JP2018145053A - METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL - Google Patents

METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL Download PDF

Info

Publication number
JP2018145053A
JP2018145053A JP2017042092A JP2017042092A JP2018145053A JP 2018145053 A JP2018145053 A JP 2018145053A JP 2017042092 A JP2017042092 A JP 2017042092A JP 2017042092 A JP2017042092 A JP 2017042092A JP 2018145053 A JP2018145053 A JP 2018145053A
Authority
JP
Japan
Prior art keywords
graphite
sheet
seed crystal
solution
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2017042092A
Other languages
Japanese (ja)
Inventor
幹尚 加渡
Mikihisa Kawatari
幹尚 加渡
翔一郎 片山
Shoichiro Katayama
翔一郎 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017042092A priority Critical patent/JP2018145053A/en
Publication of JP2018145053A publication Critical patent/JP2018145053A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a SiC single crystal, capable of stably holding a seed crystal substrate on a seed crystal holding shaft to grow a high quality SiC single crystal.SOLUTION: The method for manufacturing a SiC single crystal, capable of contacting a seed crystal substrate held on the lower end surface of a seed crystal holding shaft to a Si-C solution having a temperature gradient decreasing a temperature toward the surface from the inside to grow the SiC single crystal comprises: preparing sheet-like graphite; exposing the sheet-like graphite to at least one of a high temperature atmosphere and a reduced pressure atmosphere to vaporize water in the sheet-like graphite; bonding the seed crystal substrate on the lower end surface of the seed crystal holding shaft using an adhesive so as to sandwich the sheet-like graphite exposed to the atmosphere therebetween; and heating and curing the adhesive.SELECTED DRAWING: Figure 7

Description

本開示は、SiC単結晶の製造方法に関する。   The present disclosure relates to a method for producing a SiC single crystal.

SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有する。そのため、Si単結晶やGaAs単結晶などの既存の半導体材料では実現できない高出力、高周波、耐電圧、耐環境性等を実現することが可能であり、大電力制御や省エネルギーを可能とするパワーデバイス材料、高速大容量情報通信用デバイス材料、車載用高温デバイス材料、耐放射線デバイス材料等、といった広い範囲における、次世代の半導体材料として期待が高まっている。   SiC single crystals are very thermally and chemically stable, excellent in mechanical strength, resistant to radiation, and have excellent physical properties such as higher breakdown voltage and higher thermal conductivity than Si single crystals. . Therefore, it is possible to realize high power, high frequency, withstand voltage, environmental resistance, etc. that cannot be realized with existing semiconductor materials such as Si single crystal and GaAs single crystal, and power devices that enable high power control and energy saving. Expectations are growing as next-generation semiconductor materials in a wide range of materials, high-speed and large-capacity information communication device materials, in-vehicle high-temperature device materials, radiation-resistant device materials and the like.

従来、SiC単結晶の成長法としては、代表的には気相法、アチソン(Acheson)法、及び溶液法が知られている。気相法のうち、例えば昇華法では、成長させた単結晶にマイクロパイプ欠陥と呼ばれる中空貫通状の欠陥や積層欠陥等の格子欠陥及び結晶多形が生じやすい等の欠点を有するが、従来、SiCバルク単結晶の多くは昇華法により製造されており、成長結晶の欠陥を低減する試みも行われている。アチソン法では原料として珪石とコークスを使用し電気炉中で加熱するため、原料中の不純物等により結晶性の高い単結晶を得ることは不可能である。   Conventionally, as a method for growing a SiC single crystal, a gas phase method, an Acheson method, and a solution method are typically known. Among the vapor phase methods, for example, the sublimation method has defects such as the formation of lattice defects such as hollow through defects called micropipe defects and stacking faults and crystal polymorphism in the grown single crystal. Many of SiC bulk single crystals are manufactured by a sublimation method, and attempts have been made to reduce defects in grown crystals. In the Atchison method, since silica and coke are used as raw materials and heated in an electric furnace, it is impossible to obtain a single crystal with high crystallinity due to impurities in the raw materials.

そして、溶液法は、黒鉛坩堝中でSi融液またはSi以外の金属を融解したSi融液を形成し、その融液中に炭素Cを溶解させ、低温部に設置した種結晶基板上にSiC結晶層を析出させて成長させる方法である。溶液法は気相法に比べ熱平衡に近い状態での結晶成長が行われるため、低欠陥化が最も期待できる。このため、最近では、溶液法によるSiC単結晶の製造方法がいくつか提案されている。   And the solution method forms Si melt which melt | dissolved Si melt or metals other than Si in a graphite crucible, melt | dissolves carbon C in the melt, and SiC on the seed crystal substrate installed in the low temperature part In this method, a crystal layer is deposited and grown. In the solution method, since crystal growth is performed in a state close to thermal equilibrium as compared with the gas phase method, the reduction of defects can be most expected. For this reason, several methods for producing SiC single crystals by the solution method have recently been proposed.

SiC単結晶の成長において、SiC種結晶基板を黒鉛の種結晶保持軸に直接接着すると、SiCと黒鉛との熱膨張差による応力によって成長結晶にクラックや割れが発生することがある。この熱膨張差による応力を緩和するために、緩衝層としてシート状黒鉛を配置する方法がある。特許文献1〜3には、種結晶基板の上に位置する種結晶保持軸、種結晶基板と種結晶保持軸とを固定する接着剤、接着剤によって厚み方向に挟持されたシート状黒鉛を備えた結晶成長装置が開示されている。   In the growth of a SiC single crystal, if the SiC seed crystal substrate is directly bonded to the graphite seed crystal holding shaft, cracks and cracks may occur in the grown crystal due to the stress due to the difference in thermal expansion between SiC and graphite. In order to relieve the stress due to this thermal expansion difference, there is a method in which sheet-like graphite is disposed as a buffer layer. Patent Documents 1 to 3 include a seed crystal holding shaft positioned on the seed crystal substrate, an adhesive for fixing the seed crystal substrate and the seed crystal holding shaft, and sheet-like graphite sandwiched in the thickness direction by the adhesive. An apparatus for crystal growth is disclosed.

特許第5734439号公報Japanese Patent No. 5734439 特開2013−136494号公報JP 2013-136494 A 特開2004−269297号公報JP 2004-269297 A

しかしながら、特許文献1〜3等の従来技術において、シート状黒鉛は水分を含有しており、接着剤を硬化させるために200℃程度の温度で熱処理を行うと、シート内の水分が内部で気化してシート表面に気泡が発生し、接着強度の低下による種結晶基板の脱落や、成長結晶の品質低下につながる問題があった。   However, in the prior arts such as Patent Documents 1 to 3, the sheet-like graphite contains moisture, and when heat treatment is performed at a temperature of about 200 ° C. in order to cure the adhesive, the moisture in the sheet is vaporized inside. As a result, bubbles were generated on the sheet surface, leading to a problem that the seed crystal substrate dropped off due to a decrease in adhesive strength and the quality of the grown crystal was degraded.

そのため、SiCと黒鉛との熱膨張差による応力を緩和し、且つ種結晶保持軸に種結晶基板を安定して保持して高品質なSiC単結晶を成長させることができるSiC単結晶の製造方法が望まれている。   Therefore, a method for producing a SiC single crystal that can relieve stress due to a difference in thermal expansion between SiC and graphite, and can stably hold a seed crystal substrate on a seed crystal holding shaft and grow a high-quality SiC single crystal. Is desired.

本開示は、内部から液面に向けて温度低下する温度勾配を有するSi−C溶液に、種結晶保持軸の下端面に保持した種結晶基板を接触させてSiC単結晶を結晶成長させる、SiC単結晶の製造方法であって、
シート状黒鉛を用意すること、
シート状黒鉛を、高温雰囲気及び減圧雰囲気の少なくとも一方の雰囲気に暴露して、シート状黒鉛中の水分を気化させること、
接着剤を用いて、種結晶保持軸の下端面に、雰囲気に暴露したシート状黒鉛を間に挟むように、種結晶基板を接着すること、並びに
熱処理を行って接着剤を硬化させること、
を含む、SiC単結晶の製造方法を対象とする。
In the present disclosure, a SiC single crystal is grown by bringing a seed crystal substrate held on the lower end face of a seed crystal holding shaft into contact with a Si-C solution having a temperature gradient that decreases in temperature from the inside toward the liquid surface. A method for producing a single crystal comprising:
Preparing sheet-like graphite,
Exposing the sheet-like graphite to at least one of a high-temperature atmosphere and a reduced-pressure atmosphere to vaporize moisture in the sheet-like graphite;
Adhering the seed crystal substrate to the lower end surface of the seed crystal holding shaft with an adhesive so that the sheet-like graphite exposed to the atmosphere is sandwiched therebetween, and curing the adhesive by performing a heat treatment,
The manufacturing method of the SiC single crystal containing is included.

本開示の方法によれば、接着剤を硬化させるための熱処理の前にシート状黒鉛に含まれる水分が除去されるので、接着剤の硬化工程におけるシート状黒鉛の気泡発生を抑制することができる。そのため、シート状黒鉛がSiCと黒鉛との熱膨張差による応力を緩和しつつ、且つ種結晶保持軸に種結晶基板を安定して保持して高品質なSiC単結晶を成長させることができる。   According to the method of the present disclosure, since moisture contained in the sheet-like graphite is removed before the heat treatment for curing the adhesive, it is possible to suppress the generation of bubbles in the sheet-like graphite in the adhesive curing step. . Therefore, the sheet-like graphite can relax the stress due to the difference in thermal expansion between SiC and graphite, and the seed crystal substrate can be stably held on the seed crystal holding shaft to grow a high-quality SiC single crystal.

図1は、種結晶基板と種結晶保持軸との間にシート状黒鉛を間に挟んで接着剤で接着した態様の断面模式図である。FIG. 1 is a schematic cross-sectional view of an embodiment in which a sheet-like graphite is sandwiched between a seed crystal substrate and a seed crystal holding shaft and bonded with an adhesive. 図2は、図1のシート状黒鉛を間に挟んだ種結晶基板と種結晶保持軸とを、接着剤を硬化させるために200℃で熱処理して、シート状黒鉛に気泡が発生した状態を表す断面模式図である。FIG. 2 shows a state in which bubbles are generated in the sheet-like graphite by heat-treating the seed crystal substrate and the seed-crystal holding shaft sandwiching the sheet-like graphite of FIG. 1 at 200 ° C. in order to cure the adhesive. It is a cross-sectional schematic diagram to represent. 図3は、種結晶保持軸の下端がシート状黒鉛で覆われた、種結晶基板及び種結晶基板よりも小さい直径を有する種結晶保持軸の断面模式図である。FIG. 3 is a schematic cross-sectional view of a seed crystal substrate and a seed crystal holding shaft having a diameter smaller than that of the seed crystal substrate, in which the lower end of the seed crystal holding shaft is covered with sheet-like graphite. 図4は、種結晶基板の上面がシート状黒鉛で覆われた、種結晶基板及び種結晶基板よりも小さい直径を有する種結晶保持軸の断面模式図である。FIG. 4 is a schematic cross-sectional view of a seed crystal substrate and a seed crystal holding shaft having a smaller diameter than that of the seed crystal substrate, in which the upper surface of the seed crystal substrate is covered with sheet-like graphite. 図5は、本開示の方法に用いられ得るSiC単結晶製造装置の一例を表す断面模式図である。FIG. 5 is a schematic cross-sectional view illustrating an example of an SiC single crystal manufacturing apparatus that can be used in the method of the present disclosure. 図6は、実施例におけるシート状黒鉛の200℃の熱処理前の外観写真である。FIG. 6 is an appearance photograph of the sheet-like graphite in the example before heat treatment at 200 ° C. 図7は、実施例におけるシート状黒鉛の200℃の熱処理後の外観写真である。FIG. 7 is an appearance photograph of the sheet-like graphite after heat treatment at 200 ° C. in Examples. 図8は、比較例におけるシート状黒鉛の200℃の熱処理前の外観写真である。FIG. 8 is an appearance photograph of the sheet-like graphite in the comparative example before heat treatment at 200 ° C. 図9は、比較例におけるシート状黒鉛の200℃の熱処理後の外観写真である。FIG. 9 is an appearance photograph of the sheet-like graphite in the comparative example after heat treatment at 200 ° C. 図10は、比較例におけるシート状黒鉛の200℃の熱処理前の外観写真である。FIG. 10 is an appearance photograph of the sheet-like graphite in the comparative example before heat treatment at 200 ° C. 図11は、比較例におけるシート状黒鉛の200℃の熱処理後の外観写真である。FIG. 11 is a photograph of the appearance of the sheet-like graphite after the heat treatment at 200 ° C. in the comparative example. 図12は、熱処理前のシート状黒鉛の含有水分量と熱処理後に発生した気泡の面積率との関係を表すグラフである。FIG. 12 is a graph showing the relationship between the moisture content of sheet-like graphite before heat treatment and the area ratio of bubbles generated after heat treatment.

本明細書において、(000−1)面等の表記における「−1」は、本来、数字の上に横線を付して表記するところを「−1」と表記したものである。   In this specification, “−1” in the notation of the (000-1) plane or the like is a place where “−1” is originally written with a horizontal line on the number.

従来技術において、シート状黒鉛を種結晶基板と種結晶保持軸との間の緩衝層として用いる場合、シート状黒鉛を間に挟むように、接着剤を用いて種結晶基板と種結晶保持軸とを接着する。このとき、接着剤を硬化させるために約200℃で熱処理が行われる。   In the prior art, when the sheet-like graphite is used as a buffer layer between the seed crystal substrate and the seed crystal holding shaft, an adhesive is used to sandwich the sheet-like graphite between the seed crystal substrate and the seed crystal holding shaft. Glue. At this time, heat treatment is performed at about 200 ° C. in order to cure the adhesive.

図1に、種結晶基板14と種結晶保持軸12との間にシート状黒鉛30を間に挟んで接着剤で接着した態様の断面模式図を示す。シート状黒鉛30と種結晶保持軸12との間は接着剤で接着され、シート状黒鉛30と種結晶基板14との間も接着剤で接着されている。図2に、図1のシート状黒鉛30を間に挟んだ結晶基板14と種結晶保持軸12とを、接着剤を硬化させるために200℃で熱処理したときの状態を表す断面模式図を示す。   FIG. 1 shows a schematic cross-sectional view of an embodiment in which a sheet-like graphite 30 is sandwiched between the seed crystal substrate 14 and the seed crystal holding shaft 12 and bonded with an adhesive. The sheet-like graphite 30 and the seed crystal holding shaft 12 are bonded with an adhesive, and the sheet-like graphite 30 and the seed crystal substrate 14 are also bonded with an adhesive. FIG. 2 is a schematic cross-sectional view showing a state when the crystal substrate 14 and the seed crystal holding shaft 12 sandwiching the sheet-like graphite 30 of FIG. 1 are heat-treated at 200 ° C. in order to cure the adhesive. .

図2に示すように、接着剤を硬化させるための熱処理工程において、シート状黒鉛に含有される水分が内部で気化し膨張して、シート内に気泡が発生してしまう。シート状黒鉛内に気泡が発生すると、その部分の接着強度や熱伝導が低下する。結果として、結晶成長中の種結晶基板の種結晶保持軸からの脱落や、成長結晶の品質低下につながる。   As shown in FIG. 2, in the heat treatment step for curing the adhesive, moisture contained in the sheet-like graphite is vaporized and expanded inside, and bubbles are generated in the sheet. When bubbles are generated in the sheet-like graphite, the adhesive strength and heat conduction of the portion are reduced. As a result, the seed crystal substrate during crystal growth falls off from the seed crystal holding axis, and the quality of the grown crystal is reduced.

本発明者は、上記知見に基づいて、種結晶基板を種結晶保持軸に接着する前に、シート状黒鉛を、高温雰囲気及び減圧雰囲気の少なくとも一方の雰囲気に暴露して、シート状黒鉛中の水分を気化させることを見出した。   Based on the above findings, the present inventor exposed the sheet-like graphite to at least one of a high-temperature atmosphere and a reduced-pressure atmosphere before bonding the seed crystal substrate to the seed crystal holding shaft. It was found that water was vaporized.

本開示は、内部から液面に向けて温度低下する温度勾配を有するSi−C溶液に、種結晶保持軸の下端面に保持した種結晶基板を接触させてSiC単結晶を結晶成長させる、SiC単結晶の製造方法であって、シート状黒鉛を用意すること、シート状黒鉛を、高温雰囲気及び減圧雰囲気の少なくとも一方の雰囲気に暴露して、シート状黒鉛中の水分を気化させること、接着剤を用いて、種結晶保持軸の下端面に、雰囲気に暴露したシート状黒鉛を間に挟むように、種結晶基板を接着すること、並びに熱処理を行って接着剤を硬化させること、を含む、SiC単結晶の製造方法を対象とする。   In the present disclosure, a SiC single crystal is grown by bringing a seed crystal substrate held on the lower end face of a seed crystal holding shaft into contact with a Si-C solution having a temperature gradient that decreases in temperature from the inside toward the liquid surface. A method for producing a single crystal, comprising preparing sheet-like graphite, exposing the sheet-like graphite to at least one of a high-temperature atmosphere and a reduced-pressure atmosphere to vaporize moisture in the sheet-like graphite, an adhesive And bonding the seed crystal substrate to the lower end surface of the seed crystal holding shaft so as to sandwich the sheet-like graphite exposed to the atmosphere, and curing the adhesive by performing a heat treatment, The manufacturing method of a SiC single crystal is an object.

本開示の製造方法によれば、接着剤を用いて種結晶保持軸の下端面にシート状黒鉛を間に挟むように種結晶基板を接着する前に、シート状黒鉛を、高温雰囲気及び減圧雰囲気の少なくとも一方の雰囲気に暴露して、シート状黒鉛中の水分を気化させることができる。そのため、接着剤の硬化工程の前に、シート状黒鉛に含まれる水分量を減らすことができる。   According to the manufacturing method of the present disclosure, before adhering the seed crystal substrate so as to sandwich the sheet-like graphite between the lower end surfaces of the seed crystal holding shaft using an adhesive, the sheet-like graphite is heated to a high temperature atmosphere and a reduced pressure atmosphere. The moisture in the sheet-like graphite can be vaporized by exposure to at least one of the above-mentioned atmospheres. Therefore, the moisture content contained in the sheet-like graphite can be reduced before the adhesive curing step.

図1に示すように、シート状黒鉛30は、種結晶基板14の上面に配置され、シート状黒鉛30を間に挟んで、種結晶基板14が、種結晶保持軸12の下端面に保持される。シート状黒鉛30は、種結晶保持軸12の下端面及び種結晶基板14の上面と、接着剤で固定される。   As shown in FIG. 1, the sheet-like graphite 30 is disposed on the upper surface of the seed crystal substrate 14, and the seed crystal substrate 14 is held on the lower end surface of the seed crystal holding shaft 12 with the sheet-like graphite 30 interposed therebetween. The The sheet-like graphite 30 is fixed to the lower end surface of the seed crystal holding shaft 12 and the upper surface of the seed crystal substrate 14 with an adhesive.

接着剤の硬化温度は接着剤の種類によるが、概して180〜220℃程度の高温雰囲気で行われる。接着剤の硬化工程において、シート状黒鉛の含有水分量が多いと、シート状黒鉛内に気泡が発生し得る。   The curing temperature of the adhesive depends on the type of adhesive, but is generally performed in a high temperature atmosphere of about 180 to 220 ° C. When the moisture content of the sheet-like graphite is large in the adhesive curing step, bubbles can be generated in the sheet-like graphite.

本開示の方法によれば、接着剤の硬化工程の前に、シート状黒鉛に含まれる水分量を減らすことができるので、接着剤の硬化工程においてシート状黒鉛から気化する水分量を少なくすることができ、シート状黒鉛内における気泡の発生を低減することができる。その結果、種結晶保持軸からの種結晶基板の脱落及び成長結晶の品質低下を抑制することができる。   According to the method of the present disclosure, since the amount of water contained in the sheet-like graphite can be reduced before the adhesive curing step, the amount of water vaporized from the sheet-like graphite in the adhesive curing step is reduced. And generation of bubbles in the sheet-like graphite can be reduced. As a result, dropping of the seed crystal substrate from the seed crystal holding shaft and deterioration of the quality of the grown crystal can be suppressed.

シート状黒鉛は柔軟性を有するため、種結晶保持軸と種結晶基板との線膨張係数差に起因する応力を軽減する緩衝材として機能し、成長結晶の歪みが小さくなる。そのため、成長結晶にクラックや割れが発生することを抑制することができ、結晶成長後にスライス等の加工を行ってもクラックや割れが発生しにくい。   Since the sheet-like graphite has flexibility, it functions as a buffer material that reduces the stress caused by the difference in linear expansion coefficient between the seed crystal holding shaft and the seed crystal substrate, and the strain of the grown crystal is reduced. Therefore, the generation of cracks and cracks in the grown crystal can be suppressed, and cracks and cracks are less likely to occur even when processing such as slicing is performed after crystal growth.

市販のシート状黒鉛は、0.5質量%程度の水分を含有している。この水分量を低減させるために、シート状黒鉛を、高温雰囲気及び減圧雰囲気の少なくとも一方の雰囲気に暴露する。   Commercial sheet-like graphite contains about 0.5% by mass of water. In order to reduce the moisture content, the sheet-like graphite is exposed to at least one of a high temperature atmosphere and a reduced pressure atmosphere.

シート状黒鉛を暴露する高温雰囲気は、シート状黒鉛に気泡が発生せずに水分を気化できる温度であればよく、好ましくは80〜120℃、より好ましくは90〜110℃である。シート状黒鉛を暴露する減圧雰囲気も、シート状黒鉛に気泡が発生せずに水分を気化できる圧力であればよく、好ましくは1〜100Pa、より好ましくは5〜20Paである。高温雰囲気及び減圧雰囲気の少なくとも一方の雰囲気への暴露時間は、好ましくは30〜600分、より好ましくは60〜200分である。シート状黒鉛は、上記範囲の温度の高温雰囲気、上記範囲の圧力の減圧雰囲気、または上記範囲の温度の高温雰囲気且つ上記範囲の圧力の減圧雰囲気に、上記時間の間、暴露されることにより、シート状黒鉛に含まれる水分量をより減らすことができる。好ましくは、高温雰囲気と減圧雰囲気とを組み合わせる。   The high temperature atmosphere to which the sheet-like graphite is exposed may be a temperature at which moisture can be vaporized without generating bubbles in the sheet-like graphite, and is preferably 80 to 120 ° C, more preferably 90 to 110 ° C. The reduced-pressure atmosphere that exposes the sheet-like graphite may be any pressure that can vaporize moisture without generating bubbles in the sheet-like graphite, and is preferably 1 to 100 Pa, more preferably 5 to 20 Pa. The exposure time to at least one of the high temperature atmosphere and the reduced pressure atmosphere is preferably 30 to 600 minutes, more preferably 60 to 200 minutes. Sheet graphite is exposed to a high temperature atmosphere at a temperature in the above range, a reduced pressure atmosphere at a pressure in the above range, or a high temperature atmosphere at a temperature in the above range and a reduced pressure atmosphere at a pressure in the above range for the above time, The amount of moisture contained in the sheet-like graphite can be further reduced. Preferably, a high temperature atmosphere and a reduced pressure atmosphere are combined.

高温雰囲気及び減圧雰囲気の少なくとも一方の雰囲気に暴露されたシート状黒鉛の含有水分量は、好ましくは0.2質量%以下、より好ましくは0.1質量%以下である。含有水分量がこの範囲であることにより、シート状黒鉛内における気泡の発生をより低減することができる。   The moisture content of the sheet-like graphite exposed to at least one of a high temperature atmosphere and a reduced pressure atmosphere is preferably 0.2% by mass or less, more preferably 0.1% by mass or less. When the moisture content is within this range, the generation of bubbles in the sheet-like graphite can be further reduced.

シート状黒鉛における気泡面積率は、好ましくは10%以下であり、より好ましくは5%以下であり、さらに好ましくは1%以下であり、さらにより好ましくは0%である。   The bubble area ratio in the sheet-like graphite is preferably 10% or less, more preferably 5% or less, still more preferably 1% or less, and even more preferably 0%.

シート状黒鉛における気泡面積率は、シート状黒鉛の面積に占める気泡の面積の割合であり、外観観察及び所望により画像処理装置を用いて算出することができる。   The bubble area ratio in the sheet-like graphite is a ratio of the area of the bubbles to the area of the sheet-like graphite, and can be calculated using an image processing apparatus according to appearance observation and as desired.

シート状黒鉛の厚みは、種結晶保持軸と種結晶基板との線膨張係数差に起因する応力の低減効果が得られる厚みであればよく、例えば0.01mm以上、0.05mm以上、または0.2mm以上であることができる。シート状黒鉛の厚みの上限は特に限定されるものではないが、例えば10mm以下、5mm以下、または1mm以下であることができる。   The thickness of the sheet-like graphite may be any thickness as long as the effect of reducing the stress caused by the difference in linear expansion coefficient between the seed crystal holding shaft and the seed crystal substrate is obtained. For example, 0.01 mm or more, 0.05 mm or more, or 0 .2 mm or more. Although the upper limit of the thickness of sheet-like graphite is not specifically limited, For example, it can be 10 mm or less, 5 mm or less, or 1 mm or less.

シート状黒鉛の種類としては、種結晶保持軸と種結晶基板との線膨張係数差に起因する応力を低減できるものであれば特に制限はなく、市販のものが使用され得る。シート状黒鉛は、カーボン繊維をローラーにかけて脱水することによって得られ得る。   The type of sheet-like graphite is not particularly limited as long as it can reduce the stress caused by the difference in linear expansion coefficient between the seed crystal holding shaft and the seed crystal substrate, and a commercially available one can be used. Sheet-like graphite can be obtained by dehydrating carbon fibers on a roller.

シート状黒鉛30は、種結晶基板の上面と種結晶保持軸12の下端面との間に配置される限り、その形状は特に限定されない。例えば、図3に示すように、種結晶保持軸12の下端面と、種結晶保持軸12の下端面よりも大きな直径を有する種結晶基板14との間に、シート状黒鉛30が、種結晶保持軸12の下端面の全体を覆うが、種結晶基板14の上面の全体は覆わないように配置されてもよい。または、図4に示すように、種結晶保持軸12の下端面と、種結晶保持軸12の下端面よりも大きな直径を有する種結晶基板14との間に、シート状黒鉛30が、種結晶基板14の上面の全体を覆うように配置されてもよい。   The shape of the sheet-like graphite 30 is not particularly limited as long as it is disposed between the upper surface of the seed crystal substrate and the lower end surface of the seed crystal holding shaft 12. For example, as shown in FIG. 3, a sheet-like graphite 30 is formed between a lower end surface of the seed crystal holding shaft 12 and a seed crystal substrate 14 having a larger diameter than the lower end surface of the seed crystal holding shaft 12. The entire lower end surface of the holding shaft 12 may be covered, but the entire upper surface of the seed crystal substrate 14 may be disposed so as not to be covered. Alternatively, as shown in FIG. 4, a sheet-like graphite 30 is formed between the lower end surface of the seed crystal holding shaft 12 and the seed crystal substrate 14 having a larger diameter than the lower end surface of the seed crystal holding shaft 12. You may arrange | position so that the whole upper surface of the board | substrate 14 may be covered.

接着剤は、好ましくはカーボン接着剤である。カーボン接着剤としては、例えば、フェノール系接着剤及びエポキシ系接着剤が挙げられる。   The adhesive is preferably a carbon adhesive. Examples of the carbon adhesive include phenolic adhesives and epoxy adhesives.

接着剤から構成されるか接着剤を主成分とする接着層を、シート状黒鉛の両面に配置し種結晶保持軸/接着層/シート状黒鉛/接着層/種結晶基板の層構造を構成してもよい。   An adhesive layer composed of an adhesive or mainly composed of an adhesive is disposed on both sides of the sheet-like graphite to form a layer structure of seed crystal holding shaft / adhesive layer / sheet-like graphite / adhesive layer / seed crystal substrate. May be.

シート状黒鉛は、複数層のシート状黒鉛から構成されてもよい。   The sheet-like graphite may be composed of a plurality of layers of sheet-like graphite.

本開示のSiC単結晶の製造方法においては溶液法が用いられる。溶液法とは、内部から表面に向けて温度低下する温度勾配を有するSi−C溶液に、SiC種結晶基板を接触させてSiC単結晶を成長させる、SiC単結晶の製造方法である。Si−C溶液の内部から溶液の表面に向けて温度低下する温度勾配を形成することによってSi−C溶液の表面領域を過飽和にして、Si−C溶液に接触させた種結晶基板からSiC単結晶を成長させることができる。   A solution method is used in the manufacturing method of the SiC single crystal of the present disclosure. The solution method is a method for producing a SiC single crystal in which a SiC single crystal is grown by bringing a SiC seed crystal substrate into contact with a Si—C solution having a temperature gradient that decreases from the inside toward the surface. By forming a temperature gradient in which the temperature decreases from the inside of the Si-C solution toward the surface of the solution, the surface region of the Si-C solution is supersaturated, and the SiC single crystal is removed from the seed crystal substrate in contact with the Si-C solution. Can grow.

図5に、本開示の製造方法に用いられ得るSiC単結晶製造装置の断面模式図の一例を示す。図示したSiC単結晶製造装置100は、Si系融液中に炭素Cが溶解してなるSi−C溶液24を収容した坩堝10を備え、Si−C溶液24の内部からSi−C溶液24の表面(液面)に向けて温度低下する温度勾配を形成し、鉛直方向に昇降可能な種結晶保持軸12の下端面に、シート状黒鉛30を介して種結晶基板14を保持し、種結晶基板14をSi−C溶液24に接触させて、種結晶基板14からSiC単結晶を成長させることができる。   In FIG. 5, an example of the cross-sectional schematic diagram of the SiC single crystal manufacturing apparatus which can be used for the manufacturing method of this indication is shown. The illustrated SiC single crystal manufacturing apparatus 100 includes a crucible 10 containing an Si—C solution 24 in which carbon C is dissolved in an Si-based melt, and the Si—C solution 24 is formed from the inside of the Si—C solution 24. A seed crystal substrate 14 is held via a sheet-like graphite 30 on the lower end surface of the seed crystal holding shaft 12 that forms a temperature gradient that decreases in temperature toward the surface (liquid surface) and can be raised and lowered in the vertical direction. A SiC single crystal can be grown from the seed crystal substrate 14 by bringing the substrate 14 into contact with the Si—C solution 24.

種結晶基板14として、SiC単結晶の製造に一般に用いられる品質のSiC単結晶を種結晶基板として用いることができる。例えば、昇華法で一般的に作成したSiC単結晶を種結晶基板として用いることができる。また、本方法に用いられ得る種結晶基板は、例えば板状、円盤状、円柱状、角柱状、円錐台状、または角錐台状等の任意の形状であることができる。   As the seed crystal substrate 14, a SiC single crystal of a quality generally used for the production of an SiC single crystal can be used as the seed crystal substrate. For example, a SiC single crystal generally prepared by a sublimation method can be used as a seed crystal substrate. In addition, the seed crystal substrate that can be used in the present method can have any shape such as a plate shape, a disk shape, a columnar shape, a prism shape, a truncated cone shape, or a truncated pyramid shape.

種結晶保持軸12は、その端面にシート状黒鉛30を介して種結晶基板14を保持する軸である。種結晶保持軸12は、黒鉛の軸であることができ、円柱状、角柱状等の任意の形状を有することができる。種結晶保持軸12は、好ましくは、種結晶基板14の上面の面積と同じか、または種結晶基板14の上面の面積よりも小さい面積を有する下端面を備え、より好ましくはは種結晶基板14の上面の面積よりも小さい面積を有する下端面を備える。   The seed crystal holding shaft 12 is an axis that holds the seed crystal substrate 14 via the sheet-like graphite 30 on its end face. The seed crystal holding shaft 12 can be a graphite shaft, and can have any shape such as a cylindrical shape or a prismatic shape. The seed crystal holding shaft 12 preferably includes a lower end surface having an area equal to or smaller than the area of the upper surface of the seed crystal substrate 14, more preferably the seed crystal substrate 14. The lower end surface which has an area smaller than the area of the upper surface of is provided.

Si−C溶液24は、Si系融液を溶媒とする炭素が溶解した溶液である。Si系融液とは、好ましくはSiまたはSi/Xの融液である。XはSi以外の1種類以上の金属であり、SiC(固相)と熱力学的に平衡状態となる液相(溶液)を形成できれば特に制限されない。適当な金属Xの例としては、Ti、Mn、Cr、Ni、Ce、Co、V、Fe、Ge、Al等が挙げられる。   The Si-C solution 24 is a solution in which carbon using a Si-based melt as a solvent is dissolved. The Si-based melt is preferably a Si or Si / X melt. X is one or more metals other than Si, and is not particularly limited as long as it can form a liquid phase (solution) in thermodynamic equilibrium with SiC (solid phase). Examples of suitable metals X include Ti, Mn, Cr, Ni, Ce, Co, V, Fe, Ge, Al and the like.

Si系融液は、より好ましくはSi/Cr/Xの融液である。Xは、Si及びCr以外の1種以上の金属である。適当な金属Xの例としては、Ti、Mn、Ni、Ce、Co、V、Fe、Ge、Al等が挙げられる。原子組成百分率でSi:Cr:X=30〜80:20〜70:0〜20の融液を溶媒とするSi−C溶液が、炭素の溶解量の変動が少なく、より好ましい。例えば、坩堝内にSiに加えて、Cr等の原料を投入し、Si/Cr融液に炭素が溶解したSi−C溶液を形成することができる。   The Si-based melt is more preferably a Si / Cr / X melt. X is one or more metals other than Si and Cr. Examples of suitable metals X include Ti, Mn, Ni, Ce, Co, V, Fe, Ge, Al and the like. A Si—C solution using a melt of Si: Cr: X = 30 to 80:20 to 70: 0 to 20 in terms of atomic composition percentage as a solvent is more preferable because of less variation in the amount of dissolved carbon. For example, in addition to Si, a raw material such as Cr can be introduced into the crucible to form a Si—C solution in which carbon is dissolved in a Si / Cr melt.

Si−C溶液24は、原料を坩堝に投入し、加熱融解させて調製したSi系融液に炭素Cを溶解させることによって調製される。坩堝10を、黒鉛坩堝などの炭素質坩堝またはSiC坩堝とすることによって、坩堝10の溶解により炭素が融液中に溶解し、Si−C溶液を形成することができる。こうすると、Si−C溶液24中に未溶解の炭素が存在せず、未溶解の炭素へのSiC単結晶の析出によるSiCの浪費が防止できる。炭素の供給は、例えば、炭化水素ガスの吹込み、または固体の炭素供給源を融液原料と一緒に投入するといった方法を利用してもよく、またはこれらの方法と坩堝の溶解とを組み合わせてもよい。   The Si-C solution 24 is prepared by charging a raw material into a crucible and dissolving carbon C in a Si-based melt prepared by heating and melting. By making the crucible 10 into a carbonaceous crucible such as a graphite crucible or an SiC crucible, the carbon is dissolved in the melt by melting the crucible 10 to form an Si-C solution. In this case, undissolved carbon does not exist in the Si—C solution 24, and waste of SiC due to precipitation of the SiC single crystal on the undissolved carbon can be prevented. The supply of carbon may use, for example, a method of injecting hydrocarbon gas, or charging a solid carbon source together with a melt raw material, or combining these methods with melting of a crucible. Also good.

Si−C溶液24の温度は、Si−C溶液24の表面温度をいう。Si−C溶液24の表面の温度は、SiC単結晶成長に適した炭素溶解度が得られる1900〜2100℃であることが好ましい。   The temperature of the Si—C solution 24 refers to the surface temperature of the Si—C solution 24. The surface temperature of the Si—C solution 24 is preferably 1900 to 2100 ° C. at which carbon solubility suitable for SiC single crystal growth is obtained.

Si−C溶液24の温度測定は、熱電対、放射温度計等を用いて行うことができる。熱電対に関しては、高温測定及び不純物混入防止の観点から、ジルコニアやマグネシア硝子を被覆したタングステン−レニウム素線を黒鉛保護管の中に入れた熱電対が好ましい。   The temperature measurement of the Si—C solution 24 can be performed using a thermocouple, a radiation thermometer, or the like. Regarding the thermocouple, from the viewpoint of high temperature measurement and prevention of impurity contamination, a thermocouple in which a tungsten-rhenium strand coated with zirconia or magnesia glass is placed in a graphite protective tube is preferable.

種結晶基板14のSi−C溶液24への接触は、種結晶基板14を下端面に保持した種結晶保持軸12をSi−C溶液24の液面に向かって降下させ、種結晶基板14の下面をSi−C溶液24の液面に対して平行にしてSi−C溶液24に接触させることによって行うことができる。そして、Si−C溶液24の液面に対して種結晶基板14を所定の位置に保持して、SiC単結晶を成長させることができる。   The contact of the seed crystal substrate 14 with the Si—C solution 24 causes the seed crystal holding shaft 12 holding the seed crystal substrate 14 on the lower end surface to descend toward the liquid surface of the Si—C solution 24, The lower surface can be made parallel to the liquid surface of the Si—C solution 24 and brought into contact with the Si—C solution 24. The SiC single crystal can be grown by holding the seed crystal substrate 14 at a predetermined position with respect to the liquid surface of the Si—C solution 24.

種結晶基板の保持位置は、種結晶基板の下面の位置が、Si−C溶液面に一致するか、Si−C溶液面に対して下側にあるか、またはSi−C溶液面に対して上側にあってもよい。種結晶基板の下面をSi−C溶液面に対して上方の位置に保持する場合は、一旦、種結晶基板をSi−C溶液に接触させて種結晶基板の下面にSi−C溶液を接触させてから、所定の位置に引き上げる。種結晶基板の下面の位置を、Si−C溶液面に一致するか、またはSi−C溶液面よりも下側にしてもよいが、多結晶の発生を防止するために、種結晶保持軸にSi−C溶液が接触しないようにすることが好ましい。これらの方法において、結晶成長中に種結晶基板の位置を調節してもよい。   The holding position of the seed crystal substrate is such that the position of the lower surface of the seed crystal substrate coincides with the Si-C solution surface, is below the Si-C solution surface, or is relative to the Si-C solution surface. It may be on the upper side. When the lower surface of the seed crystal substrate is held at a position above the Si-C solution surface, the seed crystal substrate is once brought into contact with the Si-C solution, and the Si-C solution is brought into contact with the lower surface of the seed crystal substrate. Then, pull it up to a predetermined position. The position of the lower surface of the seed crystal substrate may coincide with the Si-C solution surface or be lower than the Si-C solution surface, but in order to prevent the occurrence of polycrystals, It is preferable to prevent the Si—C solution from coming into contact. In these methods, the position of the seed crystal substrate may be adjusted during crystal growth.

保温のために、坩堝10の外周は、断熱材18で覆われている。これらが一括して、石英管26内に収容されている。石英管26の外周には、加熱装置として高周波コイル22が配置されている。高周波コイル22は、上段コイル22A及び下段コイル22Bから構成されてもよく、上段コイル22A及び下段コイル22Bはそれぞれ独立して制御可能である。   In order to keep warm, the outer periphery of the crucible 10 is covered with a heat insulating material 18. These are collectively accommodated in the quartz tube 26. On the outer periphery of the quartz tube 26, a high frequency coil 22 is disposed as a heating device. The high frequency coil 22 may be composed of an upper coil 22A and a lower coil 22B, and the upper coil 22A and the lower coil 22B can be independently controlled.

坩堝10、断熱材18、石英管26、及び高周波コイル22は、高温になるので、水冷チャンバーの内部に配置される。水冷チャンバーは、装置内の雰囲気調整を可能にするために、ガス導入口とガス排気口とを備える。   Since the crucible 10, the heat insulating material 18, the quartz tube 26, and the high frequency coil 22 become high temperature, they are disposed inside the water cooling chamber. The water cooling chamber includes a gas introduction port and a gas exhaust port in order to enable adjustment of the atmosphere in the apparatus.

Si−C溶液24の温度は、通常、輻射等のためSi−C溶液24の内部よりも表面の温度が低い温度分布となるが、さらに、高周波コイル22の巻数及び間隔、高周波コイル22と坩堝10との高さ方向の位置関係、並びに高周波コイル22の出力を調整することによって、Si−C溶液24に種結晶基板14が接触する溶液上部が低温、溶液下部(内部)が高温となるようにSi−C溶液24の表面に垂直方向の温度勾配を形成することができる。例えば、下段コイル22Bの出力よりも上段コイル22Aの出力を小さくして、Si−C溶液24に溶液上部が低温、溶液下部が高温となる温度勾配を形成することができる。   The temperature of the Si-C solution 24 usually has a temperature distribution in which the surface temperature is lower than the inside of the Si-C solution 24 due to radiation or the like. Further, the number and interval of the high-frequency coil 22, the high-frequency coil 22 and the crucible By adjusting the positional relationship with the height direction 10 and the output of the high-frequency coil 22, the upper part of the solution where the seed crystal substrate 14 contacts the Si-C solution 24 becomes low temperature, and the lower part of the solution (inside) becomes high temperature. In addition, a vertical temperature gradient can be formed on the surface of the Si-C solution 24. For example, the output of the upper coil 22A can be made smaller than the output of the lower coil 22B, and a temperature gradient can be formed in the Si—C solution 24 such that the upper part of the solution is cold and the lower part of the solution is hot.

Si−C溶液24中に溶解した炭素は、拡散及び対流により分散される。種結晶基板14の下面近傍は、加熱装置の出力制御、Si−C溶液24の表面からの放熱、及び種結晶保持軸12を介した抜熱等によって、Si−C溶液24の内部よりも低温となる温度勾配が形成されている。高温で溶解度の大きい溶液内部に溶け込んだ炭素が、低温で溶解度の低い種結晶基板付近に到達すると過飽和状態となり、この過飽和度を駆動力として種結晶基板14上にSiC結晶を成長させることができる。   The carbon dissolved in the Si—C solution 24 is dispersed by diffusion and convection. The vicinity of the lower surface of the seed crystal substrate 14 has a lower temperature than the inside of the Si—C solution 24 due to output control of the heating device, heat radiation from the surface of the Si—C solution 24, heat removal through the seed crystal holding shaft 12, and the like. A temperature gradient is formed. When the carbon dissolved in the solution having high solubility at high temperature reaches the vicinity of the seed crystal substrate having low solubility at low temperature, it becomes supersaturated, and SiC crystals can be grown on the seed crystal substrate 14 by using this supersaturation as a driving force. .

(実施例1−1)
シート状黒鉛として、厚みが0.2mmで、外形形状が、直径2インチ(50.8mm)の円形形状を有するシート状黒鉛(巴工業製、GRAFOIL(登録商標))を用意した。シート状黒鉛の含有水分量は、0.5質量%であった。
(Example 1-1)
As the sheet-like graphite, a sheet-like graphite having a thickness of 0.2 mm and an outer shape of 2 inches (50.8 mm) in diameter (manufactured by Sakai Kogyo, GRAFOIL (registered trademark)) was prepared. The moisture content of the sheet-like graphite was 0.5% by mass.

シート状黒鉛を、大気、100℃の高温雰囲気に2時間暴露した。高温雰囲気に暴露後のシート状黒鉛の含有水分量は、0.1質量%であった。   The sheet-like graphite was exposed to a high temperature atmosphere at 100 ° C. for 2 hours. The moisture content of the sheet-like graphite after exposure to a high temperature atmosphere was 0.1% by mass.

高温雰囲気に暴露後のシート状黒鉛を、200℃で2時間、熱処理した。図6に、シート状黒鉛の200℃の熱処理前の外観写真を示す。図7に、シート状黒鉛の200℃の熱処理後の外観写真を示す。熱処理後のシート状黒鉛における気泡面積率は0%であった。
(実施例1−2)
直径が2インチ(50.8mm)、厚みが350μmの円盤状4H−SiC単結晶であって、下面が(000−1)面を有する昇華法により作製したSiC単結晶を用意して、種結晶基板として用いた。
The sheet-like graphite after exposure to a high temperature atmosphere was heat-treated at 200 ° C. for 2 hours. In FIG. 6, the external appearance photograph before the heat processing of 200 degreeC of sheet-like graphite is shown. In FIG. 7, the external appearance photograph after 200 degreeC heat processing of sheet-like graphite is shown. The bubble area ratio in the sheet-like graphite after the heat treatment was 0%.
(Example 1-2)
A SiC single crystal having a diameter of 2 inches (50.8 mm) and a thickness of 350 μm and having a disk-like 4H—SiC single crystal produced by a sublimation method having a (000-1) bottom surface is prepared as a seed crystal. Used as a substrate.

直径が12mm、長さが40cmの円柱形状の黒鉛軸を、種結晶保持軸として用意した。   A cylindrical graphite shaft having a diameter of 12 mm and a length of 40 cm was prepared as a seed crystal holding shaft.

シート状黒鉛30として、実施例1−1で用いたものと同じシート状黒鉛を用意し、実施例1−1と同じ条件の高温雰囲気に暴露した。   As the sheet-like graphite 30, the same sheet-like graphite as used in Example 1-1 was prepared and exposed to a high-temperature atmosphere under the same conditions as in Example 1-1.

図4に模式的に示すように、上記高温雰囲気に暴露したシート状黒鉛30を、種結晶基板の上面を完全に覆うように、種結晶基板の上面にフェノール系カーボン接着剤を用いて接着し、さらに種結晶保持軸の下端面を、シート状黒鉛30を被覆した種結晶基板の上面の中央部にフェノール系カーボン接着剤を用いて接着した。次いで、200℃で2時間、大気雰囲気で熱処理を行い、接着剤を硬化させた。   As schematically shown in FIG. 4, the sheet-like graphite 30 exposed to the high temperature atmosphere is bonded to the upper surface of the seed crystal substrate using a phenol-based carbon adhesive so as to completely cover the upper surface of the seed crystal substrate. Further, the lower end surface of the seed crystal holding shaft was bonded to the central portion of the upper surface of the seed crystal substrate coated with the sheet-like graphite 30 using a phenol-based carbon adhesive. Next, heat treatment was performed in an air atmosphere at 200 ° C. for 2 hours to cure the adhesive.

図5に示す単結晶製造装置100を用い、Si−C溶液を収容する黒鉛坩堝10に、Si/Crを原子組成百分率でSi:Cr=60:40の割合で融液原料として仕込んだ。   Using a single crystal manufacturing apparatus 100 shown in FIG. 5, Si / Cr was charged as a melt raw material at a ratio of Si: Cr = 60: 40 in atomic composition percentage into a graphite crucible 10 containing an Si—C solution.

