JP2008039507A - Method for diagnosing architectural structure - Google Patents

Method for diagnosing architectural structure Download PDF

Info

Publication number
JP2008039507A
JP2008039507A JP2006212077A JP2006212077A JP2008039507A JP 2008039507 A JP2008039507 A JP 2008039507A JP 2006212077 A JP2006212077 A JP 2006212077A JP 2006212077 A JP2006212077 A JP 2006212077A JP 2008039507 A JP2008039507 A JP 2008039507A
Authority
JP
Japan
Prior art keywords
building structure
component
displacement
rocking
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006212077A
Other languages
Japanese (ja)
Other versions
JP4822337B2 (en
Inventor
Takanobu Suzuki
崇伸 鈴木
Hiroyuki Furukawa
洋之 古川
Hajime Oura
肇 大浦
Takashi Yanada
貴 簗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Azbil Corp
Original Assignee
Tokyo Gas Co Ltd
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Azbil Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2006212077A priority Critical patent/JP4822337B2/en
Publication of JP2008039507A publication Critical patent/JP2008039507A/en
Application granted granted Critical
Publication of JP4822337B2 publication Critical patent/JP4822337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for diagnosing an architectural structure, which can accurately evaluate the aftershock protection performance of the architectural structure by removing the influences due to its rotational movement. <P>SOLUTION: In this method, a seismometer equipped with an acceleration sensor and a gyrosensor is used, and the translational displacement component of the architectural structure is obtained from the output of the acceleration sensor, and rocking components and/or twisting components of the architectural structure are obtained from the output of the gyrosensor, and then a deformation of the architectural structure is evaluated, by removing the influence of the rocking component and/or the twisting component from the translational displacement components. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地震波を受けた建築構造物のゆがみを簡易に、しかも精度良く評価することのできる建築構造物の診断方法に関する。   The present invention relates to a method for diagnosing a building structure that can easily and accurately evaluate distortion of a building structure that has received an earthquake wave.

地震発生後における建築構造物の残余耐震性能を診断する場合、一般的には建築構造物に設置した地震計を用いて観測される揺れから該建築構造物のゆがみを評価することにより行われる。ちなみに地震計としては、専ら加速度センサが用いられ、複数の地震計(加速度センサ)を建築構造物の基礎部と上層階とにそれぞれ設置して地震波が加わったときの揺れを観測する。そして地震計(加速度センサ)の出力を2階積分することでその計測点での絶対変位を算出し、仮定した振動モードの下で建築構造物の地震波に対する応答変形量を求める等してその評価が行われる(例えば特許文献1を参照)。
特開2003−344213号公報
When diagnosing the residual seismic performance of a building structure after the occurrence of an earthquake, it is generally performed by evaluating the distortion of the building structure from the vibrations observed using a seismometer installed in the building structure. By the way, as the seismometer, an acceleration sensor is exclusively used, and a plurality of seismometers (acceleration sensors) are installed on the foundation and upper floor of the building structure, respectively, to observe the shaking when the seismic wave is applied. Then, the absolute displacement at the measurement point is calculated by integrating the output of the seismometer (acceleration sensor) to the second floor, and the response deformation amount of the building structure to the seismic wave under the assumed vibration mode is evaluated. (For example, refer to Patent Document 1).
JP 2003-344213 A

しかしながら従来における建築構造物の残余耐震性能の診断は、専ら、図6(a)にその概念を示すように建築構造物1の基礎部2と上層階3とにそれぞれ設置した2つの地震計4,5により、地震波が加わったときにおける各計測点での加速度を計測しているだけである。これ故、例えば図6(b)に示すように地震波によって建築構造物1にロッキング現象のような回転運動が加わると、各計測点での加速度を正確に評価することができなくなると言う問題がある。即ち、建築構造物1に回転運動6が加わると、前記地震計4,5はその回転運動を含めた加速度を検出することになる。すると地震計4,5の各出力から求められる建築構造物1の相対加速度に誤差が生じることになり、該建築構造物1の残余耐震性能を正確に評価することができなくなる。   However, in the conventional diagnosis of the residual seismic performance of the building structure, two seismometers 4 respectively installed on the foundation 2 and the upper floor 3 of the building structure 1 as shown in FIG. , 5 only measures the acceleration at each measurement point when a seismic wave is applied. Therefore, for example, as shown in FIG. 6B, when a rotational motion such as a rocking phenomenon is applied to the building structure 1 by the seismic wave, the acceleration at each measurement point cannot be accurately evaluated. is there. That is, when the rotational motion 6 is applied to the building structure 1, the seismometers 4 and 5 detect the acceleration including the rotational motion. Then, an error occurs in the relative acceleration of the building structure 1 obtained from the outputs of the seismometers 4 and 5, and the residual seismic performance of the building structure 1 cannot be accurately evaluated.

本発明はこのような事情を考慮してなされたもので、その目的は、建築構造物に回転運動が生じた場合であっても該建築構造物の相対変位やゆがみ等を簡易に、しかも精度良く求め、その残余耐震性能を正確に評価することのできる建築構造物の診断方法を提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to easily and accurately detect relative displacement and distortion of the building structure even when rotational movement occurs in the building structure. The object is to provide a diagnostic method for a building structure which can be obtained well and the residual seismic performance can be accurately evaluated.

上述した目的を達成するべく本発明に係る建築構造物の診断方法は、建築構造物に設置した複数の地震計の出力を分析して上記建築構造物の残余耐震性能を診断するに際して、前記地震計としてその設置場所における前記建築構造物の変位を検出する加速度センサと、上記設置場所における前記建築構造物の回転を検出するジャイロセンサとを用い、
前記加速度センサの出力から前記建築構造物の並進変位成分を求める共に、前記ジャイロセンサの出力から前記建築構造物のロッキング成分および/またはねじれ成分を求め、前記建築構造物の並進変位成分から前記建築構造物のロッキング成分および/またはねじれ成分の影響を除去して前記建築構造物のゆがみを評価することを特徴としている。
In order to achieve the above-described object, the diagnostic method for a building structure according to the present invention is configured to analyze the outputs of a plurality of seismometers installed in the building structure to diagnose the residual seismic performance of the building structure. Using an acceleration sensor that detects the displacement of the building structure at the installation location as a meter, and a gyro sensor that detects the rotation of the building structure at the installation location,
The translational displacement component of the building structure is obtained from the output of the acceleration sensor, the rocking component and / or the twisting component of the building structure is obtained from the output of the gyrosensor, and the building is determined from the translational displacement component of the building structure. The distortion of the building structure is evaluated by removing the influence of the rocking component and / or the twist component of the structure.

具体的には前記建築構造物の並進変位成分は、設置場所を異にする複数の加速度センサによりそれぞれ検出される特定方向における加速度から前記建築構造物の上記特定方向における相対加速度、相対速度、相対変位を算出することにより求め、また前記建築構造物のロッキング成分および/またはねじれ成分については、前記ジャイロセンサにより検出される特定方向への回転を示す角速度から求めることを特徴とする。   Specifically, the translational displacement component of the building structure is calculated from relative acceleration, relative speed, relative speed in the specific direction of the building structure from acceleration in the specific direction respectively detected by a plurality of acceleration sensors having different installation locations. It is obtained by calculating the displacement, and the rocking component and / or the twisting component of the building structure is obtained from an angular velocity indicating rotation in a specific direction detected by the gyro sensor.

尚、前記加速度センサおよびジャイロセンサは、少なくとも前記建築構造物の基礎部と上層階とにそれぞれ設置することが望ましい。   In addition, it is desirable that the acceleration sensor and the gyro sensor are respectively installed on at least the base portion and the upper floor of the building structure.

このような建築構造物の診断方法によれば、建築構造物に設置する地震計として加速度センサとジャイロセンサとを用い、地震波が加わったときの上記建築構造物の並進変位成分を上記加速度センサの出力から求めると共に、上記建築構造物の回転成分であるロッキング成分および/またはねじれ成分を前記ジャイロセンサの出力から求めるので、前記建築構造物の並進変位成分から前記ロッキング成分および/またはねじれ成分の影響を簡易に除去して前記建築構造物のゆがみ等を精度良く評価することができる。しかもジャイロセンサを用いて前記建築構造物の回転成分を直接検出するので、例えば建築構造物に数多くの加速度センサを設置し、これら加速度センサの各出力を互いに関連付けて解析して前記建築構造物の回転成分を求める等の煩わしさがない。   According to such a method for diagnosing a building structure, an acceleration sensor and a gyro sensor are used as seismometers installed in the building structure, and the translational displacement component of the building structure when a seismic wave is applied to the acceleration sensor. Since it is obtained from the output and the rocking component and / or the torsion component, which is the rotational component of the building structure, is obtained from the output of the gyro sensor, the influence of the rocking component and / or the torsion component from the translational displacement component of the building structure Can be easily removed to accurately evaluate the distortion of the building structure. In addition, since the rotational component of the building structure is directly detected using the gyro sensor, for example, a large number of acceleration sensors are installed in the building structure, and the outputs of the acceleration sensors are analyzed in association with each other. There is no inconvenience such as obtaining a rotation component.

特にジャイロセンサを有効に活用しているので地震計の設置場所を増やすことなく、加速度センサおよびジャイロセンサの設置場所においてその並進変位成分と回転成分とを一括して検出することができ、また建築構造物内において複数の地震計を接続するケーブルの敷設本数を少なくすることができるので、そのセンシングコストを低減し得る等の効果が奏せられる。   In particular, since the gyro sensor is used effectively, the translational displacement component and the rotation component can be detected at the same time at the installation location of the acceleration sensor and the gyro sensor without increasing the installation location of the seismometer. Since the number of cables laid to connect a plurality of seismometers in the structure can be reduced, effects such as reduction in sensing cost can be achieved.

以下、図面を参照して本発明の一実施形態に係る建築構造物の診断方法について説明する。
図1は本発明に係る診断方法を適用した建築構造物診断システムの概略構成図で、10a,10bは建築構造物1の基礎部(例えば地上階の床面)2および上層階(例えば2階の床面や屋上)3にそれぞれ設置した地震計を示している。これらの各地震計10a,10bは、それぞれその設置場所における前記建築構造物1の並進変位を検出する加速度センサ11と、上記設置場所における前記建築構造物1の回転を検出するジャイロセンサ12とを備えて構成される。
Hereinafter, a diagnostic method for a building structure according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a building structure diagnosis system to which a diagnosis method according to the present invention is applied. Reference numerals 10a and 10b denote a base part (for example, the floor surface of the ground floor) 2 and an upper floor (for example, the second floor) of the building structure 1. The seismometers installed on the floor 3 and the roof 3) are shown. Each of the seismometers 10a and 10b includes an acceleration sensor 11 that detects translational displacement of the building structure 1 at the installation location, and a gyro sensor 12 that detects rotation of the building structure 1 at the installation location. It is prepared for.

尚、加速度センサ11は、図2に示すようにその観測点(設置部位)における互いに直交する3軸(x軸,y軸,z軸)方向の各変位Xa,Ya,Zaを各軸方向に生じた加速度として検出するものである。またジャイロセンサ12は、図2に示すように上記3軸における各軸廻りの角回転Xg,Yg,Zgをそれぞれ検出するものである。ちなみにジャイロセンサ12は、内部素子を振動させ、そこに加わった回転(角速度)によるコリオリ効果により上記振動素子に発生する別の向きの振動を検出することで上記角速度を検出する振動形ジャイロである。尚、上記内部素子としては音叉形振動子やビーム形振動子、或いはリング型振動子等が挙げられるが、この種の振動子は外部からの衝撃やこの衝撃に起因する振動の影響を受け易いので、角振動だけを検出し得るジャイロセンサを用いることが望ましい。また好ましくはノイズレベルが低く、安定して角振動を検出し得るジャイロセンサを用いることが望ましい。   As shown in FIG. 2, the acceleration sensor 11 has displacements Xa, Ya, and Za in three axial directions (x-axis, y-axis, and z-axis) perpendicular to each other at the observation point (installation site). This is detected as the generated acceleration. As shown in FIG. 2, the gyro sensor 12 detects angular rotations Xg, Yg, Zg around the three axes. Incidentally, the gyro sensor 12 is a vibrating gyroscope that detects the angular velocity by detecting vibration in another direction generated in the vibrating element by a Coriolis effect caused by rotation (angular velocity) applied to the internal element. . Note that examples of the internal element include a tuning fork type vibrator, a beam type vibrator, a ring type vibrator, and the like, but this kind of vibrator is easily affected by an external impact or a vibration caused by the impact. Therefore, it is desirable to use a gyro sensor that can detect only angular vibration. It is also preferable to use a gyro sensor that has a low noise level and can stably detect angular vibration.

さて上述した加速度センサ11とジャイロセンサ12とを備え、建築構造物1の設置部位(計測点)での3方向の並進変位Xa,Ya,Za、および角回転Xg,Yg,Zgをそれぞれ検出する地震計10a,10bの各出力は、マイクロコンピュータ等からなる診断装置20に与えられる。この診断装置20は、前記各加速度センサ11の出力から前記建築構造物1の変位を検出する変位計測手段21と、前記各ジャイロセンサ12の出力から前記建築構造物1の回転運動であるロッキング成分および/またはねじれ成分を検出するロッキング/ねじれ計測手段22とを備える。更に診断装置20は、上記変位計測手段21にて求められた前記建築構造物1の並進変位成分(並進変位Xa,Ya,Za)から、前記ロッキング/ねじれ計測手段22にて求められた前記建築構造物1のロッキング成分および/またはねじれ成分(Xg,Yg,Zg)の影響を除去して前記建築構造物1のゆがみ等の、真の変位成分を評価するゆがみ評価手段23を備えて構成される。   Now, the acceleration sensor 11 and the gyro sensor 12 described above are provided, and the translational displacements Xa, Ya, Za and angular rotations Xg, Yg, Zg in three directions at the installation site (measurement point) of the building structure 1 are detected. The outputs of the seismometers 10a and 10b are given to a diagnostic device 20 composed of a microcomputer or the like. The diagnostic device 20 includes a displacement measuring means 21 that detects the displacement of the building structure 1 from the output of each acceleration sensor 11 and a rocking component that is a rotational motion of the building structure 1 from the output of each gyro sensor 12. And / or rocking / twist measuring means 22 for detecting a twist component. Further, the diagnostic device 20 uses the translation / displacement component (translational displacement Xa, Ya, Za) of the building structure 1 obtained by the displacement measuring means 21 to obtain the building obtained by the locking / twist measuring means 22. It is configured to include a distortion evaluation means 23 that evaluates a true displacement component such as distortion of the building structure 1 by removing the influence of the rocking component and / or the twist component (Xg, Yg, Zg) of the structure 1. The

即ち、この診断装置20においては、前述した加速度センサ11によって検出される複数の計測点における建築構造物1の並進変位から該建築構造物1のゆがみ量等を分析し、その分析結果に従って前記建築構造物1の残余耐震性能を診断するに際して、前記ジャイロセンサ12によって検出される前記計測点での角運動、つまり回転成分から求められる前記建築構造物1のロッキング成分やねじれ成分を除去することで、該建築構造物1の真のゆがみを評価するものとなっている。   That is, in this diagnostic apparatus 20, the amount of distortion of the building structure 1 is analyzed from the translational displacement of the building structure 1 at a plurality of measurement points detected by the acceleration sensor 11, and the building structure is analyzed according to the analysis result. When diagnosing the residual seismic performance of the structure 1, the angular movement at the measurement point detected by the gyro sensor 12, that is, by removing the rocking component and the twist component of the building structure 1 obtained from the rotation component The true distortion of the building structure 1 is evaluated.

さて地震による建築構造物1の振動(揺れ)を解析する場合、一般的には3次元立体を適当な集中質点とばねとに置き換えた質点ばねモデルが用いられる。この質点ばねモデルを用いれば、質点の変位応答から3次元モデル(建築構造物)の歪みや応力度を簡単に計算することができる。ちなみにこの種の質点系の運動は、通常、並進3成分の観測によって把握することができ、専ら、水平2軸(x軸,y軸)と上下1軸(z軸)の加速度センサを用いることで計測することができる。しかし構造物の運動を精緻に計測するには非常に多くの観測点が必要となる。   When analyzing the vibration (swing) of the building structure 1 due to an earthquake, a mass spring model in which a three-dimensional solid is replaced with an appropriate concentrated mass point and a spring is generally used. If this mass point spring model is used, it is possible to easily calculate the distortion and the degree of stress of the three-dimensional model (building structure) from the displacement response of the mass point. By the way, this kind of mass system motion can usually be grasped by observation of translational three components, and exclusively using acceleration sensors with two horizontal axes (x axis, y axis) and one vertical axis (z axis). Can be measured. However, in order to precisely measure the movement of the structure, a large number of observation points are required.

一方、構造物の振動には、複数の質点が同じような動き方をする剛体的な運動も含まれる。この場合の剛体の運動は並進3成分、回転3成分の計6自由度となる。しかし剛体的挙動に着目した場合には、その観測点を低減することができる。例えば建築構造物1における柱の傾斜に着目すると、剛体としての変形が小さい場合には上記柱の傾斜は梁・柱モデルで近似することができる。しかし剛体の変形が大きく上記柱の両端がヒンジ化するような場合には、図3(a)に示すように柱31の傾斜角θを計測することが重要となる。この場合、一般的には2つの加速度センサを用いて柱31の両端の変位u1,u2を計測し、その相対変位を柱31の高さで割ることによりその角度を求めることができる。しかし前述したジャイロセンサを用いれば、1点の観測だけで柱31の傾斜角θを求めることができる。   On the other hand, the vibration of the structure includes a rigid motion in which a plurality of mass points move in the same way. In this case, the motion of the rigid body has a total of 6 degrees of freedom including a translational 3 component and a rotational 3 component. However, when focusing on rigid behavior, the number of observation points can be reduced. For example, paying attention to the inclination of a column in the building structure 1, if the deformation as a rigid body is small, the inclination of the column can be approximated by a beam / column model. However, when the deformation of the rigid body is large and both ends of the column are hinged, it is important to measure the inclination angle θ of the column 31 as shown in FIG. In this case, generally, the angle u can be obtained by measuring the displacements u 1 and u 2 at both ends of the column 31 using two acceleration sensors and dividing the relative displacement by the height of the column 31. However, if the above-described gyro sensor is used, the inclination angle θ of the column 31 can be obtained by only observing one point.

また構造物のロッキング運動は、図3(b)に示すようにその基礎32の回転運動がその上部の構造物(例えば柱31)に影響を及ぼす。特に上記基礎32の回転は、上部の構造物における基礎32からの高さhが高くなるに従って大きな影響を及ぼし、その変位応答を増大させる。ちなみにロッキング運動を正確に把握するには、例えば図3(b)に示すようにその基礎32をなす水平面内の2点における変位u1,u2を計測し、上記2点間の相対変位をその2点間の距離で割れば良い。しかし前述した柱31の場合と同様にジャイロセンサを用いることで、1点の計測だけで上述したロッキング運動を計測することができる。   Further, in the rocking motion of the structure, as shown in FIG. 3B, the rotational motion of the foundation 32 affects the structure (for example, the column 31) on the upper portion. In particular, the rotation of the foundation 32 has a great influence as the height h of the upper structure from the foundation 32 becomes higher, and the displacement response is increased. Incidentally, in order to accurately grasp the rocking motion, for example, as shown in FIG. 3 (b), the displacements u1 and u2 at two points in the horizontal plane forming the foundation 32 are measured, and the relative displacement between the two points is calculated as 2 Divide by the distance between points. However, by using the gyro sensor as in the case of the pillar 31 described above, the above-described rocking motion can be measured by measuring only one point.

更に構造物のねじれ振動については、例えば図3(c)に示すように4点での変位u1,u2,u3,u4をそれぞれ計測すれば良い。しかしその上下の各辺(基礎32と梁33)が固定されているとすれば、これらの各辺(基礎32と梁33)の回転角を2つのジャイロセンサを用いてそれぞれ計測すれば、これらの回転角差から上記構造物のねじれ角を求めることができる。このねじれ振動については、壁面の場合でも同様である。   Further, for torsional vibration of the structure, for example, as shown in FIG. 3C, displacements u1, u2, u3, u4 at four points may be measured. However, if the upper and lower sides (foundation 32 and beam 33) are fixed, if the rotation angles of these sides (foundation 32 and beam 33) are measured using two gyro sensors, these The twist angle of the structure can be obtained from the difference in rotation angle. This torsional vibration is the same for the wall surface.

このように構造物の運動、特にロッキング振動やねじれ振動については、ジャイロセンサを用いることにより加速度センサを用いる場合のように数多くの計測点を設定することなく、その回転角(角速度)を容易に計測することが可能となる。従って建築構造物1の基礎部(例えば地上階の床面)2および上層階(例えば2階の床面や屋上)3にそれぞれ設置され、前述したように加速度センサ11とジャイロセンサ12とを備えた地震計10a,10bを用い、上記各計測点での並進変位とロッキング/ねじれをそれぞれ計測すれば、建築構造物1のロッキング成分および/またはねじれ成分の影響を効果的に除去して上記建築構造物1のゆがみを精度良く評価することができる。そしてその残余耐震性能を正確に診断することが可能となる。   As described above, regarding the movement of a structure, especially rocking vibration and torsional vibration, the rotation angle (angular velocity) can be easily set by using a gyro sensor without setting many measurement points as in the case of using an acceleration sensor. It becomes possible to measure. Accordingly, the building structure 1 is installed on the foundation (for example, the floor of the ground floor) 2 and the upper floor (for example, the floor of the second floor or the roof) 3 and includes the acceleration sensor 11 and the gyro sensor 12 as described above. If the translational displacement and the rocking / twisting at each measurement point are measured using the seismometers 10a and 10b, the effects of the rocking component and / or the twisting component of the building structure 1 can be effectively removed and the building described above. The distortion of the structure 1 can be accurately evaluated. And it becomes possible to accurately diagnose the residual seismic performance.

特に本発明においては建築構造物1に地震波が加わったときの該建築構造物1のロッキング振動とねじれ振動とが連成していることに着目している。更には建築構造物1に地震波が加わったとき、建築構造物1には並進運動の或る成分と角運動の成分とが連成して複雑な振動が生じるが、この振動もまた、例えば水平変位のサイクルの運動成分と、その一定サイクルに従う角運動成分とが重なっていることに着目している。そしてこれらの各振動成分については、前述したようにジャイロセンサ12の出力からそれぞれ分析することが可能である。   In particular, in the present invention, attention is paid to the fact that the rocking vibration and the torsional vibration of the building structure 1 are coupled when an earthquake wave is applied to the building structure 1. Furthermore, when a seismic wave is applied to the building structure 1, a complex vibration is generated in the building structure 1 due to a combination of a component of translational motion and a component of angular motion. It pays attention to the fact that the motion component of the displacement cycle overlaps with the angular motion component according to the constant cycle. These vibration components can be analyzed from the output of the gyro sensor 12 as described above.

従って建築構造物1が複雑に振動する場合であっても、上述したロッキング運動の影響を除去して前記建築構造物1の並進変位を簡易に、しかも正確に評価することが可能となる。具体的にはロッキングが生じた場合の相対変位については、例えば図4に示すように建築構造物1の上層階3に設けた地震計10bにて計測される変位がXbであり、また上記建築構造物1の基礎部2に設けた地震計10aにて計測される変位Xaであるとき、その相対変位Xrについてはジャイロセンサ11により計測されるロッキング回転θと前記上層階3の高さをhとから
Xr=Xb−Xa−h・sinθ
として補正することができる。ちなみに上記ロッキング回転θが大きい場合には、ロッキングによる変位分[h・sinθ]を差し引かないと上記相対変位Xrの誤差が過大となる。尚、このような相対変位の補正と同様にして相対速度や相対加速度の補正も可能であることは言うまでもない。
Therefore, even if the building structure 1 vibrates in a complicated manner, it is possible to easily and accurately evaluate the translational displacement of the building structure 1 by removing the influence of the above-described rocking motion. Specifically, as for the relative displacement when rocking occurs, for example, as shown in FIG. 4, the displacement measured by the seismometer 10b provided on the upper floor 3 of the building structure 1 is Xb. When the displacement Xa is measured by the seismometer 10a provided on the base portion 2 of the structure 1, the relative rotation Xr is expressed by the rocking rotation θ measured by the gyro sensor 11 and the height of the upper floor 3 h. And Xr = Xb−Xa−h · sin θ
As can be corrected. Incidentally, when the rocking rotation θ is large, the error of the relative displacement Xr becomes excessive unless the displacement [h · sin θ] due to rocking is subtracted. Needless to say, the relative velocity and the relative acceleration can be corrected in the same manner as the correction of the relative displacement.

またねじれが生じたときの相対変位の補正については、例えば図5に示すように上層階3に設けた地震計10bにて計測されるx軸方向の変位をX、y軸方向の変位をYとしたとき、そのねじれ回転の角をψとして、基礎部2に設けた地震計10aのx軸方向へのベクトル合成変位mを
m=Xcosψ+Xsinψ
として表すことができる。そして前記基礎部2に設けた地震計10aのx軸方向への変位Xaに対する相対変位Xrについては、
Xr=m−Xa=Xcosψ+Ysinψ−Xa
として表すことができる。従って前述したロッキングの場合と同様にねじれが生じた場合であっても、そのねじれ成分を補正して相対変位Xrを正確に求めることができる。
As for correction of relative displacement when twisting occurs, for example, as shown in FIG. 5, the displacement in the x-axis direction measured by the seismometer 10b provided on the upper floor 3 is X, and the displacement in the y-axis direction is Y. Where the angle of torsional rotation is ψ, and the vector combined displacement m in the x-axis direction of the seismometer 10a provided on the base 2 is m = Xcosψ + Xsinψ
Can be expressed as And about the relative displacement Xr with respect to the displacement Xa to the x-axis direction of the seismometer 10a provided in the said base part 2,
Xr = m−Xa = X cosψ + Ysinψ−Xa
Can be expressed as Accordingly, even when a twist occurs as in the case of the locking described above, the relative displacement Xr can be accurately obtained by correcting the twist component.

このように本発明方法においては、ジャイロセンサ11により計測される角回転(角運動)に従って建築構造物1のロッキング成分やねじれ成分を求め、建築構造物1の並進変位成分から上記ロッキング成分および/またはねじれ成分を差し引く(除去する)ので、その相対変位を正確に求めることができる。特にジャイロセンサ12を用いて建築構造物1の角運動を直接的に検出するようにしているので、従来のように計測点を増やす必要がない。従ってそのセンシングコストを安価に抑え得る等、その実用的利点が多大である。   As described above, in the method of the present invention, the rocking component and the torsion component of the building structure 1 are obtained according to the angular rotation (angular motion) measured by the gyro sensor 11, and the rocking component and / or the Alternatively, since the torsional component is subtracted (removed), the relative displacement can be accurately obtained. In particular, since the angular motion of the building structure 1 is directly detected using the gyro sensor 12, there is no need to increase the number of measurement points as in the prior art. Therefore, its practical advantage is great, such as its sensing cost can be kept low.

尚、本発明は上述した実施形態に限定されるものではない。ここでは2つの地震計10a,10bを建築構造物1の基礎部2および上層階3にそれぞれ設置する例について示したが、その設置数や設置場所については建築構造物1の構造に応じて定めれば良いものである。またまたジャイロセンサ12自体についても、種々の振動子を用いたものを適宜用いることができる。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. Here, an example in which two seismometers 10a and 10b are installed on the foundation 2 and the upper floor 3 of the building structure 1 is shown. The number and location of the installation are determined according to the structure of the building structure 1. It is good. In addition, as the gyro sensor 12 itself, those using various vibrators can be appropriately used. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明の一実施形態に係る建築構造物の診断方法を適用した建築構造物診断システムの概略構成図。1 is a schematic configuration diagram of a building structure diagnosis system to which a building structure diagnosis method according to an embodiment of the present invention is applied. 加速度センサおよびジャイロセンサによりそれぞれ検出される並進変位と回転成分をそれぞれ示す図。The figure which each shows the translation displacement and rotation component which are each detected by the acceleration sensor and the gyro sensor. 構造物の振動で問題となる剛体運動を模式的に示す図。The figure which shows typically the rigid body motion which becomes a problem by the vibration of a structure. ロッキングが生じた場合の相対変位の補正方法を示す図。The figure which shows the correction | amendment method of relative displacement when rocking arises. ねじれが生じたときの相対変位の補正方法を示す図。The figure which shows the correction | amendment method of the relative displacement when twist arises. 建築構造物に設置した地震計により検出される並進成分と、ロッキング振動が生じたときの問題を示す図。The figure which shows the problem when the translation component detected by the seismometer installed in the building structure, and rocking vibration arise.

符号の説明Explanation of symbols

1 建築構造物
10a,10b 地震計
11 加速度センサ
12 ジャイロセンサ
20 診断装置
21 変位計測手段
22 ロッキング/ねじれ計測手段
23 ゆがみ評価手段
DESCRIPTION OF SYMBOLS 1 Building structure 10a, 10b Seismometer 11 Acceleration sensor 12 Gyro sensor 20 Diagnosis apparatus 21 Displacement measuring means 22 Rocking / twist measuring means 23 Distortion evaluation means

Claims (3)

建築構造物に設置した複数の地震計の出力を分析して上記建築構造物の残余耐震性能を診断するに際して、
前記地震計として、設置場所における前記建築構造物の変位を検出する加速度センサと、設置場所における前記建築構造物の回転を検出するジャイロセンサとを用い、
前記加速度センサの出力から前記建築構造物の並進変位成分を求める共に、前記ジャイロセンサの出力から前記建築構造物のロッキング成分および/またはねじれ成分を求め、前記建築構造物の並進変位成分から前記建築構造物のロッキング成分および/またはねじれ成分の影響を除去して前記建築構造物のゆがみを評価することを特徴とする建築構造物の診断方法。
When diagnosing the residual seismic performance of the building structure by analyzing the output of multiple seismometers installed in the building structure,
As the seismometer, using an acceleration sensor that detects the displacement of the building structure at the installation location, and a gyro sensor that detects the rotation of the building structure at the installation location,
The translational displacement component of the building structure is obtained from the output of the acceleration sensor, the rocking component and / or the twisting component of the building structure is obtained from the output of the gyrosensor, and the building is determined from the translational displacement component of the building structure. A diagnostic method for a building structure, wherein the influence of the rocking component and / or the twist component of the structure is removed to evaluate the distortion of the building structure.
前記建築構造物の並進変位成分は、設置場所を異にする複数の加速度センサによりそれぞれ検出される特定方向における加速度から前記建築構造物の上記特定方向における相対加速度、相対速度、相対変位を算出することにより求められるものであって、
前記建築構造物のロッキング成分および/またはねじれ成分は、前記ジャイロセンサにより検出される特定方向への回転を示す角速度から求められるものである請求項1に記載の建築構造物の診断方法。
The translational displacement component of the building structure calculates the relative acceleration, the relative velocity, and the relative displacement in the specific direction of the building structure from the acceleration in the specific direction respectively detected by a plurality of acceleration sensors having different installation locations. That is required by
The building structure diagnosis method according to claim 1, wherein the rocking component and / or the torsional component of the building structure is obtained from an angular velocity indicating rotation in a specific direction detected by the gyro sensor.
前記加速度センサおよびジャイロセンサは、少なくとも前記建築構造物の基礎部と上層階とにそれぞれ設置されるものである請求項1に記載の建築構造物の診断方法。   The diagnostic method for a building structure according to claim 1, wherein the acceleration sensor and the gyro sensor are respectively installed at least on a base portion and an upper floor of the building structure.
JP2006212077A 2006-08-03 2006-08-03 Diagnosis method for building structures Expired - Fee Related JP4822337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212077A JP4822337B2 (en) 2006-08-03 2006-08-03 Diagnosis method for building structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212077A JP4822337B2 (en) 2006-08-03 2006-08-03 Diagnosis method for building structures

Publications (2)

Publication Number Publication Date
JP2008039507A true JP2008039507A (en) 2008-02-21
JP4822337B2 JP4822337B2 (en) 2011-11-24

Family

ID=39174698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212077A Expired - Fee Related JP4822337B2 (en) 2006-08-03 2006-08-03 Diagnosis method for building structures

Country Status (1)

Country Link
JP (1) JP4822337B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095237A (en) * 2009-09-29 2011-05-12 Central Corporation Method, device and system for evaluation of earthquake-proof performance
JP2012168008A (en) * 2011-02-14 2012-09-06 Ohbayashi Corp Earthquake damage determination system, structure with the same and earthquake damage determination program
JP2014134436A (en) * 2013-01-09 2014-07-24 Ntt Facilities Inc Building safety verification system and building safety verification method
JP2015127707A (en) * 2015-01-22 2015-07-09 株式会社Nttファシリティーズ Building safety verification system, building safety verification method, and program
JP2016017846A (en) * 2014-07-08 2016-02-01 株式会社Nttファシリティーズ Structure safety verification system, and method and program for structure safety verification
JP2018146237A (en) * 2017-03-01 2018-09-20 大成建設株式会社 Measurement method of building vibration
JP2021147772A (en) * 2020-03-16 2021-09-27 日立建機株式会社 Work machine and method for detecting fatigue of work machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344213A (en) * 2002-05-24 2003-12-03 Building Research Institute Device and method for evaluating aseismatic performance of building

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344213A (en) * 2002-05-24 2003-12-03 Building Research Institute Device and method for evaluating aseismatic performance of building

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095237A (en) * 2009-09-29 2011-05-12 Central Corporation Method, device and system for evaluation of earthquake-proof performance
JP2012168008A (en) * 2011-02-14 2012-09-06 Ohbayashi Corp Earthquake damage determination system, structure with the same and earthquake damage determination program
JP2014134436A (en) * 2013-01-09 2014-07-24 Ntt Facilities Inc Building safety verification system and building safety verification method
US10429269B2 (en) 2013-01-09 2019-10-01 Ntt Facilities, Inc. Building safety verification system and building safety verification method
JP2016017846A (en) * 2014-07-08 2016-02-01 株式会社Nttファシリティーズ Structure safety verification system, and method and program for structure safety verification
JP2015127707A (en) * 2015-01-22 2015-07-09 株式会社Nttファシリティーズ Building safety verification system, building safety verification method, and program
JP2018146237A (en) * 2017-03-01 2018-09-20 大成建設株式会社 Measurement method of building vibration
JP2021147772A (en) * 2020-03-16 2021-09-27 日立建機株式会社 Work machine and method for detecting fatigue of work machine
JP7410762B2 (en) 2020-03-16 2024-01-10 日立建機株式会社 working machine

Also Published As

Publication number Publication date
JP4822337B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4822337B2 (en) Diagnosis method for building structures
US11079229B2 (en) Microelectromechanical structure with enhanced rejection of acceleration noise
KR102160688B1 (en) Vibration resistant yaw rate sensor
JP5436561B2 (en) Connection structure for angular velocity sensor device, angular velocity sensor device and manufacturing method
US6293148B1 (en) Structural design for improving the sensitivity of a surface-micromachined vibratory gyroscope
RU2371691C1 (en) Method for monitoring of machines and structures
JP6366588B2 (en) System for measuring the dynamic displacement of a structure relative to a reference in real time and method of use thereof
JP3313028B2 (en) Measurement method of bending stiffness and tension of cable under tension
CN1851473A (en) Angular speed measuring method and device
Doniselli et al. Measuring the inertia tensor of vehicles
JP2010127764A (en) Method and apparatus for evaluating seismic capacity of building
Schiavi et al. Simultaneous 3-axis MEMS accelerometer primary calibration: description of the test-rig and measurements
JP3504529B2 (en) Gyro device for monitoring displacement of structures, ground, etc.
Miyashita et al. Development of 3D vibration measurement system using laser doppler vibrometers
JP6800049B2 (en) Building vibration measurement method
Sun et al. Investigation of cylindrical resonators’ damping asymmetry via analyzing q factor circumferential distribution
JP3783061B1 (en) Method and apparatus for detecting tilt angle and translational acceleration
JP3732829B2 (en) Inclination angle measuring apparatus and inclination angle measuring method
JP6370239B2 (en) Method and apparatus for measuring dynamic imbalance of rotating body
RU2272248C1 (en) Method for determining local portions of main pipelines with maximal deformation
JP3696298B2 (en) Seismic evaluation method and apparatus for buildings
Tarpøa et al. Tilt errors of linear accelerometers attached to dynamic systems with tilt motion caused by the system response
JP2011242246A (en) Method for detecting earthquake acceleration
MIYASHITA et al. Development of three-dimensional vibration measurement system using laser doppler vibrometers
US20230152345A1 (en) Inertial sensor sensing of vibration frequency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110729

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees