空隙が生じることを防止することができる。   According to the dye-sensitized solar cell 20B and the method for manufacturing the dye-sensitized solar cell 20B of the second embodiment described above, the catalyst layer 16 is not provided on the seal portion 25. Is in good contact with the first conductive film 3 of the first electrode 21 and the second conductive film 8 of the second electrode 22. Therefore, even when a material having a relatively low peel strength from the sealing material 9 is used as the catalyst layer 16, for example, PEDOT frequently used in electric modules, the first electrode 21 and the first electrode 21 in the ultrasonic wave application portion are used. When ultrasonic vibration is applied to the two electrodes 22, it is difficult for the sealing material 9 in the ultrasonic wave application portion to be peeled off from the first electrode 21 and the second electrode 22, and it is difficult to be pushed out from the ultrasonic wave application portion. be able to. In this way, the formation position of the catalyst layer 16 is appropriately selected, and the component bonded to the sealing material 9 is made to have a peel strength of 0.05 kgf / 10 mm or more from the sealing material 9. The sealing material 9 adjacent to the sound wave application portion is difficult to peel from the first electrode 21 and the second electrode 22. Thereby, the state in which the sealing material 9 adjacent to the ultrasonic wave application portion is in good contact with the first electrode 21 and the second electrode 22 is easily maintained, and the sealing material 9, the first electrode 21, and the second electrode 22 are easily maintained. It is possible to prevent a gap from being generated between the two.

また、第二実施形態の色素増感太陽電池20Bおよび色素増感太陽電池20Bの製造方法によれば、触媒層16は封止材9の位置に設けられていないので、封止材9が触媒層16に接触せず、所定の方向P1に沿って全体的に第一電極21および第二電極22(すなわち、第一導電膜3および第二導電膜8)と良好に密着可能になる。したがって、上述のように触媒層16としてPEDOTのように封止材9との剥離強度が比較的低い材質が用いられた場合でも、第一電極21および第二電極22に対して超音波振動が付与された際に、超音波付与部分の封止材9および超音波付与部分に隣接する封止材9は、第一電極21および第二電極22から剥離し難くなり、超音波付与部分に隣接する封止材9が第一電極21および第二電極22と良好に密着した状態を容易に保持することができる。また、封止材と第一電極および第二電極との間に空隙が生じることを防止することができる。   Moreover, according to the manufacturing method of the dye-sensitized solar cell 20B and the dye-sensitized solar cell 20B of the second embodiment, since the catalyst layer 16 is not provided at the position of the sealing material 9, the sealing material 9 is a catalyst. The first electrode 21 and the second electrode 22 (that is, the first conductive film 3 and the second conductive film 8) can be satisfactorily adhered to each other along the predetermined direction P1 without contacting the layer 16. Therefore, even when a material having a relatively low peel strength from the sealing material 9 such as PEDOT is used as the catalyst layer 16 as described above, ultrasonic vibration is applied to the first electrode 21 and the second electrode 22. When applied, the sealing material 9 in the ultrasonic application portion and the sealing material 9 adjacent to the ultrasonic application portion are difficult to peel off from the first electrode 21 and the second electrode 22 and are adjacent to the ultrasonic application portion. It is possible to easily maintain the state in which the sealing material 9 to be adhered is in good contact with the first electrode 21 and the second electrode 22. Moreover, it can prevent that a space | gap arises between a sealing material, a 1st electrode, and a 2nd electrode.

以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications are possible within the scope of the gist of the present invention described in the claims. Deformation / change is possible.

例えば、上述の何れの実施形態においても、触媒層16は封止材9の位置には設けられていないが、本発明に係る色素増感太陽電池では、シール部25の近傍に触媒層16が設けられていないことが重要であって、電解液15の液漏れおよび漏電が発生しない範囲で、触媒層16が封止材9の位置に多少設けられていても構わない。前述の「近傍」とは、t例えばシール部25の融着端部から距離3mm以内、より好ましくは距離1mm以内、さらに好ましくは距離0.5mm以内の範囲を表す。   For example, in any of the above-described embodiments, the catalyst layer 16 is not provided at the position of the sealing material 9. However, in the dye-sensitized solar cell according to the present invention, the catalyst layer 16 is provided in the vicinity of the seal portion 25. It is important that the catalyst layer 16 is not provided, and the catalyst layer 16 may be provided somewhat at the position of the sealing material 9 as long as the electrolyte 15 does not leak and leak. The above-mentioned “vicinity” represents a range within a distance of 3 mm, more preferably within a distance of 1 mm, and even more preferably within a distance of 0.5 mm from the fused end of the seal portion 25.

例えば、シール部25の形成方法は、上述のように貼り合わせた第一電極21および第二電極22に対して超音波を付与することによる超音波融着以外の方法であってもよく、プレス張り合わせ、真空張り合わせ、熱融着、またはレーザー融着等を用いてもよい。本発明を適用した電気モジュールおよび電気モジュールの製造方法は、貼り合わせた第一電極21および第二電極22においてシール部25を形成する部分から押し出された封止材9がシール部25を形成する部分に隣接する部分の封止材9を押圧し、第一電極21/第二電極22と封止材9との剥離を発生させる可能性がある場合には広く適用される。   For example, the method of forming the seal portion 25 may be a method other than ultrasonic fusion by applying ultrasonic waves to the first electrode 21 and the second electrode 22 bonded as described above. Bonding, vacuum bonding, thermal fusion, laser fusion, or the like may be used. In the electric module and the method for manufacturing the electric module to which the present invention is applied, the sealing material 9 extruded from the portion where the seal portion 25 is formed in the bonded first electrode 21 and second electrode 22 forms the seal portion 25. This is widely applied when there is a possibility that the sealing material 9 in the portion adjacent to the portion is pressed to cause the first electrode 21 / second electrode 22 and the sealing material 9 to peel off.

また、本発明を適用した電気モジュールおよび電気モジュールの製造方法では、上述のように第一電極21と封止材9との剥離強度および第二電極22と封止材9との剥離強度が0.05kgf/10mm以上とすることができればよいので、第二電極22の第二導電膜8における第一電極21側の面8aの所定の領域R2に、第二導電膜8および封止材9との剥離強度が少なくとも0.05kgf/10mm以上となる接着剤あるいはその他の構成要素が設けられていてもよい。   In the electric module and the method for manufacturing the electric module to which the present invention is applied, the peel strength between the first electrode 21 and the sealing material 9 and the peel strength between the second electrode 22 and the sealing material 9 are 0 as described above. .05 kgf / 10 mm or more as long as the second conductive film 8 and the sealing material 9 are formed in a predetermined region R2 of the surface 8a of the second conductive film 8 of the second electrode 22 on the first electrode 21 side. There may be provided an adhesive or other constituent element having a peel strength of at least 0.05 kgf / 10 mm or more.

本発明は、色素増感型太陽電池等の電気モジュールの分野で利用可能である。   The present invention can be used in the field of electrical modules such as dye-sensitized solar cells.

以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to a following example.

(実施例1)
次に示す材質を用いて、第一実施形態の色素増感太陽電池20Aの製造方法を用いて色素増感太陽電池20Aを製造した。
*第一基材および第二基材…PET
*第一導電膜および第二導電膜…ITO
*半導体層…酸化チタンからなる多孔質層
*触媒層…プラチナ
*電解液…プロピオニトリルなどの非水系溶剤
*封止材…ホットメルト樹脂B(型番:PPET2109、製造元:東亞合成株式会社)
実施例1では、封止材の幅を1mmとすると共に封止材の厚みを40μmとし、第一導電膜と封止材との剥離強度および触媒層と封止材との剥離強度を0.05kgf(/10mm)とした。
実施例1および以下の各例において、剥離強度については、T型剥離強度試験方法に基づき、T字型のピール試験機、電動スタンド(型番:MX2−500N−L、製造販売元:株式会社イマダ)、デジタルフォースゲージ(型番:ZTS−100N、製造販売元:株式会社イマダ)を用いて確認した。
超音波融着を行って製造した色素増感太陽電池20Aを観察したところ、封止材の剥離や電解液の液漏れは見られなかった。
Example 1
The dye-sensitized solar cell 20A was manufactured using the material shown next using the manufacturing method of the dye-sensitized solar cell 20A of the first embodiment.
* First substrate and second substrate: PET
* First conductive film and second conductive film ... ITO
* Semiconductor layer ... Porous layer made of titanium oxide * Catalyst layer ... Platinum * Electrolytic solution ... Non-aqueous solvent such as propionitrile * Sealant ... Hot melt resin B
In Example 1, the width of the sealing material is 1 mm and the thickness of the sealing material is 40 μm, and the peel strength between the first conductive film and the sealant and the peel strength between the catalyst layer and the sealant are 0. 0. It was set to 05 kgf (/ 10 mm).
In Example 1 and each of the following examples, the peel strength is determined based on a T-type peel strength test method, a T-shaped peel tester, a motorized stand (model number: MX2-500N-L, manufacturer: Imada Co., Ltd.) ), A digital force gauge (model number: ZTS-100N, manufacturer and distributor: Imada Co., Ltd.).
When the dye-sensitized solar cell 20A produced by ultrasonic fusion was observed, peeling of the sealing material and leakage of the electrolytic solution were not observed.

(実施例2)
次に示す材質に変更する以外は実施例1と同様の材質を用いて、第一実施形態の色素増感太陽電池20Aを製造した。
*触媒層…PEDOT
*封止材…ホットメルト樹脂C(型番:HMP−3、製造元:東亞合成株式会社)
実施例2では、封止材の幅を1mmとすると共に封止材の厚みを40μmとし、第一導電膜と封止材との剥離強度を0.08kgf(/10mm)とし、触媒層と封止材との剥離強度を0.05kgf(/10mm)とした。
超音波融着を行って製造した色素増感太陽電池20Aを観察したところ、封止材の剥離や電解液の液漏れは見られなかった。
(Example 2)
A dye-sensitized solar cell 20A of the first embodiment was manufactured using the same material as in Example 1 except that the material was changed to the following material.
* Catalyst layer ... PEDOT
* Sealing material: Hot melt resin C (model number: HMP-3, manufacturer: Toagosei Co., Ltd.)
In Example 2, the width of the sealing material is 1 mm, the thickness of the sealing material is 40 μm, the peel strength between the first conductive film and the sealing material is 0.08 kgf (/ 10 mm), the catalyst layer and the sealing material are sealed. The peel strength with the stopper was set to 0.05 kgf (/ 10 mm).
When the dye-sensitized solar cell 20A produced by ultrasonic fusion was observed, peeling of the sealing material and leakage of the electrolytic solution were not observed.

(実施例3)
次に示す材質に変更する以外は実施例1と同様の材質を用いて、第一実施形態の色素増感太陽電池20Aを製造した。
*封止材…紫外線硬化樹脂(製造元:株式会社コバヤシ)
実施例3では、封止材の幅を1mmとすると共に封止材の厚みを40μmとし、第一導電膜と封止材との剥離強度を0.08kgf(/10mm)とし、触媒層と封止材との剥離強度を0.08kgf(/10mm)とした。
超音波融着を行って製造した色素増感太陽電池20Aを観察したところ、封止材の剥離や電解液の液漏れは見られなかった。
(Example 3)
A dye-sensitized solar cell 20A of the first embodiment was manufactured using the same material as in Example 1 except that the material was changed to the following material.
* Sealing material: UV curable resin (Manufacturer: Kobayashi Co., Ltd.)
In Example 3, the width of the sealing material is 1 mm, the thickness of the sealing material is 40 μm, the peel strength between the first conductive film and the sealing material is 0.08 kgf (/ 10 mm), The peel strength with the stopper was 0.08 kgf (/ 10 mm).
When the dye-sensitized solar cell 20A produced by ultrasonic fusion was observed, peeling of the sealing material and leakage of the electrolytic solution were not observed.

(実施例4)
次に示す材質に変更する以外は実施例1と同様の材質を用いて、第一実施形態の色素増感太陽電池20Aを製造した。
*触媒層…PEDOT
*封止材…紫外線硬化樹脂(製造元:株式会社コバヤシ)
実施例4では、封止材の幅を1mmとすると共に封止材の厚みを40μmとし、第一導電膜と封止材との剥離強度を0.08kgf(/10mm)とし、触媒層と封止材との剥離強度を0.05kgf(/10mm)とした。
超音波融着を行って製造した色素増感太陽電池20Aを観察したところ、封止材の剥離や電解液の液漏れは見られなかった。
(Example 4)
A dye-sensitized solar cell 20A of the first embodiment was manufactured using the same material as in Example 1 except that the material was changed to the following material.
* Catalyst layer ... PEDOT
* Sealing material: UV curable resin (Manufacturer: Kobayashi Co., Ltd.)
In Example 4, the width of the sealing material is 1 mm, the thickness of the sealing material is 40 μm, the peel strength between the first conductive film and the sealing material is 0.08 kgf (/ 10 mm), and the catalyst layer and the sealing material are sealed. The peel strength with the stopper was set to 0.05 kgf (/ 10 mm).
When the dye-sensitized solar cell 20A produced by ultrasonic fusion was observed, peeling of the sealing material and leakage of the electrolytic solution were not observed.

(実施例5)
次に示す材質を用いて、第二実施形態の色素増感太陽電池20Bを製造した。ただし、触媒層は第二電極におけるシール部以外全体に形成した。
*第一基材および第二基材…PET
*第一導電膜および第二導電膜…ITO
*半導体層…酸化チタンからなる多孔質層
*触媒層…プラチナ
*電解液…プロピオニトリルなどの非水系溶剤
*封止材…ホットメルト樹脂B(型番:PPET2109、製造元:東亞合成株式会社)
実施例5では、封止材の幅を1mmとすると共に封止材の厚みを40μmとし、第一導電膜と封止材との剥離強度を0.05kgf(/10mm)とし、触媒層と封止材との剥離強度を0.05kgf(/10mm)とした。
超音波融着を行って製造した色素増感太陽電池20Aを観察したところ、封止材の剥離や電解液の液漏れは見られなかった。
(Example 5)
The dye-sensitized solar cell 20B of the second embodiment was manufactured using the following materials. However, the catalyst layer was formed on the whole other than the seal part in the second electrode.
* First substrate and second substrate: PET
* First conductive film and second conductive film ... ITO
* Semiconductor layer ... Porous layer made of titanium oxide * Catalyst layer ... Platinum * Electrolytic solution ... Non-aqueous solvent such as propionitrile * Sealant ... Hot melt resin B
In Example 5, the width of the sealing material is 1 mm, the thickness of the sealing material is 40 μm, the peel strength between the first conductive film and the sealing material is 0.05 kgf (/ 10 mm), and the catalyst layer and the sealing material are sealed. The peel strength with the stopper was set to 0.05 kgf (/ 10 mm).
When the dye-sensitized solar cell 20A produced by ultrasonic fusion was observed, peeling of the sealing material and leakage of the electrolytic solution were not observed.

(実施例6)
実施例5と同様の材質を用いて、触媒層は封止材の位置に形成しないこと以外は実施例5と同様の条件で、第二実施形態の色素増感太陽電池20Bを製造した。
超音波融着を行って製造した色素増感太陽電池20Aを観察したところ、封止材の剥離や電解液の液漏れは見られなかった。
(Example 6)
Using the same material as in Example 5, the dye-sensitized solar cell 20B of the second embodiment was manufactured under the same conditions as in Example 5 except that the catalyst layer was not formed at the position of the sealing material.
When the dye-sensitized solar cell 20A produced by ultrasonic fusion was observed, peeling of the sealing material and leakage of the electrolytic solution were not observed.

(実施例7)
実施例1と同様の材質を用い、封止材の幅を0.3mmとすること以外は実施例1と同様の条件で、第一実施形態の色素増感太陽電池20Aを製造した。
超音波融着を行って製造した色素増感太陽電池20Aを観察したところ、封止材の剥離や電解液の液漏れは見られなかった。
(Example 7)
A dye-sensitized solar cell 20A of the first embodiment was manufactured under the same conditions as in Example 1 except that the same material as in Example 1 was used and the width of the sealing material was 0.3 mm.
When the dye-sensitized solar cell 20A produced by ultrasonic fusion was observed, peeling of the sealing material and leakage of the electrolytic solution were not observed.

(実施例8)
次に示す封止材と、該封止材以外は実施例1と同様の材質を用い、実施例1と同様の条件で、第一実施形態の色素増感太陽電池20Aを製造した。
*封止材…エポキシ接着材(型番:EP001K、製造元:セメダイン株式会社)
超音波融着を行って製造した色素増感太陽電池20Aを観察したところ、封止材の剥離や電解液の液漏れは見られなかった。
(Example 8)
A dye-sensitized solar cell 20 </ b> A of the first embodiment was manufactured under the same conditions as in Example 1 except that the sealing material shown below and the sealing material were the same as those in Example 1.
* Sealant: Epoxy adhesive (Model: EP001K, Manufacturer: Cemedine Co., Ltd.)
When the dye-sensitized solar cell 20A produced by ultrasonic fusion was observed, peeling of the sealing material and leakage of the electrolytic solution were not observed.

(実施例9)
次に示す封止材と、該封止材以外は実施例2と同様の材質を用い、実施例2と同様の条件で、第一実施形態の色素増感太陽電池20Aを製造した。
*封止材…エポキシ接着材(型番:EP001K、製造元:セメダイン株式会社)
超音波融着を行って製造した色素増感太陽電池20Aを観察したところ、封止材の剥離や電解液の液漏れは見られなかった。
Example 9
A dye-sensitized solar cell 20A according to the first embodiment was manufactured under the same conditions as in Example 2 except that the sealing material shown below and the sealing material were used.
* Sealant: Epoxy adhesive (Model: EP001K, Manufacturer: Cemedine Co., Ltd.)
When the dye-sensitized solar cell 20A produced by ultrasonic fusion was observed, peeling of the sealing material and leakage of the electrolytic solution were not observed.

(比較例1)
次に示す材質に変更する以外は実施例1と同様の材質を用いて、第一実施形態の色素増感太陽電池20Aを製造した。
*封止材…ホットメルト樹脂A(製品名:ハイミラン、製造元:三井デュポンポリケミカル株式会社)
比較例1では、封止材の幅を1mmとすると共に封止材の厚みを40μmとし、第一導電膜と封止材との剥離強度を0.03kgf(/10mm)とし、触媒層と封止材との剥離強度を0.03kgf(/10mm)とした。
製造した色素増感太陽電池20Aを観察したところ、封止材の剥離および電解液の液漏れが見られた。
(Comparative Example 1)
A dye-sensitized solar cell 20A of the first embodiment was manufactured using the same material as in Example 1 except that the material was changed to the following material.
* Encapsulant: Hot melt resin A (Product name: Hi Milan, manufacturer: Mitsui DuPont Polychemical Co., Ltd.)
In Comparative Example 1, the width of the sealing material is 1 mm, the thickness of the sealing material is 40 μm, the peel strength between the first conductive film and the sealing material is 0.03 kgf (/ 10 mm), and the catalyst layer and the sealing material are sealed. The peel strength from the stopper was 0.03 kgf (/ 10 mm).
When the manufactured dye-sensitized solar cell 20A was observed, peeling of the sealing material and leakage of the electrolytic solution were observed.

(比較例2)
次に示す材質に変更する以外は比較例1と同様の材質を用いて、第一実施形態の色素増感太陽電池20Aを製造した。
*触媒層…PEDOT
比較例2では、封止材の幅を1mmとすると共に封止材の厚みを40μmとし、第一導電膜と封止材との剥離強度を0.03kgf(/10mm)とし、触媒層と封止材との剥離強度を0.02kgf(/10mm)とした。
製造した色素増感太陽電池20Aを観察したところ、封止材の剥離および電解液の液漏れが見られた。
(Comparative Example 2)
A dye-sensitized solar cell 20A of the first embodiment was manufactured using the same material as in Comparative Example 1 except that the material was changed to the following material.
* Catalyst layer ... PEDOT
In Comparative Example 2, the width of the sealing material is 1 mm, the thickness of the sealing material is 40 μm, the peel strength between the first conductive film and the sealing material is 0.03 kgf (/ 10 mm), and the catalyst layer and the sealing layer are sealed. The peel strength with the stopper was 0.02 kgf (/ 10 mm).
When the manufactured dye-sensitized solar cell 20A was observed, peeling of the sealing material and leakage of the electrolytic solution were observed.

(比較例3)
次に示す材質に変更する以外は実施例1と同様の材質を用いて、第一実施形態の色素増感太陽電池20Aを製造した。
*触媒層…PEDOT
*封止材…ホットメルト樹脂B(型番:PPET2109、製造元:東亞合成株式会社)
比較例3では、封止材の幅を1mmとすると共に封止材の厚みを40μmとし、第一導電膜と封止材との剥離強度を0.05kgf(/10mm)とし、触媒層と封止材との剥離強度を0.03kgf(/10mm)とした。
製造した色素増感太陽電池20Aを観察したところ、封止材の剥離および電解液の液漏れが見られた。
(Comparative Example 3)
A dye-sensitized solar cell 20A of the first embodiment was manufactured using the same material as in Example 1 except that the material was changed to the following material.
* Catalyst layer ... PEDOT
* Sealant: Hot-melt resin B (model number: PPET2109, manufacturer: Toagosei Co., Ltd.)
In Comparative Example 3, the width of the sealing material is 1 mm, the thickness of the sealing material is 40 μm, the peel strength between the first conductive film and the sealing material is 0.05 kgf (/ 10 mm), and the catalyst layer and the sealing material are sealed. The peel strength from the stopper was 0.03 kgf (/ 10 mm).
When the manufactured dye-sensitized solar cell 20A was observed, peeling of the sealing material and leakage of the electrolytic solution were observed.

(比較例4)
実施例1と同様の材質を用い、封止材の幅を0.2mmとすること以外は実施例1と同様の条件で、第一実施形態の色素増感太陽電池20Aを製造した。
製造した色素増感太陽電池20Aを観察したところ、封止材の剥離および電解液の液漏れが見られた。
(Comparative Example 4)
A dye-sensitized solar cell 20A of the first embodiment was manufactured under the same conditions as in Example 1 except that the same material as in Example 1 was used and the width of the sealing material was 0.2 mm.
When the manufactured dye-sensitized solar cell 20A was observed, peeling of the sealing material and leakage of the electrolytic solution were observed.

(比較例5)
次に示す材質に変更する以外は比較例1と同様の材質を用いて、触媒層と封止材との間に瞬間接着剤(製品名:Scotch-Weld、製造元:3M)を設け、第一実施形態の色素増感太陽電池20Aを製造した。
*触媒層…PEDOT
比較例5では、封止材および瞬間接着剤の幅を1mmとすると共に封止材の厚みを40μmとし、第一導電膜と封止材との剥離強度を1.1kgf(/10mm)とし、触媒層と封止材との剥離強度を1.1kgf(/10mm)とした。
製造した色素増感太陽電池20Aを観察したところ、封止材の破壊が見られ、第一導電膜および第二導電膜の形成位置において抵抗値の上昇が確認された。
(Comparative Example 5)
Except for changing to the material shown below, the same material as in Comparative Example 1 was used, and an instantaneous adhesive (product name: Scotch-Weld, manufacturer: 3M) was provided between the catalyst layer and the sealing material. The dye-sensitized solar cell 20A of the embodiment was manufactured.
* Catalyst layer ... PEDOT
In Comparative Example 5, the width of the sealing material and the instantaneous adhesive is 1 mm, the thickness of the sealing material is 40 μm, the peel strength between the first conductive film and the sealing material is 1.1 kgf (/ 10 mm), The peel strength between the catalyst layer and the sealing material was 1.1 kgf (/ 10 mm).
When the produced dye-sensitized solar cell 20A was observed, destruction of the sealing material was observed, and an increase in resistance value was confirmed at the positions where the first conductive film and the second conductive film were formed.

以上説明した各実施例及び各比較例の結果を表1に示す。  Table 1 shows the results of the examples and comparative examples described above.

Figure 2018147981
Figure 2018147981

上述の各実施例及び各比較例の評価等によれば、第一電極と封止材との剥離強度および第二電極と封止材との剥離強度を0.05kgf/10mm以上とすることで、封止材を挟んで隣り合う電解質同士の接触、および封止材同士の間の配線への電解質の接触が良好に防止され、封止材の剥離や電解液の液漏れ等の色素増感太陽電池の動作不良の発生を防ぐことができることを確認した。  According to the evaluations of the respective examples and comparative examples described above, the peel strength between the first electrode and the sealing material and the peel strength between the second electrode and the sealing material are set to 0.05 kgf / 10 mm or more. In addition, the contact between the electrolytes adjacent to each other with the sealing material interposed therebetween, and the contact of the electrolyte to the wiring between the sealing materials are well prevented, and dye sensitization such as peeling of the sealing material and leakage of the electrolytic solution is performed. It was confirmed that the malfunction of the solar cell can be prevented.

1…第一基材、6…第二基材、9…封止材、15…電解液、20A,20B…色素増感太陽電池(電気モジュール)、21…第一電極、22…第二電極、25…シール部 DESCRIPTION OF SYMBOLS 1 ... 1st base material, 6 ... 2nd base material, 9 ... Sealing material, 15 ... Electrolyte solution, 20A, 20B ... Dye-sensitized solar cell (electric module), 21 ... 1st electrode, 22 ... 2nd electrode , 25 ... Seal part

Claims (6)

第一電極と、
前記第一電極と間隔をあけて対向する第二電極と、
前記第一電極と前記第二電極との間に設けられた電解質と、を備え、
前記第一電極は、第一基材と、前記第一基材における前記第二電極側の面に設けられた第一導電膜と、前記第一導電膜における前記第二電極側の面の半導体層配置領域に設けられた半導体層と、を有し、
前記第二電極は、第二基材と、前記第二基材における前記第一電極側の面に設けられた第二導電膜と、前記第二導電膜における前記第一電極側の面の少なくとも一部に設けられた触媒層と、を有し、
前記電解質は前記第一電極と前記第二電極との間に設けられた封止材および前記第一基材と前記第二基材とが貼り合わされたシール部によって封止され、
前記第一電極と前記封止材との剥離強度および前記第二電極と前記封止材との剥離強度が0.05kgf/10mm以上であることを特徴とする電気モジュール。
A first electrode;
A second electrode facing the first electrode at an interval;
An electrolyte provided between the first electrode and the second electrode,
The first electrode includes a first base material, a first conductive film provided on the second electrode side surface of the first base material, and a semiconductor on the second electrode side surface of the first conductive film. A semiconductor layer provided in the layer arrangement region,
The second electrode includes at least a second base material, a second conductive film provided on the first electrode side surface of the second base material, and a first electrode side surface of the second conductive film. A catalyst layer provided in part,
The electrolyte is sealed by a sealing material provided between the first electrode and the second electrode, and a seal portion in which the first base material and the second base material are bonded together,
An electrical module, wherein a peel strength between the first electrode and the sealing material and a peel strength between the second electrode and the sealing material are 0.05 kgf / 10 mm or more.
前記触媒層は前記第二導電膜における前記第一電極側の面全体に設けられている請求項1に記載の電気モジュール。   The electric module according to claim 1, wherein the catalyst layer is provided on the entire surface of the second conductive film on the first electrode side. 前記触媒層は前記シール部に設けられていない請求項1に記載の電気モジュール。   The electric module according to claim 1, wherein the catalyst layer is not provided on the seal portion. 前記触媒層は前記封止材の位置に設けられていない請求項1または請求項3に記載の電気モジュール。   The electric module according to claim 1, wherein the catalyst layer is not provided at the position of the sealing material. 前記封止材の幅が0.3mm以上7mm以下である請求項1または請求項4のいずれか一項に記載の電気モジュール。   The electric module according to any one of claims 1 and 4, wherein a width of the sealing material is 0.3 mm or more and 7 mm or less. 請求項1から請求項5に記載の電気モジュールを製造する電気モジュールの製造方法であって、
前記第一電極と間隔をあけて前記第二電極を対向させ、
前記第一電極の前記第一導電膜における前記第二電極側の面の電解質配置領域に前記電解質を設ける工程と、
前記第一電極の前記第一導電膜における前記第二電極側の面の前記電解質配置領域とは異なる領域に封止材を設ける工程と、
前記第一電極と前記封止材とを貼り合わせるとともに前記第二電極と前記封止材とを貼り合わせ、前記第一電極と前記封止材との剥離強度および前記第二電極と前記封止材との剥離強度を0.05kgf/10mm以上とする工程と、
所定の位置で前記第一基材と前記第二基材とを貼り合わせて前記シール部を形成する工程と、
を備えていることを特徴とする電気モジュールの製造方法。
An electrical module manufacturing method for manufacturing the electrical module according to claim 1,
The second electrode is opposed to the first electrode with a gap therebetween,
Providing the electrolyte in an electrolyte arrangement region on a surface of the first electrode on the second electrode side in the first conductive film;
Providing a sealing material in a region different from the electrolyte arrangement region of the surface on the second electrode side in the first conductive film of the first electrode;
The first electrode and the sealing material are bonded together, the second electrode and the sealing material are bonded together, and the peel strength between the first electrode and the sealing material and the second electrode and the sealing A step of making the peel strength with the material 0.05 kgf / 10 mm or more,
Bonding the first base material and the second base material at a predetermined position to form the seal portion;
An electrical module manufacturing method comprising:
JP2017040391A 2017-03-03 2017-03-03 Electric module and manufacturing method of electric module Active JP6918521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017040391A JP6918521B2 (en) 2017-03-03 2017-03-03 Electric module and manufacturing method of electric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017040391A JP6918521B2 (en) 2017-03-03 2017-03-03 Electric module and manufacturing method of electric module

Publications (2)

Publication Number Publication Date
JP2018147981A true JP2018147981A (en) 2018-09-20
JP6918521B2 JP6918521B2 (en) 2021-08-11

Family

ID=63590102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017040391A Active JP6918521B2 (en) 2017-03-03 2017-03-03 Electric module and manufacturing method of electric module

Country Status (1)

Country Link
JP (1) JP6918521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047805A (en) * 2018-09-20 2020-03-26 積水化学工業株式会社 Electric module and manufacturing method of electric module
JP2020047804A (en) * 2018-09-20 2020-03-26 積水化学工業株式会社 Electric module and manufacturing method of electric module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030736A1 (en) * 2012-08-24 2014-02-27 積水化学工業株式会社 Method for producing electric module and electric module
WO2016140196A1 (en) * 2015-03-04 2016-09-09 積水化学工業株式会社 Conducting paste, electric module and electric module production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030736A1 (en) * 2012-08-24 2014-02-27 積水化学工業株式会社 Method for producing electric module and electric module
WO2016140196A1 (en) * 2015-03-04 2016-09-09 積水化学工業株式会社 Conducting paste, electric module and electric module production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047805A (en) * 2018-09-20 2020-03-26 積水化学工業株式会社 Electric module and manufacturing method of electric module
JP2020047804A (en) * 2018-09-20 2020-03-26 積水化学工業株式会社 Electric module and manufacturing method of electric module

Also Published As

Publication number Publication date
JP6918521B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2016017776A1 (en) Method for manufacturing solar cell
JP5702897B2 (en) Electric module manufacturing method and electric module
CN109478468B (en) Solar cell module and method for manufacturing solar cell module
JP6918521B2 (en) Electric module and manufacturing method of electric module
JP5759634B2 (en) Electrical module
JP6286110B2 (en) Electric module manufacturing method and electric module manufacturing apparatus
TW201444106A (en) Electric device and method of manufacturing the same
JP2018037606A (en) Electric module and method for manufacturing the same
WO2015122532A1 (en) Electric module and manufacturing method for electric module
WO2017099217A1 (en) Electrical module and method for manufacturing same
JP6687457B2 (en) Electric module, dye-sensitized solar cell, and method for manufacturing electric module
JP7107788B2 (en) Electric module and method of manufacturing an electric module
WO2019146684A1 (en) Electric module and method for manufacturing electric module
JP6043166B2 (en) Electric module manufacturing method and electric module
JP6760885B2 (en) Electric module and manufacturing method of electric module
WO2015083738A1 (en) Conductive member with sealing function, electric module, and manufacturing method for electric module
JP6703574B2 (en) Electric module and manufacturing method thereof
JP6530686B2 (en) Electrical module manufacturing equipment
WO2020050239A1 (en) Solar cell module and solar cell module with protective layer
JP2020038876A (en) Electric module
JP2020047805A (en) Electric module and manufacturing method of electric module
JP2017059721A (en) Apparatus for manufacturing electric module
JP2020047804A (en) Electric module and manufacturing method of electric module
JP2018041908A (en) Method for manufacturing electric module and device for manufacturing electric module
JP2018037556A (en) Method for manufacturing electric module, and device for manufacturing electric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210721

R151 Written notification of patent or utility model registration

Ref document number: 6918521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151