単結晶製造装置100の内部を1×10-3Paに真空引きした後、1気圧になるまでアルゴンガスを導入して、単結晶製造装置100の内部の空気をアルゴンで置換した。黒鉛坩堝10の周囲に配置された加熱装置としての高周波コイル22に通電して加熱により黒鉛坩堝10内の原料を融解し、Si/Cr合金の融液を形成した。そしてSi/Cr合金の融液に黒鉛坩堝10から十分な量のCを溶解させて、Si−C溶液24を形成した。 After the inside of the single crystal manufacturing apparatus 100 was evacuated to 1 × 10 −3 Pa, argon gas was introduced to 1 atm, and the air inside the single crystal manufacturing apparatus 100 was replaced with argon. A high frequency coil 22 serving as a heating device disposed around the graphite crucible 10 was energized to melt the raw material in the graphite crucible 10 to form a Si / Cr alloy melt. Then, a sufficient amount of C was dissolved from the graphite crucible 10 in the Si / Cr alloy melt to form a Si—C solution 24.

上段コイル22A及び下段コイル22Bの出力を調節して黒鉛坩堝10を加熱し、Si−C溶液24の表面における温度を2000℃に昇温させ、並びにSi−C溶液24の表面から1cmの範囲で溶液内部から溶液表面に向けて温度低下する平均温度勾配が30℃/cmとなるように制御した。Si−C溶液24の表面の温度測定は放射温度計により行い、Si−C溶液24の温度勾配の測定は、鉛直方向に移動可能な熱電対を用いて行った。   The graphite crucible 10 is heated by adjusting the outputs of the upper coil 22A and the lower coil 22B, the temperature on the surface of the Si—C solution 24 is increased to 2000 ° C., and within the range of 1 cm from the surface of the Si—C solution 24. It controlled so that the average temperature gradient which temperature falls toward the solution surface from the inside of a solution might be 30 degrees C / cm. The surface temperature of the Si—C solution 24 was measured with a radiation thermometer, and the temperature gradient of the Si—C solution 24 was measured using a thermocouple movable in the vertical direction.

種結晶保持軸12に接着した種結晶基板14の下面をSi−C溶液24の液面に平行にして、種結晶基板14の下面の位置を、Si−C溶液24の液面に一致する位置に配置して、Si−C溶液に種結晶基板の下面を接触させるシードタッチを行い、その位置で15時間保持して、結晶を成長させた。   A position where the lower surface of the seed crystal substrate 14 bonded to the seed crystal holding shaft 12 is parallel to the liquid surface of the Si-C solution 24 and the position of the lower surface of the seed crystal substrate 14 coincides with the liquid surface of the Si-C solution 24. Then, the seed touch was performed in which the lower surface of the seed crystal substrate was brought into contact with the Si—C solution, and the crystal was grown at that position for 15 hours.

結晶成長の終了後、種結晶保持軸12を上昇させて、室温まで冷却して、種結晶基板14及び種結晶基板から成長したSiC結晶を、Si−C溶液24及び種結晶保持軸12から切り離して回収した。   After completion of the crystal growth, the seed crystal holding shaft 12 is raised and cooled to room temperature, and the seed crystal substrate 14 and the SiC crystal grown from the seed crystal substrate are separated from the Si-C solution 24 and the seed crystal holding shaft 12. And recovered.

種結晶保持軸から種結晶基板が脱落することなく、クラック及び割れがない高品質なSiC単結晶を成長させることができた。   A high-quality SiC single crystal free from cracks and cracks could be grown without dropping the seed crystal substrate from the seed crystal holding shaft.

(実施例2−1)
実施例1−1で用いたものと同じシート状黒鉛を用意し、室温、10Paの減圧雰囲気に2時間暴露した。減圧雰囲気に暴露後のシート状黒鉛の含有水分量は、0.1質量%であった。
(Example 2-1)
The same sheet-like graphite as used in Example 1-1 was prepared and exposed to a reduced pressure atmosphere at room temperature and 10 Pa for 2 hours. The moisture content of the sheet-like graphite after exposure to a reduced-pressure atmosphere was 0.1% by mass.

減圧雰囲気に暴露後のシート状黒鉛を、200℃で2時間、熱処理した。熱処理後のシート状黒鉛における気泡面積率は0%であった。   The sheet-like graphite after exposure to a reduced pressure atmosphere was heat treated at 200 ° C. for 2 hours. The bubble area ratio in the sheet-like graphite after the heat treatment was 0%.

(実施例2−2)
実施例2−1で用いたものと同じシート状黒鉛を用意し、実施例2−1と同じ条件の減圧雰囲気に暴露し、この減圧雰囲気に暴露したシート状黒鉛を用いたこと以外は、実施例1−2と同じ条件で、SiC結晶を成長させた。
(Example 2-2)
Except that the same sheet-like graphite as used in Example 2-1 was prepared and exposed to a reduced-pressure atmosphere under the same conditions as in Example 2-1, and the sheet-like graphite exposed to this reduced-pressure atmosphere was used. A SiC crystal was grown under the same conditions as in Example 1-2.

種結晶保持軸から種結晶基板が脱落することなく、クラック及び割れがない高品質なSiC単結晶を成長させることができた。   A high-quality SiC single crystal free from cracks and cracks could be grown without dropping the seed crystal substrate from the seed crystal holding shaft.

(実施例3−1)
実施例1−1で用いたものと同じシート状黒鉛を用意し、100℃、10Paの高温減圧雰囲気に2時間暴露した。高温減圧雰囲気に暴露後のシート状黒鉛の含有水分量は、0.1質量%であった。
(Example 3-1)
The same sheet-like graphite as used in Example 1-1 was prepared and exposed to a high-temperature and reduced-pressure atmosphere of 100 ° C. and 10 Pa for 2 hours. The moisture content of the sheet-like graphite after being exposed to the high temperature and reduced pressure atmosphere was 0.1% by mass.

高温減圧雰囲気に暴露後のシート状黒鉛を、200℃で2時間、熱処理した。熱処理後のシート状黒鉛における気泡面積率は0%であった。   The sheet-like graphite after being exposed to a high temperature and reduced pressure atmosphere was heat-treated at 200 ° C. for 2 hours. The bubble area ratio in the sheet-like graphite after the heat treatment was 0%.

(実施例3−2)
実施例3−1で用いたものと同じシート状黒鉛を用意し、実施例3−1と同じ条件の高温減圧雰囲気に暴露し、この高温減圧雰囲気に暴露したシート状黒鉛を用いたこと以外は、実施例1−2と同じ条件で、SiC結晶を成長させた。
(Example 3-2)
Except that the same sheet-like graphite as used in Example 3-1 was prepared, exposed to a high-temperature reduced-pressure atmosphere under the same conditions as Example 3-1, and the sheet-like graphite exposed to this high-temperature reduced-pressure atmosphere was used. The SiC crystal was grown under the same conditions as in Example 1-2.

種結晶保持軸から種結晶基板が脱落することなく、クラック及び割れがない高品質なSiC単結晶を成長させることができた。   A high-quality SiC single crystal free from cracks and cracks could be grown without dropping the seed crystal substrate from the seed crystal holding shaft.

(比較例1−1)
実施例1−1で用いたものと同じシート状黒鉛を用意し、高温雰囲気にも減圧雰囲気にも暴露せずに、そのまま200℃で2時間、熱処理した。図8に、シート状黒鉛の200℃の熱処理前の外観写真を示す。図9に、シート状黒鉛の200℃の熱処理後の外観写真を示す。熱処理後のシート状黒鉛における気泡面積率は20%であった。
(Comparative Example 1-1)
The same sheet-like graphite as used in Example 1-1 was prepared, and heat-treated at 200 ° C. for 2 hours without being exposed to a high temperature atmosphere or a reduced pressure atmosphere. In FIG. 8, the external appearance photograph before heat processing of 200 degreeC of sheet-like graphite is shown. In FIG. 9, the external appearance photograph after 200 degreeC heat processing of sheet-like graphite is shown. The bubble area ratio in the sheet-like graphite after the heat treatment was 20%.

(比較例1−2)
比較例1−1で用いたものと同じシート状黒鉛を用意し、接着剤硬化前に高温雰囲気または減圧雰囲気に暴露しなかったこと以外は、実施例1−2と同じ条件で、SiC結晶を成長させた。
(Comparative Example 1-2)
The same sheet-like graphite as that used in Comparative Example 1-1 was prepared, and SiC crystals were formed under the same conditions as in Example 1-2, except that they were not exposed to a high temperature atmosphere or a reduced pressure atmosphere before curing the adhesive. Grown up.

種結晶保持軸から種結晶基板が脱落することがあり、成長させたSiC単結晶にクラックがみられた。   The seed crystal substrate sometimes dropped off from the seed crystal holding axis, and cracks were found in the grown SiC single crystal.

(比較例2−1)
実施例1−1で用いたものと同じシート状黒鉛を用意し、湿中雰囲気に暴露した。湿中雰囲気に暴露後のシート状黒鉛の含有水分量は、17質量%であった。次いで、シート状黒鉛を200℃で2時間、熱処理した。図10に、シート状黒鉛の200℃の熱処理前の外観写真を示す。図11に、シート状黒鉛の200℃の熱処理後の外観写真を示す。熱処理後のシート状黒鉛における気泡面積率は32%であった。
(Comparative Example 2-1)
The same sheet-like graphite as used in Example 1-1 was prepared and exposed to a humid atmosphere. The moisture content of the sheet-like graphite after being exposed to a humid atmosphere was 17% by mass. Next, the sheet-like graphite was heat-treated at 200 ° C. for 2 hours. In FIG. 10, the external appearance photograph before the heat processing of 200 degreeC of sheet-like graphite is shown. In FIG. 11, the external appearance photograph after the heat processing of 200 degreeC of sheet-like graphite is shown. The bubble area ratio in the sheet-like graphite after the heat treatment was 32%.

(比較例2−2)
比較例2−1で用いたものと同じシート状黒鉛を用意し、比較例2−1と同じ条件の湿中雰囲気に暴露し、接着剤硬化前に高温雰囲気または減圧雰囲気に暴露しなかったこと以外は、実施例1−2と同じ条件で、SiC結晶を成長させた。
(Comparative Example 2-2)
The same sheet-like graphite as used in Comparative Example 2-1 was prepared, exposed to a humid atmosphere under the same conditions as Comparative Example 2-1, and not exposed to a high temperature atmosphere or a reduced pressure atmosphere before curing the adhesive. Except for this, an SiC crystal was grown under the same conditions as in Example 1-2.

種結晶保持軸から種結晶基板が脱落することがあり、成長させたSiC単結晶にクラックがみられた。   The seed crystal substrate sometimes dropped off from the seed crystal holding axis, and cracks were found in the grown SiC single crystal.

図12に、熱処理前のシート状黒鉛の含有水分量と熱処理後に発生した気泡の面積率との関係を表すグラフを示す。   In FIG. 12, the graph showing the relationship between the moisture content of the sheet-like graphite before heat processing and the area ratio of the bubble generated after heat processing is shown.

100 単結晶製造装置
10 坩堝
12 種結晶保持軸
14 種結晶基板
17 成長結晶
18 断熱材
22 高周波コイル
22A 上段高周波コイル
22B 下段高周波コイル
24 Si−C溶液
26 石英管
30 シート状黒鉛
DESCRIPTION OF SYMBOLS 100 Single crystal manufacturing apparatus 10 Crucible 12 Seed crystal holding shaft 14 Seed crystal substrate 17 Grown crystal 18 Heat insulating material 22 High frequency coil 22A Upper high frequency coil 22B Lower high frequency coil 24 Si-C solution 26 Quartz tube 30 Sheet graphite

Claims (1)

内部から液面に向けて温度低下する温度勾配を有するSi−C溶液に、種結晶保持軸の下端面に保持した種結晶基板を接触させてSiC単結晶を結晶成長させる、SiC単結晶の製造方法であって、
シート状黒鉛を用意すること、
前記シート状黒鉛を、高温雰囲気及び減圧雰囲気の少なくとも一方の雰囲気に暴露して、前記シート状黒鉛中の水分を気化させること、
接着剤を用いて、前記種結晶保持軸の下端面に、前記雰囲気に暴露したシート状黒鉛を間に挟むように、前記種結晶基板を接着すること、並びに
熱処理を行って前記接着剤を硬化させること、
を含む、SiC単結晶の製造方法。
Production of a SiC single crystal by growing a SiC single crystal by bringing a seed crystal substrate held on the lower end face of a seed crystal holding shaft into contact with a Si-C solution having a temperature gradient that decreases from the inside toward the liquid surface. A method,
Preparing sheet-like graphite,
Exposing the sheet-like graphite to at least one of a high-temperature atmosphere and a reduced-pressure atmosphere to vaporize moisture in the sheet-like graphite;
Using an adhesive, the seed crystal substrate is bonded to the lower end surface of the seed crystal holding shaft so as to sandwich the sheet-like graphite exposed to the atmosphere, and the adhesive is cured by performing a heat treatment. Letting
The manufacturing method of the SiC single crystal containing this.
JP2017042092A 2017-03-06 2017-03-06 METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL Ceased JP2018145053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017042092A JP2018145053A (en) 2017-03-06 2017-03-06 METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042092A JP2018145053A (en) 2017-03-06 2017-03-06 METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL

Publications (1)

Publication Number Publication Date
JP2018145053A true JP2018145053A (en) 2018-09-20

Family

ID=63589504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042092A Ceased JP2018145053A (en) 2017-03-06 2017-03-06 METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL

Country Status (1)

Country Link
JP (1) JP2018145053A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010394A1 (en) * 2009-07-21 2011-01-27 トヨタ自動車株式会社 Seed-crystal shaft for single-crystal growth by solution method
JP2013071870A (en) * 2011-09-28 2013-04-22 Kyocera Corp Apparatus for growing crystal and method for growing crystal
WO2013115272A1 (en) * 2012-01-30 2013-08-08 京セラ株式会社 Seed crystal holder, crystal growing device, and crystal growing method
JP2015051892A (en) * 2013-09-06 2015-03-19 住友電気工業株式会社 Production method of silicon carbide ingot
JP2016056059A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010394A1 (en) * 2009-07-21 2011-01-27 トヨタ自動車株式会社 Seed-crystal shaft for single-crystal growth by solution method
JP2013071870A (en) * 2011-09-28 2013-04-22 Kyocera Corp Apparatus for growing crystal and method for growing crystal
WO2013115272A1 (en) * 2012-01-30 2013-08-08 京セラ株式会社 Seed crystal holder, crystal growing device, and crystal growing method
JP2015051892A (en) * 2013-09-06 2015-03-19 住友電気工業株式会社 Production method of silicon carbide ingot
JP2016056059A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL

Similar Documents

Publication Publication Date Title
JP6090287B2 (en) Method for producing SiC single crystal
JP5839117B2 (en) SiC single crystal and method for producing the same
US9702057B2 (en) Method for producing an n-type SiC single crystal from a Si—C solution comprising a nitride
JP5801730B2 (en) Seed crystal holding shaft used in single crystal manufacturing apparatus and single crystal manufacturing method
JP5890377B2 (en) Method for producing SiC single crystal
JP5071406B2 (en) Composite bonding method of seed crystal for SiC single crystal growth by solution method
JP6344374B2 (en) SiC single crystal and method for producing the same
JP6424806B2 (en) Method of manufacturing SiC single crystal
JP2018145053A (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2017202969A (en) SiC SINGLE CRYSTAL, AND PRODUCTION METHOD THEREOF
JP2016056059A (en) APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
JP6256411B2 (en) Method for producing SiC single crystal
US20170327968A1 (en) SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME
JP6380267B2 (en) SiC single crystal and method for producing the same
JP6030525B2 (en) Method for producing SiC single crystal
JP6597113B2 (en) Method for producing SiC single crystal
JP2018150193A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL
JP2018043907A (en) METHOD OF MANUFACTURING SiC SINGLE CRYSTAL
JP2017226583A (en) Production method for sic single crystal
JP2018043898A (en) PRODUCING METHOD OF SiC SINGLE CRYSTAL
JP2018048044A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL
JP2016204188A (en) P TYPE SiC SINGLE CRYSTAL
JP2019099447A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL
JP2019014622A (en) Method of manufacturing sic single crystal
JP2019043818A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210518

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210811

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220614

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220802

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220830

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220830

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20221220