JP2018141800A - Gas detector - Google Patents

Gas detector Download PDF

Info

Publication number
JP2018141800A
JP2018141800A JP2018083008A JP2018083008A JP2018141800A JP 2018141800 A JP2018141800 A JP 2018141800A JP 2018083008 A JP2018083008 A JP 2018083008A JP 2018083008 A JP2018083008 A JP 2018083008A JP 2018141800 A JP2018141800 A JP 2018141800A
Authority
JP
Japan
Prior art keywords
gas
adsorption
gas detector
detected
decomposition catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018083008A
Other languages
Japanese (ja)
Other versions
JP6556288B2 (en
Inventor
卓史 谷口
Takufumi Taniguchi
卓史 谷口
三橋 弘和
Hirokazu Mihashi
弘和 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2018083008A priority Critical patent/JP6556288B2/en
Publication of JP2018141800A publication Critical patent/JP2018141800A/en
Application granted granted Critical
Publication of JP6556288B2 publication Critical patent/JP6556288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas detector which is hardly influenced by various disturbing components, is excellent in responsiveness of gas to be detected, and is excellent in productivity.SOLUTION: A gas detector including a gas detection element 10 having a gas sensitive part 12 that comes in contact with gas to be detected comprises dual casings 51, 52 for storing the gas detection part 10, therein the outer casing 51 of the dual casings comprises a gas introduction port 20 for introducing the gas to be detected; and a first absorption part 31 for absorbing disturbing components, and the inner casing 52 of the dual casings comprises: a decomposition catalytic part 34 for decomposing the disturbing components; and a second absorption part 32 for absorbing the disturbing components in this order in a direction in which the gas to be detected is introduced.SELECTED DRAWING: Figure 3

Description

本発明は、被検知ガスと接触するガス感応部を有するガス検知素子を備えたガス検知器に関する。   The present invention relates to a gas detector including a gas detection element having a gas sensitive portion that comes into contact with a gas to be detected.

特許文献1には、活性炭やゼオライトあるいはシリカゲル、プラスチック系の気体選択性透過膜等を用いた吸着フィルタを配設して、水蒸気やエタノール、トリクレン等の雑ガスを吸収し、ガス検知素子に対する雑ガスの影響を和らげることができるガスセンサが開示されている。   In Patent Document 1, an adsorption filter using activated carbon, zeolite, silica gel, a plastic gas-selective permeable membrane, or the like is provided to absorb miscellaneous gases such as water vapor, ethanol, or trichrene, and miscellaneous gas detection elements. A gas sensor that can mitigate the effects of gas is disclosed.

特許文献2には、被検知ガスの妨害成分を除去する除去手段とガス感応部との間に妨害成分流入制限手段を設けたガスセンサが開示されている。当該妨害成分流入制限手段により、雰囲気の変化によって除去手段から妨害成分が吸放出されたときの影響を緩和することができ、雰囲気状態変化時のガスセンサの誤動作を防止することができる。具体的には、妨害成分流入制限手段は、ピンホールを設けた流入制限板の態様が開示されており、当該流入制限板は除去手段とガス感応部との間に固定手段によって筐体に固定されている。   Patent Document 2 discloses a gas sensor in which a disturbing component inflow restricting means is provided between a removing means for removing a disturbing component of a gas to be detected and a gas sensitive part. The interference component inflow restricting means can alleviate the influence when the disturbing component is absorbed and released from the removing means due to a change in atmosphere, and can prevent malfunction of the gas sensor when the atmosphere state changes. Specifically, the disturbance component inflow restricting means is disclosed as an inflow restricting plate provided with a pinhole, and the inflow restricting plate is fixed to the housing by a fixing means between the removing means and the gas sensitive part. Has been.

特開2003−156463号公報JP 2003-156463 A 特開平10−197470号公報JP-A-10-197470

家庭において使用される結露防止スプレーやヘアースプレー等にはシロキサン化合物が含まれている場合がある。当該シロキサン化合物とは、「Si-O-Si」のシロキサン結合を骨格中に有する有機ポリマーである。   Anti-condensation sprays and hair sprays used at home may contain siloxane compounds. The siloxane compound is an organic polymer having a “Si—O—Si” siloxane bond in the skeleton.

当該シロキサン化合物がガス検知素子に付着した場合、ガス検知素子の検知感度が低下したり、選択的に検出すべきガス以外のガスに対してガス検知感度が上昇して、誤作動したりしやすくなることがあった。これは、被検知ガス中に含まれるシロキサン化合物が妨害成分としてガス検知素子にまで達し、ガス検知素子にシロキサン化合物又はその分解物等が付着することで、ガス検知素子のガス検知特性を変化させるものと考えられる。   When the siloxane compound adheres to the gas detection element, the detection sensitivity of the gas detection element decreases, or the gas detection sensitivity increases with respect to gases other than the gas that should be selectively detected, which may cause malfunction. There was. This is because the siloxane compound contained in the gas to be detected reaches the gas detection element as a disturbing component, and the siloxane compound or a decomposition product thereof adheres to the gas detection element, thereby changing the gas detection characteristics of the gas detection element. It is considered a thing.

そのため、例えば可燃性ガスセンサにおいては、特許文献1のように吸着剤として活性炭を用いた吸着フィルタを配置することで、当該吸着フィルタによってシロキサン化合物を吸着させ、シロキサン化合物がガス検知素子の表面に到達するのを防止することができる。   Therefore, for example, in a flammable gas sensor, an adsorption filter using activated carbon as an adsorbent is arranged as in Patent Document 1, so that the siloxane compound is adsorbed by the adsorption filter, and the siloxane compound reaches the surface of the gas detection element. Can be prevented.

吸着フィルタを装着した可燃性ガスセンサを台所などの室内に設置した場合、当該吸着フィルタが室内に浮遊するシロキサン化合物等の妨害成分を吸着してしまう。そのため、該吸着フィルタの吸着能力が早期に低下し易くなり、当該妨害成分を吸着する能力が低下する問題があった。   When a combustible gas sensor equipped with an adsorption filter is installed in a room such as a kitchen, the adsorption filter adsorbs interfering components such as a siloxane compound floating in the room. For this reason, there is a problem that the adsorption capacity of the adsorption filter tends to be lowered early, and the ability to adsorb the interfering component is lowered.

また、シロキサン化合物等の妨害成分に対する可燃性ガスセンサの耐久性を向上させる為に、吸着フィルタに導入する吸着剤の量を大幅に増量させた場合や、ガス導入口の面積を小さくした場合は、当該妨害成分に対する耐久性が向上する一方で、被検知ガスに対する応答性が著しく低下してしまう。   Also, in order to improve the durability of combustible gas sensors against interfering components such as siloxane compounds, when the amount of adsorbent introduced into the adsorption filter is greatly increased, or when the area of the gas inlet is reduced, While durability against the disturbing component is improved, responsiveness to the gas to be detected is significantly lowered.

また、ガス導入口の面積を小さくした場合では、シロキサン化合物等の妨害成分が存在する家庭台所において、特に低温低湿期間中に当該妨害成分が吸着剤に多量に吸着されて可燃性ガスセンサのハウジング内に保持され易い。このような状況のときに高温高湿環境になると、吸着剤の温度上昇によって吸着剤から離脱した離脱ガスがガス検知素子の側へ移動し、被検知ガスが存在しないにもかかわらず、当該離脱ガスを検知してしまう虞があった。   In addition, when the area of the gas inlet is reduced, in a household kitchen where a disturbing component such as a siloxane compound exists, the disturbing component is adsorbed in a large amount by the adsorbent, particularly during the low temperature and low humidity period, and the inside of the combustible gas sensor housing Easy to hold. In such a situation, if the environment becomes a high temperature and high humidity environment, the detached gas that has desorbed from the adsorbent due to the temperature rise of the adsorbent moves to the gas sensing element side, and the desorbed gas does not exist even though there is no gas to be detected. There was a risk of detecting gas.

このような誤検知を防止するため、特許文献2に記載されたガスセンサでは妨害成分流入制限手段(ピンホールを設けた流入制限板)を設けて、妨害成分がガス検知素子の側へ移動するのを防止していた。この流入制限板は、固定手段によって筐体に固定されているが、流入制限板の周囲と筐体との間に隙間が存在すれば、当該隙間から容易に妨害成分がガス検知素子の側へ移動する虞があった。この場合、流入制限板の周囲と筐体との間の隙間を無くすために流入制限板の周囲を接着剤などで封止することが考えられるが、このような手法では、ガスセンサの生産効率が低下し、かつコストが嵩むという問題点があった。   In order to prevent such erroneous detection, the gas sensor described in Patent Document 2 is provided with a disturbing component inflow restricting means (an inflow restricting plate provided with a pinhole) so that the disturbing component moves toward the gas detecting element. Was preventing. The inflow restricting plate is fixed to the housing by a fixing means. If there is a gap between the periphery of the inflow restricting plate and the housing, the disturbing component easily moves to the gas detection element side from the gap. There was a risk of moving. In this case, in order to eliminate the gap between the periphery of the inflow restricting plate and the housing, it is conceivable to seal the periphery of the inflow restricting plate with an adhesive or the like. However, in such a method, the production efficiency of the gas sensor is reduced. There is a problem that the cost is reduced and the cost is increased.

従って、本発明の目的は、種々の妨害成分の影響を受け難く、被検知ガスの応答性に優れ、かつ生産性に優れたガス検知器を提供することにある。   Accordingly, an object of the present invention is to provide a gas detector that is not easily affected by various interference components, has excellent response of the gas to be detected, and is excellent in productivity.

上記目的を達成するための本発明に係るガス検知器は、被検知ガスと接触するガス感応部を有するガス検知素子を備えたガス検知器であって、その第一特徴構成は、前記ガス検知素子を収容する二重の筐体を備え、前記二重の筐体における外側の外側筐体は、被検知ガスを導入するガス導入口および妨害成分を吸収する第一吸着部を備え、前記二重の筐体における内側の内側筐体は、前記妨害成分を分解する分解触媒部および前記妨害成分を吸収する第二吸着部を、被検知ガスの導入方向からこの順に備えた点にある。   In order to achieve the above object, a gas detector according to the present invention is a gas detector including a gas detection element having a gas sensitive portion that comes into contact with a gas to be detected. A double housing for housing the element, and an outer housing on the outside of the double housing includes a gas introduction port for introducing the gas to be detected and a first adsorption portion for absorbing the disturbing component, The inner case inside the heavy case is provided with a decomposition catalyst part for decomposing the disturbing component and a second adsorption part for absorbing the disturbing component in this order from the introduction direction of the gas to be detected.

本構成によれば、ガス検知器を収容する筐体を二重筐体構造としている。そのため、ガス検知器を組み立てる際には、外側筐体および内側筐体を組み付けるだけで、第一吸着部、分解触媒部および第二吸着部を収容する空間を容易に形成することができる。   According to this configuration, the housing that houses the gas detector has a double housing structure. Therefore, when assembling the gas detector, the space for accommodating the first adsorbing portion, the decomposition catalyst portion, and the second adsorbing portion can be easily formed simply by assembling the outer casing and the inner casing.

本構成では、ガス導入口より外側筐体に導入された導入ガスは、まず、第一吸着部を通過する。このとき、導入ガスに妨害成分が含まれていれば第一吸着部によって吸着される。
当該妨害成分の全てが第一吸着部によって吸着されない場合、残りの妨害成分は内側筐体における分解触媒部に到達する。このとき分解触媒部に導入された妨害成分は、分解触媒部によって分解される。妨害成分の全てが分解触媒部によって分解されない場合、残りの妨害成分は第二吸着部に到達し、当該第二吸着部によって吸着される。
このように内側筐体において分解触媒部および第二吸着部を通過することで、妨害成分は分解あるいは吸着されるため、ガス検知素子に到達する妨害成分は極めて少なくなる。
In this configuration, the introduced gas introduced into the outer casing from the gas inlet first passes through the first adsorption unit. At this time, if the introduced gas contains an interfering component, it is adsorbed by the first adsorption unit.
When all of the disturbing components are not adsorbed by the first adsorbing portion, the remaining disturbing components reach the decomposition catalyst portion in the inner casing. At this time, the disturbing component introduced into the cracking catalyst part is decomposed by the cracking catalyst part. When all of the interfering components are not decomposed by the decomposition catalyst unit, the remaining interfering components reach the second adsorption unit and are adsorbed by the second adsorption unit.
In this way, since the interference component is decomposed or adsorbed by passing through the decomposition catalyst portion and the second adsorption portion in the inner casing, the interference component reaching the gas detection element is extremely reduced.

従って、本発明のガス検知器では、第一吸着部、分解触媒部および第二吸着部を備えることで、シロキサン化合物などの種々の妨害成分が存在する台所などで使用したとしても種々の妨害成分の影響をより一層受け難くすることができる。   Therefore, the gas detector of the present invention includes the first adsorbing part, the decomposition catalyst part, and the second adsorbing part, so that various disturbing components even when used in a kitchen where various disturbing components such as siloxane compounds exist. Can be made more difficult to be affected.

また、後述の実施例においてガス応答性を調べた結果、本発明のガス検知器は優れたガス応答性を有するものと認められている。   Further, as a result of examining the gas responsiveness in Examples described later, it is recognized that the gas detector of the present invention has an excellent gas responsiveness.

従って、本発明のガス検知器は、種々の妨害成分の影響を受け難く、被検知ガスの応答性に優れ、かつ生産性に優れる。   Therefore, the gas detector of the present invention is hardly affected by various interference components, has excellent response of the gas to be detected, and is excellent in productivity.

本発明に係るガス検知器の第二特徴構成は、前記第一吸着部および前記分解触媒部の間に妨害成分の流入を制限する制限手段を備えた点にある。   The second characteristic configuration of the gas detector according to the present invention is that a limiting means for limiting the inflow of disturbing components is provided between the first adsorption unit and the cracking catalyst unit.

本構成によれば、妨害成分の全てが第一吸着部によって吸着されない場合、残りの妨害成分は妨害成分の流入を制限する制限手段を経由して内側筐体における分解触媒部に到達するように構成できる。このとき、例えば制限手段の開口面積はガス導入口の開口面積より小さく設定することができるため、分解触媒部に導入される妨害成分の量を大幅に低減することができる。これにより、ガス検知素子に到達する妨害成分は極めて少なくなる。   According to this configuration, when not all of the disturbing components are adsorbed by the first adsorbing portion, the remaining disturbing components reach the decomposition catalyst portion in the inner casing via the restricting means that restricts the inflow of the disturbing components. Can be configured. At this time, for example, the opening area of the restricting means can be set smaller than the opening area of the gas inlet, so that the amount of disturbing components introduced into the cracking catalyst portion can be greatly reduced. Thereby, the disturbing component reaching the gas detection element is extremely reduced.

本発明に係るガス検知器の第三特徴構成は、前記内側筐体は、前記妨害成分を吸収する第三吸着部を、前記分解触媒部の上流側に備えた点にある。   A third characteristic configuration of the gas detector according to the present invention is that the inner casing includes a third adsorption portion that absorbs the disturbing component on the upstream side of the cracking catalyst portion.

本構成によれば、第三吸着部は制限手段の下流(ガス検知素子側)に配設される。この状態においては、第三吸着部は制限手段を経由した妨害成分を吸着できるため、第三吸着部の下流側に配設してある分解触媒部に導入される妨害成分の量を大幅に低減することができる。これにより、ガス検知素子に到達する妨害成分は極めて少なくなる。   According to this configuration, the third adsorption portion is disposed downstream (on the gas detection element side) of the limiting means. In this state, since the third adsorbing part can adsorb the disturbing component via the restricting means, the amount of the disturbing component introduced into the cracking catalyst part disposed downstream of the third adsorbing part is greatly reduced. can do. Thereby, the disturbing component reaching the gas detection element is extremely reduced.

本発明に係るガス検知器の第四特徴構成は、前記第二吸着部および前記第三吸着部は、それぞれ固体酸触媒で形成した点にある。   A fourth characteristic configuration of the gas detector according to the present invention is that the second adsorbing portion and the third adsorbing portion are each formed of a solid acid catalyst.

本構成の成分を有する第二吸着部および第三吸着部とすれば、妨害成分を吸着することができる。   If the second adsorbing part and the third adsorbing part having the components of this configuration are used, the interfering component can be adsorbed.

本発明に係るガス検知器の第五特徴構成は、前記分解触媒部は、貴金属を担持したカーボン系材料で形成した点にある。   A fifth characteristic configuration of the gas detector according to the present invention is that the cracking catalyst portion is formed of a carbon-based material supporting a noble metal.

本構成の成分を有する分解触媒部とすれば、妨害成分を分解することができる。   If the decomposition catalyst portion having the components of this configuration is used, the disturbing components can be decomposed.

本発明に係るガス検知器の第六特徴構成は、前記第一吸着部を、活性炭、カーボンブラックおよびゼオライトの何れかで形成した点にある。   A sixth characteristic configuration of the gas detector according to the present invention is that the first adsorption part is formed of any one of activated carbon, carbon black, and zeolite.

本構成の成分を有する第一吸着部とすれば、妨害成分を吸着することができる。   If it is set as the 1st adsorption | suction part which has the component of this structure, a disturbance component can be adsorb | sucked.

ガス検知素子を示す概略図である。It is the schematic which shows a gas detection element. ブリッジ回路の概略図である。It is the schematic of a bridge circuit. 本発明例のガス検知器の概略図である(本発明例1)。It is the schematic of the gas detector of the example of this invention (invention example 1). 別実施形態のガス検知器の概略図である(本発明例2,3)。It is the schematic of the gas detector of another embodiment (invention example 2 and 3). 比較センサのガス検知器の概略図である(比較例1,3,4)。It is the schematic of the gas detector of a comparison sensor (comparative examples 1, 3, and 4). 比較センサのガス検知器の概略図である(比較例2)。It is the schematic of the gas detector of a comparison sensor (comparative example 2). 比較センサのガス検知器の概略図である(比較例5)。It is the schematic of the gas detector of a comparison sensor (comparative example 5). 実施例1(シロキサン化合物耐久性)の結果を示したグラフである。It is the graph which showed the result of Example 1 (siloxane compound durability).

以下、本発明の実施形態を図面に基づいて説明する。
図1〜3に示したように本発明のガス検知器Xは、被検知ガスと接触するガス感応部12を有するガス検知素子10を備える。当該ガス検知素子10は、二重の筐体51,52に収容されており、二重の筐体51,52における外側の外側筐体51は、被検知ガスを導入するガス導入口20および妨害成分を吸収する第一吸着部31を備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the gas detector X of the present invention includes a gas detection element 10 having a gas sensitive portion 12 that comes into contact with a gas to be detected. The gas detection element 10 is accommodated in double casings 51 and 52, and the outer casing 51 outside the dual casings 51 and 52 includes a gas inlet 20 for introducing a gas to be detected and an obstruction. The 1st adsorption | suction part 31 which absorbs a component is provided.

二重の筐体における内側の内側筐体52は、妨害成分を分解する分解触媒部34および妨害成分を吸収する第二吸着部32を、被検知ガスの導入方向からこの順に備える。   The inner case 52 in the double case includes a decomposition catalyst part 34 for decomposing the disturbing component and a second adsorption part 32 for absorbing the disturbing component in this order from the introduction direction of the gas to be detected.

当該内側筐体52は、ガス導入口20より開口面積が小さい制限通気口(制限手段)40を備える。当該制限通気口(制限手段)40は、妨害成分の流入を制限するものであり、第一吸着部31および分解触媒部34の間に配設してある。   The inner housing 52 includes a restriction vent (restriction means) 40 having an opening area smaller than that of the gas inlet 20. The restriction vent (restricting means) 40 restricts the inflow of disturbing components, and is disposed between the first adsorption part 31 and the decomposition catalyst part 34.

本実施形態では、吸着部30として二つの吸着部(第一吸着部31,第二吸着部32)を備えた場合について説明するが、このような態様に限定されず、三つ以上の吸着部を備えてもよい。それぞれの吸着部31,32は単一の材料で形成してもよいし、複数の異なる材料を組み合わせて一つの吸着部を形成してもよい。   In the present embodiment, a case where two adsorbing units (first adsorbing unit 31 and second adsorbing unit 32) are provided as the adsorbing unit 30 will be described. May be provided. Each adsorption | suction part 31 and 32 may be formed with a single material, and may form one adsorption | suction part combining several different materials.

また、本実施形態では、ガス検知素子10として熱線型半導体式ガス検知素子を例示するが、これに限られるものではない。その他のガス検知素子として、接触燃焼式ガス検知素子、基板型半導体式ガス検知素子、固体電解質式ガス検知素子、MEMS技術を用いたガス検知素子等、従来公知のガス検知素子が挙げられる。   In the present embodiment, a hot-wire semiconductor gas detection element is exemplified as the gas detection element 10, but is not limited thereto. Other gas detection elements include conventionally known gas detection elements such as catalytic combustion type gas detection elements, substrate type semiconductor type gas detection elements, solid electrolyte type gas detection elements, and gas detection elements using MEMS technology.

熱線型半導体式ガス検知素子10は、コイル状の貴金属線材11を覆って焼結させた金属酸化物を主成分とするガス感応部12を有する。貴金属線材11は、材質、線径、コイル径、コイル巻数等は、従来の熱線型半導体式ガス検知素子に使用するものと同様で、特に限定されない。貴金属線材11の材質としては白金等を適用できる。   The hot wire type semiconductor gas detection element 10 has a gas sensitive part 12 whose main component is a metal oxide which is covered with a coiled noble metal wire 11 and sintered. The noble metal wire 11 has the same material, wire diameter, coil diameter, number of coil turns, and the like as those used in a conventional hot-wire semiconductor gas detection element, and is not particularly limited. As the material of the noble metal wire 11, platinum or the like can be applied.

ガス感応部12は金属酸化物半導体が使用できる。当該金属酸化物半導体としては、例えば酸化スズ、酸化インジウム、酸化亜鉛等が使用できるが、特に限定されるものではない。   The gas sensitive part 12 can use a metal oxide semiconductor. As the metal oxide semiconductor, for example, tin oxide, indium oxide, zinc oxide and the like can be used, but are not particularly limited.

