JP2018146237A - Measurement method of building vibration - Google Patents
Measurement method of building vibration Download PDFInfo
- Publication number
- JP2018146237A JP2018146237A JP2017037972A JP2017037972A JP2018146237A JP 2018146237 A JP2018146237 A JP 2018146237A JP 2017037972 A JP2017037972 A JP 2017037972A JP 2017037972 A JP2017037972 A JP 2017037972A JP 2018146237 A JP2018146237 A JP 2018146237A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- building
- measurement
- components
- coordinates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000691 measurement method Methods 0.000 title abstract description 9
- 238000005259 measurement Methods 0.000 claims abstract description 39
- 238000009434 installation Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- 238000001686 rotational spectrum Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
本発明は、建物に生じる常時微振動から当該建物の平面的なねじれ振動の中心を特定する際に用いられる建物の振動測定方法に関するものである。 The present invention relates to a vibration measurement method for a building used when specifying the center of planar torsional vibration of the building from the slight vibration generated in the building.
建物が、平面的にどのように振動しているかを把握して、建物の偏心の状況に関する情報を得ることは、建物の耐震性を判断する際や、当該判断に基づいて補強を行う際に重要になる。 Understanding how a building vibrates in a plane and obtaining information on the eccentricity of the building is useful when judging the earthquake resistance of a building or when performing reinforcement based on that judgment. Become important.
一方、建物は、建築後においても使用形態の変更等によって偏心の状況が変化する。このため、上記建物の偏心状況の把握は、竣工直前のみならず、建物の使用を開始した後における耐震診断時や耐震補強を行う際の前後に、それぞれ実施することが必要になる。 On the other hand, the eccentricity of the building changes even after construction due to changes in usage pattern and the like. For this reason, it is necessary to check the eccentricity of the building not only immediately before completion, but also before and after the seismic diagnosis and the seismic reinforcement after the start of use of the building.
従来、このような建物の偏心状況を確認するための平面的な振動測定は、通常図6に示すように、ねじれ振動の影響が大きく、よって建物50の振動による動きを捉えやすい外周側の各辺に沿った位置に複数の振動センサー51を設置し、平面X−Y方向の振動成分の測定することによって行われていた。 Conventionally, planar vibration measurement for confirming the eccentricity of such a building is usually affected by torsional vibration as shown in FIG. This is done by installing a plurality of vibration sensors 51 at positions along the side and measuring vibration components in the plane XY direction.
ところで、上記従来の建物の振動測定方法にあっては、複数の振動センサー51を建物50の外周側の各辺に沿って設置しているために、振動センサー51の数が多くなるとともに、振動センサー51と収録装置との距離も長くなり、この結果、設置作業や配線作業が大掛かりになるという問題点があった。 By the way, in the conventional vibration measurement method of a building, since a plurality of vibration sensors 51 are installed along each side on the outer peripheral side of the building 50, the number of vibration sensors 51 is increased and vibrations are increased. As a result, the distance between the sensor 51 and the recording device becomes longer, resulting in a problem that installation work and wiring work become large.
しかも、建物の使用を開始した後には、既に設置された什器や機器類、あるいはセキュリティ上の理由等により、竣工前と比較して振動センサー51の設置位置に制約が生じ易く、かつ設置位置を正確に把握することが難しいという問題点があった、また特に、テナントビル等においては、所望とする測定位置に設置すること自体が困難になることも多かった。 Moreover, after the start of use of the building, the installation position of the vibration sensor 51 is more likely to be restricted compared to before the completion due to fixtures and equipment already installed or security reasons, etc. There was a problem that it was difficult to grasp accurately. In particular, in a tenant building or the like, it was often difficult to install at a desired measurement position.
本発明は、上記事情に鑑みてなされたもので、建物の使用後においても設置可能な位置に少ない振動センサーを設置して、当該建物の平面的なねじれ振動を測定して偏心状況を把握することができる建物の振動測定方法を提供することを課題とするものである。 The present invention has been made in view of the above circumstances, and installs few vibration sensors at positions where the building can be installed even after use of the building, and measures the planar torsional vibration of the building to grasp the eccentricity situation. It is an object of the present invention to provide a vibration measurement method for buildings that can be used.
上記課題を解決するため、請求項1に記載の建物の振動測定方法は、建物内の同一平面内の2または3箇所に振動センサーを設置して、全てが平行ではなく、かつ1点で交わらない3方向の振動成分を計測するとともに、距離測量および角測量によって上記振動センサーの設置位置の上記平面におけるX−Y方向の座標および上記3方向とX軸またはY軸とがなす角度を計測し、次いで、より直角に近い2つの上記振動成分の交点を各々第1および第2の測点として求めるとともに、上記第1および第2の測点について各々交差する上記振動成分をベクトル合成して卓越する振動数、振動方向および振幅を求め、ねじれ振動に起因する上記振動数について、上記第1の測点を通って上記振動方向と直交する線と上記第2の測点を通って上記振動方向と直交する線との交点を、上記ねじれ振動の中心の座標として求めることを特徴とするものである。 In order to solve the above-mentioned problem, the vibration measurement method for a building according to claim 1 is provided with vibration sensors installed at two or three locations in the same plane in the building, and all are not parallel and intersect at one point. In addition to measuring vibration components in three directions, the distance measurement and the angle measurement measure the coordinates in the XY direction on the plane of the installation position of the vibration sensor and the angle between the three directions and the X axis or the Y axis. Next, the intersections of the two vibration components that are closer to the right angle are obtained as first and second measurement points, respectively, and the vibration components that intersect each of the first and second measurement points are vector-synthesized to perform excellent The vibration frequency, the vibration direction, and the amplitude of the torsional vibration are obtained, and the vibration is transmitted through the first measurement point and the line orthogonal to the vibration direction and the second measurement point. The intersection of the line perpendicular to the direction, is characterized in that the determined as the coordinates of the center of the torsional vibration.
また、請求項2に記載の発明は、請求項1に記載の発明において、上記第1および第2の測点について各々交差する上記振動成分のベクトル合成により、0度から180度の射影成分を求め、各々の上記射影成分をフーリエ変換して得られたフーリエ振幅を、振動数と振動方向を直交軸とする座標上に大きさに対応した等高線で表示して、上記卓越する振動数、振動方向および振幅を求めることを特徴とするものである。 According to a second aspect of the present invention, in the first aspect of the present invention, a projection component of 0 to 180 degrees is obtained by vector synthesis of the vibration component that intersects each of the first and second measurement points. The Fourier amplitude obtained by Fourier transform of each of the above projected components is displayed with contour lines corresponding to the magnitude on the coordinates having the vibration frequency and vibration direction as orthogonal axes, and the above-mentioned excellent vibration frequency and vibration are displayed. The direction and the amplitude are obtained.
請求項1または2に記載の発明においては、上記3方向の振動成分を計測するための振動センサーの設置位置および計測方向を正確に把握することが重要である。このため、上記振動センサーを、上記距離測量および角測量によって設置位置を正確に測定するに際して障害物が無い、見通しの良い階段室あるいは1または2スパン内の廊下に設置することが好適であり、かつ上記距離測量および角測量を、測量精度が高いトータルステーションや3Dパノラマ画像計測システムによって実施することが好ましい。 In the first or second aspect of the invention, it is important to accurately grasp the installation position and measurement direction of the vibration sensor for measuring the vibration components in the three directions. For this reason, it is preferable to install the vibration sensor in a staircase or a corridor within one or two spans that has no obstacles when accurately measuring the installation position by the distance measurement and the angle measurement, The distance survey and the angle survey are preferably performed by a total station or a 3D panoramic image measurement system having high survey accuracy.
請求項1または2に記載の発明によれば、振動センサーを任意の2または3箇所に配置して、3方向の振動成分を計測することにより、建物のねじれ振動の中心の座標を把握することができるため、振動センサーの設置作業や配線作業を軽減することができる。 According to the first or second aspect of the invention, the coordinates of the center of the torsional vibration of the building are grasped by arranging vibration sensors at two or three arbitrary positions and measuring vibration components in three directions. Therefore, installation work and wiring work of the vibration sensor can be reduced.
この際に、上記振動センサーを、例えば階段室回り等の共用部などの設置しやすい場所に配置することができるために、建物の使用後においても、設置可能な位置に少ない振動センサーを設置して、当該建物の平面的なねじれ振動を測定して偏心状況を把握することができる。 At this time, since the vibration sensor can be placed in a place where it is easy to install, for example, around a staircase or the like, a few vibration sensors are installed at positions where the building can be installed even after use of the building. Thus, it is possible to grasp the eccentric state by measuring the planar torsional vibration of the building.
以下、図面に基づいて、本発明の建物の振動測定方法の一実施形態について説明する。
この振動測定方法においては、先ず建物10の振動センサーを設置し易い任意の位置(本実施形態においては階段室14)の2箇所に、それぞれ振動センサー11、12、13を設置する。
Hereinafter, an embodiment of a vibration measurement method for a building according to the present invention will be described with reference to the drawings.
In this vibration measurement method, first, vibration sensors 11, 12, and 13 are respectively installed at two positions in an arbitrary position where the vibration sensor of the building 10 is easy to install (the staircase 14 in this embodiment).
そして、これら2箇所に設置した3つの振動センサー11、12、13によって、全てが互いに平行ではなく、かつ1点で交わらない3方向の振動成分a、b、cを計測する。この際に、図2に示すように、予め計測手段15による距離測量および角測量によって、振動センサー11、12、13の設置位置のX−Y方向の座標(x、y)と、これら振動センサーによって測定する上記3方向とX軸とがなす角度(θa、θb、θc)を計測する。このような計測手段15としては、光波距離計(距離測量)とセオドライト(角測量)とが一体化されたトータルステーションや、3Dパノラマ画像計測システムが好適である。 The three vibration sensors 11, 12, and 13 installed at these two locations measure vibration components a, b, and c in three directions that are not all parallel to each other and do not intersect at one point. At this time, as shown in FIG. 2, the coordinates (x, y) of the installation positions of the vibration sensors 11, 12, 13 and the vibration sensors 11, 12, and 13 are preliminarily determined by distance measurement and angle measurement by the measurement unit 15. Measure the angles (θ a , θ b , θ c ) formed by the three directions and the X axis. As such a measuring means 15, a total station in which a light wave distance meter (distance surveying) and a theodolite (angular survey) are integrated or a 3D panoramic image measurement system is suitable.
これにより、例えば以下のようなデータが得られる。
振動センサー11: x=8350 y=13660 θa = 2°
振動センサー12: x=8350 y=13660 θb = 88°
振動センサー13: x=14820 y=13650 θc = 90°
Thereby, for example, the following data is obtained.
Vibration sensor 11: x = 8350 y = 13660 θ a = 2 °
Vibration sensor 12: x = 8350 y = 13660 θ b = 88 °
Vibration sensor 13: x = 14820 y = 13650 θ c = 90 °
次いで、できるだけ直角に近い2つの振動成分(本実施形態においては、振動センサー11と振動センサー12による振動成分a、b、振動センサー11と振動センサー13による振動成分a、c)の交点を、各々第1の測点1および第2の測点2として求める。 Next, the intersections of two vibration components that are as close to a right angle as possible (in this embodiment, vibration components a and b by the vibration sensor 11 and the vibration sensor 12, and vibration components a and c by the vibration sensor 11 and the vibration sensor 13), respectively. The first station 1 and the second station 2 are obtained.
この結果、本実施形態においては、上記測点1、2の座標は以下のようになる。
第1の測点1: x=8350 y=13660
第2の測点2: x=14820 y=13875
As a result, in the present embodiment, the coordinates of the measurement points 1 and 2 are as follows.
First station 1: x = 8350 y = 13660
Second station 2: x = 14820 y = 13875
そこで次に、第1の測点1については、交差する2つの振動成分a、bをベクトル合成するとともに、第2の測点2については、交差する2つの振動成分a、cをベクトル合成し、下式によって各方向(φ=0°〜180°)への射影成分の時刻歴波形X1(t、φ)、X2(t、φ)を求める。 Therefore, next, for the first station 1, the two intersecting vibration components a and b are vector-synthesized, and for the second station 2, the two intersecting vibration components a and c are vector-synthesized. The time history waveforms X 1 (t, φ) and X 2 (t, φ) of the projection component in each direction (φ = 0 ° to 180 °) are obtained by the following equations.
ここで、
φ=0°〜180°(1°刻み、5°刻み、10°刻みなど、一定間隔で刻む)
xa(t):振動成分aの時刻歴データ
xb(t):振動成分bの時刻歴データ
xc(t):振動成分cの時刻歴データ
θa:振動成分aの角度
θb:振動成分bの角度
θc:振動成分cの角度
here,
φ = 0 ° -180 ° (1 ° increments, 5 ° increments, 10 ° increments, etc.)
x a (t): Time history data of vibration component a
x b (t): Time history data of the vibration component b
x c (t): Time history data of vibration component c θ a : Angle of vibration component a θ b : Angle of vibration component b θ c : Angle of vibration component c
次いで、下式に示すように、時刻歴波形X1(t、φ)、X2(t、φ)を、それぞれフーリエ変換してフーリエ振幅F1 (f、φ)、F2 (f、φ)を求める。 Next, as shown in the following expression, the time history waveforms X 1 (t, φ) and X 2 (t, φ) are Fourier transformed, respectively, and Fourier amplitudes F 1 (f, φ), F 2 (f, φ) )
そして、図3は、第1の測点1および第2の測点2について、振動数fを横軸、角度φを縦軸とし、フーリエ振幅|F1 (f、φ)|、|F2 (f、φ)|を等高線図で示したもの(以下、本明細書においては回転スペクトルと称する。)を示すものである。 FIG. 3 shows the first measurement point 1 and the second measurement point 2 with the frequency f as the horizontal axis and the angle φ as the vertical axis, and the Fourier amplitudes | F 1 (f, φ) |, | F 2 (f, φ) | is a contour map (hereinafter referred to as a rotational spectrum in this specification).
この回転スペクトルにより、卓越している振動数、振幅および振動方向を視覚的に把握することができる。図4は、図3から読み取った第1の測点1および第2の測点2において各々卓越している振動数、振幅および振動方向を示すものである。 With this rotational spectrum, it is possible to visually grasp the outstanding frequency, amplitude and vibration direction. FIG. 4 shows the frequency, amplitude, and direction of vibration that are dominant at the first station 1 and the second station 2 read from FIG.
そして、この回転スペクトルにおいて、卓越する振動数のうち、第1の測点1および第2の測点2において、共にX方向またはY方向の振動方向を示しているもの、具体的には、図4において第1の測点1および第2の測点2における1.3Hzの振動は、ねじれを伴わないY方向の並進モードの振動であることが判る。 In the rotational spectrum, among the outstanding frequencies, the first measuring point 1 and the second measuring point 2 both indicate the vibration direction in the X direction or the Y direction. 4, it can be seen that the 1.3 Hz vibration at the first station 1 and the second station 2 is a translational mode vibration in the Y direction without twisting.
これに対して、第1の測点1および第2の測点2において、X方向およびY方向以外の振動方向を示しているもの、具体的には、2.1Hzおよび3.0Hzの振動は、ねじれを伴う振動であり、例えば3.0Hzにおいては、第1の測点1で振動方向(角度)55°が、第2の測点2で振動方向(角度)125°が卓越している。 On the other hand, at the first measuring point 1 and the second measuring point 2, those showing vibration directions other than the X direction and the Y direction, specifically, vibrations of 2.1 Hz and 3.0 Hz are twisted. For example, at 3.0 Hz, the vibration direction (angle) 55 ° is excellent at the first measurement point 1, and the vibration direction (angle) 125 ° is excellent at the second measurement point 2.
そこで、3.0Hzの振動については、図5に示すように、第1の測点1を通って上記振動方向55°と直交する線L1と第2の測点2を通って上記振動方向125°と直交する線L2との交点Pを、ねじれ振動の中心の座標として求める。 Therefore, as for the vibration of 3.0 Hz, as shown in FIG. 5, the vibration direction 125 passes through the first measurement point 1 and the line L 1 perpendicular to the vibration direction 55 ° and the second measurement point 2. ° an intersection P of the line L 2 perpendicular to the is determined as the coordinates of the center of the torsional vibration.
ちなみに、振動方向と直交する線L1、L2が平行に近い場合には、交点Pを求めることが難しくなり、また得られた交点Pの誤差も大きくなり易い。このような場合には、さらに各測点1、2からの距離の比が、各測点1、2における振幅の比と同じになる線と、上記線L1、L2との交点を求めることにより、より正確にねじれ振動の中心の座標を得ることができる。 Incidentally, when the lines L 1 and L 2 orthogonal to the vibration direction are nearly parallel, it is difficult to obtain the intersection point P, and the error of the obtained intersection point P tends to be large. In such a case, the intersection between the line L 1 and L 2 and the line where the ratio of the distance from each of the measurement points 1 and 2 is the same as the ratio of the amplitude at each of the measurement points 1 and 2 is obtained. Thus, the coordinates of the center of torsional vibration can be obtained more accurately.
以上説明したように、上記構成からなる建物の振動測定方法によれば、振動センサー11、12、13を任意の2箇所に配置して、3方向の振動成分a、b、cを計測することにより、建物10のねじれ振動の中心の座標Pを把握することができるため、振動センサーの設置作業や配線作業を軽減することができる。 As described above, according to the vibration measurement method for a building having the above-described configuration, the vibration sensors 11, 12, and 13 are arranged at two arbitrary locations to measure the vibration components a, b, and c in three directions. Thus, since the coordinates P of the center of the torsional vibration of the building 10 can be grasped, the installation work and wiring work of the vibration sensor can be reduced.
しかも、振動センサー11、12、13を、階段室回り等の共用部14などの設置しやすい場所に配置することができるために、建物10の使用後においても、設置可能な位置に従来よりも少ない振動センサー11、12、13を設置して、建物10の平面的なねじれ振動を測定して偏心状況を把握することができる。 Moreover, since the vibration sensors 11, 12, and 13 can be arranged in a place where the installation is easy, such as the common part 14 around the staircase, the position where the vibration sensor can be installed after use of the building 10 is more than conventional. By installing a small number of vibration sensors 11, 12, and 13, the planar torsional vibration of the building 10 can be measured to grasp the eccentricity.
1 第1の測点
2 第2の測点
10 建物
11、12、13 振動センサー
a、b、c 振動成分
L1、L2 振動方向に直交する線
P 交点
1 first measurement point 2 second measurement point 10 buildings 11, 12, 13 vibration sensor a, b, c vibration component L 1, L 2 lines P intersection perpendicular to the vibration direction
Claims (2)
次いで、より直角に近い2つの上記振動成分の交点を各々第1および第2の測点として求めるとともに、上記第1および第2の測点について各々交差する上記振動成分から卓越する振動数、振動方向および振幅を求め、
ねじれ振動に起因する上記振動数について、上記第1の測点を通って上記振動方向と直交する線と上記第2の測点を通って上記振動方向と直交する線との交点を、上記ねじれ振動の中心の座標として求めることを特徴とする建物の振動測定方法。 Install vibration sensors at two or three locations in the same plane in the building, and measure vibration components in three directions that are not all parallel and do not intersect at one point. Measure the coordinates of the installation position of the X-Y direction on the plane and the angle formed by the three directions and the X-axis or Y-axis,
Next, the intersections of the two vibration components that are closer to the right angle are obtained as the first and second measurement points, respectively, and the vibration frequency and vibration that are dominant from the vibration components that intersect the first and second measurement points, respectively. Find direction and amplitude,
For the frequency due to torsional vibration, the intersection of a line passing through the first measurement point and perpendicular to the vibration direction and a line passing through the second measurement point and perpendicular to the vibration direction is the twist. A method for measuring vibration of a building, wherein the vibration is obtained as coordinates of the center of vibration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017037972A JP6800049B2 (en) | 2017-03-01 | 2017-03-01 | Building vibration measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017037972A JP6800049B2 (en) | 2017-03-01 | 2017-03-01 | Building vibration measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018146237A true JP2018146237A (en) | 2018-09-20 |
JP6800049B2 JP6800049B2 (en) | 2020-12-16 |
Family
ID=63591860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017037972A Active JP6800049B2 (en) | 2017-03-01 | 2017-03-01 | Building vibration measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6800049B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113776655A (en) * | 2021-09-26 | 2021-12-10 | 智城六新数字科技研究院(南京)有限公司 | Prefabricated sensing monitoring structure of assembled building body and monitored control system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060248954A1 (en) * | 2005-04-26 | 2006-11-09 | Snieder Roelof K | System for and method of monitoring structural integrity of a structure |
JP2008039507A (en) * | 2006-08-03 | 2008-02-21 | Tokyo Gas Co Ltd | Method for diagnosing architectural structure |
JP2009180628A (en) * | 2008-01-31 | 2009-08-13 | Biikku Kk | Building diagnostic device |
KR101615285B1 (en) * | 2014-11-10 | 2016-04-26 | 명지대학교 산학협력단 | System and method for evaluating rotational stiffness of joints of hanok using impact hammer test and eigen value analysis |
JP2016109607A (en) * | 2014-12-09 | 2016-06-20 | 凸版印刷株式会社 | Strong motion seismograph, measuring system, and damage state determination method |
JP2016109449A (en) * | 2014-12-02 | 2016-06-20 | 株式会社Nttファシリティーズ | Vibration measurement method of structure |
-
2017
- 2017-03-01 JP JP2017037972A patent/JP6800049B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060248954A1 (en) * | 2005-04-26 | 2006-11-09 | Snieder Roelof K | System for and method of monitoring structural integrity of a structure |
JP2008039507A (en) * | 2006-08-03 | 2008-02-21 | Tokyo Gas Co Ltd | Method for diagnosing architectural structure |
JP2009180628A (en) * | 2008-01-31 | 2009-08-13 | Biikku Kk | Building diagnostic device |
KR101615285B1 (en) * | 2014-11-10 | 2016-04-26 | 명지대학교 산학협력단 | System and method for evaluating rotational stiffness of joints of hanok using impact hammer test and eigen value analysis |
JP2016109449A (en) * | 2014-12-02 | 2016-06-20 | 株式会社Nttファシリティーズ | Vibration measurement method of structure |
JP2016109607A (en) * | 2014-12-09 | 2016-06-20 | 凸版印刷株式会社 | Strong motion seismograph, measuring system, and damage state determination method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113776655A (en) * | 2021-09-26 | 2021-12-10 | 智城六新数字科技研究院(南京)有限公司 | Prefabricated sensing monitoring structure of assembled building body and monitored control system |
CN113776655B (en) * | 2021-09-26 | 2022-07-05 | 智城六新数字科技研究院(南京)有限公司 | Prefabricated sensing monitoring structure of prefabricated building body and monitored control system |
Also Published As
Publication number | Publication date |
---|---|
JP6800049B2 (en) | 2020-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9182487B2 (en) | Advanced remote nondestructive inspection system and process | |
CN112815900B (en) | Coordinate system establishing method and rigid body centroid and inertia parameter testing method | |
CN107570983B (en) | A kind of method and system of curved surface part automatic assembling | |
WO2005095998A1 (en) | Method of measuring lateral sensitivity of sensor for detecting acceleration, and acceleration measuring method | |
JP7097251B2 (en) | Construction management system | |
CN107390155B (en) | Magnetic sensor calibration device and method | |
JP5086225B2 (en) | Calibration apparatus, method and program for magnetic direction sensor | |
JP2012002695A (en) | Error factor determination method and device thereof, error compensation method, triaxial magnetic sensor, sensor module, and program for determining error factor | |
KR20240142485A (en) | Multi-degree-of-freedom impedance fixture for automatic frequency response function measurements | |
JP6800049B2 (en) | Building vibration measurement method | |
JP2017009462A (en) | Calibration jig and calibration marker arrangement method | |
RU2481593C9 (en) | Method of determining parameters of transformation characteristics of three-component magnetometer | |
JP2008039507A (en) | Method for diagnosing architectural structure | |
JP6812158B2 (en) | Discharge occurrence location detection device | |
JP2006201092A (en) | Method and instrument for measuring position/attitude of 6-degree-of-freedom moving object | |
CN202707037U (en) | Azimuth angle measurement instrument | |
EP2064569A1 (en) | Global coordinate creation method for precision measurement of hollow frame | |
JP6916682B2 (en) | How to estimate the seismic response of any part of the building | |
JPH11190602A (en) | Device for measuring distance between pipes and the like | |
JP3728384B2 (en) | Indoor measurement method | |
RU2488078C2 (en) | Method and device of gyro instrument positioning in space during its testing | |
JP4938496B2 (en) | Direction measuring apparatus and method | |
JP3717153B2 (en) | Excavation position measurement method | |
JP5685788B2 (en) | Building accuracy calculation device and building accuracy calculation method | |
KR101349541B1 (en) | Three Dimension Measurement System and Method of Large Component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20180124 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6800049 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |