JP6218262B2 - Gas sensor - Google Patents
Gas sensor Download PDFInfo
- Publication number
- JP6218262B2 JP6218262B2 JP2012116828A JP2012116828A JP6218262B2 JP 6218262 B2 JP6218262 B2 JP 6218262B2 JP 2012116828 A JP2012116828 A JP 2012116828A JP 2012116828 A JP2012116828 A JP 2012116828A JP 6218262 B2 JP6218262 B2 JP 6218262B2
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- filter
- silica
- gas
- mesoporous silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0011—Sample conditioning
- G01N33/0014—Sample conditioning by eliminating a gas
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
この発明はガスセンサに関し、特にそのフィルタに関する。 The present invention relates to a gas sensor, and more particularly to a filter thereof.
ガスセンサには、シロキサンガス等により被毒されて、触媒活性が低下するという問題がある。活性炭はシロキサンガスを吸着するが、プロパンガスとブタンガスとを主成分とするLPガス用のガスセンサでは、活性炭がLPガスを吸着するため、活性炭フィルタを用いることができない。そこで特許文献1(特開2010-164317A)はメソポーラスシリカを活性白土と混合し、フィルタ中のメソポーラスシリカの比率を活性白土により例えば5〜10質量%程度に希薄化することを提案している。なおメソポーラスシリカ100%のフィルタはLPガスを吸着してLP感度が失われるので、活性白土と混合して希薄化することが必要とされている。 The gas sensor has a problem that it is poisoned by a siloxane gas or the like and the catalytic activity is lowered. Activated carbon adsorbs siloxane gas, but in a gas sensor for LP gas mainly composed of propane gas and butane gas, activated carbon adsorbs LP gas, and therefore an activated carbon filter cannot be used. Therefore, Patent Document 1 (Japanese Patent Laid-Open No. 2010-164317A) proposes mixing mesoporous silica with activated clay and diluting the ratio of mesoporous silica in the filter to, for example, about 5 to 10% by mass with activated clay. Note that a filter made of 100% mesoporous silica adsorbs LP gas and loses LP sensitivity. Therefore, it is necessary to dilute by mixing with activated clay.
発明者らも、メソポーラスシリカ100%のフィルタでは、LPガスへの感度が失われることを確認した。従ってメソポーラスシリカは少量しか用いることができないが、少量ではガスセンサがシロキサンガスに長時間曝されると、被毒が生じることを確認した。従って少量のメソポーラスシリカ等を添加する事で、シロキサンガスへのガスセンサの耐久性を長時間に渡って保つことが必要である。 The inventors have also confirmed that the sensitivity to LP gas is lost in a filter made of 100% mesoporous silica. Therefore, only a small amount of mesoporous silica can be used, but it was confirmed that poisoning occurs when the gas sensor is exposed to siloxane gas for a long time. Therefore, it is necessary to maintain the durability of the gas sensor against siloxane gas for a long time by adding a small amount of mesoporous silica or the like.
この発明の課題は、少量のメソポーラスシリカで、シロキサンガスへの耐久性を増すことにある。 An object of the present invention is to increase durability to siloxane gas with a small amount of mesoporous silica.
この発明は、センサ本体を収容するハウジングに、シリカ・アルミナ系吸着剤から成るバルクフィルタを設けたガスセンサにおいて、
前記バルクフィルタとセンサ本体との間に、メソポーラスシリカ、ハイシリカYゼオライト、もしくはハイシリカモルデナイトゼオライトを付着させた紙、不織布又は通気性の合成樹脂フィルムから成る層状フィルタを設けて、バルクフィルタで処理した雰囲気をさらに層状フィルタで処理して、センサ本体へ供給するように構成されていることを特徴とする。
The present invention provides a gas sensor in which a bulk filter made of a silica-alumina-based adsorbent is provided in a housing that houses a sensor body.
Between the bulk filter and the sensor body, a layered filter made of paper, non-woven fabric or breathable synthetic resin film to which mesoporous silica, high silica Y zeolite, or high silica mordenite zeolite was attached was provided and processed with the bulk filter. The atmosphere is further processed by a layered filter and supplied to the sensor body.
バルクフィルタは例えば粉体、粉体の造粒物、あるいはハニカム等から成るフィルタで、紙、不織布あるいはフィルムとの対比によりバルクフィルタと呼ぶ。シリカ・アルミナ系吸着材には、ゼオライト、シリカゲル、アルミナゲル、活性白土、酸性白土などがあり、これらはシリカ、アルミナ、またはアルミノシリケートの化合物である。層状フィルタは、メソポーラスシリカ、ハイシリカYゼオライト、ハイシリカモルデナイトゼオライト、あるいはこれらの混合物を通気性のある紙、不織布あるいはフィルムに付着させた層状のフィルタで、少量のメソポーラスシリカ,ハイシリカYゼオライト、ハイシリカモルデナイトゼオライトを広い面積に均一に分散させてガスを処理でき、ハウジングにセットするのも容易である。メソポーラスシリカは、平均孔径が2〜50nm程度のメソ孔の周囲に例えば非晶質のシリカ骨格が形成されている化合物で、BET比表面積は例えば500〜1300m2/g程度であり、入手が容易な化合物にはMCM-41,FSM-16,SBA-1,HMS,MSU-1,SBA-12等がある。またメソポーラスシリカは、ヘテロ原子としてAl,P等を含有しても良く、メソ孔の内部にPt,Pd,Ag等の触媒が担持されていても良い。ハイシリカYゼオライトはY型ゼオライトを脱アルミニウムしたゼオライトで、ゼオライトの骨格構造はFAUで、Si/Alの原子比は例えば5以上である。ハイシリカモルデナイトゼオライトはモルデナイト型ゼオライトを脱アルミニウムしたゼオライトで、ゼオライトの骨格構造はMORで、Si/Alの原子比は同様に例えば5以上である。またハイシリカYゼオライト、ハイシリカモルデナイトゼオライトの空孔内にPt,Pd,Ag等の触媒が担持されていても良い。 A bulk filter is a filter made of, for example, powder, a granulated product of powder, or a honeycomb, and is called a bulk filter in comparison with paper, nonwoven fabric, or film. Examples of the silica / alumina-based adsorbent include zeolite, silica gel, alumina gel, activated clay, and acid clay, which are compounds of silica, alumina, or aluminosilicate. A layered filter is a layered filter in which mesoporous silica, high silica Y zeolite, high silica mordenite zeolite, or a mixture thereof is attached to air-permeable paper, nonwoven fabric or film. A small amount of mesoporous silica, high silica Y zeolite, high silica The mordenite zeolite can be uniformly dispersed over a wide area to treat the gas and can be easily set in the housing. Mesoporous silica is a compound in which, for example, an amorphous silica skeleton is formed around mesopores with an average pore diameter of about 2 to 50 nm, and the BET specific surface area is about 500 to 1300 m 2 / g, making it easy to obtain. Such compounds include MCM-41, FSM-16, SBA-1, HMS, MSU-1, SBA-12 and the like. The mesoporous silica may contain Al, P or the like as a hetero atom, and a catalyst such as Pt, Pd, or Ag may be supported inside the mesopores. High silica Y zeolite is a zeolite obtained by dealumination of Y-type zeolite, the framework structure of the zeolite is FAU, and the atomic ratio of Si / Al is, for example, 5 or more. High silica mordenite zeolite is a zeolite obtained by dealumination of mordenite type zeolite, the framework structure of the zeolite is MOR, and the atomic ratio of Si / Al is, for example, 5 or more. Further, a catalyst such as Pt, Pd, or Ag may be supported in the pores of high silica Y zeolite or high silica mordenite zeolite.
ハウジングから見て周囲の雰囲気側を外気側と呼び、センサ本体側と区別すると、この発明では、バルクフィルタが外気側、層状フィルタがセンサ本体側に配置される。この配置により、少量のメソポーラスシリカ、ハイシリカYゼオライト、あるいはハイシリカモルデナイトゼオライトでも、シロキサンガスにガスセンサが長時間耐えることができるようになる。またバルクフィルタはアルコール類等を吸着して除去し、ガスセンサが誤報することを防止する。図3〜図5は同量のメソポーラスシリカの配置を変えた際のデータで、図3ではバルクフィルタよりもセンサ本体側にメソポーラスシリカを配置し、図4ではバルクフィルタよりも外気側に層状フィルタを配置した。また図5ではメソポーラスシリカをバルクフィルタ中に均一に分散させた。雰囲気は60ppmのシロキサンガスを含み、層状フィルタをセンサ本体側に配置すると、13日間ガスセンサは被毒に耐えることができたが、層状フィルタを外気側に配置すると11日目から著しい被毒が見られた。バルクフィルタ内にメソポーラスシリカを分散させても、同様に著しい被毒が見られた。層状フィルタをセンサ本体側に配置することにより、耐被毒性を高めることができることは、ハイシリカYゼオライト、及びハイシリカモルデナイトゼオライトの場合も同様であった。 When the ambient atmosphere side as viewed from the housing is called the outside air side and distinguished from the sensor body side, in the present invention, the bulk filter is arranged on the outside air side and the layered filter is arranged on the sensor body side. This arrangement allows the gas sensor to withstand the siloxane gas for a long time even with small amounts of mesoporous silica, high silica Y zeolite, or high silica mordenite zeolite. The bulk filter adsorbs and removes alcohols and the like, and prevents the gas sensor from reporting falsely. 3 to 5 are data when the arrangement of the same amount of mesoporous silica is changed. In FIG. 3, mesoporous silica is arranged on the sensor body side of the bulk filter, and in FIG. 4, a layered filter is arranged on the outside air side of the bulk filter. Arranged. In FIG. 5, the mesoporous silica is uniformly dispersed in the bulk filter. The atmosphere contained 60ppm siloxane gas, and when the layered filter was placed on the sensor body side, the gas sensor was able to withstand poisoning for 13 days, but when the layered filter was placed on the outside air side, significant poisoning was seen from the 11th day. It was. Even when mesoporous silica was dispersed in the bulk filter, significant poisoning was similarly observed. It was the same in the case of high silica Y zeolite and high silica mordenite zeolite that the poisoning resistance could be increased by arranging the layered filter on the sensor body side.
好ましくは、前記バルクフィルタはゼオライトと活性アルミナの双方を含有する。シロキサンガスへの耐久性の予備試験の結果を、図7,図8に示す。図8はメソポーラスシリカ無しでゼオライトのみを用いたバルクフィルタでの結果を、図7は、同様にメソポーラスシリカ無しで、ゼオライト−活性アルミナの混合物から成るバルクフィルタでの結果を示す。図8では2日目に激しい被毒が見られるが、図7では被毒は4日目から顕著になり、最初の3日間は被毒に耐えている。そしてゼオライトと活性アルミナとの混合物は、ゼオライト100%よりもまた活性アルミナ100%よりも、シロキサンガスへの耐久性が高かった。 Preferably, the bulk filter contains both zeolite and activated alumina. The result of the preliminary test of durability against siloxane gas is shown in FIGS. FIG. 8 shows the results for a bulk filter using only zeolite without mesoporous silica, and FIG. 7 shows the results for a bulk filter consisting of a mixture of zeolite-activated alumina, also without mesoporous silica. In FIG. 8, severe poisoning is observed on the second day, but in FIG. 7, the poisoning becomes significant from the fourth day, and the first three days endure the poisoning. And the mixture of zeolite and activated alumina was more resistant to siloxane gas than 100% zeolite and 100% activated alumina.
好ましくは、ガスセンサ1個当たり、前記バルクフィルタはシリカ・アルミナ吸着剤を20〜150mg含有し、層状フィルタはメソポーラスシリカ、ハイシリカYゼオライト、あるいはハイシリカモルデナイトゼオライトをこれらの合計で0.1〜10mg含有し、メソポーラスシリカ単独の場合は1〜10mgが好ましく、ハイシリカYゼオライト、あるいはハイシリカモルデナイトゼオライトの場合は合計で0.1〜3mgが好ましい。多量のメソポーラスシリカ、ハイシリカYゼオライト、ハイシリカモルデナイトゼオライトはLPガス感度を失わせ、またLPガスへの応答速度を低下させる。このためメソポーラスシリカ、ハイシリカYゼオライト、あるいはハイシリカモルデナイトゼオライトは合計でセンサ1個当たり0.1〜10mgが適当で、シリカ・アルミナ吸着剤はLPガス感度に影響せず、かつ多量でも応答速度への影響が小さく、さらにアルコールを確実に除去するため、例えばセンサ1個当たり20〜150mg使用する。
Preferably, per gas sensor, the bulk filter contains 20 to 150 mg of silica / alumina adsorbent, and the layered filter contains 0.1 to 10 mg of mesoporous silica, high silica Y zeolite, or high silica mordenite zeolite in total, In the case of mesoporous silica alone, 1 to 10 mg is preferable, and in the case of high silica Y zeolite or high silica mordenite zeolite, the total amount is preferably 0.1 to 3 mg. Large amounts of mesoporous silica, high silica Y zeolite, and high silica mordenite zeolite lose LP gas sensitivity and reduce the response speed to LP gas. For this reason, mesoporous silica, high silica Y zeolite, or high silica mordenite zeolite should be 0.1 to 10 mg per sensor in total. Silica / alumina adsorbent does not affect LP gas sensitivity, and even a large amount affects the response speed. In order to remove alcohol more reliably, for example, 20 to 150 mg per sensor is used.
