JP2018138919A - Vibration detector for ultrasonic complex vibration processing device - Google Patents

Vibration detector for ultrasonic complex vibration processing device Download PDF

Info

Publication number
JP2018138919A
JP2018138919A JP2018059132A JP2018059132A JP2018138919A JP 2018138919 A JP2018138919 A JP 2018138919A JP 2018059132 A JP2018059132 A JP 2018059132A JP 2018059132 A JP2018059132 A JP 2018059132A JP 2018138919 A JP2018138919 A JP 2018138919A
Authority
JP
Japan
Prior art keywords
vibration
composite
welding
tool
bending vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018059132A
Other languages
Japanese (ja)
Other versions
JP6585217B2 (en
Inventor
辻野 次郎丸
Jiromaru Tsujino
次郎丸 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsujino Jiromaru
Original Assignee
Tsujino Jiromaru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsujino Jiromaru filed Critical Tsujino Jiromaru
Priority to JP2018059132A priority Critical patent/JP6585217B2/en
Publication of JP2018138919A publication Critical patent/JP2018138919A/en
Application granted granted Critical
Publication of JP6585217B2 publication Critical patent/JP6585217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To install an electromagnetic type complex flexural vibration detector for detecting only complex vibration without detecting linear flexural vibration in an ultrasonic vibration tool part, which is capable of being used for the detection/recording of a complex vibration condition and the input of a resonance frequency automatic tracking feedback oscillator, and to provide a more stable vibration processing condition.SOLUTION: A complex flexural vibration detector 25 is configured by using an annular permanent magnet 29 and detection coils L1, L2 for detecting only complex vibration of a circular or elliptical locus which vibrates in a two-dimensional manner orthogonally to an axis of a vibration tool 27.SELECTED DRAWING: Figure 8

Description

本発明は、従来の一次元の線形振動軌跡に変わり振動工具を円形または楕円振動軌跡で駆動して、金属、セラミック材料に2次元の振動応力を印加して超音波溶接および切削等の超音波加工をおこなう超音波複合振動装置の振動検出器に関する。   In the present invention, the vibration tool is driven by a circular or elliptical vibration locus instead of the conventional one-dimensional linear vibration locus, and two-dimensional vibration stress is applied to a metal or ceramic material to ultrasonic waves such as ultrasonic welding and cutting. The present invention relates to a vibration detector of an ultrasonic composite vibration device that performs processing.

コンデンサ、リチウムイオンバッテリー等の容器、複雑な半導体基盤等の電極、端子等の溶接または加工部が深い位置にありまた周辺が狭く限定された部分の溶接または加工には、従来細長い電極を用いた電気抵抗溶接またはレーザー溶接法を用いている。   Capacitors, containers such as lithium-ion batteries, electrodes of complicated semiconductor substrates, terminals or the like are welded or processed at deep locations and the periphery is narrow and limited. Electric resistance welding or laser welding is used.

然しながら、従来技術では、十分な溶接・加工を行うと本質的に放電、溶融により溶接・加工部から金属微粒子が放出され散乱し、コンデンサ、リチウムイオンバッテリー内部および電極、基盤の周辺部分等に付着、混入し性能劣化、不良品を生じる原因となっていた。またリチウムイオンバッテリーでは内部抵抗を減少させるために複数の電極の同時溶接が要求され、溶接の困難度が増している。
また実際の量産工程で金属微粒子による性能劣化が無視できる様な条件で溶接加工を行わざるを得ないが、このような不十分な条件では安定な溶接・加工が困難で多数の不良品が発生する状況にあり、また製品の使用中にトラブルが発生する問題も生じており、この問題の解決が強く要望されている。
However, in the prior art, if sufficient welding and processing are performed, metal particles are essentially discharged and scattered from the welded and processed parts due to discharge and melting, and adhere to capacitors, lithium ion battery interiors, electrodes, and peripheral parts of the substrate. , Mixed, causing performance degradation and defective products. In addition, lithium ion batteries require simultaneous welding of a plurality of electrodes in order to reduce internal resistance, increasing the difficulty of welding.
In addition, welding must be performed under conditions where performance degradation due to metal particles can be ignored in the actual mass production process, but under these insufficient conditions, stable welding / processing is difficult and many defective products are generated. There is also a problem that troubles occur during use of the product, and there is a strong demand for a solution to this problem.

また放電、溶融による溶接・加工部から金属微粒子が放出散乱する可能性がない超音波溶接を用いることが可能になれば、これらも問題は解決できるが、従来の直線振動を用いる超音波溶接では必要振動振幅が大であり、また必要静加圧力も大であるので、数波長以上の細長い曲げ振動工具の振動印加中のたわみ、溶接加工部の溶接時のずれ、溶接加工部の破壊および曲げ振動工具の疲労破壊により実現が困難で実用化は不可能であった。   In addition, if it becomes possible to use ultrasonic welding where there is no possibility of metal particles being emitted and scattered from the welded / processed part by electric discharge or melting, these problems can be solved, but in conventional ultrasonic welding using linear vibration, Since the required vibration amplitude is large and the required static pressure is also large, deflection during application of vibrations of elongated bending vibration tools of several wavelengths or more, displacement during welding of welded parts, fracture and bending of welded parts It was difficult to realize due to fatigue failure of vibration tools, and practical use was impossible.

本発明は、先端部が円形または楕円軌跡で振動する超音波複合曲げ振動溶接工具を用いて溶接加工部に2次元の振動応力を印加して溶接加工を行う超音波複合振動溶接加工装置を用いて、複合振動の適用により溶接に必要な振動振幅および静加圧力が直線振動を用いる場合より小になり溶接部の損傷が激減する顕著な効果を生かし、複合曲げ振動工具に設置した複合振動検出器出力を用いた振動帰還発振装置および溶接の前後と溶接中の静加圧力制御および振動制御装置を用いて狭く深い位置での複数の溶接試料の安定な溶接加工を実現しようとすることにある。リチウムイオンバッテリーの例では、直径2.0mm〜3.0mm程度で長さ75〜100mm以上の曲げ振動工具が要求されている。   The present invention uses an ultrasonic composite vibration welding apparatus that performs welding by applying a two-dimensional vibration stress to a welded part using an ultrasonic composite bending vibration welding tool whose tip part vibrates in a circular or elliptical locus. The combined vibration detection installed in the composite bending vibration tool takes advantage of the remarkable effect that the vibration amplitude and static pressure required for welding become smaller than when using linear vibration and the damage of the weld is drastically reduced. The objective is to achieve stable welding of multiple weld specimens at narrow and deep positions by using a vibration feedback oscillation device using the output of the vessel and static pressure control and vibration control devices before and after welding and during welding. . In the example of the lithium ion battery, a bending vibration tool having a diameter of about 2.0 mm to 3.0 mm and a length of 75 to 100 mm or more is required.

またフライス加工等の振動切削にも切削工具に複合曲げ振動を適用することにより加工面に垂直な直線振動を用いる場合より切削方向への超音波振動のいんかにより更に切削効率の向上、切削状態の改善および切削加工用工具の損傷の低減が期待できる。   In addition, by applying composite bending vibration to the cutting tool for vibration cutting such as milling, the cutting efficiency can be further improved by using ultrasonic vibration in the cutting direction compared to the case of using linear vibration perpendicular to the machining surface. Improvement and reduction of damage to cutting tools can be expected.

本発明は、超音波振動変換器部および振動の伝送および振動速度変成のための超音波ホーン部および斜めスリットによる縦−ねじり振動変換を用いた複合振動変換器および駆動用の縦振動源等からなる超音波複合振動装置の円形または楕円軌跡で振動する先端部に細く長い超音波複合曲げ振動溶接工具を設置して先端部の2次元振動(複合振動)により狭く深い部分の安定な溶接加工を実現するものである。複合振動を用いることにより必要振動振幅は数分の1から10分の1程度に減少し、必要静加圧力も数分の1に減少するため狭く深い場所の溶接が可能になる。また更に先端部の円形または楕円のほぼ対称な複合振動を用いることにより工具全体の変形が小になり、溶接加工部のずれ、振動による疲労破壊が激減し試料の損傷が少ない安定な溶接が実現可能となる。また複合曲げ振動のみを検出する複合曲げ振動検出器を複合曲げ振動工具に設置し出力電圧を加工中に観測または駆動装置の制御に適用することにより安定な溶接加工が実現できる。   The present invention includes an ultrasonic vibration converter section, an ultrasonic horn section for vibration transmission and vibration speed transformation, a composite vibration converter using longitudinal-torsional vibration conversion by an oblique slit, and a longitudinal vibration source for driving. A thin and long ultrasonic compound bending vibration welding tool is installed at the tip of the ultrasonic compound vibration device to be oscillated in a circular or elliptical locus, and stable welding of narrow and deep parts is performed by two-dimensional vibration (composite vibration) of the tip. It is realized. By using the composite vibration, the necessary vibration amplitude is reduced from a fraction to a tenth, and the required static pressure is also reduced to a fraction. Therefore, welding in a narrow and deep place becomes possible. In addition, the use of a composite vibration that is almost symmetrical at the tip of the circle or ellipse reduces the deformation of the entire tool, dramatically reduces fatigue damage due to misalignment of the welded part and vibration, and realizes stable welding with little sample damage. It becomes possible. Moreover, stable welding can be realized by installing a compound bending vibration detector for detecting only compound bending vibration in the compound bending vibration tool and applying the output voltage to observation or control of the driving device during machining.

細長い超音波複合曲げ振動溶接工具を超音波複合振動装置の変換器に直接設置すると工具の交換により損傷するため、接合ねじにより設置と交換が容易なホルダーに振動溶接工具を焼き填めまたはろう接等で接合し一体化した振動工具を用いる必要がある。非共振型のホルダーではホルダーの付加質量により20から27kHzの振動装置では全体の共振周波数が数100Hz程度低下し、そのままでは駆動不可能であり駆動装置での力率の再調整が不可欠である。また短かく直径の小なホルダーでは接合ねじを用いた設置が困難であり、また長い振動工具の垂直な設置が困難である。   If a long and thin ultrasonic compound bending vibration welding tool is installed directly on the transducer of an ultrasonic compound vibration device, it will be damaged by tool replacement. It is necessary to use a vibration tool that is joined and integrated with each other. In the case of a non-resonant type holder, the total resonance frequency of the vibration device of 20 to 27 kHz is reduced by several hundred Hz due to the additional mass of the holder, and it is impossible to drive as it is, and readjustment of the power factor in the drive device is indispensable. Moreover, it is difficult to install using a joining screw with a short and small-diameter holder, and it is difficult to install a long vibration tool vertically.

[請求項1]の発明は、直径の大な複合振動装置とほぼ同一周波数の共振型ホルダーに数波長の細長い超音波複合曲げ振動溶接工具を焼き填め等で接合し一体化することにより、設置および取り外し時の振動装置の共振周波数変化を殆ど無くすことにより力率の再調整を不要になる。ねじ接合に十分な直径および長さの共振型ホルダーの使用は脱着および接合面の平面加工仕上げを容易にするものである。またホルダーの形状を円錐形等にする事で振動速度が増加し、また直径の小な振動工具を設置することによる振動速度の増加が期待できる。複合曲げ振動溶接工具の接合部および設置部は振動ループであるため振動応力が最小となり、接合部および設置部の安定性に優れている。   The invention of [Claim 1] is installed by joining and integrating a multi-wavelength long ultrasonic composite bending vibration welding tool to a resonance type holder having substantially the same frequency as a composite vibration device having a large diameter by shrinking or the like. Further, it is unnecessary to readjust the power factor by eliminating the change in the resonance frequency of the vibration device at the time of removal. The use of a resonating holder of sufficient diameter and length for screw joining facilitates removal and flattening of the joining surface. Moreover, the vibration speed can be increased by making the shape of the holder conical or the like, and the vibration speed can be increased by installing a vibration tool having a small diameter. Since the joint portion and the installation portion of the composite bending vibration welding tool are vibration loops, the vibration stress is minimized and the stability of the joint portion and the installation portion is excellent.

溶接加工部の変形等を比較的高い静加圧力を印加して押さえ、安定な状態で最適な溶接静加圧力を印加して複合振動を印加し溶接加工を行い、また工具先端に試料が付着する場合には軽静加圧力で振動を印加する静圧力制御装置を用いることにより更に安定な溶接加工の実現が可能である。特に複数の溶接試料またはリチウムイオンバッテリー等の多数の極板、特にバリのある複数の端子または表面積を増加させるために化成処理を行った極板では表面が平滑でなく重ね合わせた状態では空気層等を含み極板が直接接触した状態で溶接を行うためには最初に高い静加圧力の印加および超音波溶接が行われない程度の振動印加により多数の溶接試料が溶接部で直接接触し安定な状態で超音波複合振動溶接に最適な静加圧力で溶接を行う事が必要である。これにより複合振動の方向性のない駆動による極板の過剰振動による破れ等の損傷を防止し安定な溶接を行うことが可能となる。この静加圧力、振動振幅の制御は、溶接に必要な静加圧力が小である複合振動超音波溶接では特に必要になる。   Applying a relatively high static pressure to suppress deformation of the welded part, etc., applying an optimum welding static pressure in a stable state, applying composite vibration to perform welding, and attaching a sample to the tool tip In this case, a more stable welding process can be realized by using a static pressure control device that applies vibration with a light static pressure. In particular, a large number of electrode plates such as a plurality of welded samples or lithium ion batteries, especially a plurality of terminals having burrs or an electrode plate that has been subjected to a chemical conversion treatment to increase the surface area, the air layer is in a state where the surfaces are not smooth and overlapped. In order to perform welding while the electrode plates are in direct contact with each other, a high static pressure is applied and vibration is applied to the extent that ultrasonic welding is not performed. Therefore, it is necessary to perform welding with the optimum static pressure for ultrasonic composite vibration welding. As a result, it is possible to prevent damage such as breakage due to excessive vibration of the electrode plate due to driving without directivity of the composite vibration and to perform stable welding. This control of the static pressure and vibration amplitude is particularly necessary in complex vibration ultrasonic welding where the static pressure required for welding is small.

また溶接加工時には超音波振動による試料の短時間での加工変形により静加圧力が減少するが、溶接加工時内での印加静加圧力をほぼ一定に保持するために金属スプリング等を用いた応答速度の速いアクチュエーターを用いることにより、より安定な溶接加工を実現することが可能である。複合振動では2次元の振動応力の印加により試料の変形が急速に行われるため静加圧力印加が追従できず低下すると溶接チップの滑りが生じ溶接チップの圧痕が大になり試料が損傷するため静圧力を一定に保持する応答速度の速いアクチュエーターが特に必要である。アクチュエーターは上部の静加圧力印加装置11に組み込んでも、溶接試料下部に別個に静加圧力測定用ストレインゲージと共に設置しても良い。   Also, during welding, the static pressure decreases due to the deformation of the sample in a short time due to ultrasonic vibration, but a response using a metal spring or the like to keep the applied static pressure almost constant within the welding process. By using a high-speed actuator, it is possible to realize a more stable welding process. In composite vibration, the deformation of the sample is rapidly performed by applying a two-dimensional vibration stress, so that if the applied static pressure cannot follow and falls, the welding tip slips and the weld tip indentation grows and the sample is damaged. There is a particular need for an actuator with a fast response speed that keeps the pressure constant. The actuator may be incorporated in the upper static pressure applying device 11 or may be separately installed with a static pressure measuring strain gauge in the lower part of the welded specimen.

また超音波溶接時に溶接試料5が振動工具チップ4または作業台5に凝着する場合があるが、溶接後に低い静加圧力で振動を短時間印加し剥離させる事が出来る。   In addition, the welding sample 5 may adhere to the vibration tool tip 4 or the work table 5 during ultrasonic welding, but after welding, vibration can be applied for a short time with a low static pressure to be peeled off.

上記3項の要求を満たす静加圧力を段階ごとに変化させ溶接時に静加圧力一定保持用のアクチュエーターを備えた静加圧力制御装置11を用いることにより安定な溶接を実現できる。   Stable welding can be realized by changing the static pressure satisfying the requirement of the above item 3 for each stage and using the static pressure control device 11 provided with an actuator for holding the static pressure constant during welding.

超音波振動装置の駆動には、共振周波数自動追尾型の帰還発振器を用い、更に溶接加工条件を一定にするために振動速度を一定に保持するための制御装置を用いるが、振動系の円形軌跡振動速度を直接検出する複合振動検出器13,13’を超音波振動工具部分に設置し帰還制御することにより振動制御特性が向上し、より安定な加工を実現できる。   The ultrasonic vibration device is driven by using a resonance frequency automatic tracking type feedback oscillator and a control device for keeping the vibration speed constant in order to keep the welding process condition constant. By installing the composite vibration detectors 13 and 13 'that directly detect the vibration speed in the ultrasonic vibration tool portion and performing feedback control, vibration control characteristics are improved, and more stable machining can be realized.

超音波振動を直接検出する振動速度検出器としては、縦振動検出用に環状電磁型の振動速度検出器14(註1)があるが、さらに振動工具の軸に直交して2次元で振動する円形または楕円軌跡の複合振動のみを検出する環状永久磁石および検出コイル等を用いた複合曲げ振動検出器13,13’を構成する事ができる。この線形の曲げ振動を検出せず複合振動のみを検出する電磁型の複合曲げ振動検出器を超音波振動工具部分に設置することにより複合振動条件の検出・記録さらに共振周波数自動追尾帰還発振器15の入力に用いることによってより安定な振動加工条件を実現できる。   As a vibration speed detector that directly detects ultrasonic vibration, there is an annular electromagnetic vibration speed detector 14 (註 1) for longitudinal vibration detection, but it vibrates in two dimensions perpendicular to the axis of the vibration tool. The composite bending vibration detectors 13 and 13 ′ using an annular permanent magnet and a detection coil for detecting only a composite vibration of a circular or elliptical locus can be configured. By installing an electromagnetic type composite bending vibration detector that detects only the composite vibration without detecting the linear bending vibration in the ultrasonic vibration tool portion, the detection and recording of the composite vibration condition and the resonance frequency automatic tracking feedback oscillator 15 are performed. By using it for input, more stable vibration machining conditions can be realized.

以下、本発明の実施例を図面に基づいて説明する。本実施例の複合振動装置の全体の構成を図1に示す。図1は曲げ振動半波長の共振型ホルダー1”にノード数5の細長い複合曲げ振動棒1’を接合した超音波複合曲げ振動工具1を、縦振動駆動源で一軸駆動する斜めスリットを用いた複合振動変換器7の円形または楕円軌跡で振動する先端部に締結ねじ2により設置している。重ね合わせた溶接試料5は静圧力印加制御装置11で大静加圧力および溶接が開始されない小振動振幅で予め安定な状態まで加圧・振動成形し、超音波複合振動溶接チップ4により最適な静加圧力を印加した状態で溶接に必要な振動振幅の複合振動を印加して溶接を行う。斜めスリット複合振動変換器7は段付きホーン8’およびボルト締めランジュバン形縦振動子8”からなる縦振動源8で駆動する。複合振動装置は共振型ホルダーまたは複合曲げ振動棒に非接触で設置した円形軌跡の振動速度のみを検出する複合振動検出器13,13’、または縦振動検出器14の出力電圧を用いた超音波帰還発振器で駆動する。駆動制御には溶接負荷により近い複合振動工具の振動速度に比例した検出器出力電圧を用いることが望ましい。また複合振動による溶接加工前後の溶接試料への印加静加圧力は静加圧力印加制御装置11を用いて最適に制御する。溶接時の静加圧力は複合振動による2次元振動応力により振動印加による溶接試料の変形が急速であり印加静圧力が減少し溶接性能が低下するので、金属ばねを用いた応答速度が速い溶接時静加圧力一定保持用のアクチュエーター11,11’が特に必要である。また溶接試料を安定させるために溶接前に大静加圧力および小振動振幅を用いて試料溶接面が直接接触し安定した状態にする必要がある。溶接後に溶接試料が溶接チップまたは作業台に凝着した場合には小静加圧力の下で振動を印加し剥離させる。   Embodiments of the present invention will be described below with reference to the drawings. The overall configuration of the composite vibration device of this embodiment is shown in FIG. FIG. 1 shows an ultrasonic composite bending vibration tool 1 in which a long bending bending vibration rod 1 ′ having five nodes is joined to a bending vibration half-wave resonance holder 1 ″ using an oblique slit that is uniaxially driven by a longitudinal vibration driving source. A fastening screw 2 is installed at the tip of the composite vibration transducer 7 that vibrates in a circular or elliptical locus, and the welded sample 5 that has been superposed is subjected to a large static pressure and a small vibration that does not start welding. Welding is performed by applying pressure and vibration to a stable state with amplitude in advance, and applying composite vibration with vibration amplitude necessary for welding while applying an optimum static pressure by the ultrasonic composite vibration welding tip 4. The slit composite vibration converter 7 is driven by a longitudinal vibration source 8 comprising a stepped horn 8 'and a bolted Langevin type longitudinal vibrator 8 ". The composite vibration device is an ultrasonic wave using the output voltage of the composite vibration detectors 13 and 13 ′ or the longitudinal vibration detector 14 that detects only the vibration velocity of a circular locus installed in a non-contact manner on a resonance type holder or a composite bending vibration bar. It is driven by a feedback oscillator. It is desirable to use a detector output voltage proportional to the vibration speed of the composite vibration tool closer to the welding load for drive control. The applied static pressure applied to the welded specimen before and after the welding process by the composite vibration is optimally controlled using the static applied pressure application control device 11. Static welding pressure during welding is a two-dimensional vibration stress caused by compound vibration, and the deformation of the weld specimen due to vibration application is rapid and the applied static pressure decreases, resulting in poor welding performance. The actuators 11 and 11 'for holding the static pressure constant are particularly necessary. Further, in order to stabilize the welded specimen, it is necessary to make the specimen weld surface directly contact and stabilize using a large static pressure and small vibration amplitude before welding. When the welded sample adheres to the welding tip or workbench after welding, vibration is applied under a small static pressure to separate it.

図2は共振型円錐形ホルダーに複合曲げ振動棒をろう接または焼き填め等により接合した細長い複合振動加工工具1を円形から楕円軌跡で振動する複合振動変換器7にねじ接合2により設置する状態を示しており、ホルダー直径が大なため溶接工具を垂直に設置してねじ接合により容易に交換可能である。またねじ接合で設置するためホルダーおよび設置面の平面仕上げが容易である。   FIG. 2 shows a state in which a long and slender composite vibration processing tool 1 in which a composite bending vibration rod is joined to a resonant conical holder by brazing or shrinking is installed by a screw joint 2 on a composite vibration transducer 7 that vibrates in a circular to elliptical locus. Since the holder diameter is large, the welding tool can be installed vertically and can be easily replaced by screw joining. In addition, it is easy to flatten the holder and installation surface because it is installed by screw joint.

図3は曲げ振動半波長の金型用鋼材SKD11製の基部直径15mm、先端部直径12mmの円錐形ホルダーに焼き填めで一体化した直径3.0mm、長さ79mmの超硬合金製の複合曲げ振動工具に沿った19.5kHzでの曲げ振動分布をレーザードップラー振動計を用いて実際に測定した結果である。先端部の振動軌跡は伝送特性が同一のレーザードップラー振動計2台を用いて測定している。測定時の振動振幅は温度上昇による共振周波数の変化を避けるため比較的小振動振幅で駆動している。縦振動方向および直角方向の振動分布はほぼ同一である。ホルダー長さは半波長よりわずかに短いが、複合曲げ振動棒長さを調整することにより駆動用複合振動変換器と同一の周波数で共振させることが出来る。また複合曲げ振動棒側に振動ループが存在し、振動振幅が増加していることがわかる。これにより共振型ホルダーは半波長および半波長の整数倍前後の長さでよく、曲げ振動棒長さの調整のみで複合振動工具全体を希望モードで共振させることが可能である。   FIG. 3 shows a composite bending made of cemented carbide with a diameter of 3.0 mm and a length of 79 mm, which is integrated by shrink fitting into a conical holder having a base diameter of 15 mm and a tip diameter of 12 mm made of mold steel SKD11 having a bending vibration half wavelength. It is the result of actually measuring the bending vibration distribution at 19.5 kHz along the vibration tool using a laser Doppler vibrometer. The vibration trajectory at the tip is measured using two laser Doppler vibrometers with the same transmission characteristics. The vibration amplitude at the time of measurement is driven with a relatively small vibration amplitude in order to avoid a change in resonance frequency due to a temperature rise. The vibration distribution in the longitudinal vibration direction and the perpendicular direction are almost the same. Although the holder length is slightly shorter than a half wavelength, it is possible to resonate at the same frequency as the driving composite vibration transducer by adjusting the composite bending vibration rod length. It can also be seen that a vibration loop exists on the side of the composite bending vibration bar, and the vibration amplitude increases. As a result, the resonant holder may have a half wavelength and a length that is approximately an integral multiple of the half wavelength, and the entire composite vibrating tool can be resonated in the desired mode only by adjusting the bending vibration rod length.

曲げ振動工具の材質は剛性が大で溶接時のたわみ変形が小で溶接部のずれが小であり、また音速が大で振動工具の必要長さに対してノード数が少ない方が長さ調整が比較的容易である材料が必要である。また超音波溶接時の先端チップ部の損耗が少ない必要がある。この目的では超硬合金、タングステン等が必要である。また密度が13.9,18.6前後で鉄鋼材等に比べて大なため振動棒の振動エネルギーが大になる。また振動工具の駆動系から見込んだ等価質量も大になるため振動工具共振周波数での振動帰還発振制御に有利となる。
ここで使用した超硬合金棒の音速の測定値は約6,409m/sである。
The bending vibration tool material has high rigidity, small deflection deformation during welding, small displacement of the welded part, and large sound speed and adjustment of the length with fewer nodes relative to the required length of the vibration tool. A material that is relatively easy is needed. Further, it is necessary to reduce the wear of the tip part at the time of ultrasonic welding. For this purpose, cemented carbide, tungsten or the like is required. Moreover, since the density is around 13.9 and 18.6, which is larger than that of steel materials, the vibration energy of the vibrating rod becomes large. Further, since the equivalent mass expected from the drive system of the vibration tool becomes large, it is advantageous for vibration feedback oscillation control at the vibration tool resonance frequency.
The measured sound speed of the cemented carbide rod used here is about 6,409 m / s.

図4は共振型ホルダーに複合曲げ振動棒を接合した複合曲げ振動工具を先端部に4カ所の設置部分を有する斜めスリット複合振動変換器7(特開2005−288351)に設置した例である。複合振動変換器は縦振動源で一軸構成で駆動し、斜めスリット部で縦−ねじり振動変換を行い、中央付近の凸部で変換器の縦振動およびねじり振動共振周波数が一致するように設計されている。縦振動のノード部が凸部中央付近に存在するように設計されており、この部分と駆動用縦振動系のノード部のフランジで加圧静圧力を受けている。   FIG. 4 shows an example in which a composite bending vibration tool in which a composite bending vibration rod is joined to a resonance type holder is installed in an oblique slit composite vibration converter 7 (Japanese Patent Laid-Open No. 2005-288351) having four installation portions at the tip. The composite vibration transducer is driven by a longitudinal vibration source in a uniaxial configuration, performs longitudinal-torsional vibration conversion at an oblique slit, and is designed so that the longitudinal vibration and torsional vibration resonance frequency of the transducer match at the convex portion near the center. ing. The node part of the longitudinal vibration is designed to be present near the center of the convex part, and a pressurized static pressure is applied to this part and the flange of the node part of the longitudinal vibration system for driving.

図5は音速の異なる金属円環対を用いた縦ー曲げ振動変換器18を介して縦振動および曲げ振動共振周波数を一致させた複合振動変換対19により駆動する複合振動変換器を用いた複合曲げ振動加工装置の概略図である。変換器先端部で垂直成分が殆ど無い平面内で円形から楕円軌跡で振動する。金属円環対19は音速の異なる金属円環19’、19”を斜めに切断して組み合わせてあり縦振動8源で駆動することにより曲げ振動を励振する。特開2008−212916   FIG. 5 shows a composite using a composite vibration converter driven by a composite vibration conversion pair 19 in which the longitudinal vibration and bending vibration resonance frequencies are matched through a longitudinal-bending vibration converter 18 using metal ring pairs having different sound speeds. It is the schematic of a bending vibration processing apparatus. The transducer tip vibrates from a circular shape to an elliptical locus in a plane having almost no vertical component. The metal ring pair 19 is formed by obliquely cutting and combining metal rings 19 'and 19 "having different sound speeds, and excites bending vibration by being driven by eight longitudinal vibration sources.

図6は金属円環対19を用いた複合振動変換器18の横方向に一様な円形軌跡で振動する先端部に複数の複合曲げ振動工具1を設置した例である。   FIG. 6 shows an example in which a plurality of composite bending vibration tools 1 are installed at the tip of the composite vibration converter 18 using the metal ring pair 19 that vibrates with a uniform circular trajectory in the lateral direction.

図7は静加圧力制御装置11の、超音波溶接の溶接前、溶接時、溶接後の静加圧力、溶接チップ振動振幅、溶接試料高さの時間的変化を示している。
溶接前の静加圧力印加と溶接時静加圧力印加の間は溶接チップと溶接試料を動かさなければ静加圧力が不連続でも問題は無い。
FIG. 7 shows the temporal change of the static pressure, the welding tip vibration amplitude, and the weld specimen height before, during, and after the ultrasonic welding of the static pressure control device 11.
There is no problem even if the static pressure is discontinuous unless the welding tip and the weld specimen are moved between the static pressure application before welding and the static pressure application during welding.

図8は円形または楕円振動速度のみを検出する電磁型の複合曲げ振動検出器13の構成を示している。振動系に非接触で直接設置が可能な縦振動の電磁型振動検出器14は知られているが(註1)、複合振動のみを検出する非接触で直接設置が可能な検出器は存在していない。   FIG. 8 shows a configuration of an electromagnetic composite bending vibration detector 13 that detects only a circular or elliptical vibration velocity. Although a longitudinal vibration type electromagnetic vibration detector 14 that can be directly installed in a vibration system in a non-contact manner is known (非 1), there is a detector that can be directly installed in a non-contact manner that detects only complex vibrations. Not.

図7、24は振動検出の原理図で振動体の円形軌跡で振動する速度ベクトルVとこれに直交する円環状の磁石による振動体表面に垂直な磁界Φ、およびこれらに直交した電流Iを示している。これにより振動体表面に垂直な磁界に対してレンツの法則で決まる方向の渦電流が発生する。   7 and 24 are vibration detection principle diagrams showing a velocity vector V oscillating along a circular locus of the oscillating body, a magnetic field Φ perpendicular to the surface of the oscillating body by an annular magnet orthogonal thereto, and a current I orthogonal thereto. ing. As a result, an eddy current is generated in a direction determined by Lenz's law with respect to a magnetic field perpendicular to the surface of the vibrating body.

図7、25は複合振動検出器の構成である。複合曲げ振動系に非接触で厚さ方向にNSの極性を有する環状磁石29を設置して、両側に検出用環状コイル2個31を配置し検出器を構成している。環状磁石の両側では磁束の向き29’が反対なため磁束と振動速度28で発生する渦電流30の向きは逆極性になる。また通常の直線振動軌跡の曲げ振動では振動方向の両側で発生する渦電流の向きが逆極性になるため相殺され振動は検出されない。   7 and 25 show the configuration of the composite vibration detector. An annular magnet 29 having a non-contact NS polarity in the thickness direction is installed in the composite bending vibration system, and two detection annular coils 31 are arranged on both sides to constitute a detector. Since the direction 29 'of the magnetic flux is opposite on both sides of the annular magnet, the direction of the magnetic flux and the eddy current 30 generated at the vibration speed 28 is opposite in polarity. Also, in the normal bending vibration of the linear vibration locus, the direction of the eddy current generated on both sides of the vibration direction has a reverse polarity, so that it is canceled and no vibration is detected.

図7、26は検出器の接続図および並列共振用コンデンサの等価回路を示す。両側の同極性の渦電流検出用環状コイル31に誘起する電圧34E1、E2は逆極性となるので検出用コイルは逆極性に接続する。接続した両検出コイルに並列に振動系の共振周波数と同一になる値の共振用コンデンサ33を出力用ケーブルの静電容量を考慮して挿入することにより出力電圧35が増加し、かつ周波数選択度を有する検出器が得られる。   7 and 26 show a connection diagram of the detector and an equivalent circuit of the parallel resonance capacitor. Since the voltages 34E1 and E2 induced in the eddy current detection annular coils 31 of the same polarity on both sides have opposite polarities, the detection coils are connected to opposite polarities. By inserting a resonance capacitor 33 having the same value as the resonance frequency of the vibration system in parallel with both connected detection coils in consideration of the capacitance of the output cable, the output voltage 35 is increased and the frequency selectivity is increased. Is obtained.

前項の2個の検出コイル31は形状が同一で、インダクタンスもほぼ同一のコイルを逆極性に接続することにより外乱を相殺して安定な出力を得ることが出来る。また検出器全体は静電シールド36し、独立気泡スポンジ等で振動を絶縁し振動体に設置している。振動装置への振動検出器設置の影響はきわめて小で無視できる。電磁型の振動速度検出器の直線性は良好である。   The two detection coils 31 in the previous section have the same shape and the same inductance and are connected to opposite polarities, so that disturbance can be canceled and a stable output can be obtained. Further, the entire detector is an electrostatic shield 36, and the vibration is insulated by a closed cell sponge or the like and installed on the vibrating body. The influence of the vibration detector installation on the vibration device is very small and can be ignored. The linearity of the electromagnetic vibration speed detector is good.

上記の各項目の機能を総合することにより狭く深い場所の超音波溶接が可能な効率的で安定な溶接部の強度が大で溶接試料の損傷が少ない超音波複合振動加工装置を実現できる。   By combining the functions of the above items, it is possible to realize an ultrasonic composite vibration processing apparatus that can perform ultrasonic welding in a narrow and deep place with high strength of a stable welded portion and less damage to a welded sample.

この超音波複合振動装置は超音波溶接のみならず切削加工、マイクロフライス加工等にも有効に適用できる。   This ultrasonic composite vibration device can be effectively applied not only to ultrasonic welding but also to cutting, micro milling, and the like.

図1は本発明の共振型ホルダーに複合曲げ振動棒を接合した細長い超音波複合曲げ振動工具1、溶接加工試料5、振動工具の曲げ振動分布の模式図3、斜めスリットを用いた複合振動変換器7、縦振動駆動装置8、複合振動検出器13,13’および縦振動検出器出力電圧を用いた超音波帰還発振器15のブロック図および複合振動による溶接加工前後の静加圧力印加制御装置11を用いた超音波複合振動加工装置の構成図である。FIG. 1 is an elongate ultrasonic composite bending vibration tool 1 in which a composite bending vibration rod is joined to a resonance type holder of the present invention, a welded specimen 5, a schematic diagram of a bending vibration distribution of the vibration tool, and a composite vibration conversion using an oblique slit. Block diagram of the ultrasonic feedback oscillator 15 using the generator 7, the longitudinal vibration drive device 8, the composite vibration detectors 13 and 13 'and the longitudinal vibration detector output voltage, and the static pressure application controller 11 before and after welding by the composite vibration It is a block diagram of the ultrasonic complex vibration processing apparatus using the. 図2は共振型ホルダー1”に複合曲げ振動棒1’をろう接または焼き填め等により接合した細長い複合振動加工工具1を円形から楕円軌跡で振動する複合振動変換器7にねじ接合2により設置する状態を示しており容易に交換可能である。FIG. 2 shows that a long and slender composite vibration processing tool 1 in which a composite bending vibration rod 1 ′ is joined to a resonance type holder 1 ″ by brazing or shrinking or the like is installed by screw joint 2 on a composite vibration transducer 7 that vibrates from a circular shape to an elliptical locus. The state is shown and can be easily replaced. 図3は曲げ振動半波長の金型用鋼材SKD11製の基部直径15mm、先端部直径12mmの円錐形ホルダーに焼き填めで設置した直径3.0mm、長さ79mmの超硬合金製の複合曲げ振動工具に沿った19.5kHzでの曲げ振動分布、溶接チップ部の振動軌跡をレーザードップラー振動計を用いて実際に測定した結果である。FIG. 3 shows a composite bending vibration made of a cemented carbide alloy having a diameter of 3.0 mm and a length of 79 mm, which is installed by shrink fitting on a conical holder having a base diameter of 15 mm and a tip diameter of 12 mm made of mold steel SKD11 having a half-wave bending vibration. It is the result of actually measuring the bending vibration distribution at 19.5 kHz along the tool and the vibration trajectory of the welding tip using a laser Doppler vibrometer. 図4は共振型ホルダーを用いた複合曲げ振動工具1を先端部に設置位置が4カ所ある斜めスリット複合振動変換器7に設置した複合曲げ振動加工用振動系の構成を示す。FIG. 4 shows the configuration of a vibration system for composite bending vibration machining in which the composite bending vibration tool 1 using a resonance type holder is installed in an oblique slit composite vibration converter 7 having four installation positions at the tip. 図5は共振型ホルダーを用いた複合曲げ振動工具1を縦および曲げ振動を複合させた金属円環対複合振動変換器18の先端部に設置した複合振動加工用振動系の構成を示す。FIG. 5 shows the structure of a vibration system for composite vibration processing in which the composite bending vibration tool 1 using a resonance type holder is installed at the tip of a metal ring pair composite vibration converter 18 in which longitudinal and bending vibrations are combined. 図6は複数の共振型ホルダーを用いた複合曲げ振動工具1を縦および曲げ振動を複合させた幅の広い金属円環対複合振動変換器18先端部に設置した複合振動加工用振動系の構成を示す。FIG. 6 shows the configuration of a vibration system for complex vibration machining in which a composite bending vibration tool 1 using a plurality of resonance type holders is installed at the tip of a wide metal ring pair composite vibration transducer 18 in which longitudinal and bending vibrations are combined. Indicates. 図7は静加圧力制御装置11の、超音波溶接の溶接前、溶接時、溶接後の静加圧力、複合振動振幅、溶接チップ振動振幅、溶接試料高さの時間的変化を示している。FIG. 7 shows temporal changes of the static pressure control apparatus 11 before, during, and after ultrasonic welding, static pressure, composite vibration amplitude, welding tip vibration amplitude, and weld specimen height. 図8は円形または楕円振動速度のみを検出する複合曲げ振動検出器で振動検出の原理図24、曲げ振動系に非接触で設置した環状磁石、検出用環状コイル2個の配置図25および検出器の接続図および並列共振用コンデンサの等価回路26を示す。FIG. 8 shows a principle of vibration detection in a compound bending vibration detector that detects only a circular or elliptical vibration velocity. FIG. 8 shows an arrangement of a ring magnet and two detection annular coils arranged in a non-contact manner in a bending vibration system. The connection diagram of FIG. 2 and the equivalent circuit 26 of the capacitor for parallel resonance are shown.

1 共振型ホルダーを用いた複合曲げ振動工具
1’長さが数波長の細長い複合曲げ振動棒
1” 共振型の振動棒のホルダー(半波長)
2 複合振動工具設置用締結ねじ
3 複合曲げ振動工具に沿った曲げ振動分布
4 複合曲げ振動溶接チップ(振動工具)
5 溶接試料(加工試料)
6 金属ブロック作業台
7 斜めスリットを用いた複合振動変換器
7’ 斜めスリット部
7” 縦振動ノード部を有する周波数調整用凸部
8 複合振動変換器駆動用の縦振動源
8’ ノード部固定用フランジを有する段付きホーン
8” ボルト締めランジュバン形PZT縦振動子(BLT)
9 縦振動分布
9’ ねじり振動分布
10 ノード部保持器
11 静加圧力制御装置
11’ 溶接時静加圧力一定保持用下部アクチュエーター
12 溶接用架台下部
13 複合曲げ振動検出器(振動棒に設置)
13’ 複合曲げ振動検出器(ホルダー部に設置)
14 電磁型環状縦振動検出器
15 超音波振動帰還発振器(入力切り替え)
16 振動子駆動用入力
17 複合振動工具設置用締結ねじ穴
18 縦ー曲げ複合振動変換器
19 音速の異なる金属円環対振動変換器
19’斜め切断した金属円環A
19”斜め切断した金属円環B
20 駆動用縦振動源
21 複数の複合曲げ振動工具を設置した複合縦ー曲げ振動変換器
22 静圧力制御装置の印加静圧力の時間変化
22’溶接チップ複合振動振幅
22”溶接試料高さ変化
23 溶接試料の剥離過程
24 複合振動検出の原理図
25 複合振動検出器の構成
26 複合振動検出器の等価回路
27 複合曲げ振動丸棒
28 円形軌跡振動速度
29 環状磁石
29’複合曲げ振動丸棒表面に垂直な磁束Φ
30 複合曲げ振動丸棒表面の渦電流
31 環状検出コイルL1,L2
32 並列共振コンデンサ
33 静電シールド
34 渦電流の検出電圧 E1,E2
35 複合曲げ振動検出器出力電圧 E=E1+E2

1 Complex bending vibration tool 1 'using a resonance type holder 1' Long and complex bending vibration rod 1 "whose length is several wavelengths Resonance type vibration rod holder (half wavelength)
2 Fastening screw for composite vibration tool installation 3 Bending vibration distribution along composite bending vibration tool 4 Composite bending vibration welding tip (vibration tool)
5 Welding samples (processed samples)
6 Metal block work table 7 Compound vibration converter 7 'using slant slit 7' Slant slit part 7 "Frequency adjusting convex part 8 having longitudinal vibration node part Longitudinal vibration source 8 'for driving composite vibration converter For fixing node part Stepped horn with flange 8 "bolted Langevin PZT longitudinal vibrator (BLT)
9 Longitudinal vibration distribution 9 'Torsional vibration distribution 10 Node part retainer 11 Static pressure control device 11' Welding static pressure constant holding lower actuator 12 Welding base lower part 13 Composite bending vibration detector (installed on vibration bar)
13 'Composite bending vibration detector (installed in the holder)
14 Electromagnetic annular longitudinal vibration detector 15 Ultrasonic vibration feedback oscillator (input switching)
16 Input for vibrator drive 17 Fastening screw hole 18 for installing composite vibration tool Vertical-bending composite vibration transducer 19 Metal ring pair vibration transducer 19 'with different sound speeds Metal ring A cut obliquely
19 "slant cut metal ring B
20 Driving longitudinal vibration source 21 Composite longitudinal-bending vibration transducer 22 equipped with a plurality of composite bending vibration tools 22 Time variation of applied static pressure of a static pressure control device 22 ′ welding tip composite vibration amplitude 22 ”welding sample height change 23 Peeling process 24 of welded specimen 24 Principle of composite vibration detection 25 Composition of composite vibration detector 26 Equivalent circuit 27 of composite vibration detector Composite bending vibration round bar 28 Circular trajectory vibration speed 29 Annular magnet 29 'on composite bending vibration round bar surface Vertical magnetic flux Φ
30 Eddy current on the surface of composite bending vibration round bar 31 Annular detection coils L1, L2
32 Parallel resonant capacitor 33 Electrostatic shield 34 Eddy current detection voltage E1, E2
35 Compound bending vibration detector output voltage E = E1 + E2

Claims (4)

環状磁石と、該環状磁石の厚さ方向の両側に設けた2個の検出用環状コイルを備え、複合曲げ振動工具の円形または楕円軌跡成分のみを検出することを特徴とする、電磁型複合曲げ振動検出器。   An electromagnetic composite bending comprising an annular magnet and two annular coils for detection provided on both sides in the thickness direction of the annular magnet, and detecting only a circular or elliptical locus component of the composite bending vibration tool Vibration detector. 前記環状磁石が、前記複合曲げ振動工具に非接触で設置されることを特徴とする、請求項1記載の電磁型複合曲げ振動検出器。   2. The electromagnetic composite bending vibration detector according to claim 1, wherein the annular magnet is installed in a non-contact manner on the composite bending vibration tool. 前記電磁型複合曲げ振動検出器が、前記複合曲げ振動工具の振動を絶縁する独立気泡スポンジを介して前記複合曲げ振動工具に設置されることを特徴とする、請求項1または2記載の電磁型複合曲げ振動検出器。   3. The electromagnetic type according to claim 1, wherein the electromagnetic type composite bending vibration detector is installed in the composite bending vibration tool via a closed cell sponge that insulates vibration of the composite bending vibration tool. Composite bending vibration detector. 前記電磁型複合曲げ振動検出器が、さらに前記2個の検出用環状コイルと並列に共振用コンデンサを備えることを特徴とする、請求項1〜3のいずれかに記載の電磁型複合曲げ振動検出器。

The electromagnetic composite bending vibration detector according to any one of claims 1 to 3, wherein the electromagnetic composite bending vibration detector further includes a resonance capacitor in parallel with the two detection annular coils. vessel.

JP2018059132A 2018-03-27 2018-03-27 Compound bending vibration detection method Active JP6585217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018059132A JP6585217B2 (en) 2018-03-27 2018-03-27 Compound bending vibration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059132A JP6585217B2 (en) 2018-03-27 2018-03-27 Compound bending vibration detection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015204099A Division JP6397807B2 (en) 2015-09-28 2015-09-28 Ultrasonic composite vibration welding method

Publications (2)

Publication Number Publication Date
JP2018138919A true JP2018138919A (en) 2018-09-06
JP6585217B2 JP6585217B2 (en) 2019-10-02

Family

ID=63451406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059132A Active JP6585217B2 (en) 2018-03-27 2018-03-27 Compound bending vibration detection method

Country Status (1)

Country Link
JP (1) JP6585217B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764917A (en) * 2019-03-06 2019-05-17 吉林大学 A kind of dynamical property test system of flexural vibrating ultrasound processing unit (plant)
CN111024218A (en) * 2019-12-27 2020-04-17 中煤科工集团重庆研究院有限公司 Ultrasonic wave correlation detection method based on automatic tracking
CN116698178A (en) * 2023-08-04 2023-09-05 国网山东省电力公司费县供电公司 Cable vibration measuring device for power grid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129535A (en) * 1984-11-29 1986-06-17 Marine Instr Co Ltd Measuring method of acoustic output
JPS63302329A (en) * 1987-06-02 1988-12-09 Daido Steel Co Ltd Vibration detector
JPH07128131A (en) * 1993-11-09 1995-05-19 Toshiba Corp Detector
EP1698892A2 (en) * 2005-03-03 2006-09-06 Seoul National University Industry Foundation Electromagnetic acoustic transducer and method for generating or measuring bending vibration in rod member
JP2008212916A (en) * 2007-03-05 2008-09-18 Jiromaru Tsujino Apparatus for generating ultrasonic complex vibration
JP2013501240A (en) * 2009-08-03 2013-01-10 ルメダイン テクノロジーズ インコーポレイテッド High sensitivity geophone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129535A (en) * 1984-11-29 1986-06-17 Marine Instr Co Ltd Measuring method of acoustic output
JPS63302329A (en) * 1987-06-02 1988-12-09 Daido Steel Co Ltd Vibration detector
JPH07128131A (en) * 1993-11-09 1995-05-19 Toshiba Corp Detector
EP1698892A2 (en) * 2005-03-03 2006-09-06 Seoul National University Industry Foundation Electromagnetic acoustic transducer and method for generating or measuring bending vibration in rod member
JP2008212916A (en) * 2007-03-05 2008-09-18 Jiromaru Tsujino Apparatus for generating ultrasonic complex vibration
JP2013501240A (en) * 2009-08-03 2013-01-10 ルメダイン テクノロジーズ インコーポレイテッド High sensitivity geophone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
辻野 次郎丸: "E-3 環状電磁形超音波振動検出器について", 超音波エレクトロニクスの基礎と応用に関するシンポジウム講演予稿集, vol. 第4巻, JPN6019001766, 6 December 1983 (1983-12-06), JP, pages 121 - 122 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764917A (en) * 2019-03-06 2019-05-17 吉林大学 A kind of dynamical property test system of flexural vibrating ultrasound processing unit (plant)
CN111024218A (en) * 2019-12-27 2020-04-17 中煤科工集团重庆研究院有限公司 Ultrasonic wave correlation detection method based on automatic tracking
CN111024218B (en) * 2019-12-27 2021-11-26 中煤科工集团重庆研究院有限公司 Ultrasonic wave correlation detection method based on automatic tracking
CN116698178A (en) * 2023-08-04 2023-09-05 国网山东省电力公司费县供电公司 Cable vibration measuring device for power grid
CN116698178B (en) * 2023-08-04 2024-02-02 国网山东省电力公司费县供电公司 Cable vibration measuring device for power grid

Also Published As

Publication number Publication date
JP6585217B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6397807B2 (en) Ultrasonic composite vibration welding method
JP6585217B2 (en) Compound bending vibration detection method
Tsujino et al. New methods of ultrasonic welding of metal and plastic materials
JP6673961B2 (en) Ultrasonic compound vibration processing equipment
EP2267765A1 (en) Support device for resonator
JP5055423B2 (en) Ultrasonic transducer
US3184841A (en) Method and apparatus employing vibratory energy for bonding metals
CN113334648B (en) High-frequency elliptical vibration cutting system and method
JP2014033078A (en) Bonding apparatus
JP2006212619A (en) Ultrasonic machining apparatus
Tsujino Recent developments of ultrasonic welding
JP3434672B2 (en) Small rotary actuator and method of correcting resonance frequency of small rotary actuator
CN113333864A (en) Multi-mode ultrasonic vibration auxiliary machining device and method
JP2007111803A (en) Ultrasonic vibration cutting device
WO2017082350A1 (en) Method for exciting longitudinal/torsional vibration of langevin-type ultrasonic vibrator
Tsujino Ultrasonic welding using complex vibration and high frequency vibration-Various ultrasonic vibration sources and frequency characteristics of ultrasonic welding
Tsujino et al. Welding characteristics of 27 kHz and 40 kHz complex vibration ultrasonic metal welding systems
JP2020028873A (en) Langevin type ultrasonic vibrator and method of supporting the same
JP2008212916A (en) Apparatus for generating ultrasonic complex vibration
JP2006198758A (en) Ultrasonic vibration table
Tsujino Configuration and welding characteristics of ultrasonic complex vibration welding systems using two-dimensional vibration stress
Tsujino Ultrasonic complex vibration welding systems using two-dimensional vibration stress-ultrasonic welding using various welding tips
Tsujino et al. Ultrasonic welding using a long and thin complex transverse vibration welding tip with vibration detector and static pressure controller
EP3826803A1 (en) Incident radiation induced subsurface damage for controlled crack propagation in material cleavage
Tsujino et al. Welding characteristics of aluminum, copper, nickel and aluminum alloy with alumina coating using ultrasonic complex vibration welding equipments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R150 Certificate of patent or registration of utility model

Ref document number: 6585217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250