JP2004045324A - Gas filter and gas sensor - Google Patents

Gas filter and gas sensor Download PDF

Info

Publication number
JP2004045324A
JP2004045324A JP2002205659A JP2002205659A JP2004045324A JP 2004045324 A JP2004045324 A JP 2004045324A JP 2002205659 A JP2002205659 A JP 2002205659A JP 2002205659 A JP2002205659 A JP 2002205659A JP 2004045324 A JP2004045324 A JP 2004045324A
Authority
JP
Japan
Prior art keywords
gas
filter
powder
particles
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002205659A
Other languages
Japanese (ja)
Other versions
JP3901602B2 (en
Inventor
Hirokazu Mihashi
三橋 弘和
Yoshihiro Yamada
山田 佳博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2002205659A priority Critical patent/JP3901602B2/en
Publication of JP2004045324A publication Critical patent/JP2004045324A/en
Application granted granted Critical
Publication of JP3901602B2 publication Critical patent/JP3901602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas filter that can efficiently suck and eliminate an organic silicone gas being mixed to a detection gas without sucking the detection gas, and to provide a gas sensor that prevents gas detection characteristics from being easily changed by the organic silicone gas. <P>SOLUTION: Powder containing at least one of a silicic acid constituent particle and an aluminosilicate constituent particle and Pt powder is interposed between a pair of porous sheets made of heat-resistant fiber, and a pair of permeable porous sheets is bonded in one piece for forming by using at least one of silica sol and alumina sol. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガスフィルタ及びガスセンサに関する。
【0002】
【従来の技術】
従来、この種のガスフィルタとしては、ガス検知素子に直接フィルタ層を形成してあるものが実用されている。
また、この種のガスセンサとしては、ガス検出素子の外表面にシリカを担持させて、フィルタ層を形成してあるものが知られていた。
【0003】
【発明が解決しようとする課題】
近年、建築材料としてシリコーンパテ、シリコーンゴム、シリコーンオイル等種々のシリコーン材料を多用されるようになってきている。このようなシリコーン材料には低重合度で比較的揮発性の高い有機シリコーンが含有されており、有機シリコーンガスが、ガスセンサに悪影響を与えるという問題点が指摘されている。
つまり、ガス検出素子のガス検知感度が低下したり、選択的に検出すべきガス以外のガスに対してガス検知感度が上昇して、誤作動したりしやすくなることがあった。これは、検出ガス中に含まれる有機シリコーンガスが、ガス検出素子にまで達して、前記ガス検出素子に前記有機シリコーン又はその分解物等のシリコーン成分が付着しやすく、前記ガス検出素子のガス検知特性を変化させてしまうことによるものと考えられる。
【0004】
具体的には、例えば、酸化スズ半導体式のメタン用のガス検出素子の場合、前記ガス検出素子に前記シリコーン成分が付着すると、アルコールに対する感度が高くなり、アルコールに対するメタン選択性が低下するという問題が生じる。また、接触燃焼式の炭化水素ガス用のガス検出素子の場合、前記ガス検出素子に前記シリコーン成分が付着すると、炭化水素ガス自体の検出感度が低下して前記炭化水素を検出できなくなるという問題が生じる。
【0005】
そこで、前記ガス検出素子の外表面にシリカを担持させて、フィルタ層を形成してあれば、有機シリコーンガスが前記フィルタ層に付着してガス検出素子の内部にまで達するのを防ぐことができるものの、前記シリコーン成分が前記フィルタ層に付着することで前記ガス検出素子の感度や、ガス選択特性等が変化する傾向がある。そのため、やはり、前記ガス検出素子のガス検知特性の変化を抑制することはできない。また、前記ガス検出素子のガス検知特性のばらつきを抑え、効率よく有機シリコーンガスを吸着させるためには、前記フィルタ層は均一な厚みに形成されていることが好ましい。ところが、前記フィルタ層を均一な厚みに成形するためには、通常、前記フィルタ層の形成ムラを無くすべくフィルタ層形成用の材料を厚塗りに形成する。すると、前記フィルタ層は厚くなり、前記ガス検出素子のガス検出感度や応答性が低下したり、前記ガス検出素子の発熱によって前記フィルタ層にひびが入ったりして破損する虞れが生じるなどの不都合が生じていた。
【0006】
そこで、上述のような問題点を解消するために、ガス検出素子を設け、検出ガスを外部空間からガス検出素子へ導くガス誘導路を設け、一対の通気性多孔体間に、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方を介在させてなるガスフィルタを、前記ガス誘導路に設けることが提案されている。(特許第3197455号)
【0007】
この技術によると、前記ガスフィルタには、有機シリコーンガス吸着用のケイ酸成分粒子又はアルミノケイ酸成分粒子を保持させてあるから、前記有機シリコーンガスが、前記ガスフィルタに吸着されて、前記検出ガス中から除去され、前記有機シリコーンガスはガス検出素子に達しにくい。そのため、前記ガス検出素子にシリコーン成分が付着してガス検知特性を変化させてしまうという不都合を抑制することが出来る。
また、前記ガスフィルタとしては、一対の通気性多孔質シート間にガス吸着用粒子を介在させてなるものであれば、前記有機シリコーンガス吸着用粒子を高密度に保持された状態に、かつ表面積の大きい状態に保持出来、しかも、検知ガスの通気性を高く維持できるので前記ガス吸着用粒子のガス吸着性能を高くできる。
【0008】
さらに、前記ガスフィルタを、耐熱性繊維からなる多孔質シートから形成してあれば、一般に作動状態では高温になりがちなガス検出素子と前記フィルタとが近接して設けてあったとしても、熱によって劣化して前記ガス吸着用粒子を保持できなくなるような不都合も生じにくいので、通気性、耐熱耐久性を共に備えたものとなる。
さらに、前記耐熱性繊維どうしをシリカゲルおよびアルミナゾルの少なくともいずれか一方を用いて一体接着形成すれば、バインダの役目を担うシリカゾル又はアルミノゾルも有機シリコーンガスを吸着する機能を有し、かつ、検出ガスに悪影響を与えにくいというものである。
【0009】
しかしながら、このような技術によっても、シリコーンガスによる種々の影響を完全に除去しうる訳では無かったので、未だ改善の余地があった。
【0010】
そこで、本発明の目的は、上記実情に鑑み、検出ガスを吸着することなく、前記検出ガスに混入する有機シリコーンガスを効率よく吸着除去できるガスフィルタ、および、前記有機シリコーンガスによってもガス検知特性の変化しにくいガスセンサを提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは上記目的のため鋭意研究の結果、ケイ酸成分やアルミノケイ酸粒子を用いて前記シリコーンガスを吸着除去する際に、白金元素(Pt)が共存していると、高い吸着除去効率を発揮することを実験的に見いだした。本発明は、この新知見によるものである。
【0012】
前記目的を達成するための本発明の特徴構成は、
耐熱性繊維からなる一対の通気性多孔質シート間に、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方とPt粉末とを含有する粉末、或いは、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方にPtを担持させた粉末を介在させた状態で、前記一対の通気性多孔質シートどうしをシリカゾルまたはアルミナゾルの少なくともいずれか一方を用いて一体接着成形してある点にある。
また、前記Pt粉末は、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方からなる粒子成分に対して0.2〜30wt%含有することが望ましい。
また、本発明のガスセンサの特徴構成は、
ガス検出素子を設け、検出ガスを外部空間からガス検出素子へ導くガス誘導路を設け、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方とPt粉末とを含有する粉末、或いは、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方にPtを担持させた粉末を含有するフィルタ部を、前記ガス誘導路に設けてある点にある。
【0013】
〔作用効果〕
つまり、ガスセンサにおいて、検出ガスを外部空間からガス検出素子へ導くガス誘導路に、前記外部空間から前記ガス検出素子に達する検出ガスに接触可能なフィルタ部を設けたから、前記検出ガスは、前記フィルタ部に接触しつつ前記ガス検出素子に達する。
このとき、前記フィルタ部には、有機シリコーンガス吸着用のケイ酸成分およびアルミノケイ酸成分の粒子を保持させてあるから、前記検出ガス中に有機シリコーンガスが含まれていたとしても、前記検出ガスには、前記フィルタ部に吸着されるなどの不都合をきたすことなく、前記有機シリコーンガスが、前記フィルタ部に吸着されて、前記検出ガス中から除去され、前記有機シリコーンガスはガス検出素子に達しにくい。そのため、前記ガス検出素子にシリコーン成分が付着してガス検知特性を変化させてしまうという不都合を抑制することが出来る。
ここで、前記フィルタ部には、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方とPt粉末とを含有する粉末、或いは、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方にPtを担持させた粉末を介在させた状態とするから、後述の実験例より明らかなように、前記ケイ酸成分粒子およびアルミノケイ酸成分粒子のシリコーンガス吸着特性を大幅に改善させることができた。
【0014】
また、前記Pt粉末は、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方からなる粒子成分に対して0.2〜30wt%含有すると、高い有機シリコーンガス吸着能力を発揮するので望ましい。
【0015】
尚、前記ガスフィルタとしては、一対の通気性多孔質シート間にガス吸着用粒子を介在させ、前記一対の通気性多孔質シートどうしをシリカゾルまたはアルミナゾルの少なくともいずれか一方を用いて一体接着成形してあるものであれば、ゾルが粒子化しつつ一体化するので、前記有機シリコーンガス吸着用粒子を高密度に保持された状態に、かつ表面積の大きい状態に保持出来、しかも、通気性多孔質シートが各粒子を保持するため、検知ガスの通気性を高く維持できるので前記ガス吸着用粒子のガス吸着性能を高くできる。また、シリカゾルやアルミナゾルについても、ガスフィルタ形成後に有機シリコーンガス吸着用粒子として働くものであるから、形成後のガスフィルタの有機シリコーンガス吸着能力の向上に役立てられる。
【0016】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図2に示すように本発明のガスセンサは、ガス検出素子Aを設け、検出ガスを外部空間Bからガス検出素子Aへ導くガス誘導路を設け、前記外部空間Bから前記ガス検出素子Aを隔離するガスフィルタCを、前記ガス誘導路を形成する通気口D1に設け、前記ガスフィルタCにアルミノ珪酸成分粒子の一つであるシリカアルミナ微粒子2(13%アルミナ)を保持させてある。
前記ガス検出素子Aは貴金属コイルに金属酸化物半導体を塗布焼結した、いわゆる熱線型半導体センサであり、円筒形状のハウジングDの内部に備えて構成してある。また、前記ハウシングDの頂部部位において、外部空間BとハウジングDの内部との間でガスが流通可能なガス誘導路を形成する通気口D1を設けてある。そして、このハウジングDに対して下部よりガス検出素子Aを備えたセンサ基台D2を挿入することによりガスセンサが組立てられる。
ここで、ハウジングD自体は気密性の材料で構成されており、通気口D1には、全面に渡ってガスフィルタCと防爆用金網D3とを設けてあり、前記ガスフィルタCを介して外部空間Bと前記ハウジング内のガス検出素子Aの近傍とに渡ってガスが流通する。
【0017】
前記ガスフィルタCは、図1に示すように、通気性多孔質シートの一例として一対のガラス繊維不織布1の間にシリカアルミナ微粒子(13%アルミナ)および白金微粒子を分散介在させた状態で、前記ガラス繊維不織布1同士をシリカゾルバインダを用いて、振動を与えても前記シリカアルミナ微粒子が自由に流動しない程度に、約0.1g/cmの割合で含浸接着して形成してある。
【0018】
さらに、このガスセンサを好適に採用し,台所等の壁面に図面と上下方向を一致させて配置されるガス警報器Xの構成について説明する。図3に示すように、ガス警報器Xの警報器ボックスX1は、方形の箱型に形成されており、内部が、ガスセンサが配設されるセンサ室X2と、発声器・トランス・電源制御機器等の機器Xxが配設される機器室X3とに、隔壁X4によって仕切られている。そして、前記センサ室X2において前記警報器ボックスX1に、多数の通気孔X5を設けてあり。前記通気口D1を、前記警報器ボックスX1正面に設けた通気孔X5に向けて配置される。
【0019】
【実施例】
以下に本発明の実施例を図面に基づいて説明する。
(試験例1) 白金コイル上に酸化スズ半導体を塗布焼結したメタンガス検出用の熱線型半導体式ガス検出素子を前記ハウジング内に配置したガスセンサを、シリコーンガス源としてのHMDS(ヘキサメチルジシロキサン)20ppmとともに密閉容器内に収容した状態で、10時間放置した時に、前記メタンガス検出用のガスセンサの1000ppmのエタノールガスに対する感度がどのように変化するかを調べた。
このとき、前記ハウジングDの通気口D1に前記ガスフィルタCを用いなかったもの(三角印)、前記ガスフィルタCを1枚用い、前記通気口D1を覆ったもの(丸印)、前記ガスフィルタCに白金を加えていないもの(四角印)の3種類について比較した。その結果、図4のようになった。尚、エタノールガス感度は、前記試験を行う以前の同一のメタン検出用熱線型半導体センサのセンサ出力との比をもって調べた。
【0020】
前記メタンガス検出用の熱線型半導体式ガスセンサは、本来、エタノールガスとメタンガスとが混在したとしても、メタンガスを前記エタノールガスから区別して選択的に検知するガス選択性を有すべきところである。しかし、図4から明らかなように、密閉容器内の前記HMDSにガス検知素子が接触すると、前記ガスセンサはエタノールガス感度が増大することがわかる。従って、挟雑ガスであるエタノールに対して大きなガス検知出力を呈するようになる。そのため、メタンガスに対する出力が選択的に得られているとはいえなくなり、メタンガスの選択的検知が次第に困難になることがわかる(三角印)。
ところが、前記シリカアルミナ微粒子を含有するガスフィルタを用いたものでは、エタノールガス感度は、シリコーンガスとの長時間の接触にもかかわらず変化しにくく、前記ガス選択性は低下しにくくなっていることがわかる(四角印)。また、さらに、シリカアルミナ微粒子に加えて白金微粒子を含有するガスフィルタを用いた場合の前記ガス選択性は、ほぼ一定に保たれていることがわかり、前記シリコーンガスは、前記ガスフィルタによって吸着除去されたものと考えられる。(丸印)
【0021】
(試験例2) 白金コイル上にアルミナ担体を塗布焼結したのち、燃焼触媒を担持させたメタンガス検出用の接触燃焼式ガス検知素子を、前記ハウジング内に配置したガスセンサを、HMDS(ヘキサメチルジシロキサン)20ppmを密閉容器内に収容した状態で、10時間放置した時に、前記メタンガス検出用のガスセンサのメタンガス3000ppm感度がどのように変化したかを調べた。
このとき、前記ハウジングの通気口に前記ガスフィルタを用いなかったもの(三角印)、前記ガスフィルタを1枚用い、前記通気口を覆ったもの(丸印)、前記ガスフィルタに、白金を加えていないもの(四角印)の3種類について比較した。その結果、図5のようになった。尚、メタンガス感度は、前記試験を行う以前の同一のメタン検出用接触燃焼式ガスセンサのセンサ出力との比をもって調べた。
【0022】
本来メタンガスに対する出力は経時的に一定に保つことが望ましい。しかし図5から明らかなように、ガスフィルタを用いなかった(三角印)前記メタンガス検出用の接触燃焼式ガスセンサでは、シリコーンガスとの接触によってメタンガス感度が低下し、次第にメタンガスの検出が困難になることがわかる。
ところが、前記シリカアルミナ微粒子を含有するガスフィルタを用いたもの(四角印)では、シリコーンガスとの短時間の接触では、前記メタンガス感度は低下しにくくなっていることがわかる。さらに、シリカアルミナ微粒子に加えて白金微粒子を含有するガスフィルタを用いた場合(丸印)は、長期にわたってメタンガス感度がほぼ一定に保たれている。これは、前記シリコーンガスが、前記ガスフィルタによって吸着除去されたためと考えられる。
【0023】
(試験例3) 先述のガスフィルタに添加する白金量を種々変化させ、試験例1と同様に10時間のHMDS暴露試験を行い、3000ppmのメタンガスに対する感度比を求めたところ、図6のようになった。
図6より、白金添加量が少なすぎても、多すぎても感度比が低下することがわかり、前記Pt粉末を、前記ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方からなる粒子成分に対して0.2〜30wt%含有する場合に極めて高い感度比が維持されていることが読みとれる。
【0024】
〔別実施形態〕
以下に別実施形態を説明する。
上述の実施例から、前記シリカアルミナのシリコーンガス吸着除去能は、前記白金成分によって相乗的に向上させるものであることがわかる。また、先述の従来技術によると、アルミノケイ酸成分としてのシリカアルミナと同様の性質を示すものに、ケイ酸成分としてのシリカ等が知られている。そのため、先のシリカアルミナ微粒子および白金成分を用いた例に代えてシリカ微粒子および白金成分を含有していてもよい。従って、その形態としては、上述の実施の形態のように、シリカ、シリカアルミナの少なくとも一方を含む微粒子および白金成分の微粒子をともに含んでいる形態であっても、シリカ、シリカアルミナの少なくとも一方の微粒子に白金成分の微粒子が担持させられている構成、あるいは、白金成分の微粒子にシリカ、シリカアルミナの少なくとも一方の微粒子が担持させられている構成であってもよい。
【0025】
また、本発明のガスフィルタを適用するガスセンサとしては、上述のように熱線型半導体式ガス検知素子や、接触燃焼式ガス検知素子を備えたものがあげられるが、シリコーンガスの影響を受けるガス検知素子を備えたものであれば機能する。そのため、たとえば、上述のガスフィルタとしての構成をとっていなくても、検出ガスを外部空間からガス検出素子へ導くガス誘導路に、前記ガスフィルタと同等に機能するフィルタ部を設けてある場合にも、そのフィルタ部でシリコーンガスが吸着除去され、前記ガス検知素子に対するシリコーンガスの影響を軽減することができる。
【図面の簡単な説明】
【図1】ガスフィルタの全体斜視図
【図2】ガスセンサの分解図
【図3】ガス警報器の分解斜視図
【図4】試験例1の結果を示すグラフ
【図5】試験例2の結果を示すグラフ
【図6】試験例3の結果を示すグラフ
【符号の説明】
1  ガラス繊維不織布(通気性多孔質シート)
2  ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方
A  ガス検出素子
B  外部空間
C  ガスフィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas filter and a gas sensor.
[0002]
[Prior art]
Conventionally, a gas filter in which a filter layer is directly formed on a gas detection element has been put to practical use as this type of gas filter.
Further, as this type of gas sensor, one in which a filter layer is formed by supporting silica on the outer surface of a gas detection element has been known.
[0003]
[Problems to be solved by the invention]
In recent years, various silicone materials such as silicone putty, silicone rubber, and silicone oil have been frequently used as building materials. Such a silicone material contains an organic silicone having a low polymerization degree and a relatively high volatility, and it has been pointed out that the organic silicone gas has an adverse effect on the gas sensor.
That is, the gas detection sensitivity of the gas detection element may be reduced, or the gas detection sensitivity may be increased with respect to a gas other than the gas to be selectively detected, which may cause malfunction. This is because the organosilicon gas contained in the detection gas reaches the gas detection element, and silicone components such as the organosilicone or a decomposition product thereof are likely to adhere to the gas detection element. This is thought to be due to changing the characteristics.
[0004]
Specifically, for example, in the case of a tin oxide semiconductor type gas detection element for methane, when the silicone component adheres to the gas detection element, the sensitivity to alcohol increases and the methane selectivity to alcohol decreases. Occurs. In the case of a catalytic combustion type gas detection element for hydrocarbon gas, if the silicone component adheres to the gas detection element, there is a problem that the detection sensitivity of the hydrocarbon gas itself is lowered and the hydrocarbon cannot be detected. Arise.
[0005]
Therefore, if silica is supported on the outer surface of the gas detection element to form a filter layer, it is possible to prevent the organosilicon gas from adhering to the filter layer and reaching the inside of the gas detection element. However, when the silicone component adheres to the filter layer, the sensitivity of the gas detection element, gas selection characteristics, and the like tend to change. Therefore, the change in the gas detection characteristic of the gas detection element cannot be suppressed. Further, in order to suppress variation in gas detection characteristics of the gas detection element and to adsorb the organic silicone gas efficiently, it is preferable that the filter layer is formed to have a uniform thickness. However, in order to form the filter layer with a uniform thickness, the filter layer forming material is usually formed in a thick coating so as to eliminate the formation unevenness of the filter layer. Then, the filter layer becomes thick, and the gas detection sensitivity and responsiveness of the gas detection element may be reduced, or the filter layer may be cracked due to heat generation of the gas detection element and may be damaged. There was an inconvenience.
[0006]
Therefore, in order to solve the problems as described above, a gas detection element is provided, a gas guiding path for introducing the detection gas from the external space to the gas detection element is provided, and the silicic acid component particles are provided between the pair of breathable porous bodies In addition, it has been proposed to provide a gas filter including at least one of the aluminosilicate component particles and the gas guide path. (Patent No. 3197455)
[0007]
According to this technique, since the silicic acid component particles or aluminosilicic acid component particles for adsorbing the organosilicon gas are held in the gas filter, the organosilicon gas is adsorbed to the gas filter, and the detection gas The organic silicone gas is removed from the inside and hardly reaches the gas detection element. Therefore, it is possible to suppress the disadvantage that the silicone component adheres to the gas detection element and changes the gas detection characteristics.
Further, as the gas filter, as long as the gas adsorption particles are interposed between a pair of breathable porous sheets, the organic silicone gas adsorption particles are held in a high density and have a surface area. The gas adsorption performance of the gas adsorbing particles can be enhanced because the gas permeability of the detection gas can be maintained high.
[0008]
Furthermore, if the gas filter is formed of a porous sheet made of heat-resistant fibers, even if the gas detection element and the filter that tend to be high in operation are generally provided in close proximity, Therefore, the gas adsorbing particles cannot be retained and the gas adsorbing particles cannot be held. Therefore, both the air permeability and the heat resistance are provided.
Further, if the heat-resistant fibers are integrally bonded using at least one of silica gel and alumina sol, the silica sol or aluminosol serving as a binder also has a function of adsorbing the organic silicone gas, and the detection gas It is difficult to give adverse effects.
[0009]
However, even with such a technique, various effects due to silicone gas could not be completely removed, so there was still room for improvement.
[0010]
Therefore, in view of the above circumstances, an object of the present invention is to provide a gas filter capable of efficiently adsorbing and removing the organosilicon gas mixed in the detection gas without adsorbing the detection gas, and also using the organosilicon gas as a gas detection characteristic. It is to provide a gas sensor that is difficult to change.
[0011]
[Means for Solving the Problems]
As a result of diligent research for the above purpose, the present inventors have found that when the silicon gas is adsorbed and removed using a silicic acid component or aluminosilicate particles, if platinum element (Pt) coexists, high adsorption removal efficiency. Has been found experimentally. The present invention is based on this new finding.
[0012]
In order to achieve the above object, the characteristic configuration of the present invention is:
Between a pair of breathable porous sheets made of heat-resistant fibers, a powder containing at least one of silicate component particles and aluminosilicate component particles and Pt powder, or silicate component particles and aluminosilicate component particles The pair of breathable porous sheets is integrally bonded using at least one of silica sol or alumina sol with at least one of the powders carrying Pt interposed therebetween.
The Pt powder is desirably contained in an amount of 0.2 to 30 wt% with respect to a particle component composed of at least one of silicic acid component particles and aluminosilicate component particles.
The characteristic configuration of the gas sensor of the present invention is as follows:
A gas detection element is provided, a gas guiding path for introducing the detection gas from the external space to the gas detection element is provided, and a powder containing at least one of silicic acid component particles and aluminosilicate component particles and Pt powder, or silicic acid A filter portion containing a powder in which Pt is supported on at least one of component particles and aluminosilicate component particles is provided in the gas induction path.
[0013]
[Function and effect]
In other words, in the gas sensor, a filter unit that can contact the detection gas that reaches the gas detection element from the external space is provided in the gas guide path that guides the detection gas from the external space to the gas detection element. The gas detection element is reached while contacting the part.
At this time, since the filter portion holds the particles of the silicic acid component and the aluminosilicate component for adsorbing the organic silicone gas, even if the detection gas contains an organic silicone gas, the detection gas The organic silicone gas is adsorbed to the filter unit and removed from the detection gas without causing inconvenience such as being adsorbed by the filter unit, and the organosilicon gas reaches the gas detection element. Hateful. Therefore, it is possible to suppress the disadvantage that the silicone component adheres to the gas detection element and changes the gas detection characteristics.
Here, the filter unit includes a powder containing at least one of silicic acid component particles and aluminosilicate component particles and Pt powder, or at least one of silicic acid component particles and aluminosilicate component particles. As a result of interposing the powder carrying the catalyst, the silicone gas adsorption characteristics of the silicic acid component particles and the aluminosilicic acid component particles could be greatly improved, as will be apparent from the experimental examples described later.
[0014]
In addition, when the Pt powder is contained in an amount of 0.2 to 30 wt% with respect to a particle component composed of at least one of silicic acid component particles and aluminosilicate component particles, it is desirable because it exhibits high organosilicon gas adsorption ability.
[0015]
As the gas filter, gas adsorbing particles are interposed between a pair of breathable porous sheets, and the pair of breathable porous sheets are integrally bonded using at least one of silica sol and alumina sol. Since the sol is integrated while being formed into particles, the particles for adsorbing the organic silicone gas can be held in a high density state and in a large surface area, and the breathable porous sheet Since each particle is held, the gas-absorbing performance of the gas-adsorbing particles can be increased because the gas-permeable property of the detection gas can be maintained high. Silica sol and alumina sol also serve as particles for adsorbing organic silicone gas after the gas filter is formed, which is useful for improving the organic silicone gas adsorbing ability of the gas filter after formation.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 2, the gas sensor of the present invention is provided with a gas detection element A, a gas guiding path for introducing a detection gas from the external space B to the gas detection element A, and isolating the gas detection element A from the external space B. The gas filter C is provided in the vent D1 that forms the gas guiding path, and the silica fine particles 2 (13% alumina), which is one of the aluminosilicate component particles, are held in the gas filter C.
The gas detection element A is a so-called hot-wire semiconductor sensor in which a metal oxide semiconductor is coated and sintered on a noble metal coil, and is provided inside a cylindrical housing D. Further, at the top portion of the housing D, there is provided a vent D1 that forms a gas guiding path through which gas can flow between the external space B and the inside of the housing D. And the gas sensor is assembled by inserting the sensor base D2 provided with the gas detection element A into the housing D from below.
Here, the housing D itself is made of an airtight material, and a gas filter C and an explosion-proof wire mesh D3 are provided over the entire surface of the vent hole D1, and an external space is provided via the gas filter C. Gas flows through B and the vicinity of the gas detection element A in the housing.
[0017]
As shown in FIG. 1, the gas filter C is a state in which silica alumina fine particles (13% alumina) and platinum fine particles are dispersed and interposed between a pair of glass fiber nonwoven fabrics 1 as an example of a breathable porous sheet. The glass fiber nonwoven fabrics 1 are formed by impregnating and bonding at a rate of about 0.1 g / cm 2 so that the silica alumina fine particles do not flow freely even when vibration is applied using a silica sol binder.
[0018]
Furthermore, the structure of the gas alarm device X which employ | adopts this gas sensor suitably and is arrange | positioned on the wall surface of a kitchen etc. by making a drawing and an up-down direction correspond is demonstrated. As shown in FIG. 3, the alarm box X1 of the gas alarm X is formed in a rectangular box shape, and the inside is a sensor chamber X2 in which a gas sensor is disposed, and a sound generator / transformer / power supply control device. It is partitioned by a partition wall X4 from a device room X3 in which a device Xx is disposed. In the sensor chamber X2, the alarm box X1 is provided with a number of vent holes X5. The vent D1 is disposed toward a vent hole X5 provided in front of the alarm box X1.
[0019]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
(Test Example 1) HMDS (hexamethyldisiloxane) as a silicone gas source is a gas sensor in which a hot-wire semiconductor gas detection element for detecting methane gas, in which a tin oxide semiconductor is coated and sintered on a platinum coil, is disposed in the housing. It was examined how the sensitivity of the gas sensor for detecting methane gas to 1000 ppm of ethanol gas changed when left in a sealed container with 20 ppm for 10 hours.
At this time, the gas filter C is not used for the vent D1 of the housing D (triangle mark), the one gas filter C is used and the vent D1 is covered (circle mark), the gas filter Comparison was made with respect to three types (squares) in which platinum was not added to C. As a result, it became like FIG. The ethanol gas sensitivity was examined by a ratio with the sensor output of the same hot-wire semiconductor sensor for methane detection before the test.
[0020]
The hot-wire semiconductor gas sensor for detecting methane gas should have gas selectivity that selectively detects methane gas separately from the ethanol gas even if ethanol gas and methane gas are mixed. However, as is apparent from FIG. 4, it can be seen that when the gas detection element comes into contact with the HMDS in the sealed container, the gas sensor increases the ethanol gas sensitivity. Therefore, a large gas detection output is exhibited with respect to ethanol which is a mixed gas. Therefore, it cannot be said that the output with respect to methane gas is selectively obtained, and it turns out that selective detection of methane gas becomes increasingly difficult (triangle mark).
However, in the case of using the gas filter containing the silica alumina fine particles, the ethanol gas sensitivity is hardly changed in spite of long-time contact with the silicone gas, and the gas selectivity is hardly lowered. (Square mark). Furthermore, it can be seen that the gas selectivity when using a gas filter containing platinum fine particles in addition to silica alumina fine particles is kept almost constant, and the silicone gas is adsorbed and removed by the gas filter. It is thought that it was done. (Circle)
[0021]
(Test Example 2) After coating and sintering an alumina carrier on a platinum coil, a gas sensor in which a catalytic combustion type gas detection element for detecting methane gas carrying a combustion catalyst is arranged in the housing is used as an HMDS (hexamethyldioxide). It was examined how the sensitivity of 3,000 ppm of methane gas of the gas sensor for detecting methane gas changed when left for 10 hours in a state where 20 ppm of siloxane was contained in a sealed container.
At this time, the gas filter was not used for the vent of the housing (triangle mark), one gas filter was used and the vent was covered (circle mark), and platinum was added to the gas filter. Comparison was made with respect to three types (square marks) that were not. As a result, it became like FIG. The sensitivity of methane gas was examined by comparing it with the sensor output of the same catalytic combustion gas sensor for detecting methane before the test.
[0022]
Originally, it is desirable to keep the output to methane gas constant over time. However, as is apparent from FIG. 5, in the contact combustion type gas sensor for detecting methane gas without using a gas filter (triangle mark), the sensitivity to methane gas decreases due to contact with silicone gas, and the detection of methane gas gradually becomes difficult. I understand that.
However, in the case of using the gas filter containing the silica alumina fine particles (square marks), it is understood that the sensitivity of the methane gas is less likely to be lowered by a short contact with the silicone gas. Furthermore, when a gas filter containing platinum fine particles in addition to silica alumina fine particles is used (circles), the sensitivity of methane gas is kept almost constant over a long period of time. This is considered because the silicone gas was adsorbed and removed by the gas filter.
[0023]
(Test Example 3) The amount of platinum added to the gas filter described above was changed variously, and a 10-hour HMDS exposure test was performed in the same manner as in Test Example 1, and the sensitivity ratio to 3000 ppm of methane gas was determined. became.
From FIG. 6, it can be seen that the sensitivity ratio decreases when the platinum addition amount is too small or too large, and the Pt powder is made up of a particle component composed of at least one of the silicic acid component particles and the aluminosilicate component particles. It can be seen that an extremely high sensitivity ratio is maintained when the content is 0.2 to 30 wt%.
[0024]
[Another embodiment]
Another embodiment will be described below.
From the above-mentioned Examples, it can be seen that the silica gas adsorption / removal ability of the silica alumina is synergistically improved by the platinum component. In addition, according to the above-described prior art, silica as a silicic acid component is known as one that exhibits the same properties as silica alumina as an aluminosilicate component. Therefore, instead of the example using the silica alumina fine particles and the platinum component, silica fine particles and a platinum component may be contained. Therefore, as a form thereof, as in the above-described embodiment, at least one of silica and silica alumina may be included even if the fine particle contains at least one of silica and silica alumina and the fine particle of platinum component. A configuration in which fine particles of platinum component are supported on the fine particles, or a configuration in which at least one fine particle of silica or silica alumina is supported on the fine particles of platinum component may be employed.
[0025]
In addition, examples of the gas sensor to which the gas filter of the present invention is applied include those equipped with a hot-wire semiconductor gas detection element and a catalytic combustion type gas detection element as described above. Any device with elements will function. Therefore, for example, even when the gas filter is not configured as described above, the gas guiding path that guides the detection gas from the external space to the gas detection element is provided with a filter portion that functions in the same manner as the gas filter. However, the silicone gas is adsorbed and removed by the filter portion, and the influence of the silicone gas on the gas detection element can be reduced.
[Brief description of the drawings]
1 is an overall perspective view of a gas filter. FIG. 2 is an exploded view of a gas sensor. FIG. 3 is an exploded perspective view of a gas alarm. FIG. 4 is a graph showing the results of Test Example 1. FIG. [Fig. 6] Graph showing the results of Test Example 3 [Explanation of symbols]
1 Glass fiber nonwoven fabric (breathable porous sheet)
2 At least one of silicic acid component particles and aluminosilicate component particles A Gas detection element B External space C Gas filter

Claims (3)

耐熱性繊維からなる一対の通気性多孔質シート間に
ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方とPt粉末とを含有する粉末、或いは、
ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方にPtを担持させた粉末
を介在させた状態で、
前記一対の通気性多孔質シートどうしをシリカゾルまたはアルミナゾルの少なくともいずれか一方を用いて一体接着成形してなるガスフィルタ。
Powder containing at least one of silicic acid component particles and aluminosilicate component particles and Pt powder between a pair of breathable porous sheets made of heat resistant fibers, or
With at least one of the silicic acid component particles and the aluminosilicic acid component particles interposed with a powder carrying Pt,
A gas filter formed by integrally bonding the pair of breathable porous sheets using at least one of silica sol and alumina sol.
前記Pt粉末を、ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方からなる粒子成分に対して0.2〜30wt%含有する請求項1に記載のガスフィルタ。2. The gas filter according to claim 1, wherein the Pt powder is contained in an amount of 0.2 to 30 wt% with respect to a particle component composed of at least one of silicic acid component particles and aluminosilicate component particles. ガス検出素子を設け、
検出ガスを外部空間からガス検出素子へ導くガス誘導路を設け、
ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方とPt粉末とを含有する粉末、或いは、
ケイ酸成分粒子およびアルミノケイ酸成分粒子の少なくともいずれか一方にPtを担持させた粉末
を含有するフィルタ部を、前記ガス誘導路に設けてあるガスセンサ。
A gas detection element is provided,
A gas guiding path that leads the detection gas from the external space to the gas detection element is provided,
A powder containing at least one of silicate component particles and aluminosilicate component particles and Pt powder, or
The gas sensor which provided the filter part containing the powder which carry | supported Pt in at least any one of a silicic acid component particle | grain and an aluminosilicate component particle | grain in the said gas induction path.
JP2002205659A 2002-07-15 2002-07-15 Gas filter and gas sensor Expired - Fee Related JP3901602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002205659A JP3901602B2 (en) 2002-07-15 2002-07-15 Gas filter and gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205659A JP3901602B2 (en) 2002-07-15 2002-07-15 Gas filter and gas sensor

Publications (2)

Publication Number Publication Date
JP2004045324A true JP2004045324A (en) 2004-02-12
JP3901602B2 JP3901602B2 (en) 2007-04-04

Family

ID=31710904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205659A Expired - Fee Related JP3901602B2 (en) 2002-07-15 2002-07-15 Gas filter and gas sensor

Country Status (1)

Country Link
JP (1) JP3901602B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097025A1 (en) * 2006-02-27 2007-08-30 Fis Inc. Hydrogen gas sensor
JP2007271304A (en) * 2006-03-30 2007-10-18 Riken Keiki Co Ltd Filter for gas sensor for removing organic silicone
JP2008014662A (en) * 2006-07-03 2008-01-24 New Cosmos Electric Corp Gas filter and gas sensor
DE102007054340A1 (en) 2007-11-14 2009-05-28 Rational Ag Cooking device for cooking food, has mesoporous filter made of material consisting of silicon oxide and/or silicate for selectively filtering gaseous silicon connections from sample gas of space atmosphere using filter
JP5044540B2 (en) * 2006-02-27 2012-10-10 エフアイエス株式会社 Hydrogen gas sensor
JP2014126542A (en) * 2012-12-27 2014-07-07 New Cosmos Electric Corp Gas detector
JP2015068712A (en) * 2013-09-27 2015-04-13 新コスモス電機株式会社 Gas detector
JP2015135270A (en) * 2014-01-17 2015-07-27 矢崎エナジーシステム株式会社 Gas sensor filter and gas sensor
JP2016223925A (en) * 2015-06-01 2016-12-28 理研計器株式会社 Siloxane removal filter for analyzer
JP2018197700A (en) * 2017-05-24 2018-12-13 Nissha株式会社 Gas sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102470592B1 (en) 2021-12-28 2022-11-25 주식회사 케이엔씨 Porous glass filter and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097025A1 (en) * 2006-02-27 2007-08-30 Fis Inc. Hydrogen gas sensor
WO2007099933A1 (en) * 2006-02-27 2007-09-07 Fis Inc. Hydrogen gas sensor
JP5044540B2 (en) * 2006-02-27 2012-10-10 エフアイエス株式会社 Hydrogen gas sensor
JP2007271304A (en) * 2006-03-30 2007-10-18 Riken Keiki Co Ltd Filter for gas sensor for removing organic silicone
JP2008014662A (en) * 2006-07-03 2008-01-24 New Cosmos Electric Corp Gas filter and gas sensor
DE102007054340A1 (en) 2007-11-14 2009-05-28 Rational Ag Cooking device for cooking food, has mesoporous filter made of material consisting of silicon oxide and/or silicate for selectively filtering gaseous silicon connections from sample gas of space atmosphere using filter
DE102007054340B4 (en) * 2007-11-14 2009-10-01 Rational Ag Cooking device with mesoporous filter for a semiconductor gas sensor
JP2014126542A (en) * 2012-12-27 2014-07-07 New Cosmos Electric Corp Gas detector
JP2015068712A (en) * 2013-09-27 2015-04-13 新コスモス電機株式会社 Gas detector
JP2015135270A (en) * 2014-01-17 2015-07-27 矢崎エナジーシステム株式会社 Gas sensor filter and gas sensor
JP2016223925A (en) * 2015-06-01 2016-12-28 理研計器株式会社 Siloxane removal filter for analyzer
JP2018197700A (en) * 2017-05-24 2018-12-13 Nissha株式会社 Gas sensor

Also Published As

Publication number Publication date
JP3901602B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP3901602B2 (en) Gas filter and gas sensor
TWI625302B (en) Loudspeaker system with improved sound
US6756016B2 (en) Gas sensor
US4608549A (en) Hydrogen-selective sensor and manufacturing method therefor
JP4542248B2 (en) Silicone gas adsorbent, gas filter and gas sensor
WO2007097025A1 (en) Hydrogen gas sensor
US11397160B2 (en) Gas sensor, gas detection device, gas detection method and device provided with gas detection device
JP3197455B2 (en) Gas sensor and gas filter
JP6482973B2 (en) Gas sensor
JPH10197470A (en) Detecting element
JP5881205B2 (en) Gas sensor
JP2008241501A (en) Gas sensor
JP2008014662A (en) Gas filter and gas sensor
WO2017221574A1 (en) Gas sensor
JP6334221B2 (en) Gas detector
JP2019007796A (en) Gas sensor and gas alarm
JP6438685B2 (en) Gas detector
JP6303211B2 (en) Gas detector
JP2006250569A (en) Filter for gas sensor, and catalytic combustion type city gas sensor
JP5866713B2 (en) Gas detector
JP6556288B2 (en) Gas detector
WO2022181503A1 (en) Gas filter, gas sensor and gas sensing device
JPS58124939A (en) Gas sensor
CN112639454A (en) Gas detection device and gas detection method
JP4838367B2 (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Ref document number: 3901602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees