JP2018136151A - Determination method and production method for oil and fat composition - Google Patents

Determination method and production method for oil and fat composition Download PDF

Info

Publication number
JP2018136151A
JP2018136151A JP2017029392A JP2017029392A JP2018136151A JP 2018136151 A JP2018136151 A JP 2018136151A JP 2017029392 A JP2017029392 A JP 2017029392A JP 2017029392 A JP2017029392 A JP 2017029392A JP 2018136151 A JP2018136151 A JP 2018136151A
Authority
JP
Japan
Prior art keywords
oil
fat
composition
oils
content ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017029392A
Other languages
Japanese (ja)
Other versions
JP6817844B2 (en
Inventor
弘一 木全
Koichi Kizen
弘一 木全
純 堀込
Jun Horigome
純 堀込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Nisshin Oillio Group Ltd
Original Assignee
Hitachi High Tech Science Corp
Nisshin Oillio Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp, Nisshin Oillio Group Ltd filed Critical Hitachi High Tech Science Corp
Priority to JP2017029392A priority Critical patent/JP6817844B2/en
Publication of JP2018136151A publication Critical patent/JP2018136151A/en
Application granted granted Critical
Publication of JP6817844B2 publication Critical patent/JP6817844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a determination method of an oil and fat composition for accurately determining a content ratio of fats and oils in a fat and oil composition and a production method of an oil and fat composition for producing an oil and fat composition having a desired content ratio.SOLUTION: In the determination method of an oil and fat composition, two or more selected from the group consisting of: oil and fat A; oil and fat B; and an oil and fat composition containing the oil and fat A and the oil and fat B; are excited at a portion or entire range of excitation wavelength from 250 to 700 nm, and their fluorescent fingerprints are obtained by measuring all or part of the fluorescence wavelength of 250 to 800 nm by using a spectrofluorometer. By comparing each of the fluorescent fingerprints thus obtained, one or more characteristic peaks of the oil and fat A and/or the oil and fat B are selected. Fluorescence intensity of the fat or oil composition to be determined is measured at wavelength of one or more of the peaks (excitation wavelength, fluorescence wavelength) by using the spectrofluorometer. The content ratio of the oil and fat A and/or the oil and fat B in the fat and oil composition to be determined is thereby determined.SELECTED DRAWING: Figure 4

Description

本発明は、油脂組成物の判定方法及び油脂組成物の製造方法に関するものである。   The present invention relates to a method for judging an oil and fat composition and a method for producing an oil and fat composition.

2種の植物油脂を所望の含量比となるように添加混合して油脂組成物を大量生産する場合、各植物油脂を添加する速度(流速)を管理して所望の含量比の油脂組成物を製造することが一般的である。   When adding and mixing two kinds of vegetable fats and oils so as to obtain a desired content ratio and mass-producing the oil and fat composition, the rate (flow rate) at which each vegetable fat and oil is added is controlled to obtain the fat and oil composition having the desired content ratio. It is common to manufacture.

しかし、流速を管理して植物油脂を添加しているため誤差が生じやすく、製造された油脂組成物中の各植物油脂の含量比が所望の含量比から外れてしまうことがある。   However, since the vegetable oil is added by controlling the flow rate, an error is likely to occur, and the content ratio of each vegetable oil in the produced oil composition may deviate from the desired content ratio.

そこで、製造された油脂組成物中の各植物油脂の含量比を算出して、算出された含量比が所望の含量比を外れている場合には、所望の含量比を下回っている方の油脂の添加量を増やす(流速をアップする)、及び/又は所望の含量比を超えている方の油脂の添加量を減らす(流速をダウンする)ことにより調整を行なっている。油脂組成物中の各植物油脂の含量比は、油脂組成物の脂肪酸組成をガスクロマトグラフィーを使用して分析すること等により算出できる(例えば、特許文献1参照)。   Therefore, the content ratio of each vegetable fat / oil in the produced fat / oil composition is calculated, and when the calculated content ratio is out of the desired content ratio, the fat / oil that is lower than the desired content ratio is calculated. Adjustment is performed by increasing the amount of oil added (increasing the flow rate) and / or decreasing the amount of oil or fat that exceeds the desired content ratio (decreasing the flow rate). The content ratio of each vegetable fat / oil in the fat / oil composition can be calculated by analyzing the fatty acid composition of the fat / oil composition using gas chromatography (see, for example, Patent Document 1).

特開2016−116486号公報(段落番号0058)JP-A-2006-116486 (paragraph number 0058)

しかし、ガスクロマトグラフィー等を使用した従来の算出方法では、脂肪酸組成が類似の油脂の場合、精度が十分でなく、所望の含量比から外れた油脂組成物が製造されてしまうことがある。また、測定に時間がかかるため、製造効率も悪くなる。   However, in the conventional calculation method using gas chromatography or the like, in the case of fats and oils having a similar fatty acid composition, the accuracy is not sufficient, and an oil and fat composition deviating from a desired content ratio may be produced. Moreover, since measurement takes time, manufacturing efficiency also deteriorates.

また、100%純正の油脂であるか(他の油脂が混ざっていないか)否か、あるいは産地偽装等の偽造品であるか否かの検査においてもガスクロマトグラフィー等が使用されていたが、他の油脂の混入率が低い場合(例えば、混入率が5質量%以下)や双方の油脂の脂肪酸組成が類似している場合には正確な判定が困難であった。   In addition, gas chromatography etc. was used in the inspection of whether it is 100% pure oil (other oils are not mixed) or whether it is a counterfeit product such as counterfeit production area, When the mixing rate of other fats and oils is low (for example, the mixing rate is 5% by mass or less) or when the fatty acid compositions of both fats and oils are similar, accurate determination is difficult.

従って、本発明の目的は、油脂組成物中の油脂の含量比を精度良く判定できる油脂組成物の判定方法及び所望の含量比の油脂組成物を製造できる油脂組成物の製造方法を提供することである。また、本発明の目的は、ガスクロマトグラフィーを使用する場合に比べて油脂組成物中の油脂の含量比を短時間で判定できる油脂組成物の判定方法及び所望の含量比の油脂組成物を効率よく製造できる油脂組成物の製造方法を提供することである。   Accordingly, an object of the present invention is to provide a method for determining an oil composition capable of accurately determining the content ratio of the oil in the oil composition, and a method for producing the oil composition capable of producing the oil composition having a desired content ratio. It is. In addition, the object of the present invention is to provide an oil composition determination method capable of determining the content ratio of fats and oils in the oil composition in a short time compared with the case of using gas chromatography, and an oil composition having a desired content ratio. It is providing the manufacturing method of the oil-fat composition which can be manufactured well.

また、本発明の目的は、他の油脂の混入率が低い場合や双方の油脂の脂肪酸組成が類似している場合であっても100%純正の油脂であるか否かや偽造品であるか否かの正確な判定ができる油脂組成物の判定方法を提供することである。   In addition, the object of the present invention is whether or not it is 100% pure oil or a counterfeit product even when the mixing ratio of other oils and fats is low or the fatty acid composition of both oils and fats is similar. It is providing the determination method of the fats and oils composition which can perform accurate determination of whether or not.

本発明は、上記目的を達成するために、下記の[1]〜[7]の油脂組成物の判定方法及び下記の[8]〜[11]の油脂組成物の製造方法を提供する。
[1]油脂A、油脂B、及び前記油脂Aと前記油脂Bとを含む油脂組成物から選ばれる2つ以上を、分光蛍光光度計を用いて、励起波長250〜700nmの全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して得られた各蛍光指紋を比較して前記油脂A及び/又は前記油脂Bに特徴的な1個以上のピークを選択し、分光蛍光光度計を用いて1個以上の前記ピークの波長(励起波長、蛍光波長)で判定対象の油脂組成物の蛍光強度を測定することにより、前記判定対象の油脂組成物中の前記油脂A及び/又は前記油脂Bの含量割合を判定する油脂組成物の判定方法。
[2]分光蛍光光度計を用いて1個以上の前記ピークの波長(励起波長、蛍光波長)で前記油脂Aと前記油脂Bの含量割合が既知の油脂組成物の蛍光強度を測定し、当該蛍光強度を横軸又は縦軸とし、前記油脂Aの濃度を縦軸又は横軸として検量線を作成し、前記判定対象の油脂組成物の前記蛍光強度を前記検量線と比較することにより、前記判定対象の油脂組成物中の前記油脂Aと前記油脂Bの含量割合を判定することを特徴とする前記[1]に記載の油脂組成物の判定方法。
[3]前記油脂Aが未精製植物油であり、前記油脂Bが精製植物油であることを特徴とする前記[1]又は[2]に記載の油脂組成物の判定方法。
[4]前記油脂A及び前記油脂Bが、精製植物油であることを特徴とする前記[1]又は[2]に記載の油脂組成物の判定方法。
[5]前記各蛍光指紋を比較して前記油脂Aに特徴的な1個以上のピーク及び前記油脂Bに特徴的な1個以上のピークを選択し、分光蛍光光度計を用いて前記油脂Aに特徴的な1個以上の前記ピークの波長(励起波長、蛍光波長)のうちの1以上で前記油脂Aと前記油脂Bの含量割合が既知の油脂組成物の蛍光強度Aを測定し、かつ前記油脂Bに特徴的な1個以上の前記ピークの波長(励起波長、蛍光波長)のうちの1以上で前記油脂Aと前記油脂Bの含量割合が既知の油脂組成物の蛍光強度Bを測定し、「蛍光強度Aの合計値/蛍光強度Bの合計値」の比率又は「蛍光強度Bの合計値/蛍光強度Aの合計値」の比率を判定値として算出して検量線を作成し、前記油脂Aの含量比が100質量%であると判定できる100質量%判定値を求め、前記判定対象の油脂組成物の前記判定値を算出して前記100質量%判定値と比較することにより、前記判定対象の油脂組成物中の前記油脂Aの含量が100質量%であるか否かを判定することを特徴とする前記[1]に記載の油脂組成物の判定方法。
[6]油脂Aを、分光蛍光光度計を用いて、励起波長250〜700nm全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して得られた第1の蛍光指紋と、前記第1の蛍光指紋の測定条件と同条件で測定して得られる判定対象の油脂組成物の第2の蛍光指紋とを比較することにより、前記油脂組成物が前記油脂Aのみからなるか否かを判定する油脂組成物の判定方法。
[7]前記油脂Aが精製植物油であることを特徴とする前記[6]に記載の油脂組成物の判定方法。
[8]油脂Aと油脂Bとを所望の含量割合となるように添加し、混合装置により混合して油脂組成物を得る混合工程と、前記油脂A及び/又は前記油脂Bに特徴的な1個以上のピークの蛍光強度を測定することにより、前記油脂組成物中の前記油脂Aと前記油脂Bの含量割合を判定する判定工程と、前記判定された含量割合が前記所望の含量割合を外れている場合に、前記混合工程において、前記所望の含量割合を下回っている方の油脂の添加量を増やす、及び/又は前記所望の含量割合を超えている方の油脂の添加量を減らす調整工程を有することを特徴とする油脂組成物の製造方法。
[9]油脂Aと油脂Bとを所望の含量割合となるように添加し、混合装置により混合して油脂組成物を得る混合工程と、下記判定方法を用いて前記油脂組成物中の前記油脂Aと前記油脂Bの含量割合を判定する判定工程と、前記判定された含量割合が前記所望の含量割合を外れている場合に、前記混合工程において、前記所望の含量割合を下回っている方の油脂の添加量を増やす、及び/又は前記所望の含量割合を超えている方の油脂の添加量を減らす調整工程を有することを特徴とする油脂組成物の製造方法。判定方法:油脂A、油脂B、及び前記油脂Aと前記油脂Bとを含む油脂組成物から選ばれる2つ以上を、分光蛍光光度計を用いて、励起波長250〜700nmの全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して得られた各蛍光指紋を比較して前記油脂A及び/又は前記油脂Bに特徴的な1個以上のピークを選択し、分光蛍光光度計を用いて1個以上の前記ピークの波長(励起波長、蛍光波長)で判定対象の油脂組成物の蛍光強度を測定することにより、前記判定対象の油脂組成物中の前記油脂A及び/又は前記油脂Bの含量割合を判定する。
[10]前記判定方法が、分光蛍光光度計を用いて1個以上の前記ピークの波長(励起波長、蛍光波長)で前記油脂Aと前記油脂Bの含量割合が既知の油脂組成物の蛍光強度を測定し、当該蛍光強度を横軸又は縦軸とし、前記油脂Aの濃度を縦軸又は横軸として検量線を作成し、前記判定対象の油脂組成物の前記蛍光強度を前記検量線と比較することにより、前記判定対象の油脂組成物中の前記油脂Aと前記油脂Bの含量割合を判定することを特徴とする前記[9]に記載の油脂組成物の製造方法。
[11]前記混合装置が、インライン式混合装置又はバッチ式混合装置であることを特徴とする前記[8]〜[10]のいずれか1つに記載の油脂組成物の製造方法。
In order to achieve the above object, the present invention provides a method for judging an oil composition according to the following [1] to [7] and a method for producing an oil composition according to the following [8] to [11].
[1] Two or more selected from fat and oil composition including fat and oil A, fat and oil B, and the fat and oil A and the fat and oil B, using a spectrofluorimeter, all or part of an excitation wavelength of 250 to 700 nm. One or more peaks characteristic of the fats and oils A and / or the fats and oils B are selected by comparing each fluorescent fingerprint obtained by exciting and measuring all or part of the fluorescence wavelength of 250 to 800 nm, By measuring the fluorescence intensity of the oil composition to be determined at one or more wavelengths of the peak (excitation wavelength, fluorescence wavelength) using a fluorometer, the fat A and oil A in the oil composition to be determined and // The determination method of the oil-fat composition which determines the content rate of the said oil-fat B.
[2] Using a spectrofluorometer, measure the fluorescence intensity of the fat composition having a known content ratio of the fat A and the fat B at one or more wavelengths of the peak (excitation wavelength, fluorescence wavelength), By creating a calibration curve with the fluorescence intensity as the horizontal axis or the vertical axis, the concentration of the fat A as the vertical axis or the horizontal axis, and comparing the fluorescence intensity of the determination target oil composition with the calibration curve, The determination method of the oil / fat composition according to [1], wherein the content ratio of the oil / fat A and the oil / fat B in the oil / fat composition to be determined is determined.
[3] The method for determining an oil / fat composition according to [1] or [2], wherein the oil / fat A is an unrefined vegetable oil and the oil / fat B is a refined vegetable oil.
[4] The method for judging an oil / fat composition according to [1] or [2], wherein the oil / fat A and the oil / fat B are refined vegetable oils.
[5] One or more peaks characteristic of the fat and oil A and one or more peaks characteristic of the fat and oil B are selected by comparing the fluorescent fingerprints, and the fat and oil A is selected using a spectrofluorimeter. And measuring the fluorescence intensity A of the oil / fat composition having a known content ratio of the oil / fat A and the oil / fat B at one or more of the one or more wavelengths (excitation wavelength, fluorescence wavelength) characteristic of Measure the fluorescence intensity B of an oil / fat composition having a known content ratio of the oil / fat A and the oil / fat B at one or more of the one or more wavelengths (excitation wavelength, fluorescence wavelength) characteristic of the oil / fat B Then, a calibration curve is created by calculating a ratio of “total value of fluorescence intensity A / total value of fluorescence intensity B” or ratio of “total value of fluorescence intensity B / total value of fluorescence intensity A” as a determination value, Obtain a 100% by mass judgment value that can be judged that the content ratio of the fat A is 100% by mass. Whether the content of the fat / oil A in the determination target oil / fat composition is 100% by mass by calculating the determination value of the determination target oil / fat composition and comparing it with the 100% mass determination value. The method for judging an oil or fat composition according to the above [1], wherein the oil composition is judged.
[6] A first fluorescent fingerprint obtained by exciting oil A with a spectrofluorometer at all or part of the excitation wavelength of 250 to 700 nm and measuring all or part of the fluorescence wavelength of 250 to 800 nm. And the second fluorescent fingerprint of the determination target oil / fat composition obtained by measuring under the same conditions as the measurement conditions of the first fluorescent fingerprint, whereby the oil / fat composition is composed only of the oil / fat A. The determination method of the oil-fat composition which determines whether or not.
[7] The method for judging an oil composition according to [6], wherein the fat A is a refined vegetable oil.
[8] Oil and fat A and fat B are added so as to have a desired content ratio, mixed by a mixing device to obtain an oil and fat composition, and 1 characteristic of the oil and fat A and / or the oil and fat B The determination step of determining the content ratio of the fat A and the fat B in the fat composition by measuring the fluorescence intensity of one or more peaks, and the determined content ratio deviates from the desired content ratio. In the mixing step, in the mixing step, an adjustment step of increasing the addition amount of the fat that is less than the desired content ratio and / or reducing the addition amount of the fat that exceeds the desired content proportion The manufacturing method of the oil-fat composition characterized by having.
[9] The fat / oil in the fat / oil composition using the mixing step of adding the fat / oil A and the fat / oil B to a desired content ratio and mixing with a mixing device to obtain the fat / oil composition, and the following determination method A determination step of determining a content ratio of A and the fats and oils B, and a case where the determined content ratio is out of the desired content ratio, the mixing step is less than the desired content ratio The manufacturing method of the oil-fat composition characterized by having the adjustment process which increases the addition amount of fats and oils and / or reduces the addition amount of the fats and oils which exceed the said desired content rate. Judgment method: Two or more selected from fat and oil composition containing fat and oil A, fat and oil B, and the fat and oil A and the fat and oil B, using a spectrofluorimeter, all or part of the excitation wavelength of 250 to 700 nm. One or more peaks characteristic of the fats and oils A and / or the fats and oils B are selected by comparing each fluorescent fingerprint obtained by exciting and measuring all or part of the fluorescence wavelength of 250 to 800 nm, By measuring the fluorescence intensity of the oil composition to be determined at one or more wavelengths of the peak (excitation wavelength, fluorescence wavelength) using a fluorometer, the fat A and oil A in the oil composition to be determined and / Or the content ratio of the said fats and oils B is determined.
[10] Fluorescence intensity of the fat composition in which the content ratio of the fat A and the fat B is known at one or more of the peak wavelengths (excitation wavelength, fluorescence wavelength) using a spectrofluorometer A calibration curve is created with the fluorescence intensity as the horizontal axis or the vertical axis, and the concentration of the fat or oil A as the vertical axis or the horizontal axis, and the fluorescence intensity of the determination target oil or fat composition is compared with the calibration curve. By performing, the content ratio of the said fats and oils A and the said fats and oils B in the said fats and oils composition of the determination object is determined, The manufacturing method of the oil and fat composition as described in said [9] characterized by the above-mentioned.
[11] The method for producing an oil / fat composition according to any one of [8] to [10], wherein the mixing device is an in-line mixing device or a batch-type mixing device.

本発明によると、油脂組成物中の油脂の含量比を精度良く判定できる油脂組成物の判定方法及び所望の含量比の油脂組成物を製造できる油脂組成物の製造方法を提供することができる。本発明によると、ガスクロマトグラフィーを使用する場合に比べて油脂組成物中の油脂の含量比を短時間で判定できる油脂組成物の判定方法及び所望の含量比の油脂組成物を効率よく製造できる油脂組成物の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the determination method of the oil-fat composition which can determine the content ratio of fats and oils in an oil-fat composition accurately, and the manufacturing method of the oil-fat composition which can manufacture the oil-fat composition of desired content ratio can be provided. According to the present invention, it is possible to efficiently produce an oil / fat composition having a desired content ratio and a method for determining an oil / fat composition capable of determining the content ratio of the oil / fat in the oil / fat composition in a short time compared to the case of using gas chromatography. The manufacturing method of an oil-fat composition can be provided.

また、本発明によると、他の油脂の混入率が低い場合や双方の油脂の脂肪酸組成が類似している場合であっても100%純正の油脂であるか否かや偽造品であるか否かの正確な判定ができる油脂組成物の判定方法を提供することができる。   Further, according to the present invention, even if the mixing rate of other fats and oils is low or the fatty acid compositions of both fats and oils are similar, whether or not they are 100% genuine fats or oils or counterfeits. It is possible to provide a method for determining an oil / fat composition capable of accurately determining the above.

種々の含量比のエキストラバージンオリーブオイル(EVOO)と精製オリーブオイル(ROO)とからなる油脂組成物の蛍光指紋である。各図の油脂組成物の含量比(EVOO:ROO)は、(a)は100:0、(b)は99:1、(c)は97.5:2.5、(d)は95:5、(e)は90:10、(f)は75:25、(g)は50:50、(h)は25:75、(i)は10:90、(j)は5:95、(k)は0:100である。It is the fluorescence fingerprint of the oil-fat composition which consists of extra virgin olive oil (EVOO) and refined olive oil (ROO) of various content ratios. The oil / fat composition ratio (EVOO: ROO) in each figure is (a) 100: 0, (b) 99: 1, (c) 97.5: 2.5, (d) 95: 5, (e) is 90:10, (f) is 75:25, (g) is 50:50, (h) is 25:75, (i) is 10:90, (j) is 5:95, (K) is 0: 100. (a)は図1(g)の蛍光指紋において選択した10個のピークの位置を示す図であり、(b)は(a)に示す10個のピークにおける励起波長(EX)と蛍光波長(EM)である。(A) is a figure which shows the position of 10 peaks selected in the fluorescence fingerprint of FIG.1 (g), (b) is an excitation wavelength (EX) and fluorescence wavelength (10) in 10 peaks shown to (a). EM). 図2(a)に示すNo.2〜10のピークにおける励起波長(EX)と蛍光波長(EM)で測定した蛍光強度(横軸)とEVOO濃度(縦軸)との関係を示す検量線である。(a)〜(i)は、順にNo.2〜10のピークにおける検量線である。No. 2 shown in FIG. It is a calibration curve which shows the relationship between the fluorescence intensity (horizontal axis) and the EVOO concentration (vertical axis) measured by the excitation wavelength (EX) and the fluorescence wavelength (EM) at 2-10 peaks. (A)-(i) are No. in order. It is a calibration curve at 2-10 peaks. 判別式1で算出した判定値(横軸)とEVOO濃度(縦軸)との関係を示す検量線である。It is a calibration curve showing the relationship between the judgment value (horizontal axis) calculated by discriminant 1 and the EVOO concentration (vertical axis). 判別式2で算出した判定値(横軸)とEVOO濃度(縦軸)との関係を示す検量線である。It is a calibration curve showing the relationship between the judgment value (horizontal axis) calculated by discriminant 2 and the EVOO concentration (vertical axis). 判別式3で算出した判定値(横軸)とEVOO濃度(縦軸)との関係を示す検量線である。It is a calibration curve showing the relationship between the judgment value (horizontal axis) calculated by discriminant 3 and the EVOO concentration (vertical axis). 判別式4で算出した判定値(横軸)とEVOO濃度(縦軸)との関係を示す検量線である。It is a calibration curve showing the relationship between the judgment value (horizontal axis) calculated by discriminant 4 and the EVOO concentration (vertical axis). 種々の含量比の食用大豆油と食用菜種油とからなる油脂組成物の蛍光指紋である。各図の油脂組成物の含量比(食用大豆油:食用菜種油)は、(a)は0:100、(b)は1:99、(c)は2:98、(d)は10:90、(e)は20:80、(f)は50:50、(g)は80:20、(h)は90:10、(i)は95:5、(j)は98:2、(k)は99:1、(l)は100:0である。It is a fluorescent fingerprint of an oil and fat composition comprising edible soybean oil and edible rapeseed oil in various content ratios. The content ratio (edible soybean oil: edible rapeseed oil) of the oil and fat composition in each figure is as follows: (a) 0: 100, (b) 1:99, (c) 2:98, (d) 10:90. , (E) is 20:80, (f) is 50:50, (g) is 80:20, (h) is 90:10, (i) is 95: 5, (j) is 98: 2, ( k) is 99: 1 and (l) is 100: 0. 図8(a)、(f)、(l)の蛍光指紋において、食用大豆油と食用菜種油に特徴的なピークが見られる励起波長(EX)250〜350、蛍光波長(EM)250〜600の範囲(図の斜線部分)を示す図である。In the fluorescence fingerprints of FIGS. 8 (a), (f) and (l), excitation wavelengths (EX) 250 to 350 and fluorescence wavelengths (EM) 250 to 600 in which peaks characteristic to edible soybean oil and edible rapeseed oil are observed. It is a figure which shows the range (shaded part of a figure). 励起波長(EX)285nm、蛍光波長(EM)330nmで測定した蛍光強度(横軸)と食用大豆油濃度(縦軸)との関係を示す検量線である。It is a calibration curve showing the relationship between the fluorescence intensity (horizontal axis) and the edible soybean oil concentration (vertical axis) measured at an excitation wavelength (EX) of 285 nm and a fluorescence wavelength (EM) of 330 nm. 本発明の実施の形態に係る油脂組成物の製造方法におけるインライン式混合装置を示す概略図である。It is the schematic which shows the in-line type mixing apparatus in the manufacturing method of the oil-fat composition which concerns on embodiment of this invention. 本発明の実施の形態に係る油脂組成物の製造方法におけるバッチ式混合装置を示す概略図である。It is the schematic which shows the batch type mixing apparatus in the manufacturing method of the oil-fat composition which concerns on embodiment of this invention.

〔油脂組成物の判定方法〕
本発明の実施形態に係る油脂組成物の判定方法は、油脂A、油脂B、及び前記油脂Aと前記油脂Bとを含む油脂組成物から選ばれる2つ以上を、分光蛍光光度計を用いて、励起波長250〜700nmの全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して得られた各蛍光指紋を比較して前記油脂A及び/又は前記油脂Bに特徴的な1個以上のピークを選択し、分光蛍光光度計を用いて1個以上の前記ピークの波長(励起波長、蛍光波長)で判定対象の油脂組成物の蛍光強度を測定することにより、前記判定対象の油脂組成物中の前記油脂A及び/又は前記油脂Bの含量割合を判定する。
[Determination method of oil and fat composition]
The determination method of the oil-fat composition which concerns on embodiment of this invention uses two or more chosen from fats and oils composition containing fats and oils A, fats and oils B, and the said fats and oils A and the said fats and oils B using a spectrofluorimeter. The fats and oils B and / or the fats and oils B are characterized by comparing fluorescent fingerprints obtained by exciting all or part of the excitation wavelengths of 250 to 700 nm and measuring all or part of the fluorescence wavelengths of 250 to 800 nm. By selecting one or more specific peaks and measuring the fluorescence intensity of the oil composition to be judged at the wavelength of the one or more peaks (excitation wavelength, fluorescence wavelength) using a spectrofluorometer, The content ratio of the fat / oil A and / or the fat / oil B in the fat / oil composition to be determined is determined.

本実施の形態における判定方法においては、判定対象の油脂組成物中に含有されている油脂が油脂A及び/又は油脂Bであると分かっている(既知である)ことが前提である。なお、必ずしも油脂Aや油脂Bの原料や産地等まで既知でなくてもよく、同じ物が入手できる程度に特定できていればよい。   In the determination method in the present embodiment, it is premised that the fats and oils contained in the judgment target oil and fat composition are known to be fats and oils A and / or fats and oils B (known). In addition, it does not necessarily need to be known to the raw material, production center, etc. of fats and oils A and fats B, and it should just be specified to such an extent that the same thing can be obtained.

(蛍光指紋の測定)
初めに、油脂A、油脂B、及び油脂Aと油脂Bとを含む油脂組成物から選ばれる2つ以上を、分光蛍光光度計を用いて、励起波長250〜700nm全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して各蛍光指紋を得る。
(Measurement of fluorescent fingerprint)
First, two or more selected from fat and oil composition containing fat and oil A, fat and oil B, and fat and oil A and fat and oil B are excited using a spectrofluorimeter at all or part of an excitation wavelength of 250 to 700 nm. Each fluorescence fingerprint is obtained by measuring all or part of the fluorescence wavelength of 250 to 800 nm.

測定対象としては、油脂A(100質量%)、油脂B(100質量%)、及び油脂Aと油脂Bとを含む油脂組成物から選ばれるいずれか2つ以上であるが、3つすべてを測定対象とすることが好ましい。また、油脂Aと油脂Bとを含む油脂組成物は、種々の含量比のものを測定対象とすることが好ましい。例えば、油脂Aと油脂Bの含量比(質量)が、油脂A:油脂B=99:1、95:5、90:10、75:25、50:50、25:75、10:90、5:95、1:99のものを測定対象とする。   As a measuring object, it is any two or more chosen from fats and oils composition containing fats and oils A (100 mass%), fats and oils B (100 mass%), and fats and oils A and fats and oils B, but all three are measured. It is preferable to make it a target. Moreover, it is preferable that the fats and oils composition containing the fats and oils A and the fats and oils B make a measurement object the thing of various content ratio. For example, the content ratio (mass) of fat / oil A and fat / oil B is fat / oil A: fat / oil B = 99: 1, 95: 5, 90:10, 75:25, 50:50, 25:75, 10:90, 5 : 95, 1:99

油脂A及び油脂Bとしては、特に限定されることなく、種々の油脂に適用できる。例えば、好適な一実施形態では、油脂Aが未精製植物油であり、油脂Bが精製植物油である。また、好適な別の一実施形態では、油脂A及び油脂Bが、精製植物油である。   The fats and oils A and B are not particularly limited and can be applied to various fats and oils. For example, in one suitable embodiment, fats and oils A are unrefined vegetable oils, and fats and oils B are refined vegetable oils. Moreover, in another suitable embodiment, fats and oils A and fats and oils B are refined vegetable oils.

本発明の実施形態に適用可能な植物油としては、例えば、大豆油、菜種油、高オレイン酸菜種油、オリーブ油、コーン油、ゴマ油、シソ油、亜麻仁油、落花生油、紅花油、高オレイン酸紅花油、ひまわり油、高オレイン酸ひまわり油、綿実油、ブドウ種子油、マカデミアナッツ油、ヘーゼルナッツ油、カボチャ種子油、クルミ油、椿油、茶実油、エゴマ油、ボラージ油、米油、小麦胚芽油、パーム油、パーム核油、ヤシ油、カカオ脂、品種改良によって低飽和化されたこれらの油脂等が挙げられる。植物油以外では、牛脂、ラード、鶏脂、乳脂、魚油、アザラシ油、藻類油等が挙げられる。   Examples of vegetable oils that can be applied to the embodiments of the present invention include soybean oil, rapeseed oil, high oleic rapeseed oil, olive oil, corn oil, sesame oil, perilla oil, linseed oil, peanut oil, safflower oil, and high oleic safflower oil. Sunflower oil, high oleic sunflower oil, cottonseed oil, grape seed oil, macadamia nut oil, hazelnut oil, pumpkin seed oil, walnut oil, coconut oil, tea seed oil, sesame oil, borage oil, rice oil, wheat germ oil, palm oil, Examples thereof include palm kernel oil, coconut oil, cacao butter, and these oils and fats that have been low-saturated by variety improvement. Other than vegetable oils, beef tallow, lard, chicken fat, milk fat, fish oil, seal oil, algal oil and the like.

使用する分光蛍光光度計は、高精度かつ高速に測定を行なうことができる装置であることが望ましく、例えば、株式会社日立ハイテクサイエンス製のF−7000形やF−7100形が好適に使用できる。   The spectrofluorometer to be used is desirably a device capable of performing high-precision and high-speed measurement. For example, F-7000 type or F-7100 type manufactured by Hitachi High-Tech Science Co., Ltd. can be suitably used.

分光蛍光光度計による測定においては、測定対象の油脂又は油脂組成物を励起波長250〜700nm全部あるいは一部の光(励起光)で励起させる。そして、蛍光波長250〜700nmの全部あるいは一部を測定する。一部とは、例えば、励起波長300〜450nmで蛍光波長645〜700nm、あるいは、励起波長340〜400nmで蛍光波長360〜560nm、励起波長285〜320nmで蛍光波長370〜530nmを含むものである。   In the measurement with a spectrofluorometer, the oil or fat composition to be measured is excited with all or part of the excitation wavelength of 250 to 700 nm (excitation light). Then, all or a part of the fluorescence wavelength of 250 to 700 nm is measured. The part includes, for example, a fluorescence wavelength of 645 to 700 nm at an excitation wavelength of 300 to 450 nm, a fluorescence wavelength of 360 to 560 nm at an excitation wavelength of 340 to 400 nm, and a fluorescence wavelength of 370 to 530 nm at an excitation wavelength of 285 to 320 nm.

(特徴的なピークの選択)
次に、得られた蛍光指紋を比較して油脂A及び/又は油脂Bに特徴的な1個以上のピークを選択する。油脂A及び油脂Bに特徴的な1個以上のピークをそれぞれ選択することが好ましい。選択方法としては、例えば、油脂Aと油脂Bを含有する油脂組成物において油脂Aの含有量が増えるほどより顕著に現れるピークを油脂Aに特徴的なピークとして選択し、油脂Bの含有量が増えるほどより顕著に現れるピークを油脂Bに特徴的なピークとして選択する。
油脂A又は油脂Bに特徴的な1種のピークが分かれば、そのピークの蛍光強度から油脂Aと油脂Bの各含量割合が分かる。
(Selecting characteristic peaks)
Next, the obtained fluorescent fingerprints are compared, and one or more peaks characteristic to the fat A and / or the fat B are selected. It is preferable to select one or more peaks characteristic of the fat A and the fat B, respectively. As a selection method, for example, a peak that appears more prominently as the content of fat or oil A increases in the fat or oil composition containing fat or oil A and fat B is selected as a characteristic peak for fat or oil A, and the content of fat or oil B is The peak that appears more prominently as it increases is selected as a characteristic peak for the fat B.
If one kind of peak characteristic to fats and oils A or fats and oils B is known, each content ratio of fats and oils A and fats and oils B can be known from the fluorescence intensity of the peaks.

(蛍光強度の測定)
次に、分光蛍光光度計を用いて、選択した1個以上のピークの波長(励起波長、蛍光波長)で判定対象の油脂組成物の蛍光強度を測定する。この時用いる分光蛍光光度計は、測定対象の波長が測定できるものであればよく、単波長、又は複数波長を測定する分光蛍光光度計、あるいは前述の蛍光指紋の測定で用いた分光蛍光光度計等を用いることができる。
(Measurement of fluorescence intensity)
Next, using a spectrofluorometer, the fluorescence intensity of the determination target oil or fat composition is measured at one or more selected peak wavelengths (excitation wavelength, fluorescence wavelength). The spectrofluorimeter used at this time is not limited as long as it can measure the wavelength of the object to be measured. The spectrofluorometer that measures a single wavelength or a plurality of wavelengths, or the spectrofluorometer used in the measurement of the fluorescence fingerprint described above. Etc. can be used.

(含量比の判定)
測定して得られた蛍光強度を用いることにより、判定対象の油脂組成物中の油脂A及び/又は油脂Bの含量割合を判定することができる。
(Determination of content ratio)
By using the fluorescence intensity obtained by measurement, the content ratio of the fat A and / or the fat B in the determination target oil composition can be determined.

例えば、本発明の一実施形態においては、分光蛍光光度計を用いて、選択した1個以上のピークの波長(励起波長、蛍光波長)で油脂Aと油脂Bの含量割合が既知の油脂組成物の蛍光強度を測定し、当該蛍光強度を横軸とし、油脂Aの濃度を縦軸として検量線を作成しておき、判定対象の油脂組成物の蛍光強度を当該検量線と比較することにより、判定対象の油脂組成物中の油脂A及び/又は油脂Bの含量割合を判定することができる。横軸と縦軸とを逆にした検量線でもよい。   For example, in one embodiment of the present invention, an oil / fat composition having a known content ratio of oil / fat A / fat B at a wavelength of one or more selected peaks (excitation wavelength, fluorescence wavelength) using a spectrofluorometer. By measuring the fluorescence intensity of the sample, preparing a calibration curve with the fluorescence intensity as the horizontal axis and the fat and oil A concentration as the vertical axis, and comparing the fluorescence intensity of the determination target oil composition with the calibration curve, The content ratio of fats and oils A and / or fats and oils B in the oil and fat composition to be judged can be judged. A calibration curve with the horizontal and vertical axes reversed may be used.

(含量100質量%であるか否かの判定)
また、本発明の実施形態に係る油脂組成物の判定方法の別の一実施形態においては、上記の得られた各蛍光指紋を比較して油脂Aに特徴的な1個以上のピーク及び油脂Bに特徴的な1個以上のピークを選択し、分光蛍光光度計を用いて油脂Aに特徴的な1個以上のピークの波長(励起波長、蛍光波長)のうちの1以上で油脂Aと油脂Bの含量比が既知の油脂組成物の蛍光強度Aを測定し、かつ油脂Bに特徴的な1個以上のピークの波長(励起波長、蛍光波長)のうちの1以上で油脂Aと油脂Bの含量割合が既知の油脂組成物の蛍光強度Bを測定し、「蛍光強度Aの合計値/蛍光強度Bの合計値」の比率又は「蛍光強度Bの合計値/蛍光強度Aの合計値」の比率を判定値として算出して検量線を作成し、油脂Aの含量比が100質量%であると判定できる100質量%判定値を求め、判定対象の油脂組成物の上記判定値を算出して上記100質量%判定値と比較することにより、判定対象の油脂組成物中の油脂Aの含量が100質量%であるか否かを判定する。
(Determination of whether the content is 100% by mass)
Moreover, in another one Embodiment of the determination method of the oil-fat composition which concerns on embodiment of this invention, one or more peaks and oil-fat B which are characteristic of the oil-fat A by comparing each said fluorescence fingerprint obtained above. One or more peaks characteristic of the oil and fat are selected and one or more of the wavelengths (excitation wavelength, fluorescence wavelength) of the one or more peaks characteristic of the fat and oil A are measured using a spectrofluorophotometer. Measure the fluorescence intensity A of an oil / fat composition whose B content ratio is known, and the oil / fat A and the oil / fat B at one or more of one or more peak wavelengths (excitation wavelength, fluorescence wavelength) characteristic of the oil / fat B The fluorescence intensity B of the oil / fat composition with a known content ratio is measured, and the ratio of “total value of fluorescence intensity A / total value of fluorescence intensity B” or “total value of fluorescence intensity B / total value of fluorescence intensity A” A calibration curve is created by calculating the ratio of the above as a judgment value, and the content ratio of fat A is 100% by mass 100% by mass determination value that can be determined, the above determination value of the determination target oil composition is calculated and compared with the above 100% by mass determination value, whereby the content of the fat A in the determination target oil composition is 100 It is determined whether it is mass%.

詳細な具体例については、後述する実施例にて説明するが、本実施形態によれば、他の油脂の混入率が低い場合や双方の油脂の脂肪酸組成が類似している場合であっても100%純正の油脂であるか否かや偽造品であるか否かの正確な判定をすることができる。   Although a specific example is demonstrated in the Example mentioned later, even if it is a case where the fatty acid composition of both fats and oils is similar according to this embodiment, when the mixing rate of other fats and oils is low. It is possible to accurately determine whether the oil is 100% genuine oil or not and whether it is a counterfeit product.

また、本発明の実施形態に係る油脂組成物の判定方法の別の一実施形態においては、油脂Aを、分光蛍光光度計を用いて、励起波長250〜700nmの全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して得られた第1の蛍光指紋と、第1の蛍光指紋の測定条件と同条件で測定して得られる判定対象の油脂組成物の第2の蛍光指紋とを比較することにより、判定対象の油脂組成物が油脂Aのみからなるか否かを判定することができる。   In another embodiment of the method for determining an oil composition according to an embodiment of the present invention, the oil A is excited with all or part of an excitation wavelength of 250 to 700 nm using a spectrofluorimeter. A first fluorescent fingerprint obtained by measuring all or part of the fluorescence wavelength of 250 to 800 nm, and a second determination target oil / fat composition obtained by measurement under the same measurement conditions as the first fluorescent fingerprint. It is possible to determine whether or not the oil / fat composition to be determined consists only of the oil / fat A by comparing the fluorescent fingerprint of

本実施形態における適用可能な油脂A、使用する分光蛍光光度計、及び分光蛍光光度計による蛍光指紋の測定条件は、前述の実施形態と同様である。   The applicable conditions for the oil and fat A, the spectrofluorometer to be used, and the fluorescence fingerprint measurement conditions using the spectrofluorometer in the present embodiment are the same as those in the previous embodiment.

第1の蛍光指紋と第2の蛍光指紋とを比較した結果、同一の蛍光指紋であれば、判定対象の油脂組成物が油脂Aのみからなると言える。   As a result of comparing the first fluorescent fingerprint and the second fluorescent fingerprint, if the same fluorescent fingerprint is used, it can be said that the oil / fat composition to be determined consists only of the oil / fat A.

〔油脂組成物の製造方法〕
本発明の実施形態に係る油脂組成物の製造方法の一実施形態は、油脂Aと油脂Bとを所望の含量割合で含有する油脂組成物の製造方法であって、油脂Aと油脂Bとを所望の含量割合となるように添加し、インライン式混合装置又はバッチ式混合装置により混合して油脂組成物を得る混合工程と、油脂A及び/又は油脂Bに特徴的なピークの蛍光強度を測定することにより、前記油脂組成物中の前記油脂Aと前記油脂Bの含量割合を判定する判定工程と、前記判定された含量割合が前記所望の含量割合を外れている場合に、前記混合工程において、前記所望の含量割合を下回っている方の油脂の添加量を増やす、及び/又は前記所望の含量割合を超えている方の油脂の添加量を減らす調整工程を有する。以下、これらの工程を順に説明する。
[Method for producing oil and fat composition]
One embodiment of a method for producing an oil / fat composition according to an embodiment of the present invention is a method for producing an oil / fat composition containing oil / fat A and oil / fat B in a desired content ratio. Add to desired content ratio, mix with in-line mixing device or batch mixing device to obtain oil composition, and measure fluorescence intensity of peak characteristic of oil A and / or oil B In the mixing step, when the determination step of determining the content ratio of the fat A and the fat B in the fat composition, and the determined content ratio deviates from the desired content ratio And an adjustment step of increasing the amount of the fat that is less than the desired content ratio and / or decreasing the amount of the fat that exceeds the desired content ratio. Hereinafter, these steps will be described in order.

(混合工程)
混合工程においては、油脂Aと油脂Bとを所望の含量割合となるように添加しインライン式混合装置又はバッチ式混合装置により混合して油脂組成物を得る。
(Mixing process)
In a mixing process, fats and oils A and fats and oils B are added so that it may become a desired content ratio, and it mixes with an in-line type mixing apparatus or a batch type mixing apparatus, and obtains an oil and fat composition.

図11は、本発明の実施の形態に係る油脂組成物の製造方法におけるインライン式混合装置10を示す概略図である。
油脂A(符号1、以下省略)は油導入管11の流入口11Aから供給され、油脂B(符号2、以下省略)は流入口11Bから供給される。油脂A及び油脂Bの供給量は、流入口11A及び流入口11Bに設けられたバルブ(図示省略)により流速(流量)制御がなされている。油導入管11に供給された油脂A及び油脂Bは、スタティックミキサー12を通過する際に混合されて混合油C(符号3、以下省略)となり、油送管13へ流れていく。本実施形態においてはスタティックミキサーを用いたが、インラインで設置できるものであればよく、混合機はこれに限られない。
FIG. 11 is a schematic view showing an in-line mixing device 10 in the method for producing an oil and fat composition according to the embodiment of the present invention.
Oil A (reference numeral 1, omitted hereinafter) is supplied from the inlet 11A of the oil introduction pipe 11, and oil B (reference numeral 2, omitted below) is supplied from the inlet 11B. The supply amount of the fats and oils A and fats and oils B is controlled in flow velocity (flow rate) by valves (not shown) provided at the inlet 11A and the inlet 11B. The fats A and B supplied to the oil introduction pipe 11 are mixed when passing through the static mixer 12 to become a mixed oil C (reference numeral 3, hereinafter omitted) and flow to the oil feed pipe 13. Although a static mixer is used in the present embodiment, any mixer that can be installed in-line may be used, and the mixer is not limited to this.

図12は、本発明の実施の形態に係る油脂組成物の製造方法におけるバッチ式混合装置20を示す概略図である。
油脂A及び油脂Bは、撹拌槽21に供給され、モーター23を備えた攪拌機22により撹拌混合されて混合油Cとなる。油脂A及び油脂Bの供給量は、図示を省略したバルブにより流速(流量)制御がなされている。
FIG. 12 is a schematic view showing a batch type mixing apparatus 20 in the method for producing an oil and fat composition according to the embodiment of the present invention.
The fats and oils A and fats and oils B are supplied to the stirring tank 21, and are stirred and mixed by a stirrer 22 equipped with a motor 23 to become a mixed oil C. The supply amount of the fats and oils A and the fats and oils B is controlled in flow rate (flow rate) by a valve not shown.

(判定工程)
判定工程においては、前記油脂A及び/又は前記油脂Bに特徴的な1個以上のピークの蛍光強度を測定することにより、油脂組成物(混合油C)中の油脂Aと油脂Bの含量比を判定する。なお、前記油脂A及び/又は前記油脂Bに特徴的な1個以上のピークは、前記油脂A、前記油脂B、及び前記油脂Aと前記油脂Bとを含む油脂組成物から選ばれる2つ以上を、分光蛍光光度計を用いて、励起波長250〜700nmの全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して得られた各蛍光指紋を比較して選択する。詳細は上記本発明の実施形態に係る油脂組成物の判定方法に記載の通りである。
蛍光指紋や蛍光強度の測定は、図11のインライン式混合装置10では、油送管13に設置された分光蛍光光度計14により行なう。インラインでの設置が困難な場合には、油送管13に混合油Cの採取口を設け、混合油Cを採取し、外部の分光蛍光光度計により測定することとしてもよい。
なお、使用する分光蛍光光度計は、測定するピークが検出可能な範囲のものでよく、前述の蛍光指紋を測定できる分光蛍光光度計の他、単波長のみの蛍光波長を測定する分光蛍光光度計も使用できる。
一方、図12のバッチ式混合装置20では、蛍光指紋や蛍光強度の測定は、撹拌槽21内部又は外部に設置した分光蛍光光度計(図示省略)により行なう。
(Judgment process)
In the determination step, the content ratio of fat A and fat B in the fat composition (mixed oil C) is measured by measuring the fluorescence intensity of one or more peaks characteristic of the fat A and / or fat B. Determine. In addition, the one or more peaks characteristic of the oil and fat A and / or the oil and fat B are two or more selected from the oil and fat composition including the oil and fat A, the oil and fat B, and the oil and fat A and the oil and fat B. Using a spectrofluorometer, the excitation wavelength is excited at all or part of 250 to 700 nm, and the fluorescence fingerprints obtained by measuring all or part of the fluorescence wavelength of 250 to 800 nm are compared and selected. . The details are as described in the determination method of the oil and fat composition according to the embodiment of the present invention.
The fluorescence fingerprint and the fluorescence intensity are measured by the spectrofluorometer 14 installed in the oil feed pipe 13 in the in-line type mixing apparatus 10 of FIG. If installation in-line is difficult, the oil feed pipe 13 may be provided with a sampling port for the mixed oil C, and the mixed oil C may be sampled and measured with an external spectrofluorometer.
The spectrofluorometer used may be in a range where the peak to be measured can be detected. In addition to the spectrofluorometer capable of measuring the fluorescent fingerprint described above, the spectrofluorometer that measures only a single wavelength of fluorescence. Can also be used.
On the other hand, in the batch type mixing apparatus 20 of FIG. 12, the fluorescence fingerprint and the fluorescence intensity are measured by a spectrofluorometer (not shown) installed inside or outside the stirring tank 21.

(調整工程)
調整工程においては、上記判定工程で判定された含量比が所望の含量比を外れている場合に、上記混合工程において、所望の含量割合を下回っている方の油脂の添加量を増やす(流速をアップする)、及び/又は所望の含量比を超えている方の油脂の添加量を減らす(流速をダウンする)ことにより調整を行なう。
(Adjustment process)
In the adjustment step, when the content ratio determined in the determination step is out of the desired content ratio, in the mixing step, the amount of oil or fat that is less than the desired content ratio is increased (flow rate is increased). Up) and / or by adjusting the amount of fat or oil that exceeds the desired content ratio (decreasing the flow rate).

次に実施例により本発明を説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention, this invention is not limited by these Examples.

〔実施例1〕
(蛍光指紋の測定)
エキストラバージンオリーブオイル(EVOO)(日清オイリオグループ株式会社製、スペイン産)及び/又は精製オリーブオイル(ROO)(日清オイリオグループ株式会社製)からなる油脂組成物の蛍光指紋を分光蛍光光度計(商品名:F−7000、株式会社日立ハイテクサイエンス社製)により測定した。測定結果を図1に示す。
[Example 1]
(Measurement of fluorescent fingerprint)
Fluorescent fingerprint of oil composition comprising extra virgin olive oil (EVOO) (Nisshin Oillio Group Co., Ltd., Spain) and / or refined olive oil (ROO) (Nisshin Oillio Group Co., Ltd.) (Product name: F-7000, manufactured by Hitachi High-Tech Science Co., Ltd.). The measurement results are shown in FIG.

図1は、種々の含量比のエキストラバージンオリーブオイル(EVOO)と精製オリーブオイル(ROO)とからなる油脂組成物の蛍光指紋である。各図の油脂組成物の含量比(EVOO:ROO)は、(a)は100:0、(b)は99:1、(c)は97.5:2.5、(d)は95:5、(e)は90:10、(f)は75:25、(g)は50:50、(h)は25:75、(i)は10:90、(j)は5:95、(k)は0:100である。   FIG. 1 is a fluorescent fingerprint of an oil / fat composition comprising extra virgin olive oil (EVOO) and refined olive oil (ROO) in various content ratios. The oil / fat composition ratio (EVOO: ROO) in each figure is (a) 100: 0, (b) 99: 1, (c) 97.5: 2.5, (d) 95: 5, (e) is 90:10, (f) is 75:25, (g) is 50:50, (h) is 25:75, (i) is 10:90, (j) is 5:95, (K) is 0: 100.

また、各油脂組成物について25℃における屈折率(RI)を屈折計(京都電子工業株式会社製)により測定した結果も図1に示す。   Moreover, the result of having measured the refractive index (RI) in 25 degreeC about each oil-fat composition with the refractometer (made by Kyoto Electronics Industry Co., Ltd.) is also shown in FIG.

(特徴的なピークの選択)
得られた蛍光指紋を比較してEVOO及び/又はROOに特徴的な10個のピークを選択した。なお、特徴的なピークは、目視にて判別したが、多変量解析ソフトウェア等を用いて行ってもよい。
(Selecting characteristic peaks)
Ten peaks characteristic of EVOO and / or ROO were selected by comparing the obtained fluorescent fingerprints. In addition, although the characteristic peak was discriminate | determined visually, you may carry out using multivariate analysis software etc.

図2(a)は図1(g)の蛍光指紋において選択した10個のピークの位置を示す図であり、図2(b)は図2(a)に示す10個のピークにおける励起波長(EX)と蛍光波長(EM)である。   FIG. 2A is a diagram showing the positions of 10 peaks selected in the fluorescent fingerprint of FIG. 1G, and FIG. 2B is an excitation wavelength (10) at the 10 peaks shown in FIG. EX) and fluorescence wavelength (EM).

各蛍光指紋の比較により、No.2〜4がROOに特徴的なピーク、No.5〜10がEVOOに特徴的なピークであると考察した。   From comparison of each fluorescent fingerprint, no. Nos. 2 to 4 are peaks characteristic of ROO. 5-10 were considered to be characteristic peaks for EVOO.

(蛍光強度の測定)
上記分光蛍光光度計を用いて、10個のピークの波長(励起波長、蛍光波長)でEVOOとROOの含量比が既知の油脂組成物の蛍光強度を測定した。測定した油脂組成物は11種であり、その含量比は、EVOO:ROO=100:0、99:1、97.5:2.5、95:5、90:10、75:25、50:50、25:75、10:90、5:95、0:100である。なお、蛍光強度は、硫酸キニーネ補正をかけて求めた(以下、同様)。
(Measurement of fluorescence intensity)
Using the above spectrofluorometer, the fluorescence intensity of an oil / fat composition having a known content ratio of EVOO and ROO was measured at 10 peak wavelengths (excitation wavelength, fluorescence wavelength). The measured fat and oil composition was 11 kinds, and the content ratio was EVOO: ROO = 100: 0, 99: 1, 97.5: 2.5, 95: 5, 90:10, 75:25, 50: 50, 25:75, 10:90, 5:95, 0: 100. The fluorescence intensity was determined by correcting for quinine sulfate (hereinafter the same).

10個のピークのうちのNo.1を除くNo.2〜10の9個のピークについて、測定した蛍光強度を横軸とし、EVOOの濃度を縦軸として検量線を作成した。決定係数(R)はいずれも0.9以上となり、非常に良好な検量線を得ることができた。 No. of 10 peaks. No. 1 Calibration curves were prepared for 9 peaks from 2 to 10 with the measured fluorescence intensity as the horizontal axis and the EVOO concentration as the vertical axis. The determination coefficient (R 2 ) was 0.9 or more in all cases, and a very good calibration curve could be obtained.

No.1の励起波長(EX)300nm、蛍光波長(EM)325nmについては、EVOO濃度やROO濃度に依存せずに一定の蛍光強度を得られた。よって、油脂固有の蛍光強度と考え、検量線を描かなかった。   No. With an excitation wavelength (EX) of 300 nm and a fluorescence wavelength (EM) of 325 nm, a constant fluorescence intensity was obtained without depending on the EVOO concentration or the ROO concentration. Therefore, a calibration curve was not drawn considering that the fluorescence intensity was unique to the oil.

図3は、図2(a)に示すNo.2〜10のピークにおける励起波長(EX)と蛍光波長(EM)で測定した蛍光強度(横軸)とEVOO濃度(縦軸)との関係を示す検量線である。(a)〜(i)は、順にNo.2〜10のピークにおける検量線である。   FIG. 3 shows No. 1 shown in FIG. It is a calibration curve which shows the relationship between the fluorescence intensity (horizontal axis) and the EVOO concentration (vertical axis) measured by the excitation wavelength (EX) and the fluorescence wavelength (EM) at 2-10 peaks. (A)-(i) are No. in order. It is a calibration curve at 2-10 peaks.

上記分光蛍光光度計を用いて、選択した10個のうちのNo.1を除くNo.2〜9の9個のピークの波長(励起波長、蛍光波長)のいずれか1以上で判定対象の油脂組成物の蛍光強度を測定する。   Using the above spectrofluorometer, No. 10 out of 10 selected. No. 1 The fluorescence intensity of the oil / fat composition to be determined is measured at any one or more of 9 peak wavelengths (excitation wavelength, fluorescence wavelength) of 2 to 9.

(含量比の判定)
測定して得られる判定対象の油脂組成物の蛍光強度を上記検量線と比較することにより、判定対象の油脂組成物中の油脂Aと油脂Bの含量比を判定することができる。
(Determination of content ratio)
By comparing the fluorescence intensity of the determination target oil composition obtained by measurement with the calibration curve, the content ratio of the fat A and the fat B in the determination target oil composition can be determined.

(含量100質量%であるか否かの判定)
次に、油脂組成物中のEVOOの含量が100質量%であるか否かを以下の方法により判定した。
(Determination of whether the content is 100% by mass)
Next, whether or not the content of EVOO in the oil and fat composition was 100% by mass was determined by the following method.

図1の各蛍光指紋を比較してROOに特徴的な3個のピーク(No.2〜4)及びEVOOに特徴的な6個のピーク(No.5〜10)を選択した。   Each fluorescent fingerprint of FIG. 1 was compared, and three peaks (No. 2 to 4) characteristic for ROO and six peaks (No. 5 to 10) characteristic for EVOO were selected.

前述の分光蛍光光度計を用いてROOに特徴的な3個のピーク(No.2〜4)の波長(励起波長、蛍光波長)のうちの1以上でEVOOとROOの含量比が既知の油脂組成物の蛍光強度Aを測定し、かつEVOOに特徴的な6個のピーク(No.5〜10)の波長(励起波長、蛍光波長)のうちの1以上でEVOOとROOの含量比が既知の油脂組成物の蛍光強度Bを測定した。測定データは、図3の検量線の作成に用いた蛍光強度のデータを使用した。   Fats and oils whose content ratio of EVOO and ROO is known at one or more of the wavelengths (excitation wavelength, fluorescence wavelength) of the three peaks (No. 2 to 4) characteristic of ROO using the spectrofluorometer described above The fluorescence intensity A of the composition is measured, and the content ratio of EVOO and ROO is known at one or more of the wavelengths (excitation wavelength, fluorescence wavelength) of the six peaks (No. 5 to 10) characteristic of EVOO The fluorescence intensity B of the oil and fat composition was measured. As the measurement data, the fluorescence intensity data used to create the calibration curve of FIG. 3 was used.

「蛍光強度Bの合計値/蛍光強度Aの合計値」(判別式)で算出した値を判定値として検量線を作成した。なお、「蛍光強度Aの合計値/蛍光強度Bの合計値」(判別式)を算出して判定値とすることもできる。   A calibration curve was created using the value calculated by “total value of fluorescence intensity B / total value of fluorescence intensity A” (discriminant) as a determination value. It should be noted that “the total value of the fluorescence intensity A / the total value of the fluorescence intensity B” (discriminant) may be calculated and used as the determination value.

EVOOにおいてNo.4(EX360,EM400)はほとんど出ない蛍光強度であり、ROO(精製植物油)では検出される特徴的な蛍光強度であった。そこで、その点を考慮した判別式1〜4を作成した。   No. in EVOO 4 (EX360, EM400) was a fluorescence intensity that hardly appeared, and was a characteristic fluorescence intensity detected by ROO (refined vegetable oil). Therefore, discriminants 1 to 4 were created in consideration of this point.

判別式1:No.5〜10の波長で測定した蛍光強度Bの合計値/No.4の波長で測定した蛍光強度Aの合計値
判別式2:No.5〜10の波長で測定した蛍光強度Bの合計値/No.3〜4の波長で測定した蛍光強度Aの合計値
判別式3:No.5〜10の波長で測定した蛍光強度Bの合計値/No.2及び4の波長で測定した蛍光強度Aの合計値
判別式4:No.5〜10の波長で測定した蛍光強度Bの合計値/No.2〜4の波長で測定した蛍光強度Aの合計値
Discriminant 1: No. Total value of fluorescence intensity B measured at wavelengths of 5 to 10 / No. Total value of fluorescence intensity A measured at the wavelength of 4 Discriminant 2: No. Total value of fluorescence intensity B measured at wavelengths of 5 to 10 / No. Total value of fluorescence intensity A measured at wavelengths 3-4 Discriminant 3: No. Total value of fluorescence intensity B measured at wavelengths of 5 to 10 / No. Total value of fluorescence intensity A measured at wavelengths 2 and 4 Discriminant 4: No. Total value of fluorescence intensity B measured at wavelengths of 5 to 10 / No. Total value of fluorescence intensity A measured at wavelengths of 2-4

図4〜7は、それぞれ判別式1〜4で算出した判定値(横軸)とEVOO濃度(縦軸)との関係を示す検量線である。決定係数(R)はいずれも0.9以上となり、非常に良好な検量線を得ることができた。 4 to 7 are calibration curves showing the relationship between the judgment value (horizontal axis) calculated by discriminants 1 to 4 and the EVOO concentration (vertical axis), respectively. The determination coefficient (R 2 ) was 0.9 or more in all cases, and a very good calibration curve could be obtained.

参考までに図4の作成に使用したデータを表1に示す。   For reference, the data used in the creation of FIG. 4 is shown in Table 1.

図4の検量線より、判別式1での判定値200以上がEVOO100質量%であると判定できる。   From the calibration curve in FIG. 4, it can be determined that the determination value 200 or more in the discriminant 1 is EVOO 100 mass%.

図5の検量線より、判別式2での判定値41以上がEVOO100質量%であると判定できる。   From the calibration curve in FIG. 5, it can be determined that the determination value 41 or more in the discriminant 2 is EVOO 100 mass%.

図6の検量線より、判別式3での判定値26以上がEVOO100質量%であると判定できる。   From the calibration curve of FIG. 6, it can be determined that the determination value 26 or more in the discriminant 3 is EVOO 100 mass%.

図7の検量線より、判別式4での判定値17以上がEVOO100質量%であると判定できる。   From the calibration curve of FIG. 7, it can be determined that the determination value 17 or more in the discriminant 4 is EVOO 100 mass%.

判定対象の油脂組成物の上記判定値を算出して上記100質量%判定値(例えば、判別式1であれば200以上)と比較することにより、判定対象の油脂組成物中のEVOOの含量が100質量%であるか否かを判定できる。   By calculating the determination value of the oil / fat composition to be determined and comparing it to the 100% by mass determination value (for example, 200 or more for discriminant 1), the content of EVOO in the oil / fat composition to be determined is Whether it is 100% by mass or not can be determined.

判別式1を用い、単一食用油での判定値を算出したところ、表2に示す通りであった。   The discriminant 1 was used to calculate the judgment value for a single edible oil, which was as shown in Table 2.

EVOOの判定値はいずれも200以上、その他の食用油脂の判定値は200未満であり、判別式1の有効性を確認することができた。なお、EVOOとして販売されているにもかかわらず判定値が200未満となる場合には、他油種がコンタミネーションしたものである可能性が高い。すなわち、判別式1はまがい物であるか否かの判定にも有効である。   The EVOO determination values were all 200 or more, and the determination values of other edible oils and fats were less than 200, and the effectiveness of discriminant 1 could be confirmed. If the judgment value is less than 200 despite being sold as EVOO, there is a high possibility that other oil types have been contaminated. That is, the discriminant 1 is also effective for determining whether or not it is a fake object.

また、海外製品における混合食用油としてクッキングオイル(ベトナム製品)について調べた結果、判定値は0.028であり、200未満となり、判別式1の有効性を確認することができた。   Moreover, as a result of examining cooking oil (Vietnamese product) as a mixed edible oil in overseas products, the judgment value was 0.028, which was less than 200, and the effectiveness of discriminant 1 could be confirmed.

次に、スペイン産EVOOに他の食用油を1質量%混合させたコンタミネーション品を作成し、判別式1にて判別できるのか調べた。結果を表3に示す。   Next, a contamination product in which 1% by mass of other edible oil was mixed with Spanish EVOO was prepared, and it was examined whether it could be discriminated by discriminant 1. The results are shown in Table 3.

表3に示した通り、いずれの検体も200未満となり、EVOO100質量%品ではないと判別することができた。本結果から、EVOO以外の油種が1質量%コンタミネーションしていても首尾よく判定でき、判別式1は精度の高いものと判断された。   As shown in Table 3, all specimens were less than 200, and it was possible to determine that they were not EVOO 100% by mass. From this result, even if oil types other than EVOO were contaminated by 1% by mass, it could be judged successfully, and discriminant 1 was judged to be highly accurate.

オリーブオイルの規格はIOC(国際オリーブ協会)及びEU規格で定められており、紫外線吸光度K232(2.5以下)、K270(0.22以下)、ΔK(0.01以下)で特徴を決定づけている。しかし、紫外線吸光度では、以下の通りであった。
・EVOOにマカダミアナッツオイルがコンタミネーションした場合は、見破れない。
・EVOOにROOがコンタミネーションした場合は、ROOが50%以上含まれていないとコンタミネーションしていることがわからない。
・EVOOに精製ひまわり油がコンタミネーションした場合は、精製ひまわり油が50%以上含まれていないとコンタミネーションしていることがわからない。
・EVOOにヘーゼルナッツオイルがコンタミネーションした場合は、ヘーゼルナッツオイルが10%以上含まれていないとコンタミネーションしていることがわからない。
・EVOOに精製綿実油がコンタミネーションした場合は、精製綿実油5%以上含まれていないとコンタミネーションしていることがわからない。
以上より、判別式1は、同じ非破壊分析の紫外線吸光度と異なり、より良い精度で判別できるものであることがわかった。
The specifications of olive oil are determined by IOC (International Olive Association) and EU standards, and the characteristics are determined by ultraviolet absorbance K232 (2.5 or less), K270 (0.22 or less), and ΔK (0.01 or less). However, the ultraviolet absorbance was as follows.
・ If macadamia nut oil is contaminated with EVOO, it cannot be seen.
-If ROO is contaminated in EVOO, it is not known that it is contaminated unless ROO is contained in 50% or more.
・ If refined sunflower oil is contaminated in EVOO, it cannot be confirmed that the refined sunflower oil does not contain 50% or more.
・ When hazelnut oil is contaminated in EVOO, it is not known that it is contaminated unless 10% or more of hazelnut oil is contained.
・ If refined cottonseed oil is contaminated in EVOO, it cannot be known that it is contaminated unless 5% or more of refined cottonseed oil is contained.
From the above, it was found that the discriminant 1 can be discriminated with better accuracy, unlike the ultraviolet absorbance of the same nondestructive analysis.

前述の判別式2〜4についても判別式1と同様に精度の高いものと判断された。   The above discriminants 2 to 4 were determined to be highly accurate as in discriminant 1.

〔実施例2〕
(蛍光指紋の測定)
食用大豆油(精製大豆油:日清オイリオグループ株式会社製)及び/又は食用菜種油(精製キャノーラ油:日清オイリオグループ株式会社製)からなる油脂組成物の蛍光指紋を分光蛍光光度計(商品名:F−7000、株式会社日立ハイテクサイエンス社製)により測定した。測定結果を図8に示す。
[Example 2]
(Measurement of fluorescent fingerprint)
Fluorescent fingerprint of oil composition consisting of edible soybean oil (refined soybean oil: Nisshin Oillio Group Co., Ltd.) and / or edible rapeseed oil (refined canola oil: Nisshin Oillio Group Co., Ltd.) : F-7000, manufactured by Hitachi High-Tech Science Corporation). The measurement results are shown in FIG.

図8は、種々の含量比の食用大豆油と食用菜種油とからなる油脂組成物の蛍光指紋である。各図の油脂組成物の含量比(食用大豆油:食用菜種油)は、(a)は0:100、(b)は1:99、(c)は2:98、(d)は10:90、(e)は20:80、(f)は50:50、(g)は80:20、(h)は90:10、(i)は95:5、(j)は98:2、(k)は99:1、(l)は100:0である。   FIG. 8 shows fluorescent fingerprints of an oil / fat composition comprising edible soybean oil and edible rapeseed oil in various content ratios. The content ratio (edible soybean oil: edible rapeseed oil) of the oil and fat composition in each figure is as follows: (a) 0: 100, (b) 1:99, (c) 2:98, (d) 10:90. , (E) is 20:80, (f) is 50:50, (g) is 80:20, (h) is 90:10, (i) is 95: 5, (j) is 98: 2, ( k) is 99: 1 and (l) is 100: 0.

また、各油脂組成物について25℃における屈折率(RI)を屈折計(京都電子工業株式会社製)により測定した結果も図8に示す。   Moreover, the result of having measured the refractive index (RI) in 25 degreeC about each oil-fat composition with the refractometer (made by Kyoto Electronics Industry Co., Ltd.) is also shown in FIG.

図8から得られた情報より特徴的な蛍光強度を調査した。調査方法は、食用菜種油100%の蛍光強度から食用大豆油100%の蛍光強度を差し引いた結果から勘案した。その結果、食用大豆と食用菜種で異なる蛍光指紋を示している励起波長(EX)250〜350、蛍光波長(EM)250〜600における範囲にて検量線を求めることとした。   The characteristic fluorescence intensity was investigated from the information obtained from FIG. The investigation method was considered from the result of subtracting the fluorescence intensity of 100% edible soybean oil from the fluorescence intensity of 100% edible rapeseed oil. As a result, the calibration curve was determined in the ranges of excitation wavelengths (EX) 250 to 350 and fluorescence wavelengths (EM) 250 to 600 showing different fluorescence fingerprints for edible soybeans and edible rapeseed.

図9は、図8(a)、(f)、(l)の蛍光指紋において、食用大豆油と食用菜種油に特徴的なピークが見られる励起波長(EX)250〜350、蛍光波長(EM)250〜600の範囲(図の斜線部分)を示す図である。   FIG. 9 shows excitation wavelengths (EX) 250 to 350 and fluorescence wavelengths (EM) in which peaks characteristic to edible soybean oil and edible rapeseed oil are observed in the fluorescent fingerprints of FIGS. 8 (a), (f), and (l). It is a figure which shows the range (shaded part of a figure) of 250-600.

得られた食用菜種油100%の蛍光強度から食用大豆油100%の蛍光強度を引いた結果、またはその逆から求めた結果から検量線を描く。図10に示したのは一部の結果であり、食用菜種油と食用大豆油の各配合(%)から蛍光強度をプロットして得られた検量線である。本事例を基に、他の蛍光強度にて検量線を描き、配合割合を求めることが可能である。   A calibration curve is drawn from the result obtained by subtracting the fluorescence intensity of 100% edible soybean oil from the fluorescence intensity of 100% edible rapeseed oil, or the result obtained from the opposite. FIG. 10 shows a part of the results, and is a calibration curve obtained by plotting the fluorescence intensity from each blend (%) of edible rapeseed oil and edible soybean oil. Based on this example, it is possible to draw a calibration curve at other fluorescence intensities and obtain the blending ratio.

図10は、励起波長(EX)285nm、蛍光波長(EM)330nmで測定した蛍光強度(横軸)と食用大豆油濃度(縦軸)との関係を示す検量線である。   FIG. 10 is a calibration curve showing the relationship between fluorescence intensity (horizontal axis) and edible soybean oil concentration (vertical axis) measured at an excitation wavelength (EX) of 285 nm and a fluorescence wavelength (EM) of 330 nm.

一例として挙げた図10の検量線においては、蛍光強度<57.1の場合は食用大豆油100%、蛍光強度93.8<の場合には食用菜種油100%と判断することができる。   In the calibration curve of FIG. 10 given as an example, it can be determined that the edible soybean oil is 100% when the fluorescence intensity is <57.1, and the edible rapeseed oil is 100% when the fluorescence intensity is 93.8 <.

食用菜種油5検体及び食用大豆油5検体について、前述の分光蛍光光度計を用いて励起波長285nm、蛍光波長330nmにて硫酸キニーネ補正をかけた蛍光強度を求めた。当該蛍光強度及び図10の検量線からの結果を表4に示した。   For five edible rapeseed oil samples and five edible soybean oil samples, the fluorescence intensity was subjected to quinine sulfate correction at an excitation wavelength of 285 nm and a fluorescence wavelength of 330 nm using the above-described spectrofluorometer. The fluorescence intensity and the results from the calibration curve in FIG. 10 are shown in Table 4.

表4に示す結果より、図10の検量線は概ね良好な検量線であることがわかった。なお、本結果に囚われることなく、n数を増やすことでさらに良好な検量線を得ることが可能である。   From the results shown in Table 4, it was found that the calibration curve in FIG. 10 was generally a good calibration curve. It should be noted that a better calibration curve can be obtained by increasing the number of n without being bound by this result.

次に、図10の検量線から食用調合油(食用大豆油80%、食用菜種油20%)について、前述の分光蛍光光度計を用いて励起波長285nm、蛍光波長330nmにて硫酸キニーネ補正をかけた蛍光強度を求めた。当該蛍光強度と、図10の検量線からの結果を表5に示した。   Next, from the calibration curve of FIG. 10, edible blended oil (edible soybean oil 80%, edible rapeseed oil 20%) was subjected to quinine sulfate correction at an excitation wavelength of 285 nm and a fluorescence wavelength of 330 nm using the aforementioned spectrofluorometer. The fluorescence intensity was determined. Table 5 shows the fluorescence intensity and the results from the calibration curve in FIG.

表5に示す結果より、図10の検量線は概ね良好な検量線であることがわかった。   From the results shown in Table 5, it was found that the calibration curve in FIG. 10 is a generally good calibration curve.


なお、本発明は、上記実施の形態及び実施例に限定されず種々に変形実施が可能である。

In addition, this invention is not limited to the said embodiment and Example, A various deformation | transformation implementation is possible.

1:油脂A、2:油脂B、3:混合油C
10:インライン式混合装置
11:油導入管、11A,11B:流入口
12:スタティックミキサー、13:油送管、14:分光蛍光光度計
20:バッチ式混合装置
21:撹拌槽、22:攪拌機、23:モーター
1: Oil and fat A, 2: Oil and fat B, 3: Mixed oil C
10: In-line type mixing apparatus 11: Oil introduction pipe, 11A, 11B: Inlet 12: Static mixer, 13: Oil feeding pipe, 14: Spectrofluorometer 20: Batch type mixing apparatus 21: Stirrer tank, 22: Stirrer, 23: Motor

Claims (11)

油脂A、油脂B、及び前記油脂Aと前記油脂Bとを含む油脂組成物から選ばれる2つ以上を、分光蛍光光度計を用いて、励起波長250〜700nmの全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して得られた各蛍光指紋を比較して前記油脂A及び/又は前記油脂Bに特徴的な1個以上のピークを選択し、分光蛍光光度計を用いて1個以上の前記ピークの波長(励起波長、蛍光波長)で判定対象の油脂組成物の蛍光強度を測定することにより、前記判定対象の油脂組成物中の前記油脂A及び/又は前記油脂Bの含量割合を判定する油脂組成物の判定方法。   Two or more selected from fats and oils A, fats and oils B, and fats and oils compositions containing the fats and oils A and the fats and oils B are excited with all or part of the excitation wavelength of 250 to 700 nm using a spectrofluorimeter, One or more peaks characteristic of the fats and oils A and / or the fats and oils B are selected by comparing fluorescent fingerprints obtained by measuring all or part of the fluorescence wavelength of 250 to 800 nm, and a spectrofluorometer Is used to measure the fluorescence intensity of the determination target oil / fat composition at one or more wavelengths of the peak (excitation wavelength, fluorescence wavelength), thereby determining the fat / oil A and / or the determination target oil / fat composition. The determination method of the fat and oil composition which determines the content ratio of the fat and oil B. 分光蛍光光度計を用いて1個以上の前記ピークの波長(励起波長、蛍光波長)で前記油脂Aと前記油脂Bの含量割合が既知の油脂組成物の蛍光強度を測定し、当該蛍光強度を横軸又は縦軸とし、前記油脂Aの濃度を縦軸又は横軸として検量線を作成し、前記判定対象の油脂組成物の前記蛍光強度を前記検量線と比較することにより、前記判定対象の油脂組成物中の前記油脂Aと前記油脂Bの含量割合を判定することを特徴とする請求項1に記載の油脂組成物の判定方法。   Using a spectrofluorometer, the fluorescence intensity of an oil / fat composition with a known content ratio of the oil / fat A and the oil / fat B is measured at one or more wavelengths of the peak (excitation wavelength, fluorescence wavelength). Create a calibration curve with the horizontal axis or vertical axis, the concentration of the fat A as the vertical axis or horizontal axis, and compare the fluorescence intensity of the determination target oil composition with the calibration curve. The determination method of the oil-fat composition according to claim 1, wherein the content ratio of the oil-fat A and the oil-fat B in the oil-fat composition is determined. 前記油脂Aが未精製植物油であり、前記油脂Bが精製植物油であることを特徴とする請求項1又は請求項2に記載の油脂組成物の判定方法。   The said fats and oils A are unrefined vegetable oil, The said fats and oils B are refined vegetable oils, The determination method of the oil-fat composition of Claim 1 or Claim 2 characterized by the above-mentioned. 前記油脂A及び前記油脂Bが、精製植物油であることを特徴とする請求項1又は請求項2に記載の油脂組成物の判定方法。   The said fats and oils A and the said fats and oils B are refined vegetable oils, The determination method of the fats and oils composition of Claim 1 or Claim 2 characterized by the above-mentioned. 前記各蛍光指紋を比較して前記油脂Aに特徴的な1個以上のピーク及び前記油脂Bに特徴的な1個以上のピークを選択し、分光蛍光光度計を用いて前記油脂Aに特徴的な1個以上の前記ピークの波長(励起波長、蛍光波長)のうちの1以上で前記油脂Aと前記油脂Bの含量割合が既知の油脂組成物の蛍光強度Aを測定し、かつ前記油脂Bに特徴的な1個以上の前記ピークの波長(励起波長、蛍光波長)のうちの1以上で前記油脂Aと前記油脂Bの含量割合が既知の油脂組成物の蛍光強度Bを測定し、「蛍光強度Aの合計値/蛍光強度Bの合計値」の比率又は「蛍光強度Bの合計値/蛍光強度Aの合計値」の比率を判定値として算出して検量線を作成し、前記油脂Aの含量比が100質量%であると判定できる100質量%判定値を求め、前記判定対象の油脂組成物の前記判定値を算出して前記100質量%判定値と比較することにより、前記判定対象の油脂組成物中の前記油脂Aの含量が100質量%であるか否かを判定することを特徴とする請求項1に記載の油脂組成物の判定方法。   One or more peaks characteristic of the oil and fat A and one or more peaks characteristic of the oil and fat B are selected by comparing the fluorescent fingerprints, and the oil and fat A is characterized using a spectrofluorimeter. And measuring the fluorescence intensity A of the fat composition having a known content ratio of the fat A and the fat B at one or more of the one or more wavelengths of the peak (excitation wavelength, fluorescence wavelength), and the fat B The fluorescence intensity B of an oil / fat composition having a known content ratio of the oil / fat A and the oil / fat B at one or more of the one or more wavelengths (excitation wavelength, fluorescence wavelength) characteristic of A calibration curve is prepared by calculating a ratio of “total value of fluorescence intensity A / total value of fluorescence intensity B” or a ratio of “total value of fluorescence intensity B / total value of fluorescence intensity A” as the determination value, and the fat A The content ratio of 100% by mass can be determined as 100% by mass, By calculating the determination value of the target oil / fat composition and comparing it with the 100% by mass determination value, it is determined whether the content of the oil / fat A in the determination target oil / fat composition is 100% by mass. The method for determining an oil or fat composition according to claim 1, wherein the determination is performed. 油脂Aを、分光蛍光光度計を用いて、励起波長250〜700nm全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して得られた第1の蛍光指紋と、前記第1の蛍光指紋の測定条件と同条件で測定して得られる判定対象の油脂組成物の第2の蛍光指紋とを比較することにより、前記油脂組成物が前記油脂Aのみからなるか否かを判定する油脂組成物の判定方法。   The first fluorescent fingerprint obtained by exciting the fat / oil A with all or part of the excitation wavelength of 250 to 700 nm using a spectrofluorometer, and measuring all or part of the fluorescence wavelength of 250 to 800 nm, Whether or not the oil / fat composition comprises only the oil / fat A by comparing the second fluorescent fingerprint of the oil / fat composition to be determined obtained by measuring under the same conditions as the measurement conditions of the first fluorescent fingerprint The determination method of the oil-fat composition which determines. 前記油脂Aが精製植物油であることを特徴とする請求項6に記載の油脂組成物の判定方法。   The method for determining an oil / fat composition according to claim 6, wherein the oil / fat A is a refined vegetable oil. 油脂Aと油脂Bとを所望の含量割合となるように添加し、混合装置により混合して油脂組成物を得る混合工程と、
前記油脂A及び/又は前記油脂Bに特徴的な1個以上のピークの蛍光強度を測定することにより、前記油脂組成物中の前記油脂Aと前記油脂Bの含量割合を判定する判定工程と、
前記判定された含量割合が前記所望の含量割合を外れている場合に、前記混合工程において、前記所望の含量割合を下回っている方の油脂の添加量を増やす、及び/又は前記所望の含量割合を超えている方の油脂の添加量を減らす調整工程を有することを特徴とする油脂組成物の製造方法。
Oil and fat A and fat B are added so as to have a desired content ratio, mixed by a mixing device to obtain an oil and fat composition,
A determination step of determining a content ratio of the fat A and the fat B in the fat composition by measuring fluorescence intensity of one or more peaks characteristic of the fat A and / or the fat B;
In the case where the determined content ratio is out of the desired content ratio, in the mixing step, the amount of oil or fat that is less than the desired content ratio is increased, and / or the desired content ratio The manufacturing method of the oil-fat composition characterized by having the adjustment process which reduces the addition amount of the fats and oils which exceed this.
油脂Aと油脂Bとを所望の含量割合となるように添加し、混合装置により混合して油脂組成物を得る混合工程と、
下記判定方法を用いて前記油脂組成物中の前記油脂Aと前記油脂Bの含量割合を判定する判定工程と、
前記判定された含量割合が前記所望の含量割合を外れている場合に、前記混合工程において、前記所望の含量割合を下回っている方の油脂の添加量を増やす、及び/又は前記所望の含量割合を超えている方の油脂の添加量を減らす調整工程を有することを特徴とする油脂組成物の製造方法。
判定方法:油脂A、油脂B、及び前記油脂Aと前記油脂Bとを含む油脂組成物から選ばれる2つ以上を、分光蛍光光度計を用いて、励起波長250〜700nmの全部あるいは一部で励起させ、蛍光波長250〜800nmの全部あるいは一部を測定して得られた各蛍光指紋を比較して前記油脂A及び/又は前記油脂Bに特徴的な1個以上のピークを選択し、分光蛍光光度計を用いて1個以上の前記ピークの波長(励起波長、蛍光波長)で判定対象の油脂組成物の蛍光強度を測定することにより、前記判定対象の油脂組成物中の前記油脂A及び/又は前記油脂Bの含量割合を判定する。
Oil and fat A and fat B are added so as to have a desired content ratio, mixed by a mixing device to obtain an oil and fat composition,
A determination step of determining a content ratio of the fat A and the fat B in the fat composition using the following determination method;
In the case where the determined content ratio is out of the desired content ratio, in the mixing step, the amount of oil or fat that is less than the desired content ratio is increased, and / or the desired content ratio The manufacturing method of the oil-fat composition characterized by having the adjustment process which reduces the addition amount of the fats and oils which exceed this.
Judgment method: Two or more selected from fat and oil composition containing fat and oil A, fat and oil B, and the fat and oil A and the fat and oil B, using a spectrofluorimeter, all or part of the excitation wavelength of 250 to 700 nm. One or more peaks characteristic of the fats and oils A and / or the fats and oils B are selected by comparing each fluorescent fingerprint obtained by exciting and measuring all or part of the fluorescence wavelength of 250 to 800 nm, By measuring the fluorescence intensity of the oil composition to be determined at one or more wavelengths of the peak (excitation wavelength, fluorescence wavelength) using a fluorometer, the fat A and oil A in the oil composition to be determined and / Or the content ratio of the said fats and oils B is determined.
前記判定方法が、分光蛍光光度計を用いて1個以上の前記ピークの波長(励起波長、蛍光波長)で前記油脂Aと前記油脂Bの含量割合が既知の油脂組成物の蛍光強度を測定し、当該蛍光強度を横軸又は縦軸とし、前記油脂Aの濃度を縦軸又は横軸として検量線を作成し、前記判定対象の油脂組成物の前記蛍光強度を前記検量線と比較することにより、前記判定対象の油脂組成物中の前記油脂Aと前記油脂Bの含量割合を判定することを特徴とする請求項9に記載の油脂組成物の製造方法。   The determination method uses a spectrofluorometer to measure the fluorescence intensity of an oil / fat composition having a known content ratio of the oil / fat A and the oil / fat B at one or more wavelengths of the peak (excitation wavelength, fluorescence wavelength). By creating a calibration curve with the fluorescence intensity as the horizontal axis or the vertical axis, and the concentration of the fat or oil A as the vertical axis or the horizontal axis, and comparing the fluorescence intensity of the determination target oil composition with the calibration curve The method for producing an oil / fat composition according to claim 9, wherein a content ratio of the oil / fat A and the oil / fat B in the oil / fat composition to be determined is determined. 前記混合装置が、インライン式混合装置又はバッチ式混合装置であることを特徴とする請求項8〜10のいずれか一項に記載の油脂組成物の製造方法。   The said mixing apparatus is an in-line type mixing apparatus or a batch type mixing apparatus, The manufacturing method of the oil-fat composition as described in any one of Claims 8-10 characterized by the above-mentioned.
JP2017029392A 2017-02-20 2017-02-20 Method for determining fat and oil composition and method for producing fat and oil composition Active JP6817844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029392A JP6817844B2 (en) 2017-02-20 2017-02-20 Method for determining fat and oil composition and method for producing fat and oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029392A JP6817844B2 (en) 2017-02-20 2017-02-20 Method for determining fat and oil composition and method for producing fat and oil composition

Publications (2)

Publication Number Publication Date
JP2018136151A true JP2018136151A (en) 2018-08-30
JP6817844B2 JP6817844B2 (en) 2021-01-20

Family

ID=63366793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029392A Active JP6817844B2 (en) 2017-02-20 2017-02-20 Method for determining fat and oil composition and method for producing fat and oil composition

Country Status (1)

Country Link
JP (1) JP6817844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235158A1 (en) * 2020-05-19 2021-11-25 コニカミノルタ株式会社 Fluorescent fingerprint image acquisition device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038878A (en) * 1996-07-30 1998-02-13 Zenkoku Sekiyu Kyokai Quantitative testing method of peripheral oil kind in light oil
JPH10128094A (en) * 1996-10-31 1998-05-19 Dainippon Screen Mfg Co Ltd Chemical treating device for substrate
JP2009198124A (en) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil
JP2009216525A (en) * 2008-03-10 2009-09-24 Nippon Steel Corp Management method of factory wastewater treatment
JP2010185719A (en) * 2009-02-10 2010-08-26 National Agriculture & Food Research Organization Method and apparatus for discriminating grain flour
WO2014181209A1 (en) * 2013-05-06 2014-11-13 Koninklijke Philips N.V. Method and device for measuring quality and freshness of vegetable oil using fluorescence spectrophotometry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038878A (en) * 1996-07-30 1998-02-13 Zenkoku Sekiyu Kyokai Quantitative testing method of peripheral oil kind in light oil
JPH10128094A (en) * 1996-10-31 1998-05-19 Dainippon Screen Mfg Co Ltd Chemical treating device for substrate
JP2009198124A (en) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil
JP2009216525A (en) * 2008-03-10 2009-09-24 Nippon Steel Corp Management method of factory wastewater treatment
JP2010185719A (en) * 2009-02-10 2010-08-26 National Agriculture & Food Research Organization Method and apparatus for discriminating grain flour
WO2014181209A1 (en) * 2013-05-06 2014-11-13 Koninklijke Philips N.V. Method and device for measuring quality and freshness of vegetable oil using fluorescence spectrophotometry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
堀込純: "F-7000形分光蛍光光度計を用いた蛍光指紋による食品分析技術", THE HITACHI SCIENTIFIC INSTRUMENT NEWS, vol. 58, no. 1, JPN6020015293, March 2015 (2015-03-01), pages 4982 - 4988, ISSN: 0004259166 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235158A1 (en) * 2020-05-19 2021-11-25 コニカミノルタ株式会社 Fluorescent fingerprint image acquisition device

Also Published As

Publication number Publication date
JP6817844B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
Gurdeniz et al. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data
CN106198467B (en) Method for replicating liquid blends and identifying ratios of liquid components thereof
CN106706609A (en) Method for quickly detecting metal ions on site based on smartphone
An et al. A simple and practical method for determining iodine values of oils and fats by the FTIR spectrometer with an infrared quartz cuvette
CN106153601A (en) A kind of method based on SERS detection grease oxide in trace quantities since
JP2018136151A (en) Determination method and production method for oil and fat composition
CN106323942A (en) Fast detecting method of grease peroxidation value
Miller-Ihli Graphite furnace atomic absorption spectrometry for the analysis of biological materials
CN104316486A (en) Method for rapidly screening unqualified vegetable oil
CN104949947A (en) Rapid edible oil quality detection method
Yu et al. Automated and simultaneous determination of free fatty acids and peroxide values in edible oils by FTIR spectroscopy using spectral reconstitution
GB2526166A (en) Method for determining the concentration of iron ions in hydrocarbon compositions
Kruatian et al. Simple spectrophotometric method for determination of iodine value of vegetable oils
CN102507485A (en) Nondestructive testing method for pigment content of color wheat grain
CN110672570A (en) Tea oil identification method based on three-dimensional fluorescence spectrum of vegetable oil
Kruatian et al. Greener analytical method for determination of iodine number of edible oils.
CN105466900A (en) Method for quantitatively identifying whether olive oil is mixed with corn oil or not by adopting fluorescence emission spectroscopy
Fedosov et al. Microtitration of free fatty acids in oil and biodiesel samples using absorbance and/or fluorescence of pyranine
de Oliveira et al. Methods for the determination of As, Cd, and Pb in potato slurry using multivariate optimization and graphite furnace atomic absorption spectrometry
CN105418629B (en) A kind of Rhodamine Derivatives as pH probes application
CN103614469B (en) Plant source protein composition discrimination method in a kind of raw dairy and milk
Dobrinas et al. Nitrite determination in spices
Van den Eede et al. Validation of a double competitive polymerase chain reaction method for the quantification of GMOs in raw materials
Lenert et al. Comparative quality assessment of peanut and peanut-flaxseed oil
Yip et al. Assessing laboratory performance in intercomparisons for inorganic analysis

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201225

R150 Certificate of patent or registration of utility model

Ref document number: 6817844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250