本実施形態に係るガス検知器Xは、図2に示すように、被検知ガス(LPG、メタン、水素などの可燃性ガスや一酸化炭素)を検知する熱線型半導体式ガス検知素子10、固定負荷抵抗R0と、固定対辺抵抗R1,R2とをブリッジ回路に組み込んで構成してある。ブリッジ回路は、電源Eによって常時電圧を供給し、熱線型半導体式ガス検知素子10を被検知ガスが反応する温度に保持してある。   As shown in FIG. 2, the gas detector X according to the present embodiment includes a hot-wire semiconductor gas detection element 10 that detects a gas to be detected (flammable gas such as LPG, methane, hydrogen, or carbon monoxide), a fixed The load resistor R0 and the fixed opposite side resistors R1 and R2 are incorporated in the bridge circuit. The bridge circuit constantly supplies a voltage from the power source E, and holds the hot-wire semiconductor gas detection element 10 at a temperature at which the gas to be detected reacts.

ガス検知素子10は筐体50内に収容される。本発明のガス検知器Xは、二重筐体構造となっており、筐体50は、外側の外側筐体51と、当該外側筐体51に覆われる内側筐体52とを有する。
外側筐体51の一端には被検知ガスを導入する開口部であるガス導入口20が形成されている。また、外側筐体51の内部におけるガス導入口20の側には妨害成分を吸収する第一吸着部31が配設してある。ガス導入口20および第一吸着部31の間には、防爆用の金網21が配設してある。
The gas detection element 10 is accommodated in the housing 50. The gas detector X of the present invention has a double casing structure, and the casing 50 includes an outer casing 51 on the outside and an inner casing 52 covered with the outer casing 51.
At one end of the outer casing 51, a gas inlet 20 that is an opening for introducing a gas to be detected is formed. A first adsorbing portion 31 that absorbs disturbing components is disposed on the gas inlet 20 side inside the outer casing 51. An explosion-proof wire mesh 21 is disposed between the gas inlet 20 and the first adsorption portion 31.

当該第一吸着部31は、室内に浮遊する有機シリコーンガス、シロキサン化合物、アルコールおよびトルエンなどの様々な妨害成分を吸着する吸着剤が収容してある。当該吸着剤は、例えば活性炭、カーボンブラック、ゼオライト等が適用でき、これら材料に酸化触媒(Fe、Mnなど)を添加してもよいし、薬剤を添着して酸性吸着剤あるいは塩基性吸着剤としてもよい。さらに活性炭は、スルホン化された活性炭を使用してもよいし、ヘテロポリ酸塩を担持したものであってもよい。また吸着剤の材料は、単一或いは複数の異なる材料を組み合わせて使用してもよい。これら吸着剤の形状は特に限定されるものではなく、例えば繊維状・球状・粒状等の形状を適用できる。   The first adsorbing portion 31 contains an adsorbent that adsorbs various interfering components such as organic silicone gas, siloxane compound, alcohol, and toluene floating in the room. As the adsorbent, for example, activated carbon, carbon black, zeolite, and the like can be applied, and an oxidation catalyst (Fe, Mn, etc.) may be added to these materials, or an acidic adsorbent or a basic adsorbent may be attached by attaching a chemical. Also good. Further, the activated carbon may be a sulfonated activated carbon or may carry a heteropoly acid salt. The adsorbent material may be a single material or a combination of a plurality of different materials. The shape of these adsorbents is not particularly limited, and for example, a fibrous shape, a spherical shape, a granular shape, or the like can be applied.

内側筐体52の一端には、ガス導入口20より開口面積が小さい制限通気口40が形成されている。また、内側筐体52の内部には、妨害成分を分解する分解触媒部34および妨害成分を吸収する第二吸着部32が配設してある。   At one end of the inner casing 52, a restricted vent 40 having an opening area smaller than that of the gas inlet 20 is formed. In addition, a decomposition catalyst portion 34 that decomposes the disturbing component and a second adsorption portion 32 that absorbs the disturbing component are disposed inside the inner housing 52.

分解触媒部34には、妨害成分を分解する成分が収容してあり、このような成分としては、例えば貴金属を担持したカーボン系材料で形成するのがよい。分解触媒部34に使用する貴金属としてはPt、Pd、Ru等を使用することができ、カーボン系材料としては、活性炭、カーボンブラック等を使用することができるが、これらに限定されるものではない。使用する貴金属は、5〜15重量%となるようにすればよい。分解触媒部34の形状は特に限定されるものではなく、例えば粉末状・繊維状・球状・粒状等の形状を適用できる。   The decomposition catalyst unit 34 contains components that decompose the interfering components, and such components are preferably formed of, for example, a carbon-based material carrying a noble metal. Pt, Pd, Ru, or the like can be used as the noble metal used for the decomposition catalyst portion 34, and activated carbon, carbon black, or the like can be used as the carbon-based material, but is not limited thereto. . The precious metal used may be 5 to 15% by weight. The shape of the decomposition catalyst portion 34 is not particularly limited, and for example, a powder shape, a fiber shape, a spherical shape, a granular shape, or the like can be applied.

第二吸着部32は、分解触媒部34の下流側(ガス検知素子10側)に配設してある。第二吸着部32は妨害成分を吸着する吸着剤が収容してあり、このような吸着剤としては、固体酸触媒で形成するのがよい。当該固体酸触媒は、例えばコスト面を考慮するとシリカアルミナを使用するのがよいが、その他に、ヘテロポリ酸塩(リンタングステン酸のセシウム塩、バリウム塩、ルビジウム塩等)、硫酸化ジルコニア、タングステン酸ジルコニア、スルホン化活性炭、スルホン化カーボン、スルホン化イオン交換樹脂、Y型ハイシリカゼオライト、Al含有メソポーラスシリカ等が挙も使用できる。ヘテロポリ酸塩は、固体超強酸であるため、シリカアルミナよりも小容量で、シリカアルミナと同等の吸着性能が得られるので、ハウジングの小型化には好適である。なお第二吸着部32の吸着剤は、これらに限定されるものではない。また、これらにPt、Pd等を混合或いは担持したものを第二吸着部32として使用してもよい。
また、上述した吸着剤とバインダー用のシリカゾル等の混合分散液を通気性多孔質シートや不織布に含浸し、乾燥保持させたものを第二吸着部32として使用してもよい。
The second adsorption unit 32 is disposed on the downstream side (gas detection element 10 side) of the decomposition catalyst unit 34. The second adsorbing portion 32 contains an adsorbent that adsorbs the interfering component, and such an adsorbent is preferably formed of a solid acid catalyst. As the solid acid catalyst, for example, silica alumina is preferably used in consideration of cost. In addition, a heteropoly acid salt (such as cesium, barium, and rubidium salts of phosphotungstic acid), sulfated zirconia, and tungstic acid. Zirconia, sulfonated activated carbon, sulfonated carbon, sulfonated ion exchange resin, Y-type high silica zeolite, Al-containing mesoporous silica and the like can also be used. Since the heteropolyacid salt is a solid superacid, it has a smaller capacity than silica alumina and can provide adsorption performance equivalent to that of silica alumina, which is suitable for downsizing the housing. Note that the adsorbent of the second adsorbing portion 32 is not limited to these. In addition, a material in which Pt, Pd, or the like is mixed or supported thereon may be used as the second adsorption portion 32.
Further, the second adsorbing portion 32 may be a product obtained by impregnating a gas-permeable porous sheet or non-woven fabric with a mixed dispersion liquid such as the above-described adsorbent and silica sol for a binder and holding it dry.

本実施形態では、第二吸着部32は分解触媒部34とは混合しない態様としており、これらを混合する工程を省略できるため、ガス検知器Xの生産効率は向上する。   In the present embodiment, the second adsorption unit 32 is not mixed with the cracking catalyst unit 34, and the step of mixing them can be omitted, so that the production efficiency of the gas detector X is improved.

本実施形態における分解触媒部34の上方側および第二吸着部32の下方側には、それらの形状を安定化させるため、通気性を有する多孔質シート41,42を配設してある。分解触媒部34の形状の安定性が高い場合は上下の多孔質シート41,42は省略してもよく、下方の多孔質シート42の下面には、防爆用の金網43が配設してある。さらに防爆用の金網43の下面には、分解触媒部34、第二吸着部32、多孔質シート41,42、防爆用の金網43が積層した状態で位置決め可能な止め部材44が配設してある。   In the present embodiment, porous sheets 41 and 42 having air permeability are disposed on the upper side of the decomposition catalyst part 34 and the lower side of the second adsorption part 32 in order to stabilize the shapes thereof. When the shape of the decomposition catalyst portion 34 is highly stable, the upper and lower porous sheets 41 and 42 may be omitted, and an explosion-proof wire mesh 43 is disposed on the lower surface of the lower porous sheet 42. . Further, on the lower surface of the explosion-proof wire mesh 43, there is disposed a stop member 44 that can be positioned in a state where the decomposition catalyst portion 34, the second adsorption portion 32, the porous sheets 41 and 42, and the explosion-proof wire mesh 43 are laminated. is there.

制限通気口40は第一吸着部31および分解触媒部34の間に配設してある。当該制限通気口40の開口面積は、ガス導入口20の開口面積より小さく設定してある。本実施形態では、制限通気口40の開口面積は、ガス導入口20の開口面積に対して11%としてあるが、このような態様に限定されるものではない。   The restricted vent 40 is disposed between the first adsorption part 31 and the decomposition catalyst part 34. The opening area of the restricted vent 40 is set smaller than the opening area of the gas inlet 20. In the present embodiment, the opening area of the restricted vent 40 is 11% with respect to the opening area of the gas inlet 20, but is not limited to such an aspect.

本発明のガス検知器Xでは、ガス検知器Xを収容する筐体50を二重筐体構造としている。そのため、ガス検知器Xを組み立てる際には、外側筐体51および内側筐体52を組み付けるだけで、第一吸着部31、分解触媒部34および第二吸着部32を収容する空間を容易に形成することができる。   In the gas detector X of the present invention, the housing 50 that houses the gas detector X has a double housing structure. Therefore, when assembling the gas detector X, a space for accommodating the first adsorption unit 31, the decomposition catalyst unit 34, and the second adsorption unit 32 can be easily formed simply by assembling the outer casing 51 and the inner casing 52. can do.

本実施形態では、ガス導入口20より外側筐体51に導入された導入ガスは、まず、第一吸着部31を通過する。このとき、導入ガスに妨害成分が含まれていれば第一吸着部31によって吸着される。   In the present embodiment, the introduced gas introduced into the outer casing 51 from the gas inlet 20 first passes through the first adsorption unit 31. At this time, if the introduced gas contains an interfering component, it is adsorbed by the first adsorption unit 31.

当該妨害成分の全てが第一吸着部31によって吸着されない場合、残りの妨害成分は制限通気口40を経由して内側筐体52における分解触媒部34に到達する。このとき、制限通気口40の開口面積はガス導入口20の開口面積より小さく設定してあるため、分解触媒部34に導入される妨害成分の量を大幅に低減することができる。分解触媒部34に導入された妨害成分は、分解触媒部34によって分解される。妨害成分の全てが分解触媒部34によって分解されない場合、残りの妨害成分は第二吸着部32に到達し、当該第二吸着部32によって吸着される。   When all of the disturbing components are not adsorbed by the first adsorbing portion 31, the remaining disturbing components reach the decomposition catalyst portion 34 in the inner casing 52 via the restricted vent 40. At this time, since the opening area of the restricted vent 40 is set to be smaller than the opening area of the gas inlet 20, the amount of disturbing components introduced into the decomposition catalyst unit 34 can be greatly reduced. The disturbing component introduced into the decomposition catalyst unit 34 is decomposed by the decomposition catalyst unit 34. When all of the interfering components are not decomposed by the decomposition catalyst unit 34, the remaining interfering components reach the second adsorption unit 32 and are adsorbed by the second adsorption unit 32.

このように内側筐体52において分解触媒部34および第二吸着部32を通過することで、妨害成分は分解あるいは吸着されるため、ガス検知素子10に到達する妨害成分は極めて少なくなる。従って、本発明のガス検知器Xでは、第一吸着部31、分解触媒部34および第二吸着部32を備えることで、シロキサン化合物などの種々の妨害成分が存在する台所などで使用したとしても種々の妨害成分の影響をより一層受け難くすることができる。   As described above, since the interference component is decomposed or adsorbed by passing through the decomposition catalyst portion 34 and the second adsorption portion 32 in the inner housing 52, the interference component reaching the gas detection element 10 is extremely reduced. Therefore, the gas detector X of the present invention includes the first adsorption unit 31, the decomposition catalyst unit 34, and the second adsorption unit 32, so that even when used in a kitchen or the like where various disturbing components such as siloxane compounds exist. The influence of various interference components can be made even more difficult.

また、制限通気口40の開口面積は、ガス導入口20の開口面積より小さく設定してあるため、第一吸着部31の温度上昇によって吸着剤から離脱した離脱ガスは、ガス検知素子10の側より開口面積の大きいガス導入口20を介して筐体50の外部へ移動し易くなる。そのため、被検知ガスが存在しないにもかかわらず、当該離脱ガスを検知してしまうのを未然に防止することができる。
尚、本実施形態では、一つの制限通気口40を設けた場合について説明しているが、当該制限通気口40の数は、一つとするのがよい。仮に複数の制限通気口40を内側筐体52の一端に形成した場合、一つの制限通気口40による妨害成分の流入低減効果が減じることとなる。
Further, since the opening area of the restricted vent 40 is set smaller than the opening area of the gas inlet 20, the detached gas released from the adsorbent due to the temperature increase of the first adsorbing portion 31 is on the side of the gas detection element 10. It becomes easy to move to the outside of the housing 50 through the gas inlet 20 having a larger opening area. Therefore, it is possible to prevent the separation gas from being detected even though the gas to be detected does not exist.
In the present embodiment, the case where one restricted vent 40 is provided has been described, but the number of the restricted vents 40 is preferably one. If a plurality of restricted vents 40 are formed at one end of the inner housing 52, the effect of reducing the inflow of disturbing components by one restricted vent 40 will be reduced.

〔別実施の形態〕
上述した実施形態において、内側筐体52は、妨害成分を吸収する第三吸着部33を、制限通気口40および分解触媒部34の間(分解触媒部34の上流側)となるように備えてもよい(図4)。第三吸着部33は、第二吸着部32と同様に固体酸触媒で形成すればよい。
[Another embodiment]
In the embodiment described above, the inner housing 52 includes the third adsorption part 33 that absorbs the disturbing component so as to be between the restricted vent 40 and the decomposition catalyst part 34 (upstream of the decomposition catalyst part 34). (Figure 4). The third adsorbing part 33 may be formed of a solid acid catalyst in the same manner as the second adsorbing part 32.

本構成では、第三吸着部33は制限通気口(制限手段)40の下流(ガス検知素子10側)に配設される。この状態においては、第三吸着部33は制限通気口40を経由した妨害成分を吸着できるため、第三吸着部33の下流側に配設してある分解触媒部34に導入される妨害成分の量を大幅に低減することができる。   In this configuration, the third adsorption portion 33 is disposed downstream (on the gas detection element 10 side) of the restriction vent (restriction means) 40. In this state, the third adsorbing portion 33 can adsorb the obstructing component via the restricted vent 40, so that the obstructing component introduced into the decomposition catalyst portion 34 disposed on the downstream side of the third adsorbing portion 33. The amount can be greatly reduced.

〔実施例1〕
台所で使用する環境を想定し、本発明の熱線型半導体式ガス検知器X(本発明例1〜3)の性能(シロキサン化合物耐久性)を調べた。導入するガスは、トルエン250ppm+OMCTS(シロキサンガス)5ppmを有する混合ガスとした。比較センサ(比較例1〜5)についても同様の試験を行った。
センサ駆動は、パルス駆動(30秒周期ごとに0.1秒だけセンサ素子を500℃付近に加熱し、メタンガスを検知)とし、メタン警報設定濃度は3000ppmとした。
[Example 1]
Assuming the environment used in the kitchen, the performance (siloxane compound durability) of the hot-wire semiconductor gas detector X of the present invention (Invention Examples 1 to 3) was examined. The gas to be introduced was a mixed gas having 250 ppm of toluene + 5 ppm of OMCTS (siloxane gas). A similar test was performed for the comparative sensor (Comparative Examples 1 to 5).
The sensor drive was pulsed drive (heating the sensor element to around 500 ° C. for 0.1 seconds every 30-second period to detect methane gas), and the methane alarm set concentration was 3000 ppm.

本発明例1〜3および比較例1〜5において、第一吸着部31は何れも繊維状活性炭(70mg)を使用した。   In Inventive Examples 1 to 3 and Comparative Examples 1 to 5, fibrous activated carbon (70 mg) was used for the first adsorption part 31.

本発明例1〜3において、分解触媒部34は何れも白金担持活性炭粉末(25mg、Pt:10重量%)を使用した。また、本発明例1(図3の態様)では第三吸着部33は設けず、第二吸着部32においてシリカアルミナ粉末(15mg)を使用した。本発明例2(図4の態様)では第二吸着部32および第三吸着部33において、シリカアルミナ粉末(7.5mg)を使用した。本発明例3(図4と同様の態様)では第二吸着部32および第三吸着部33において、白金含有シリカアルミナ粉末(7.5mg、Pt:3重量%)を使用した。各本発明例の詳細は表1に示した。   In Invention Examples 1 to 3, the decomposition catalyst part 34 used platinum-supported activated carbon powder (25 mg, Pt: 10% by weight). Further, in Example 1 of the present invention (the embodiment of FIG. 3), the third adsorption part 33 was not provided, and silica alumina powder (15 mg) was used in the second adsorption part 32. In Example 2 of the present invention (the embodiment of FIG. 4), silica alumina powder (7.5 mg) was used in the second adsorption part 32 and the third adsorption part 33. In Example 3 of the present invention (the same mode as in FIG. 4), platinum-containing silica alumina powder (7.5 mg, Pt: 3 wt%) was used in the second adsorbing part 32 and the third adsorbing part 33. Details of each example of the present invention are shown in Table 1.

Figure 2018141800
Figure 2018141800

比較例1〜5においては、第二吸着部32、第三吸着部33および分解触媒部34に替えて比較部35として以下の構成を使用した。即ち、比較例1(図5の態様)では、比較部35として、活性炭粉末25mgおよびシリカアルミナ粉末15mgの混合粉末を使用した。
比較例2(図6の態様)では、比較部35として、シリカアルミナ粉末層36(7.5mg)、活性炭粉末層37(25mg)およびシリカアルミナ粉末層36(7.5mg)の順で積層したものを使用した。
比較例3(図5と同様の態様)では、比較部35として、白金担持活性炭粉末(40mg、Pt:10重量%))を使用した。
比較例4(図5と同様の態様)では、比較部35として、白金担持活性炭粉末25mg(Pt:10重量%)およびシリカアルミナ粉末15mgの混合粉末を使用した。
比較例5(図7の態様)では、比較部35として、シリカアルミナ粉末層36(15mg)および白金担持活性炭粉末層38(25mg、Pt:10重量%、分解触媒部34に対応)を使用した。
In Comparative Examples 1 to 5, the following configuration was used as the comparison unit 35 instead of the second adsorption unit 32, the third adsorption unit 33, and the decomposition catalyst unit 34. That is, in Comparative Example 1 (the embodiment shown in FIG. 5), a mixed powder of 25 mg of activated carbon powder and 15 mg of silica alumina powder was used as the comparison unit 35.
In Comparative Example 2 (aspect of FIG. 6), as the comparison part 35, a silica alumina powder layer 36 (7.5 mg), an activated carbon powder layer 37 (25 mg), and a silica alumina powder layer 36 (7.5 mg) were laminated in this order. I used something.
In Comparative Example 3 (the same mode as in FIG. 5), platinum-supported activated carbon powder (40 mg, Pt: 10% by weight) was used as the comparison unit 35.
In Comparative Example 4 (the same mode as in FIG. 5), a mixed powder of platinum-supported activated carbon powder 25 mg (Pt: 10 wt%) and silica alumina powder 15 mg was used as the comparison unit 35.
In Comparative Example 5 (the embodiment of FIG. 7), the silica alumina powder layer 36 (15 mg) and the platinum-supported activated carbon powder layer 38 (25 mg, Pt: 10% by weight, corresponding to the decomposition catalyst part 34) were used as the comparison part 35. .

結果を図8に示した。
比較例1,2は活性炭とシリカアルミナ粉末の組み合わせであり(吸着剤のみで分解触媒部34なし)、何れも330日程度で警報濃度の下限値(メタン警報設定濃度の1/3(1000ppm))を下回った。比較例3は白金担持活性炭(分解触媒部34に対応)のみであり、300日以降に急激に警報濃度が低下して370日程度で警報濃度の下限値を下回った。比較例4は白金担持活性炭およびシリカアルミナの混合粉末であるが、400日程度で警報濃度の下限値を下回った。比較例5はシリカアルミナ粉末層36および白金担持活性炭層(分解触媒部34に対応)の上流にシリカアルミナ層が配置されているが、420日程度で警報濃度の下限値を下回った。
The results are shown in FIG.
Comparative Examples 1 and 2 are a combination of activated carbon and silica alumina powder (adsorbent alone and no decomposition catalyst part 34), both of which are about 330 days lower limit of alarm concentration (1/3 (1000 ppm) of methane alarm set concentration) ). Comparative Example 3 was only platinum-supported activated carbon (corresponding to the decomposition catalyst unit 34), and the alarm concentration dropped sharply after 300 days and fell below the lower limit of the alarm concentration in about 370 days. Comparative Example 4 is a mixed powder of platinum-supported activated carbon and silica alumina, which fell below the lower limit of the alarm concentration in about 400 days. In Comparative Example 5, the silica alumina layer was disposed upstream of the silica alumina powder layer 36 and the platinum-supported activated carbon layer (corresponding to the decomposition catalyst portion 34), but the alarm concentration fell below the lower limit value in about 420 days.

一方、本発明例1のように分解触媒部34の下流に第二吸着部32を配置すると、警報濃度の下限値を下回るのが450日程度まで延長することができた。
また、本発明例2のように分解触媒部34の上流に第三吸着部33を配置し、下流に第二吸着部32を配置すると、480日程度においてもメタン警報設定濃度の2/3(2000ppm)を維持していた。
さらに、本発明例3のように第二吸着部32および第三吸着部33に白金を添加すれば、480日程度においてもメタン警報設定濃度の5/6(2500ppm)を維持していた。
On the other hand, when the 2nd adsorption part 32 was arranged downstream of decomposition catalyst part 34 like example 1 of the present invention, it was possible to extend up to about 450 days to fall below the lower limit of alarm concentration.
Moreover, when the 3rd adsorption | suction part 33 is arrange | positioned upstream of the decomposition catalyst part 34 like the example 2 of this invention, and the 2nd adsorption | suction part 32 is arrange | positioned downstream, it will be 2/3 (2/3 () 2000 ppm).
Furthermore, if platinum was added to the second adsorbing part 32 and the third adsorbing part 33 as in Invention Example 3, 5/6 (2500 ppm) of the methane alarm set concentration was maintained even for about 480 days.

従って、比較例1,2のように分解触媒部(白金担持活性炭)なしとした場合、比較例3のように分解触媒部のみとした場合、比較例4のように分解触媒部およびシリカアルミナの混合粉とした場合、比較例5のように分解触媒部の上流にシリカアルミナ層を配置した場合よりも、本発明例1〜3においては、シロキサン化合物耐久性が著しく向上したと認められた。
即ち、本願のように分解触媒部34および第二吸着部32を別異の層で形成し、少なくとも分解触媒部34の下流に第二吸着部32を配置することで、ガス検知器Xをシロキサン化合物などの種々の妨害成分が存在する台所などで使用したとしても、種々の妨害成分の影響をより一層受け難くすることができると認められた。
Therefore, when there is no decomposition catalyst part (platinum-supported activated carbon) as in Comparative Examples 1 and 2, when only the decomposition catalyst part is used as in Comparative Example 3, the decomposition catalyst part and silica alumina as in Comparative Example 4 are used. In the case of the mixed powder, it was recognized that the durability of the siloxane compound was remarkably improved in Examples 1 to 3 of the present invention compared to the case where the silica alumina layer was disposed upstream of the decomposition catalyst portion as in Comparative Example 5.
That is, as in the present application, the cracking catalyst part 34 and the second adsorption part 32 are formed in different layers, and the second adsorption part 32 is disposed at least downstream of the cracking catalyst part 34, whereby the gas detector X is made of siloxane. Even when used in kitchens where various interfering components such as compounds exist, it has been recognized that the effects of various interfering components can be made even less susceptible.

〔実施例2〕
被検知ガス(メタンガス)に対するガス応答性を調べた。
上述した本発明例1〜3および比較例1〜5のセンサにおいて、メタンガス12500ppmに対して応答に要する時間を計測した。センサ駆動は実施例1と同様の条件で行った。結果を表2に示した。
[Example 2]
The gas response to the detected gas (methane gas) was investigated.
In the sensors of Invention Examples 1 to 3 and Comparative Examples 1 to 5 described above, the time required for response was measured with respect to 12500 ppm of methane gas. Sensor driving was performed under the same conditions as in Example 1. The results are shown in Table 2.

Figure 2018141800
Figure 2018141800

この結果、本発明例1〜3は21〜23秒の応答時間を要しており、比較例1〜5と同等以上の応答性を有することが判明した。従って、本発明のガス検知器Xは、優れたガス応答性を有した状態で、種々の妨害成分の影響をより一層受け難くできるものと認められた。
尚、比較例3の応答性が著しく低いのは、白金担持活性炭の比表面積に起因する。本発明例1〜3では白金担持活性炭に加えて、白金担持活性炭よりも比表面積の小さい固体酸触媒に属するシリカアルミナを用いることで、優れた吸着性・耐久性に加えて、高い応答性を実現している。
As a result, Examples 1 to 3 of the present invention required a response time of 21 to 23 seconds, and were found to have a response equal to or higher than that of Comparative Examples 1 to 5. Therefore, it was recognized that the gas detector X of the present invention can be made more difficult to be affected by various disturbing components while having excellent gas responsiveness.
In addition, the responsiveness of Comparative Example 3 is extremely low due to the specific surface area of the platinum-supported activated carbon. In Examples 1-3 of the present invention, in addition to platinum-supported activated carbon, by using silica alumina belonging to a solid acid catalyst having a specific surface area smaller than that of platinum-supported activated carbon, in addition to excellent adsorptivity and durability, high responsiveness is achieved. Realized.

本発明は、被検知ガスと接触するガス感応部を有するガス検知素子を備えたガス検知器に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a gas detector provided with a gas detection element having a gas sensitive part that comes into contact with a gas to be detected.

X ガス検知器
10 ガス検知素子
12 ガス感応部
20 ガス導入口
31 第一吸着部
32 第二吸着部
33 第三吸着部
34 分解触媒部
40 制限通気口(制限手段)
51 外側筐体
52 内側筐体
X Gas detector 10 Gas detection element 12 Gas sensitive part 20 Gas inlet 31 First adsorber 32 Second adsorber 33 Third adsorber 34 Decomposition catalyst part 40 Restricted vent (restricting means)
51 Outer casing 52 Inner casing

Claims (6)

被検知ガスと接触するガス感応部を有するガス検知素子を備えたガス検知器であって、
前記ガス検知素子を収容する二重の筐体を備え、
前記二重の筐体における外側の外側筐体は、被検知ガスを導入するガス導入口および妨害成分を吸収する第一吸着部を備え、
前記二重の筐体における内側の内側筐体は、前記妨害成分を分解する分解触媒部および前記妨害成分を吸収する第二吸着部を、被検知ガスの導入方向からこの順に備えたガス検知器。
A gas detector including a gas detection element having a gas sensitive portion that comes into contact with a gas to be detected,
A double housing for accommodating the gas sensing element;
The outer outer casing in the double casing includes a gas inlet for introducing the gas to be detected and a first adsorption part for absorbing the disturbing component,
The gas detector provided with an inner case inside the double case including a decomposition catalyst part for decomposing the disturbing component and a second adsorption part for absorbing the disturbing component in this order from the introduction direction of the gas to be detected. .
前記第一吸着部および前記分解触媒部の間に妨害成分の流入を制限する制限手段を備えた請求項1に記載のガス検知器。   The gas detector according to claim 1, further comprising a restricting unit that restricts an inflow of interfering components between the first adsorption unit and the cracking catalyst unit. 前記内側筐体は、前記妨害成分を吸収する第三吸着部を、前記分解触媒部の上流側に備えた請求項2に記載のガス検知器。   The gas detector according to claim 2, wherein the inner casing includes a third adsorption portion that absorbs the interfering component on the upstream side of the decomposition catalyst portion. 前記第二吸着部および前記第三吸着部は、それぞれ固体酸触媒で形成してある請求項3に記載のガス検知器。   The gas detector according to claim 3, wherein the second adsorption part and the third adsorption part are each formed of a solid acid catalyst. 前記分解触媒部は、貴金属を担持したカーボン系材料で形成してある請求項1〜4の何れか一項に記載のガス検知器。   The gas detector according to any one of claims 1 to 4, wherein the decomposition catalyst part is formed of a carbon-based material supporting a noble metal. 前記第一吸着部は、活性炭、カーボンブラックおよびゼオライトの何れかで形成してある請求項1〜5の何れか一項に記載のガス検知器。   The gas detector according to any one of claims 1 to 5, wherein the first adsorption part is formed of any one of activated carbon, carbon black, and zeolite.
JP2018083008A 2018-04-24 2018-04-24 Gas detector Active JP6556288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018083008A JP6556288B2 (en) 2018-04-24 2018-04-24 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083008A JP6556288B2 (en) 2018-04-24 2018-04-24 Gas detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014062424A Division JP6334221B2 (en) 2014-03-25 2014-03-25 Gas detector

Publications (2)

Publication Number Publication Date
JP2018141800A true JP2018141800A (en) 2018-09-13
JP6556288B2 JP6556288B2 (en) 2019-08-07

Family

ID=63527997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083008A Active JP6556288B2 (en) 2018-04-24 2018-04-24 Gas detector

Country Status (1)

Country Link
JP (1) JP6556288B2 (en)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170448A (en) * 1984-09-13 1986-04-11 Matsushita Electric Works Ltd Gas detecting element
JPS61172045A (en) * 1985-01-25 1986-08-02 Matsushita Electric Works Ltd Gas detection element with filter
JPS61172047A (en) * 1985-01-25 1986-08-02 Matsushita Electric Works Ltd Gas detection element with filter
JPS6247961U (en) * 1985-09-13 1987-03-24
JPH08247982A (en) * 1995-03-14 1996-09-27 New Cosmos Electric Corp Gas sensor and gas filter
JPH095275A (en) * 1995-06-21 1997-01-10 Fuji Electric Co Ltd Composite gas sensor
JPH1010067A (en) * 1996-06-19 1998-01-16 F I S Kk Gas sensor
JPH10197470A (en) * 1997-01-14 1998-07-31 Matsushita Seiko Co Ltd Detecting element
EP0940680A2 (en) * 1998-03-04 1999-09-08 Eev Limited Gas sensors
JP2000187014A (en) * 1998-12-21 2000-07-04 Fis Kk Waterproof gas sensor
JP2000338072A (en) * 1999-05-26 2000-12-08 Mikuni Corp Carbon monoxide sensor
JP2002238981A (en) * 2001-02-15 2002-08-27 Matsushita Electric Ind Co Ltd Air cleaning device
JP2002257767A (en) * 2001-03-02 2002-09-11 Osaka Gas Co Ltd Gas sensor
JP2004144679A (en) * 2002-10-25 2004-05-20 Osaka Gas Co Ltd Gas sensor and gas alarm using the same
JP2004271436A (en) * 2003-03-11 2004-09-30 Osaka Gas Co Ltd Gas sensor, gas alarm, and check gas storage container for inspecting gas sensor
WO2006090433A1 (en) * 2005-02-22 2006-08-31 Fis Inc. Hydrogen gas sensor and process for producing the same
JP2007024767A (en) * 2005-07-20 2007-02-01 Fuji Electric Fa Components & Systems Co Ltd Method for checking gas sensor and gas alarm
JP2009103541A (en) * 2007-10-23 2009-05-14 Fuji Electric Fa Components & Systems Co Ltd Flammable gas detector
JP2010144939A (en) * 2008-12-16 2010-07-01 Tohoku Univ Circulation type substrate burning furnace
JP2012247240A (en) * 2011-05-26 2012-12-13 Figaro Eng Inc Gas sensor and gas detection device
JP2013242269A (en) * 2012-05-22 2013-12-05 Figaro Eng Inc Gas sensor

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170448A (en) * 1984-09-13 1986-04-11 Matsushita Electric Works Ltd Gas detecting element
JPS61172045A (en) * 1985-01-25 1986-08-02 Matsushita Electric Works Ltd Gas detection element with filter
JPS61172047A (en) * 1985-01-25 1986-08-02 Matsushita Electric Works Ltd Gas detection element with filter
JPS6247961U (en) * 1985-09-13 1987-03-24
JPH08247982A (en) * 1995-03-14 1996-09-27 New Cosmos Electric Corp Gas sensor and gas filter
JPH095275A (en) * 1995-06-21 1997-01-10 Fuji Electric Co Ltd Composite gas sensor
JPH1010067A (en) * 1996-06-19 1998-01-16 F I S Kk Gas sensor
JPH10197470A (en) * 1997-01-14 1998-07-31 Matsushita Seiko Co Ltd Detecting element
EP0940680A2 (en) * 1998-03-04 1999-09-08 Eev Limited Gas sensors
JP2000187014A (en) * 1998-12-21 2000-07-04 Fis Kk Waterproof gas sensor
JP2000338072A (en) * 1999-05-26 2000-12-08 Mikuni Corp Carbon monoxide sensor
JP2002238981A (en) * 2001-02-15 2002-08-27 Matsushita Electric Ind Co Ltd Air cleaning device
JP2002257767A (en) * 2001-03-02 2002-09-11 Osaka Gas Co Ltd Gas sensor
JP2004144679A (en) * 2002-10-25 2004-05-20 Osaka Gas Co Ltd Gas sensor and gas alarm using the same
JP2004271436A (en) * 2003-03-11 2004-09-30 Osaka Gas Co Ltd Gas sensor, gas alarm, and check gas storage container for inspecting gas sensor
WO2006090433A1 (en) * 2005-02-22 2006-08-31 Fis Inc. Hydrogen gas sensor and process for producing the same
JP2007024767A (en) * 2005-07-20 2007-02-01 Fuji Electric Fa Components & Systems Co Ltd Method for checking gas sensor and gas alarm
JP2009103541A (en) * 2007-10-23 2009-05-14 Fuji Electric Fa Components & Systems Co Ltd Flammable gas detector
JP2010144939A (en) * 2008-12-16 2010-07-01 Tohoku Univ Circulation type substrate burning furnace
JP2012247240A (en) * 2011-05-26 2012-12-13 Figaro Eng Inc Gas sensor and gas detection device
JP2013242269A (en) * 2012-05-22 2013-12-05 Figaro Eng Inc Gas sensor

Also Published As

Publication number Publication date
JP6556288B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
Chernikova et al. Highly sensitive and selective SO 2 MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode
JP6218262B2 (en) Gas sensor
JP6334221B2 (en) Gas detector
JP2015093254A (en) Adsorptive resin material, siloxane removal agent, filter using the same, gas sensor including the filter, and gas detector
WO2020031724A1 (en) Gas detector
CN113574369B (en) Gas detector
CN212134548U (en) Catalytic combustion sensor with filtering layer
JP6438685B2 (en) Gas detector
JPH10197470A (en) Detecting element
JP2019007796A (en) Gas sensor and gas alarm
JP6556288B2 (en) Gas detector
JP2006159189A (en) Adsorption filter
JP5881205B2 (en) Gas sensor
JP6303211B2 (en) Gas detector
JP6370576B2 (en) Gas detector
JP2016200547A (en) Gas sensor and gas detector
JP7090016B2 (en) Filters for gas sensors and gas sensors
JP2004045324A (en) Gas filter and gas sensor
JPH08247982A (en) Gas sensor and gas filter
JP5866713B2 (en) Gas detector
JP2006250569A (en) Filter for gas sensor, and catalytic combustion type city gas sensor
JPH09113475A (en) Sensitivity-drop preventive agent for combustible-gas sensor
JP3144248B2 (en) Contact combustion type flammable gas sensor
CN210322956U (en) Gas sensor
JPWO2020235335A1 (en) Gas detector and gas detection method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190709

R150 Certificate of patent or registration of utility model

Ref document number: 6556288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250