以下に本発明を実施するための最適実施例を示す。 In the following, an optimum embodiment for carrying out the present invention will be shown.
図1にガスセンサの構造を示し、図1a)のガスセンサ2は実施例、図1b)のガスセンサ4は第1の比較例、図1c)のガスセンサ6は第2の比較例、図1d)のガスセンサ7は第3の比較例、図2のガスセンサ8は従来例である。10はセンサ本体で、例えば金属酸化物半導体から成る感ガス体11を備え、ベース14に固定されたステム12へ例えばワイヤボンディングされている。16は金属のキャップで、プラスチック製でも良く、開口18と、金網20及び不織布22を介して、バルクフィルタ26へ周囲の雰囲気を導入する。28は層状フィルタで、ここでは通気性のある紙にメソポーラスシリカを付着させたもので、24は不織布、21は不織布24を固定する押さえリングである。バルクフィルタ26からの微粉末のこぼれ出しが少ない場合、不織布22と金網20は一方を省略できる。また不織布24は層状フィルタ28で兼用できる。 FIG. 1 shows the structure of a gas sensor, the gas sensor 2 in FIG. 1a) is an embodiment, the gas sensor 4 in FIG. 1b) is a first comparative example, the gas sensor 6 in FIG. 1c) is a second comparative example, and the gas sensor in FIG. 7 is a third comparative example, and the gas sensor 8 of FIG. 2 is a conventional example. A sensor body 10 includes a gas sensitive body 11 made of, for example, a metal oxide semiconductor, and is wire-bonded to a stem 12 fixed to the base 14, for example. Reference numeral 16 denotes a metal cap, which may be made of plastic, and introduces an ambient atmosphere to the bulk filter 26 through the opening 18, the wire mesh 20 and the nonwoven fabric 22. Reference numeral 28 denotes a layered filter. Here, mesoporous silica is attached to air-permeable paper, 24 is a nonwoven fabric, and 21 is a pressing ring for fixing the nonwoven fabric 24. When there is little spillage of fine powder from the bulk filter 26, one of the nonwoven fabric 22 and the wire mesh 20 can be omitted. The nonwoven fabric 24 can also be used as the layered filter 28.
ガスセンサ2のタイプは任意で、例えば特許文献1の接触燃焼式のガスセンサでもよく、また電気化学式のガスセンサでも良い。さらにセンサ本体10は例えばシリコン基板上にMEMS技術により形成したものでも良い。ガスセンサ2のハウジングは、バルクフィルタ26を外気側に、層状フィルタ28をセンサ本体10側に配置し、バルクフィルタ26で処理済みの雰囲気を層状フィルタ28で処理して、センサ本体10へ供給するものであればよい。 The type of the gas sensor 2 is arbitrary, and for example, it may be a contact combustion type gas sensor disclosed in Patent Document 1 or an electrochemical type gas sensor. Further, the sensor body 10 may be formed on a silicon substrate by MEMS technology, for example. The housing of the gas sensor 2 has a bulk filter 26 disposed on the outside air side and a layered filter 28 disposed on the sensor body 10 side, and the atmosphere treated with the bulk filter 26 is treated with the layered filter 28 and supplied to the sensor body 10. If it is.
層状フィルタ28は、メソポーラスシリカと、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)、天然ゴム、あるいはアクリル樹脂、酢酸ビニル樹脂、ポリエチレンオキキシド等の親水性合成樹脂の繊維等の結着剤とを、水等の溶媒に分散させた懸濁液を紙に含浸させて乾燥すると得られる。紙に変えて不織布に前記の懸濁液を含浸させて付着させても良い。またメソポーラスシリカと結着剤とを分散させた懸濁液中で天然繊維あるいは合成繊維を抄紙しても良い。さらに合成樹脂の有機溶媒溶液にメソポーラスシリカを分散させて紡糸して不織布としても良く、あるいはこの懸濁液をフィルム化しても良い。この場合、フィルムの多孔性を増すため、懸濁液中に水溶性の塩を分散させ、フィルムを水洗して気孔としても良い。 The layered filter 28 is made of mesoporous silica and a binder such as carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), natural rubber, or fibers of hydrophilic synthetic resin such as acrylic resin, vinyl acetate resin, and polyethylene oxide. Can be obtained by impregnating paper with a suspension in which water is dispersed in a solvent such as water and drying. Instead of paper, the non-woven fabric may be impregnated with the above suspension and adhered. Further, natural fibers or synthetic fibers may be paper-made in a suspension in which mesoporous silica and a binder are dispersed. Further, mesoporous silica may be dispersed in an organic solvent solution of synthetic resin and spun to form a nonwoven fabric, or this suspension may be formed into a film. In this case, in order to increase the porosity of the film, a water-soluble salt may be dispersed in the suspension, and the film may be washed with water to form pores.
実施例では、バルクフィルタ26は、モルデナイト型ゼオライトの粉体60mgとγアルミナの粉体10mgの混合物とし、層状フィルタ28はFSM-16系のものを3mg通気性のある紙に付着させたものである。モルデナイトゼオライトに変えてYゼオライト(フォージャサイト型)等を用いても良く、γアルミナに変えてベーマイト等の無定形の活性アルミナを用いても良い。ゼオライトとγアルミナの混合物を用いるのは、図7に示すように、ゼオライト100%及び活性アルミナ100%よりも、ゼオライトと活性アルミナの混合物の方が、シロキサンガスへの耐久性を高めることができるためである。なおバルクフィルタ26は、シリカゲル、活性アルミナ、活性白土等でも良い。なお比較例2のバルクフィルタ27は、モルデナイト型ゼオライト60mgとγアルミナから成る活性アルミナ10mgとメソポーラスシリカ3mgとを混合したものである。これらはいずれも粉体で、均一に混合されている。 In the embodiment, the bulk filter 26 is a mixture of 60 mg of mordenite-type zeolite powder and 10 mg of γ-alumina powder, and the layer filter 28 is an FSM-16-based filter adhered to 3 mg of air-permeable paper. is there. Instead of mordenite zeolite, Y zeolite (faujasite type) or the like may be used, and amorphous activated alumina such as boehmite may be used instead of γ-alumina. As shown in FIG. 7, the mixture of zeolite and γ-alumina can improve the durability to siloxane gas in the mixture of zeolite and activated alumina as compared to 100% zeolite and 100% activated alumina. Because. The bulk filter 26 may be silica gel, activated alumina, activated clay, or the like. The bulk filter 27 of Comparative Example 2 is a mixture of 60 mg of mordenite zeolite, 10 mg of activated alumina made of γ-alumina, and 3 mg of mesoporous silica. These are all powders and are uniformly mixed.
図3〜図6は警報点の変化を示し、D4(オクタメチルシクロテトラシロキサン)、D5(デカメチルシクロペンタシロキサン)、OMTS(オクタメチルトリシロキサン)を各20volppm含む槽にガスセンサをセットして通電し、時折槽から取りだして、警報点を測定した。図は各3個のセンサの平均を示し、これらのシロキサンは蒸気圧が比較的高いシロキサンで、シリコーン化合物からの被毒ガスを代表するものとして用いた。実施例では10日間は被毒は見られず、その後3日間の被毒は穏和である。これに対し図4(比較例1),図5(比較例2),図6(比較例3)では10日目以降の被毒は顕著である。このことは層状フィルタ28をバルクフィルタ26の下流側に置くことにより、少量のメソポーラスシリカでシロキサンガスによる被毒を抑制できることを示している。また層状フィルタ28は紙状なのでセットが容易で、バルクフィルタ2を通過したガスと均一に接触する。そして紙に代えて、不織布状、あるいはフィルム状としても、同様の効果が得られる。 3 to 6 show the change of the alarm point. Set a gas sensor in a tank containing 20volppm each of D4 (octamethylcyclotetrasiloxane), D5 (decamethylcyclopentasiloxane), and OMTS (octamethyltrisiloxane) and energize them. Then, it was taken out from the tank occasionally and the alarm point was measured. The figure shows the average of three sensors each, and these siloxanes are siloxanes with a relatively high vapor pressure and were used as representatives of poisoning gases from silicone compounds. In the examples, no poisoning was observed for 10 days, and then poisoning for 3 days was mild. On the other hand, in FIG. 4 (Comparative Example 1), FIG. 5 (Comparative Example 2), and FIG. 6 (Comparative Example 3), poisoning after the 10th day is remarkable. This indicates that by placing the layered filter 28 on the downstream side of the bulk filter 26, poisoning by the siloxane gas can be suppressed with a small amount of mesoporous silica. Further, since the layered filter 28 is in the form of paper, it is easy to set and makes uniform contact with the gas that has passed through the bulk filter 2. The same effect can be obtained by using a nonwoven fabric or a film instead of paper.
メソポーラスシリカの量を増すと、LPガス感度が低下し、かつLPガスへの応答速度が低下した。このことはメソポーラスシリカがLPガスを吸着することを示している。層状フィルタ28を追加したことによるLPガスへの応答遅れは、メソポーラスシリカが1mgで1秒以下、3mgで約3秒、10mgで約20秒で、メソポーラスシリカ60mgを含むバルクフィルタではLPガス感度はほぼ失われた。耐被毒性能とLPガスへの応答速度とのバランスから、ガスセンサ2の1個当たりで、メソポーラスシリカは1〜10mgが適切で、特に2〜6mgが適切である。また層状フィルタ28とバルクフィルタ26とを設けたガスセンサ2は、エタノール、アセトン等の有機溶媒への感度が低く、硫化水素、2酸化硫黄等の硫黄系の被毒ガスへの耐久性も高かった。なおメソポーラスシリカは、シロキサンガス以外に有機溶媒及び硫化水素等を吸着する能力を備えている。ゼオライトと活性アルミナは有機溶媒、2酸化硫黄、硫化水素等への吸着能力を備えている。これらのガスへの吸着能力と、LPガスへの検出遅れを招かないこととのバランスから、バルクフィルタ26の吸着剤はガスセンサ2の1個当たり20〜150mgが好ましく、より好ましくは40〜100mgとする。ゼオライト活性アルミナとを併用する場合、ゼオライト/活性アルミナの混合比は20:1〜1:4、特に10:1〜1:2が好ましい。 When the amount of mesoporous silica was increased, LP gas sensitivity decreased and the response speed to LP gas decreased. This indicates that mesoporous silica adsorbs LP gas. The response delay to LP gas due to the addition of the layered filter 28 is less than 1 second at 1 mg for mesoporous silica, about 3 seconds at 3 mg, about 20 seconds at 10 mg, and LP gas sensitivity is about 40 mg for mesoporous silica. Almost lost. From the balance between the poisoning resistance and the response speed to LP gas, 1 to 10 mg of mesoporous silica is appropriate per gas sensor 2, and 2 to 6 mg is particularly appropriate. In addition, the gas sensor 2 provided with the layered filter 28 and the bulk filter 26 has low sensitivity to organic solvents such as ethanol and acetone, and has high durability to sulfur-based poisoning gases such as hydrogen sulfide and sulfur dioxide. Mesoporous silica has an ability to adsorb organic solvents, hydrogen sulfide, and the like in addition to siloxane gas. Zeolite and activated alumina are capable of adsorbing to organic solvents, sulfur dioxide, hydrogen sulfide and the like. From the balance between the adsorption ability to these gases and the fact that detection delay to LP gas is not caused, the adsorbent of the bulk filter 26 is preferably 20 to 150 mg, more preferably 40 to 100 mg per gas sensor 2. To do. When zeolite active alumina is used in combination, the zeolite / active alumina mixing ratio is preferably 20: 1 to 1: 4, particularly 10: 1 to 1: 2.
ハイシリカYゼオライトを層状フィルタ28の吸着材料に用いた実施例の性能を図9に示す。図1a)のセンサ2で、層状フィルタ28のメソポーラススリカをハイシリカYゼオライト(センサ1個当たり0.3mg)に変えた他は、図1と同様のガスセンサを作製した。図3〜図6と同様にしてシロキサンガスへの耐久性を調べた結果を図9に示す。結果は図3と同様で、10日間は水素への警報点の低下が見られず、メタンへの警報点は13日目まで安定していた。また層状フィルタ28をセンサ本体側に配置した図1a)の配置で、図1b)〜d)の配置よりも、ガスセンサの耐被毒性が向上することも、メソポーラスシリカの場合と同様であった。さらにハイシリカYゼオライトに変えて、センサ1個当たり0.3mgのハイシリカモルデナイトゼオライトを用いても同様の結果が得られた。
FIG. 9 shows the performance of an example in which high silica Y zeolite was used as the adsorbing material for the layered filter 28. A gas sensor similar to that shown in FIG. 1 was prepared in the sensor 2 of FIG. 1a except that the mesoporous silica of the layered filter 28 was changed to high silica Y zeolite (0.3 mg per sensor). The results of examining the durability to siloxane gas in the same manner as in FIGS. 3 to 6 are shown in FIG. The result was the same as in FIG. 3, and the alarm point for hydrogen was not decreased for 10 days, and the alarm point for methane was stable until the 13th day. Further, in the arrangement of FIG. 1a) in which the layered filter 28 is arranged on the sensor body side, the poisoning resistance of the gas sensor is improved as compared with the arrangement of FIGS. 1b) to 1), as in the case of mesoporous silica. Further, similar results were obtained when 0.3 mg of high silica mordenite zeolite per sensor was used instead of high silica Y zeolite.
2,4,6,7,8 ガスセンサ
10 センサ本体
11 感ガス体
12 ステム
14 ベース
16 キャップ
18 開口
20 金網
21 押さえリング
22,24 不織布
26,27 バルクフィルタ
28 層状フィルタ
2, 4, 6, 7, 8 Gas sensor 10 Sensor body 11 Gas sensitive body 12 Stem 14 Base 16 Cap 18 Opening 20 Wire net 21 Pressing ring 22, 24 Nonwoven fabric 26, 27 Bulk filter 28 Layered filter
Claims (3)
前記バルクフィルタとセンサ本体との間に、メソポーラスシリカ、ハイシリカYゼオライト、もしくはハイシリカモルデナイトゼオライトを付着させた紙、不織布又は通気性の合成樹脂フィルムから成る層状フィルタを設けて、バルクフィルタで処理した雰囲気をさらに層状フィルタで処理して、センサ本体へ供給するように構成されていることを特徴とする、ガスセンサ。 In a gas sensor in which a bulk filter made of silica / alumina-based adsorbent is provided in a housing that houses the sensor body,
Between the bulk filter and the sensor body, a layered filter made of paper, non-woven fabric or breathable synthetic resin film to which mesoporous silica, high silica Y zeolite, or high silica mordenite zeolite was attached was provided and processed with the bulk filter. A gas sensor, wherein the atmosphere is further processed by a layered filter and supplied to the sensor body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012116828A JP6218262B2 (en) | 2012-05-22 | 2012-05-22 | Gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012116828A JP6218262B2 (en) | 2012-05-22 | 2012-05-22 | Gas sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013242269A JP2013242269A (en) | 2013-12-05 |
JP6218262B2 true JP6218262B2 (en) | 2017-10-25 |
Family
ID=49843279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012116828A Expired - Fee Related JP6218262B2 (en) | 2012-05-22 | 2012-05-22 | Gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6218262B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6299026B2 (en) * | 2013-02-14 | 2018-03-28 | 新コスモス電機株式会社 | Gas detector |
JP6334221B2 (en) * | 2014-03-25 | 2018-05-30 | 新コスモス電機株式会社 | Gas detector |
JP6438685B2 (en) * | 2014-06-06 | 2018-12-19 | 新コスモス電機株式会社 | Gas detector |
WO2016152645A1 (en) * | 2015-03-26 | 2016-09-29 | ニッタ株式会社 | Chemical filter |
JP6478404B2 (en) * | 2015-06-01 | 2019-03-06 | 理研計器株式会社 | Siloxane removal filter for analyzer |
CN105004765B (en) * | 2015-07-02 | 2017-09-26 | 吉林大学 | Mesoporous CuO/SnO2Absorption sensitizing type sensor and detection method |
WO2017138190A1 (en) * | 2016-02-12 | 2017-08-17 | フィガロ技研株式会社 | Gas sensor |
WO2017145889A1 (en) | 2016-02-22 | 2017-08-31 | Semitec株式会社 | Gas sensor, gas detection device, gas detection method and device provided with gas detection device |
JP6537154B2 (en) * | 2016-06-23 | 2019-07-03 | フィガロ技研株式会社 | Gas sensor |
JP2020523182A (en) * | 2017-06-11 | 2020-08-06 | エムエスエー テクノロジー, リミテッド・ライアビリティ・カンパニー | Filter for sulfur compounds |
US11531013B2 (en) | 2017-08-09 | 2022-12-20 | Semitec Corporation | Gas sensor, gas detection device, gas detection method, and device provided with gas sensor or gas detection device |
JP6556288B2 (en) * | 2018-04-24 | 2019-08-07 | 新コスモス電機株式会社 | Gas detector |
KR20210039471A (en) * | 2018-08-10 | 2021-04-09 | 피가로 기켄 가부시키가이샤 | Gas detector |
JP7021756B2 (en) * | 2018-08-10 | 2022-02-17 | フィガロ技研株式会社 | Gas detector |
JP7107494B2 (en) * | 2019-03-19 | 2022-07-27 | フィガロ技研株式会社 | gas detector |
WO2022181503A1 (en) * | 2021-02-26 | 2022-09-01 | パナソニックIpマネジメント株式会社 | Gas filter, gas sensor and gas sensing device |
JP7343730B1 (en) * | 2023-06-27 | 2023-09-12 | 新コスモス電機株式会社 | MEMS type semiconductor gas sensor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58124939A (en) * | 1982-01-22 | 1983-07-25 | Hitachi Ltd | Gas sensor |
JPH08159997A (en) * | 1994-11-30 | 1996-06-21 | Kurabe Ind Co Ltd | Gas detector with filter |
JP3197455B2 (en) * | 1995-03-14 | 2001-08-13 | 新コスモス電機株式会社 | Gas sensor and gas filter |
JP3568060B2 (en) * | 1995-03-16 | 2004-09-22 | フィガロ技研株式会社 | Gas sensor |
JPH09113475A (en) * | 1995-10-20 | 1997-05-02 | Kuraray Chem Corp | Sensitivity-drop preventive agent for combustible-gas sensor |
JP2002090325A (en) * | 2000-09-13 | 2002-03-27 | Tdk Corp | Filter for sensor, sensor cover, sensor and filter film |
JP2008241501A (en) * | 2007-03-28 | 2008-10-09 | Ngk Spark Plug Co Ltd | Gas sensor |
JP5120881B2 (en) * | 2007-10-23 | 2013-01-16 | 富士電機株式会社 | Combustible gas detector |
JP2010164317A (en) * | 2009-01-13 | 2010-07-29 | Yazaki Corp | Filter for lp gas sensor and lp gas sensor |
JP5881205B2 (en) * | 2011-10-18 | 2016-03-09 | フィガロ技研株式会社 | Gas sensor |
-
2012
- 2012-05-22 JP JP2012116828A patent/JP6218262B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013242269A (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6218262B2 (en) | Gas sensor | |
Harlick et al. | Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance | |
JP4130247B2 (en) | Exhaust gas purification catalyst and use thereof | |
CA1131192A (en) | Catalysts | |
Chaouati et al. | Adsorption of phenol from aqueous solution onto zeolites Y modified by silylation | |
JP2012515085A5 (en) | ||
WO2008099814A1 (en) | Catalyst for removal of nitrogen oxide, and method for removal of nitrogen oxide | |
JP2002528105A (en) | Filter for selective removal of gaseous components | |
JP2011517574A (en) | Methods for neutralizing, adsorbing and absorbing toxic or unwanted compounds in tobacco products | |
JP4631230B2 (en) | Exhaust gas purification catalyst | |
US6911189B1 (en) | Filter for selective removal of a gaseous component | |
Azmi et al. | Fabrication of MIL-101-polydimethylsiloxane composites for environmental toluene abatement from humid air | |
JPWO2013069719A1 (en) | Water selective adsorbent and method for producing the same | |
JP2008073625A (en) | Hc trapping catalyst and its preparation method | |
JPWO2015037483A1 (en) | Gas adsorbent, gas adsorbing sheet and air filter | |
JPH03138411A (en) | Exhaust purifier of methanol engine | |
JP5881205B2 (en) | Gas sensor | |
Zhang et al. | Core-shell deAlY@ SiO2 composite: A superior adsorbent for toluene capture under humidity condition | |
JP6334221B2 (en) | Gas detector | |
JP2019007796A (en) | Gas sensor and gas alarm | |
JP6478404B2 (en) | Siloxane removal filter for analyzer | |
JPH09113475A (en) | Sensitivity-drop preventive agent for combustible-gas sensor | |
JP2018176084A (en) | Siloxane remover, method for removing siloxanes, filter, gas sensor, and gas detector | |
JP6556288B2 (en) | Gas detector | |
JPH11253797A (en) | Adsorbent, air cleaning filter and preparation of adsorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160407 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170922 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6218262 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |