JP2009198124A - Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil - Google Patents

Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil Download PDF

Info

Publication number
JP2009198124A
JP2009198124A JP2008042047A JP2008042047A JP2009198124A JP 2009198124 A JP2009198124 A JP 2009198124A JP 2008042047 A JP2008042047 A JP 2008042047A JP 2008042047 A JP2008042047 A JP 2008042047A JP 2009198124 A JP2009198124 A JP 2009198124A
Authority
JP
Japan
Prior art keywords
fuel
oil
mixed oil
mixed
mixing ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008042047A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takeda
一弘 竹田
Shigenobu Maniwa
繁信 真庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008042047A priority Critical patent/JP2009198124A/en
Publication of JP2009198124A publication Critical patent/JP2009198124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Control Of Combustion (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel monitoring device, a boiler facility, and a mixing ratio determining method for fuel oil quickly measuring the mixing ratio of palm stearin oil and C heavy oil. <P>SOLUTION: The fuel monitoring device 10A has a mixed fuel extracting passage 12 extracting one part of mixed fuel 11 comprised of adding the C heavy oil to the palm stearin oil, a mixed fuel adjusting device 13 adjusting the extracted mixed fuel into a sample for measurement, a fuel mixing ratio measuring device 14 interposed in the mixed fuel extracting passage 12 to measure a mixing ratio of the palm stearin oil and the C heavy oil in the mixed fuel 11 adjusted by the mixed fuel adjusting device 13, and a mixed fuel extracting pump 15 continuously supplying the mixed fuel 11 to the fuel mixing ratio measuring device 14. By continuously supplying the extracted mixed fuel 11 to the fuel mixing ratio measuring device 14 via the mixed oil extracting passage 12, the mixing ratio of the palm stearin oil and the C heavy oil in the mixed fuel 11 can be continuously measured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、混合油のパームステアリン油とC重油との混合比を測定する燃料監視装置、ボイラ設備、燃料油の混合比判定方法に関する。   The present invention relates to a fuel monitoring device, a boiler facility, and a fuel oil mixture ratio determination method for measuring a mixture ratio of palm stearin oil and C heavy oil as a mixed oil.

近年、石油価格の高騰、化石燃料の枯渇、排ガス中のSOx等の有害物質が少ない等からバイオ燃料が注目されている。発電用ボイラとして、パームステアリン油とC重油とを例えば3:7の割合で混合した混合油を燃料油として用いるものがある。パームステアリン油とC重油とは各々の燃料タンクから各々の燃料油の混合比に応じて一定量供給され、パームステアリン油とC重油との混合油は配管内で混合され、ボイラに供給される。   In recent years, biofuels have attracted attention because of rising oil prices, depletion of fossil fuels, and small amounts of harmful substances such as SOx in exhaust gas. Some power generation boilers use, as fuel oil, a mixed oil obtained by mixing palm stearin oil and C heavy oil in a ratio of, for example, 3: 7. A certain amount of palm stearin oil and C heavy oil is supplied from each fuel tank according to the mixing ratio of each fuel oil, and mixed oil of palm stearin oil and C heavy oil is mixed in the pipe and supplied to the boiler. .

また、パームステアリン油とC重油との混合油の混合比を測定する際、バッチ式で行われ、一般に浮き式比重計を用いて浮きばかり(浮ひょう)により混合油の比重を測定するようにしている。浮き式比重計を用いた浮きばかり法は、浮力から比重を測定する方法であり、所定の浮きばかりを液体試料に浮かせ、メニスカスと一致する浮きばかりの目盛りを読み、混合油の混合比の測定を行うようにしている(非特許文献1、参照)。   Moreover, when measuring the mixing ratio of the mixed oil of palm stearin oil and C heavy oil, it is carried out by a batch method, and the specific gravity of the mixed oil is generally measured by floating (floating) using a floating hydrometer. ing. The float-only method using a float-type hydrometer is a method that measures specific gravity from buoyancy, floats a given float on a liquid sample, reads the scale of the float that matches the meniscus, and measures the mixing ratio of the mixed oil (See Non-Patent Document 1).

測定の工程図を図11に、浮き式比重計の概略図を図12に示す。図11、12に示すように、混合油101の一部を採取し(ステップ11)、例えば約400mlの混合油101を500ml用のメスシリンダ102に入れ(ステップ12)、混合油101の温度を測定する(ステップ13)。そして、図12に示すような浮き式比重計103を用いて比重読み取り値104から混合油101の比重を測定する(ステップ14)。   A measurement process diagram is shown in FIG. 11, and a schematic diagram of a floating hydrometer is shown in FIG. As shown in FIGS. 11 and 12, a part of the mixed oil 101 is collected (step 11), for example, about 400 ml of the mixed oil 101 is put into a 500 ml measuring cylinder 102 (step 12), and the temperature of the mixed oil 101 is set. Measure (Step 13). Then, the specific gravity of the mixed oil 101 is measured from the specific gravity reading 104 using a floating hydrometer 103 as shown in FIG. 12 (step 14).

日本工業規格JIS K2249(原油及び石油製品−密度試験方法及び密度・質量・容量換算表)Japanese Industrial Standards JIS K2249 (crude oil and petroleum products-density test method and density / mass / capacity conversion table)

しかしながら、発電用ボイラの燃料油として混合油を用いる場合には、パームステアリン油とC重油との混合比が連続的に監視できない場合、必要な空気量、熱負荷などの燃焼制御が困難となり、安定な燃焼条件を保持することができない、という問題がある。   However, when using mixed oil as fuel oil for power generation boilers, if the mixing ratio of palm stearin oil and C heavy oil cannot be continuously monitored, it becomes difficult to control combustion such as the required air amount and heat load, There is a problem that stable combustion conditions cannot be maintained.

また、パームステアリン油及びC重油の一般性状は、図13に示すようにパームステアリン油及びC重油の比重は大きな差が無い(例えば、15℃でパームステアリン油:約0.9113、C重油:約0.9525)ため、浮き式比重計で測定できる比重の精度を考慮すると、浮き式比重計から混合油の混合比を求めるのは非常に困難である、という問題がある。   In addition, the general properties of palm stearin oil and C heavy oil are not much different in specific gravity between palm stearin oil and C heavy oil as shown in FIG. 13 (for example, palm stearin oil: about 0.9113 at 15 ° C., C heavy oil: Therefore, there is a problem that it is very difficult to obtain the mixing ratio of the mixed oil from the floating hydrometer in consideration of the accuracy of the specific gravity that can be measured with the floating hydrometer.

また、混合油の比重の測定を行う際には、試料採取から比重を測定するまでの分析に時間を要し、結果を迅速に運転側にフィードバックできない、という問題がある。   Further, when measuring the specific gravity of the mixed oil, there is a problem that it takes time from the sampling to the measurement of the specific gravity, and the result cannot be quickly fed back to the driving side.

本発明は、前記問題に鑑み、パームステアリン油とC重油との混合比を迅速に測定する燃料監視装置、ボイラ設備、燃料油の混合比判定方法を提供することを課題とする。   This invention makes it a subject to provide the fuel monitoring apparatus which measures the mixing ratio of palm stearin oil and C heavy oil rapidly, boiler equipment, and the mixing ratio determination method of fuel oil in view of the said problem.

上述した課題を解決するため本発明の第1の発明は、重油系燃料に添加燃料を添加してなる混合油の一部を抜き出す混合油抜出し通路と、抜出した混合油を測定用に調整する混合油調整装置と、該混合油調整装置で調整された混合油中の前記添加燃料と前記重油系燃料との混合比を測定する前記混合油抜出し通路に介装された燃料混合比測定装置と、前記燃料混合比測定装置に前記混合油を連続的に供給する混合油供給手段とを有することを特徴とする燃料監視装置にある。   In order to solve the above-described problems, the first invention of the present invention is configured to adjust the extracted mixed oil for measurement, and a mixed oil extraction passage for extracting a part of the mixed oil obtained by adding the added fuel to the heavy oil fuel. A mixed oil adjusting device, and a fuel mixture ratio measuring device interposed in the mixed oil extraction passage for measuring a mixing ratio between the added fuel and the heavy oil fuel in the mixed oil adjusted by the mixed oil adjusting device; And a mixed oil supply means for continuously supplying the mixed oil to the fuel mixture ratio measuring device.

第2の発明は、第1の発明において、前記燃料混合比測定装置が、前記混合油を収容する液体セルと、前記液体セルに赤外線を照射する赤外線照射装置と、前記混合油により吸収された赤外波長を検出する検出器とを有することを特徴とする燃料監視装置にある。   According to a second aspect, in the first aspect, the fuel mixture ratio measuring device is absorbed by the liquid oil that contains the mixed oil, the infrared irradiation device that irradiates the liquid cell with infrared rays, and the mixed oil. A fuel monitoring apparatus having a detector for detecting an infrared wavelength.

第3の発明は、第1又は2の発明において、抜出した混合油を検出することで得られた前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料監視装置にある。   A third invention is characterized in that, in the first or second invention, the mixing ratio of the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil obtained by detecting the extracted mixed oil. In the fuel monitoring device.

第4の発明は、第2又は3の発明において、前記添加燃料が、パームステアリン油、テンプラ油、廃油、アルコールの何れか一つであり、前記重油系燃料が、C重油、原油、重質油の何れか一つであることを特徴とする燃料監視装置にある。   A fourth invention is the invention according to the second or third invention, wherein the added fuel is any one of palm stearin oil, tempura oil, waste oil, and alcohol, and the heavy oil-based fuel is C heavy oil, crude oil, heavy oil The fuel monitoring device is any one of oil.

第5の発明は、第4の発明において、前記添加燃料がパームステアリン油であり、前記重油系燃料がC重油である場合、予め前記添加燃料と前記重油系燃料との混合比とその時の前記混合油の1740cm-1付近、又は1160cm-1付近の吸光度との関係を表す検量線を求め、抜出した混合油を検出することで得られた前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料監視装置にある。 5th invention WHEREIN: When the said addition fuel is palm stearin oil and the said heavy oil type fuel is C heavy oil in 4th invention, the mixing ratio of the said addition fuel and the said heavy oil type fuel previously, and the said time at that time 1740cm around -1 oil mixture, or 1160 cm -1 determined a calibration curve showing the relationship between the absorbance in the vicinity of, the heavy oil system and the addition of fuel from the absorbance of the mixed oil obtained by detecting the mixed oil withdrawn A fuel monitoring apparatus is characterized in that a mixing ratio with fuel is obtained.

第6の発明は、第4の発明において、前記添加燃料がテンプラ油である場合、予め前記添加燃料と前記重油系燃料との混合比とその時の前記混合油の1700cm-1付近の吸光度との関係を表す検量線を求め、抜出した混合油を検出することで得られた前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料監視装置にある。 According to a sixth invention, in the fourth invention, when the added fuel is a tempura oil, a mixture ratio of the added fuel and the heavy oil fuel and an absorbance around 1700 cm −1 of the mixed oil at that time are obtained in advance. A fuel monitoring device characterized in that a calibration curve representing a relationship is obtained, and a mixing ratio of the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil obtained by detecting the extracted mixed oil. .

第7の発明は、第4の発明において、前記添加燃料がアルコールである場合、予め前記添加燃料と前記重油系燃料との混合比とその時の前記混合油の1600cm-1付近の吸光度との関係を表す検量線を求め、抜出した混合油を検出することで得られた前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料監視装置にある。 According to a seventh invention, in the fourth invention, when the added fuel is alcohol, a relationship between a mixing ratio of the added fuel and the heavy oil fuel and an absorbance of the mixed oil at around 1600 cm −1 at that time in advance. Is obtained, and the mixing ratio of the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil obtained by detecting the extracted mixed oil.

第8の発明は、第1乃至7の何れか一つの発明において、前記混合油調整装置が、前記混合油を加熱する加熱手段を有することを特徴とする燃料監視装置にある。   An eighth invention is the fuel monitoring apparatus according to any one of the first to seventh inventions, wherein the mixed oil adjusting device has a heating means for heating the mixed oil.

第9の発明は、第1乃至8の何れか一つの発明において、前記混合油調整装置の内部、上流側の何れか一方又は両方の前記混合油抜出し通路に有機溶剤を添加する有機溶剤供給手段を有することを特徴とする燃料監視装置にある。   According to a ninth invention, in any one of the first to eighth inventions, an organic solvent supply means for adding an organic solvent to the mixed oil extraction passage in either or both of the upstream side and the upstream side of the mixed oil adjusting device The fuel monitoring apparatus is characterized by comprising:

第10の発明は、第9の発明において、予め作成した前記混合油に添加した前記有機溶剤の希釈率と前記有機溶剤から得られる波長付近の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤から得られる波長付近の吸光度から前記有機溶剤の希釈率を求め、予め作成した前記有機溶剤の希釈率と前記有機溶剤で希釈した前記添加燃料の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤の希釈率から前記添加燃料の吸光度を求め、予め作成した前記混合油における前記添加燃料の混合率と前記添加燃料の吸光度との関係を表す前記添加燃料の検量線を用いて前記添加燃料の吸光度から前記添加燃料の混合率を求めることを特徴とする燃料監視装置にある。   A tenth aspect of the invention is the calibration curve of the organic solvent in the ninth aspect, wherein the organic solvent calibration curve represents the relationship between the dilution rate of the organic solvent added to the previously prepared mixed oil and the absorbance near the wavelength obtained from the organic solvent. Using the absorbance near the wavelength obtained from the organic solvent to determine the dilution rate of the organic solvent, the organic representing the relationship between the dilution rate of the organic solvent prepared in advance and the absorbance of the added fuel diluted with the organic solvent The absorbance of the added fuel is obtained from the dilution rate of the organic solvent using a calibration curve of the solvent, and the added fuel representing the relationship between the mixing rate of the added fuel and the absorbance of the added fuel in the previously prepared mixed oil The fuel monitoring apparatus is characterized in that the mixing ratio of the added fuel is obtained from the absorbance of the added fuel using a calibration curve.

第11の発明は、第9又は10の発明において、前記有機溶剤が、四塩化炭素、ニ硫化炭素、ヘキサン、ベンゼン、アセトンの少なくとも何れか一つ以上であることを特徴とする燃料監視装置にある。   An eleventh invention is the fuel monitoring apparatus according to the ninth or tenth invention, wherein the organic solvent is at least one of carbon tetrachloride, carbon disulfide, hexane, benzene, and acetone. is there.

第12の発明は、第9乃至11の何れか一つの発明において、前記混合油抜出し通路に設けられ、前記液体セル内に前記混合油を封入する混合油封入手段を有することを特徴とする燃料監視装置にある。   A twelfth aspect of the present invention is the fuel according to any one of the ninth to eleventh aspects, further comprising a mixed oil sealing means provided in the mixed oil extraction passage and configured to seal the mixed oil in the liquid cell. In the monitoring device.

第13の発明は、重油系燃料を貯蔵する重油系燃料タンクと、添加燃料を貯蔵する添加燃料タンクと、前記重油系燃料を前記ボイラに送給する重油系燃料送給ラインと、前記添加燃料を前記ボイラに送給する添加燃料送給ラインと、前記重油系燃料と前記添加燃料とを混合するライン混合器と、前記ライン混合器において混合された重油系燃料と添加燃料との混合油を前記ライン混合器から前記ボイラに送給する混合油送給ラインと、前記混合油送給ラインに前記混合油の一部を抜き出す混合油抜出しラインと、前記混合油抜出しラインに設けられ、請求項1乃至12の何れか一つの燃料監視装置とを有することを特徴とするボイラ設備にある。   A thirteenth aspect of the invention includes a heavy oil fuel tank that stores heavy oil fuel, an added fuel tank that stores added fuel, a heavy oil fuel feed line that feeds the heavy oil fuel to the boiler, and the added fuel. An added fuel feed line for feeding the boiler to the boiler, a line mixer for mixing the heavy oil fuel and the added fuel, and a mixed oil of the heavy oil fuel and the added fuel mixed in the line mixer. The mixed oil supply line that supplies the boiler from the line mixer, the mixed oil extraction line that extracts a part of the mixed oil to the mixed oil supply line, and the mixed oil extraction line. A boiler facility having any one of 1 to 12 fuel monitoring devices.

第14の発明は、重油系燃料に添加燃料を添加してなる混合油の一部を抜き出し、抜き出した混合油を液体セルに連続的に供給し、前記液体セルに赤外線を照射し、前記混合油により吸収された赤外波長を検出し、抜出した混合油を検出することで得られた前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料油の混合比判定方法にある。   In a fourteenth aspect of the present invention, a part of the mixed oil obtained by adding the added fuel to the heavy oil fuel is extracted, the extracted mixed oil is continuously supplied to the liquid cell, the infrared irradiation is applied to the liquid cell, and the mixing is performed. A fuel characterized in that a mixing ratio of the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil obtained by detecting an infrared wavelength absorbed by the oil and detecting the extracted mixed oil. The method is to determine the mixing ratio of oil.

第15の発明は、第14の発明において、前記添加燃料が、パームステアリン油、テンプラ油、廃油、アルコールの何れか一つであり、前記重油系燃料が、C重油、原油、重質油の何れか一つであることを特徴とする燃料油の混合比判定方法にある。   According to a fifteenth aspect, in the fourteenth aspect, the additive fuel is any one of palm stearin oil, tempura oil, waste oil, and alcohol, and the heavy oil-based fuel is C heavy oil, crude oil, or heavy oil. The fuel oil mixing ratio determination method is characterized by being any one.

第16の発明は、第15の発明において、前記添加燃料がパームステアリン油であり、前記重油系燃料がC重油である場合、予め求めておいた前記添加燃料と前記重油系燃料との混合比と前記混合油の1740cm-1付近、又は1160cm-1付近の吸光度との関係を表す検量線を用いて検出された前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料油の混合比判定方法にある。 In a sixteenth aspect based on the fifteenth aspect, when the added fuel is palm stearin oil and the heavy oil fuel is C heavy oil, a mixing ratio of the added fuel and the heavy oil fuel determined in advance is obtained. determining the mixing ratio of said heavy oil based fuel and the added fuel the vicinity oil mixture of 1740 cm -1, or a calibration curve showing the relationship between the absorbance of 1160cm around -1 from the detected the mixed oil absorbance using a This is a fuel oil mixing ratio determination method.

第17の発明は、第15の発明において、前記添加燃料がテンプラ油である場合、予め求めておいた前記添加燃料と前記重油系燃料との混合比と前記混合油の1700cm-1付近の吸光度との関係を表す検量線を用いて検出された前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料油の混合比判定方法にある。 According to a seventeenth aspect, in the fifteenth aspect, when the added fuel is a tempura oil, the mixing ratio of the added fuel and the heavy oil fuel obtained in advance and the absorbance of the mixed oil in the vicinity of 1700 cm -1 are obtained. In the fuel oil mixture ratio determination method, the mixture ratio of the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil detected using a calibration curve representing the relationship between

第18の発明は、第15の発明において、前記添加燃料がアルコールである場合、予め求めておいた前記添加燃料と前記重油系燃料との混合比と前記混合油の1600cm-1付近の吸光度との関係を表す検量線を用いて検出された前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料油の混合比判定方法にある。 In an eighteenth aspect based on the fifteenth aspect, when the added fuel is alcohol, the mixing ratio of the added fuel and the heavy oil fuel obtained in advance and the absorbance of the mixed oil in the vicinity of 1600 cm −1 are obtained. In the fuel oil mixture ratio determination method, a mixture ratio between the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil detected using a calibration curve representing the relationship of

第19の発明は、第14乃至18の何れか一つの発明において、抜き出した混合油を加熱した後、測定することを特徴とする燃料油の混合比判定方法にある。   According to a nineteenth aspect of the invention, there is provided a fuel oil mixture ratio determination method according to any one of the fourteenth to eighteenth aspects, wherein the extracted mixed oil is heated and then measured.

第20の発明は、第14乃至19の何れか一つの発明において、前記抜き出した混合油に有機溶剤を添加した後、測定することを特徴とする燃料油の混合比判定方法にある。   A twentieth aspect of the invention is a fuel oil mixture ratio determination method according to any one of the fourteenth aspect to the nineteenth aspect, wherein an organic solvent is added to the extracted mixed oil and then measured.

第21の発明は、第14乃至20の何れか一つの発明において、予め作成した前記混合油に添加した前記有機溶剤の希釈率と前記有機溶剤から得られる波長付近の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤から得られる波長付近の吸光度から前記有機溶剤の希釈率を求め、予め作成した前記有機溶剤の希釈率と前記有機溶剤で希釈した前記添加燃料の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤の希釈率から前記添加燃料の吸光度を求め、予め作成した前記混合油における前記添加燃料の混合率と前記添加燃料の吸光度との関係を表す前記添加燃料の検量線を用いて前記添加燃料の吸光度から前記添加燃料の混合率を求めることを特徴とする燃料油の混合比判定方法にある。   In a twenty-first aspect of the present invention, in any one of the fourteenth to twentieth aspects, the relationship between the dilution rate of the organic solvent added to the previously prepared mixed oil and the absorbance near the wavelength obtained from the organic solvent is expressed. Obtain the dilution rate of the organic solvent from the absorbance near the wavelength obtained from the organic solvent using a calibration curve of the organic solvent, the dilution rate of the organic solvent prepared in advance and the absorbance of the added fuel diluted with the organic solvent, The absorbance of the added fuel is determined from the dilution rate of the organic solvent using the calibration curve of the organic solvent representing the relationship of the relationship, and the relationship between the mixing rate of the added fuel and the absorbance of the added fuel in the previously prepared mixed oil In the fuel oil mixture ratio determination method, the mixing ratio of the added fuel is obtained from the absorbance of the added fuel using the calibration curve of the added fuel.

第22の発明は、第14乃至21の何れか一つの発明において、前記有機溶剤が、四塩化炭素、ニ硫化炭素、ヘキサン、ベンゼン、アセトンの少なくとも何れか一つ以上であることを特徴とする燃料油の混合比判定方法にある。   According to a twenty-second aspect, in any one of the fourteenth to twenty-first aspects, the organic solvent is at least one of carbon tetrachloride, carbon disulfide, hexane, benzene, and acetone. It is in the fuel oil mixing ratio determination method.

第23の発明は、第20乃至22の何れか一つの発明において、前記液体セル内に前記混合油を封入した後、測定することを特徴とする燃料油の混合比判定方法にある。   A twenty-third aspect of the invention is the fuel oil mixing ratio determination method according to any one of the twentieth to twenty-second aspects, wherein the mixed oil is measured after being sealed in the liquid cell.

本発明によれば、重油系燃料に添加燃料を添加してなる混合油の一部を抜き出す混合油抜出し通路と、抜出した混合油を測定用に調整する混合油調整装置と、該混合油調整装置で調整された混合油中の前記添加燃料と前記重油系燃料との混合比を測定する前記混合油抜出し通路に介装された燃料混合比測定装置と、前記燃料混合比測定装置に前記混合油を連続的に供給する混合油供給手段とを有するため、前記混合油中の前記添加燃料と前記重油系燃料との混合比を連続的に測定することができる。   According to the present invention, a mixed oil extraction passage for extracting a part of a mixed oil obtained by adding an added fuel to a heavy oil fuel, a mixed oil adjusting device for adjusting the extracted mixed oil for measurement, and the mixed oil adjustment A fuel mixture ratio measuring device interposed in the mixed oil extraction passage for measuring a mixture ratio of the added fuel and the heavy oil fuel in the mixed oil adjusted by the device; and the mixing in the fuel mixture ratio measuring device Since it has the mixed oil supply means which supplies oil continuously, the mixing ratio of the added fuel and the heavy oil fuel in the mixed oil can be continuously measured.

また、前記燃料混合比測定装置が、前記混合油を収容する液体セルと、前記液体セルに赤外線を照射する赤外線照射装置と、前記混合油により吸収された赤外波長を検出する検出器とを有するものであることで、前記混合油に赤外線を照射し、吸収された赤外波長を検出することができるため、前記混合油中の前記添加燃料と前記重油系燃料との混合比を観察することができる。   The fuel mixture ratio measuring device includes a liquid cell that contains the mixed oil, an infrared irradiation device that irradiates the liquid cell with infrared rays, and a detector that detects an infrared wavelength absorbed by the mixed oil. Since it is possible to irradiate the mixed oil with infrared rays and detect the absorbed infrared wavelength, the mixing ratio of the added fuel and the heavy oil fuel in the mixed oil is observed. be able to.

また、前記添加燃料がパームステアリン油であり、前記重油系燃料がC重油である場合、予め前記パームステアリン油と前記重油系燃料との混合比とその時の前記混合油の1740cm-1付近、又は1160cm-1付近の吸光度との関係を表す検量線を求め、抜出した混合油を検出することで、得られた前記混合油の吸光度から前記パームステアリン油と前記重油系燃料との混合比を求めることができる。 When the added fuel is palm stearin oil and the heavy oil fuel is C heavy oil, the mixture ratio of the palm stearin oil and the heavy oil fuel and the vicinity of 1740 cm -1 of the mixed oil at that time, or A calibration curve representing the relationship with the absorbance near 1160 cm −1 is obtained, and by detecting the extracted mixed oil, the mixing ratio of the palm stearin oil and the heavy oil fuel is obtained from the absorbance of the obtained mixed oil. be able to.

また、前記添加燃料がテンプラ油である場合、予め前記テンプラ油と前記重油系燃料との混合比とその時の前記混合油の1700cm-1付近の吸光度との関係を表す検量線を求め、抜出した混合油を検出することで、得られた前記混合油の吸光度から前記テンプラ油と前記重油系燃料との混合比を求めることができる。 Further, when the added fuel is tempura oil, a calibration curve representing the relationship between the mixing ratio of the tempura oil and the heavy oil-based fuel and the absorbance at around 1700 cm −1 of the mixed oil at that time was obtained and extracted. By detecting the mixed oil, the mixing ratio of the tempura oil and the heavy oil fuel can be obtained from the absorbance of the obtained mixed oil.

また、前記添加燃料がアルコールである場合、予め前記アルコールと前記重油系燃料との混合比とその時の前記混合油の1600cm-1付近の吸光度との関係を表す検量線を求め、抜出した混合油を検出することで、得られた前記混合油の吸光度から前記アルコールと前記重油系燃料との混合比を求めることができる。 Further, when the added fuel is alcohol, a calibration curve representing the relationship between the mixing ratio of the alcohol and the heavy oil fuel and the absorbance around 1600 cm −1 of the mixed oil at that time is obtained in advance, and the extracted mixed oil By detecting this, the mixing ratio of the alcohol and the heavy oil fuel can be determined from the absorbance of the obtained mixed oil.

また前記混合油調整装置が、前記混合油を加熱する加熱手段を有することで、抜出した混合油の流動性を高め、燃料混合比測定装置に収容する前記混合油の置換を容易に行うことができる。   In addition, since the mixed oil adjusting device has a heating means for heating the mixed oil, the fluidity of the extracted mixed oil can be improved, and the mixed oil stored in the fuel mixture ratio measuring device can be easily replaced. it can.

また前記混合油調整装置の内部、上流側の何れか一方又は両方の前記混合油抜出し通路に有機溶剤を添加する有機溶剤供給手段を有することで、前記混合油の流動性を高めることができ、前記燃料混合比測定装置に収容する前記混合油の置換を容易に行うことができる。また、前記混合油中の水分が希釈されるため、水分による測定時の妨害を減少させることができる。   In addition, by having an organic solvent supply means for adding an organic solvent to the mixed oil extraction passage inside or to the upstream side of the mixed oil adjusting device, the fluidity of the mixed oil can be improved, The mixed oil stored in the fuel mixture ratio measuring device can be easily replaced. In addition, since the water in the mixed oil is diluted, interference during measurement due to water can be reduced.

また、前記燃料混合比測定装置の長期間の使用による前記液体セルの有機物、水分などに起因する汚染を除去することができる。   Further, it is possible to remove contamination caused by organic substances, moisture, etc. of the liquid cell due to long-term use of the fuel mixture ratio measuring apparatus.

また、予め作成した前記混合油に添加した前記有機溶剤の希釈率と前記有機溶剤から得られる波長付近の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤から得られる波長付近の吸光度から前記有機溶剤の希釈率を求め、予め作成した前記有機溶剤の希釈率と前記有機溶剤で希釈した前記添加燃料の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤の希釈率から前記添加燃料の吸光度を求め、予め作成した前記混合油における前記添加燃料の混合率と前記添加燃料の吸光度との関係を表す前記添加燃料の検量線を用いることで、前記添加燃料の吸光度から前記添加燃料の混合率を求めることができる。   Further, the vicinity of the wavelength obtained from the organic solvent using the calibration curve of the organic solvent representing the relationship between the dilution ratio of the organic solvent added to the previously prepared mixed oil and the absorbance near the wavelength obtained from the organic solvent. The dilution ratio of the organic solvent is determined from the absorbance of the organic solvent, and a calibration curve of the organic solvent is used to express the relationship between the dilution ratio of the organic solvent prepared in advance and the absorbance of the added fuel diluted with the organic solvent. The absorbance of the added fuel is obtained from the dilution rate of the added fuel, and the added fuel calibration curve representing the relationship between the mixing rate of the added fuel and the absorbance of the added fuel in the previously prepared mixed oil is used. The mixing ratio of the added fuel can be obtained from the absorbance of

また、前記混合油抜出し通路に設けられ、前記液体セル内に前記混合油を封入する混合油封入手段を有することで、前記液体セル内に前記混合油を封入し、前記液体セルに入れた前記混合油のサンプルを用いて複数回測定することができるため、測定時の積算回数を重ねることで分析感度を向上させ、得られる吸光高度の精度を向上させることができる。   The mixed oil is provided in the mixed oil extraction passage, and has mixed oil sealing means for sealing the mixed oil in the liquid cell, so that the mixed oil is sealed in the liquid cell, and the liquid cell is put in the liquid cell. Since measurement can be performed a plurality of times using a sample of the mixed oil, analysis sensitivity can be improved by accumulating the number of integrations at the time of measurement, and the accuracy of the obtained light absorption height can be improved.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係る燃料監視装置について、図面を参照して説明する。
図1は、本発明による実施例1に係る燃料監視装置の構成を簡略に示す概念図である。
図1に示すように、本実施例に係る燃料監視装置10Aは、重油系燃料としてC重油に添加燃料としてパームステアリン油を添加してなる混合油11の一部を抜き出す混合油抜出し通路12と、抜出した混合油を測定のサンプル用に調整する混合油調整装置13と、該混合油調整装置13で調整された混合油11中の前記パームステアリン油と前記C重油との混合比を測定する混合油抜出し通路12に介装された燃料混合比測定装置14と、燃料混合比測定装置14に混合油11を連続的に供給する混合油抜出しポンプ(混合油供給手段)15とを有するものである。
A fuel monitoring apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram schematically showing the configuration of a fuel monitoring apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 1, a fuel monitoring apparatus 10A according to this embodiment includes a mixed oil extraction passage 12 for extracting a part of a mixed oil 11 obtained by adding palm stearin oil as an added fuel to C heavy oil as a heavy oil-based fuel. The mixed oil adjusting device 13 for adjusting the extracted mixed oil for the measurement sample, and the mixing ratio of the palm stearin oil and the C heavy oil in the mixed oil 11 adjusted by the mixed oil adjusting device 13 are measured. It has a fuel mixture ratio measuring device 14 interposed in the mixed oil extraction passage 12, and a mixed oil extraction pump (mixed oil supply means) 15 for continuously supplying the mixed oil 11 to the fuel mixture ratio measuring device 14. is there.

燃料配管16中の混合油11を混合油抜出しポンプ15により混合油抜出し通路12へ抜出し、混合油抜出し通路12を介して燃料混合比測定装置14に混合油11を連続的に供給することができるため、混合油11中のパームステアリン油とC重油との混合比を連続的に測定することができる。   The mixed oil 11 in the fuel pipe 16 can be extracted to the mixed oil extraction passage 12 by the mixed oil extraction pump 15, and the mixed oil 11 can be continuously supplied to the fuel mixture ratio measuring device 14 through the mixed oil extraction passage 12. Therefore, the mixing ratio of palm stearin oil and C heavy oil in the mixed oil 11 can be continuously measured.

また、本実施例に係る燃料監視装置10Aにおいては、燃料混合比測定装置14は、混合油11を収容する液体セル17と、液体セル17に赤外線を照射する図示しない赤外線照射装置と、混合油11により吸収された赤外波長を検出する検出器18とからなるものである。燃料混合比測定装置14として、例えばFT−IR装置が用いられるが、赤外線を照射することで混合油11から吸収ピークが観察されるものであればよく、本発明はこれに限定されるものではない。   In the fuel monitoring device 10A according to the present embodiment, the fuel mixture ratio measuring device 14 includes a liquid cell 17 that contains the mixed oil 11, an infrared irradiation device (not shown) that irradiates the liquid cell 17 with infrared rays, and a mixed oil. 11 and a detector 18 for detecting the infrared wavelength absorbed by the sensor 11. As the fuel mixture ratio measuring device 14, for example, an FT-IR device is used, as long as an absorption peak is observed from the mixed oil 11 by irradiating infrared rays, and the present invention is not limited to this. Absent.

本実施例に係る燃料監視装置10Aにおいては、予め前記パームステアリン油と前記C重油との混合比とその時の混合油11の1740cm-1付近、又は1160cm-1付近の吸光度との関係を表す検量線を求め、抜出した混合油11を検出することで得られた混合油11の吸光度から前記パームステアリン油と前記C重油との混合比を求めるようにしている。 Calibration in the fuel monitoring apparatus 10A according to the first embodiment, showing the relationship between the advance the palm stearin oil and mixing ratio with around 1740 cm -1 of the mixed oil 11 at that time with the C heavy oil, or 1160 cm -1 vicinity absorbance A line is obtained, and the mixing ratio of the palm stearin oil and the C heavy oil is obtained from the absorbance of the mixed oil 11 obtained by detecting the extracted mixed oil 11.

抜き出した混合油11を液体セル17に連続的に供給し、液体セル17に前記赤外線を照射し、混合油11により吸収された赤外波長を検出する。そして、検出された赤外波長の情報はデータ処理装置19に送信される。そして、予め求めておいた前記パームステアリン油と前記C重油との混合比と混合油11の1740cm-1付近、又は1160cm-1付近の吸光度との関係を表す検量線を用いて検出された混合油11の吸光度から前記パームステアリン油と前記C重油との混合比を求める。 The extracted mixed oil 11 is continuously supplied to the liquid cell 17, the infrared light is irradiated to the liquid cell 17, and the infrared wavelength absorbed by the mixed oil 11 is detected. Then, the detected infrared wavelength information is transmitted to the data processing device 19. Then, it was detected using the palm stearin oil obtained in advance and the vicinity of 1740 cm -1 of the mixing ratio and mixed oil 11 with C heavy oil, or a calibration curve showing the relationship between the absorbance of 1160cm around -1 mixed The mixing ratio of the palm stearin oil and the C heavy oil is determined from the absorbance of the oil 11.

図2は、パームステアリン油とC重油の赤外線吸収スペクトルを表した図である。
図2に示すように、パームステアリン油には、1740cm-1付近(図2中、矢印A)および1160cm-1付近(図2中、矢印B)に、エステル結合による特徴的な吸収ピークが観察され、C重油からは観察されない。よって、1740cm-1付近、又は1160cm-1付近の吸光度を測定することでパームステアリン油の混合率を求めることができる。
FIG. 2 is a diagram showing infrared absorption spectra of palm stearin oil and C heavy oil.
As shown in FIG. 2, the palm stearin oil, (in FIG. 2, arrow A) 1740 cm near -1 (in FIG. 2, arrow B) and 1160 cm -1 vicinity, the characteristic absorption peak due to an ester bond is observed And not observed from C heavy oil. Therefore, it is possible to determine the mixing ratio of palm stearin oil by measuring the -1 vicinity, or 1160 cm -1 vicinity absorbance 1740 cm.

予め、既知量のパームステアリン油とC重油とを混合し作製した数種の標準試料の1740cm-1付近、又は1160cm-1付近の吸光度とパームステアリン油とC重油との混合比を元に検量線を作成する。 Previously, calibration based on the mixing ratio of the known amount of palm mixed stearin oil and C fuel oil 1740cm around -1 of several standard samples were prepared, or 1160 cm -1 vicinity of absorbance and palm stearin oil and heavy fuel oil C Create a line.

図3は、パームステアリン油の混合率と波数が1740cm-1の時の吸光度との関係を示す図である。図3に示すように、パームステアリン油の混合率に応じた吸光度から得られる検量線に基づいて混合油11の波数が1740cm-1付近での吸光度からパームステアリン油の混合比を求めることができる。 FIG. 3 is a graph showing the relationship between the mixing ratio of palm stearin oil and the absorbance when the wave number is 1740 cm −1 . As shown in FIG. 3, the mixing ratio of palm stearin oil can be obtained from the absorbance when the wave number of the mixed oil 11 is around 1740 cm −1 based on a calibration curve obtained from the absorbance corresponding to the mixing ratio of palm stearin oil. .

よって、混合油11の1740cm-1付近、又は1160cm-1付近の吸収ピーク強度を測定し、図3に示すような予め作成した検量線と比較することにより混合油11の混合比を求めることができる。 Thus, around 1740 cm -1 of the mixed oil 11, or the absorption peak intensity of 1160cm around -1 measured, it is possible to obtain the mixing ratio of mixed oil 11 by comparing with a previously prepared calibration curve shown in FIG. 3 it can.

また、前記添加燃料としてパームステアリン油以外に、例えばテンプラ油、廃油、アルコールなどが挙げられる。前記添加燃料としてテンプラ油を用いた場合には、テンプラ油のカルボン酸に由来する1700cm-1付近の吸収ピークが得られることから、予めテンプラ油とC重油との混合比とその時の混合油11の1700cm-1付近の吸光度との関係を表す検量線を求め、抜出した混合油11を検出することで得られた混合油11の吸光度からテンプラ油とC重油との混合比を求めるようにする。 In addition to palm stearin oil, examples of the additive fuel include tempura oil, waste oil, alcohol, and the like. When tempura oil is used as the additive fuel, an absorption peak in the vicinity of 1700 cm −1 derived from the carboxylic acid of tempura oil can be obtained. A calibration curve representing the relationship with the absorbance near 1700 cm −1 is obtained, and the mixing ratio of the tempura oil and the C heavy oil is obtained from the absorbance of the mixed oil 11 obtained by detecting the extracted mixed oil 11. .

また、前記添加燃料としてアルコール(メタノール、エタノール等)を用いた場合には、アルコールのヒドロキシ基に由来する1600cm-1付近の吸収ピークが得られることから、予めアルコールとC重油との混合比とその時の混合油11の1600cm-1付近の吸光度との関係を表す検量線を求め、抜出した混合油11を検出することで得られた混合油11の吸光度からアルコールとC重油との混合比を求めるようにする。 When alcohol (methanol, ethanol, etc.) is used as the additive fuel, an absorption peak near 1600 cm −1 derived from the hydroxy group of the alcohol can be obtained. A calibration curve representing the relationship with the absorbance of the mixed oil 11 near 1600 cm −1 is obtained, and the mixing ratio of alcohol and C heavy oil is determined from the absorbance of the mixed oil 11 obtained by detecting the extracted mixed oil 11. Try to ask.

このように、本実施例に係る燃料監視装置10Aによれば、混合油11の一部を抜き出す混合油抜出し通路12と、抜出した混合油を測定用に調整する混合油調整装置13と、該混合油調整装置13で調整された混合油11中の前記パームステアリン油と前記C重油との混合比を測定する燃料混合比測定装置14と、燃料混合比測定装置14に混合油11を連続的に供給する混合油抜出しポンプ15とを有しているため、混合油抜出し通路12により燃料混合比測定装置14に混合油11を連続的に供給することができる。そして、予め求めておいた前記パームステアリン油と前記C重油との混合比とその時の混合油11の1740cm-1付近、又は1160cm-1付近の吸光度との関係を表す図3に示すような検量線より、混合油11のパームステアリン油とC重油との混合比を連続的に測定することができる。これにより、ボイラの安定な燃焼を保持することができる。 As described above, according to the fuel monitoring device 10A according to the present embodiment, the mixed oil extraction passage 12 for extracting a part of the mixed oil 11, the mixed oil adjusting device 13 for adjusting the extracted mixed oil for measurement, A fuel mixture ratio measuring device 14 for measuring the mixing ratio of the palm stearin oil and the C heavy oil in the mixed oil 11 adjusted by the mixed oil adjusting device 13, and the mixed oil 11 continuously in the fuel mixture ratio measuring device 14 Therefore, the mixed oil 11 can be continuously supplied to the fuel mixture ratio measuring device 14 through the mixed oil extraction passage 12. Then, pre-determined and the palm stearin oil had been the mixing ratio of the C heavy oil near 1740 cm -1 of the mixed oil 11 at that time, or 1160 cm -1 vicinity calibration as shown in FIG. 3 representing a relationship between the absorbance of the From the line, the mixing ratio of the palm stearin oil and C heavy oil of the mixed oil 11 can be continuously measured. Thereby, the stable combustion of a boiler can be hold | maintained.

また、本実施例では、前記重油系燃料としてC重油を用いて説明したが、これに限定されるものではなく、原油、重質油などの何れか一つを用いるようにしてもよい。   In the present embodiment, the C heavy oil is used as the heavy oil-based fuel. However, the present invention is not limited to this, and any one of crude oil, heavy oil, and the like may be used.

また、本実施例では、パームステアリン油とC重油との2種類を混合した混合油を用いて説明したが、これに限定されるものではなく、他の複数の異なる燃料油を用いてもよい。   Moreover, although the present Example demonstrated using the mixed oil which mixed two types of palm stearin oil and C heavy oil, it is not limited to this, You may use several other different fuel oil. .

本発明による実施例2に係る燃料監視装置について、図4を参照して説明する。
図4は、本発明による実施例2に係る燃料監視装置の構成を簡略に示す概念図である。
図4に示すように、本実施例に係る燃料監視装置10Bは、図1に示す実施例1に係る燃料監視装置10Aの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
A fuel monitoring apparatus according to a second embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a conceptual diagram schematically showing the configuration of the fuel monitoring apparatus according to the second embodiment of the present invention.
As shown in FIG. 4, the fuel monitoring apparatus 10B according to the present embodiment has the same configuration as the fuel monitoring apparatus 10A according to the first embodiment shown in FIG. A duplicate description is omitted.

図4に示すように、本実施例に係る燃料監視装置10Bは、前記図1に示した実施例1に係る燃料監視装置10Aの混合油調整装置13に混合油11を加熱するヒータ21を設けたものである。   As shown in FIG. 4, the fuel monitoring apparatus 10B according to the present embodiment is provided with a heater 21 for heating the mixed oil 11 in the mixed oil adjusting apparatus 13 of the fuel monitoring apparatus 10A according to the first embodiment shown in FIG. It is a thing.

混合油抜出し通路12内を通過する混合油11を混合油調整装置13内で加熱した後、液体セル17に供給して混合油11の混合比を判定する。   The mixed oil 11 passing through the mixed oil extraction passage 12 is heated in the mixed oil adjusting device 13 and then supplied to the liquid cell 17 to determine the mixing ratio of the mixed oil 11.

混合油抜出し通路12内を通過する混合油11を混合油調整装置13内で加熱することにより、混合油調整装置13を通過した混合油抜出し通路12内の混合油11の流動性を高めることができる。   By heating the mixed oil 11 that passes through the mixed oil extraction passage 12 in the mixed oil adjustment device 13, the fluidity of the mixed oil 11 in the mixed oil extraction passage 12 that has passed through the mixed oil adjustment device 13 can be improved. it can.

混合油11の温度としては、50℃〜80℃に保つのが好ましく、更には60℃程度になるように加熱するのが好ましい。これは、燃料混合比測定装置14の液体セル17に収容する混合油11の置換を容易に行うことができるためには、C重油の動粘度を例えば約37cSt程度以下にする必要があり、混合油11の温度を60℃程度とすることでC重油の動粘度を例えば約37cSt程度にすることができるからである。   The temperature of the mixed oil 11 is preferably maintained at 50 ° C. to 80 ° C., and more preferably heated to about 60 ° C. This is because the kinematic viscosity of C heavy oil must be, for example, about 37 cSt or less so that the mixed oil 11 accommodated in the liquid cell 17 of the fuel mixture ratio measuring device 14 can be easily replaced. This is because the kinematic viscosity of C heavy oil can be set to, for example, approximately 37 cSt by setting the temperature of the oil 11 to approximately 60 ° C.

よって、混合油抜出し通路12内を通過する混合油11の流動性を高めることで、燃料混合比測定装置14の液体セル17に収容する混合油11の置換を容易に行うことができる。   Therefore, by increasing the fluidity of the mixed oil 11 passing through the mixed oil extraction passage 12, the mixed oil 11 accommodated in the liquid cell 17 of the fuel mixture ratio measuring device 14 can be easily replaced.

また、温度により混合油11の密度が変化し、1740cm-1付近、又は1160cm-1付近の吸光度が変化するため、予め温度の補正係数を求めておき、加熱された混合油11の温度に応じた吸光度を求めておくようにする。 The temperature by the density of the oil mixture 11 is changed, 1740 cm around -1, or to 1160cm absorbance around -1 changes, to previously obtain the correction coefficient in advance temperature, depending on the heating temperature of the mixed oil 11 Obtain the absorbance.

従って、本実施例に係る燃料監視装置10Bによれば、混合油調整装置13に混合油11を加熱するヒータ21を設けているため、混合油抜出し通路12内を通過する混合油11を混合油調整装置13内で加熱することができ、混合油抜出し通路12内を通過する混合油11の流動性を高め、液体セル17に収容する混合油11の置換を容易に行うことができる。   Therefore, according to the fuel monitoring device 10B according to the present embodiment, the mixed oil adjusting device 13 is provided with the heater 21 for heating the mixed oil 11, so that the mixed oil 11 passing through the mixed oil extraction passage 12 is mixed with the mixed oil 11. Heating can be performed in the adjusting device 13, the fluidity of the mixed oil 11 passing through the mixed oil extraction passage 12 can be improved, and the mixed oil 11 accommodated in the liquid cell 17 can be easily replaced.

本実施例に係る燃料監視装置10Bにおいては、混合油調整装置13に加熱手段として、ヒータ21を設けているが、本発明はこれに限定されるものではなく、混合油11を加熱できるものであれば他の加熱手段を用いてもよい。   In the fuel monitoring device 10B according to the present embodiment, the heater 21 is provided as a heating means in the mixed oil adjusting device 13, but the present invention is not limited to this, and the mixed oil 11 can be heated. Any other heating means may be used.

本発明による実施例3に係る燃料監視装置について、図5を参照して説明する。
図5は、本発明による実施例3に係る燃料監視装置の構成を簡略に示す概念図である。
図5に示すように、本実施例に係る燃料監視装置10Cは、図1に示す実施例1に係る燃料監視装置10Aの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
A fuel monitoring apparatus according to Embodiment 3 of the present invention will be described with reference to FIG.
FIG. 5 is a conceptual diagram schematically showing the configuration of the fuel monitoring apparatus according to the third embodiment of the present invention.
As shown in FIG. 5, the fuel monitoring device 10C according to the present embodiment has the same configuration as the fuel monitoring device 10A according to the first embodiment shown in FIG. A duplicate description is omitted.

図5に示すように、本実施例に係る燃料監視装置10Cは、前記図1に示した実施例1に係る燃料監視装置10Aの混合油調整装置13に混合油11に有機溶剤22を添加する有機溶剤供給部23を設けたものである。   As shown in FIG. 5, the fuel monitoring apparatus 10C according to the present embodiment adds the organic solvent 22 to the mixed oil 11 to the mixed oil adjusting apparatus 13 of the fuel monitoring apparatus 10A according to the first embodiment shown in FIG. An organic solvent supply unit 23 is provided.

有機溶剤供給部23から有機溶剤送給ポンプ24により有機溶剤22を有機溶剤送給ライン25を介して混合油抜出し通路12内を通過する混合油11に添加した後、液体セル17に混合油11を供給し、混合油11の混合比を判定する。   After the organic solvent 22 is added from the organic solvent supply unit 23 to the mixed oil 11 passing through the mixed oil extraction passage 12 via the organic solvent supply line 25 by the organic solvent feeding pump 24, the mixed oil 11 is added to the liquid cell 17. And the mixing ratio of the mixed oil 11 is determined.

混合油抜出し通路12内を通過する混合油11に有機溶剤22を添加することにより、混合油調整装置13を通過した混合油抜出し通路12内の混合油11の流動性を高めることができる。   By adding the organic solvent 22 to the mixed oil 11 that passes through the mixed oil extraction passage 12, the fluidity of the mixed oil 11 in the mixed oil extraction passage 12 that has passed through the mixed oil adjusting device 13 can be improved.

有機溶剤22としては、例えば、四塩化炭素、二硫化炭素、ヘキサン、ベンゼン、アセトン等がある。   Examples of the organic solvent 22 include carbon tetrachloride, carbon disulfide, hexane, benzene, and acetone.

有機溶剤22の添加量としては、50〜90vol%添加するのが好ましい。これは、燃料混合比測定装置14の液体セル17に収容する混合油11の置換を容易に行うことができるようにするためには、C重油の動粘度を例えば約37cSt程度以下にする必要があるからである。有機溶剤22の添加量を50〜90vol%とすることでC重油の動粘度を例えば約37cSt程度にすることができる。   As addition amount of the organic solvent 22, it is preferable to add 50-90 vol%. This is because the kinematic viscosity of C heavy oil needs to be about 37 cSt or less, for example, so that the mixed oil 11 accommodated in the liquid cell 17 of the fuel mixture ratio measuring device 14 can be easily replaced. Because there is. By setting the addition amount of the organic solvent 22 to 50 to 90 vol%, the kinematic viscosity of C heavy oil can be set to, for example, about 37 cSt.

よって、混合油11に有機溶剤22を添加し混合油11の流動性を高めることで、燃料混合比測定装置14の液体セル17に収容する混合油11の置換を容易に行うことができる。また、混合油11中の水分が希釈されるため、水分による測定時の妨害を減少させることができる。   Therefore, by adding the organic solvent 22 to the mixed oil 11 and improving the fluidity of the mixed oil 11, the mixed oil 11 accommodated in the liquid cell 17 of the fuel mixing ratio measuring device 14 can be easily replaced. Moreover, since the water | moisture content in the mixed oil 11 is diluted, the interference at the time of the measurement by a water | moisture content can be reduced.

また、添加する有機溶剤22の種類、有機溶剤22を添加する希釈量に応じて混合油11の密度が変化し、1740cm-1付近、又は1160cm-1付近の吸収ピーク強度が変化する。このため、予め添加する有機溶剤22の種類、添加した有機溶剤22の希釈量ごとに補正係数を求めておき、添加された有機溶剤22の種類、添加した有機溶剤22の希釈量ごとに応じた吸収ピーク強度を求めるようにする。 The type of organic solvent 22 to be added, depending on the amount of dilution is added an organic solvent 22 and a density change in the mixed oil 11, 1740 cm near -1 or 1160cm absorption peak intensity at around -1 changes. For this reason, the correction coefficient is calculated | required for every kind of the organic solvent 22 added beforehand, and the diluted amount of the added organic solvent 22, and according to every kind of added organic solvent 22 and the diluted quantity of the added organic solvent 22 The absorption peak intensity is obtained.

従って、本実施例に係る燃料監視装置10Cによれば、混合油調整装置13に混合油抜出し通路12内を通過する混合油11に有機溶剤22を添加する有機溶剤供給部23を設けているため、混合油抜出し通路12内の混合油11の流動性を高め、液体セル17に収容する混合油11の置換を容易に行うことができると共に、混合油11中の水分を希釈し、水分による測定時の妨害を減少させることができる。   Therefore, according to the fuel monitoring device 10C according to the present embodiment, the mixed oil adjusting device 13 is provided with the organic solvent supply unit 23 for adding the organic solvent 22 to the mixed oil 11 passing through the mixed oil extraction passage 12. In addition, the fluidity of the mixed oil 11 in the mixed oil extraction passage 12 can be increased, and the mixed oil 11 accommodated in the liquid cell 17 can be easily replaced, and the moisture in the mixed oil 11 is diluted and measured by moisture. Time disturbance can be reduced.

本発明による実施例4に係る燃料監視装置について、図6を参照して説明する。
図6は、本発明による実施例4に係る燃料監視装置の構成を簡略に示す概念図である。
図6に示すように、本実施例に係る燃料監視装置10Dは、図1に示す実施例1に係る燃料監視装置10Aの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
A fuel monitoring apparatus according to Embodiment 4 of the present invention will be described with reference to FIG.
FIG. 6 is a conceptual diagram schematically showing the configuration of the fuel monitoring apparatus according to the fourth embodiment of the present invention.
As shown in FIG. 6, the fuel monitoring apparatus 10D according to the present embodiment is the same as the configuration of the fuel monitoring apparatus 10A according to the first embodiment shown in FIG. A duplicate description is omitted.

図6に示すように、本実施例に係る燃料監視装置10Dは、前記図5に示した実施例3に係る燃料監視装置10Cの混合油調整装置13に設けた有機溶剤供給部23を混合油調整装置13より上流側の混合油抜出し通路12に設けたものである。   As shown in FIG. 6, the fuel monitoring device 10D according to the present embodiment uses an organic solvent supply unit 23 provided in the mixed oil adjusting device 13 of the fuel monitoring device 10C according to the third embodiment shown in FIG. This is provided in the mixed oil extraction passage 12 upstream of the adjusting device 13.

混合油11を混合油抜出し通路12に抜出して混合率の測定を行わない時には、有機溶剤22を混合油抜出し通路12に添加することで、燃料混合比測定装置14の長期間の使用による混合油抜出し通路12、液体セル17の有機物、水分などに起因する汚染を除去することができる。   When the mixed oil 11 is extracted to the mixed oil extraction passage 12 and the mixing rate is not measured, an organic solvent 22 is added to the mixed oil extraction passage 12 so that the mixed oil is obtained by using the fuel mixture ratio measuring device 14 for a long period of time. Contamination due to the organic matter, moisture, etc. of the extraction passage 12 and the liquid cell 17 can be removed.

また、有機溶剤送給ライン25に流量制御バルブV1を設けて混合油抜出し通路12に供給する有機溶剤22の供給量を調整するようにしてもよい。また、混合油抜出し通路12に流量制御バルブV2を設けて混合油抜出し通路12、液体セル17を洗浄した有機溶剤22を排出するようにしてもよい。 Further, the supply amount of the organic solvent 22 supplied to the mixed oil extraction passage 12 may be adjusted by providing a flow rate control valve V 1 in the organic solvent supply line 25. Further, a flow control valve V 2 may be provided in the mixed oil extraction passage 12 to discharge the organic solvent 22 that has washed the mixed oil extraction passage 12 and the liquid cell 17.

また、本実施例に係る燃料監視装置10Dにおいては、有機溶剤供給部23を混合油調整装置13の上流側の混合油抜出し通路12に設けるようにしているが、本発明はこれに限定されるものではない。例えば、混合油調整装置13と混合油抜出し通路12との両方に有機溶剤供給部23を設け有機溶剤22を供給するようにしてもよい。これにより、混合油調整装置13に供給する有機溶剤22により混合油抜出し通路12内の混合油11の流動性を高めるために用い、混合油抜出し通路12に供給する有機溶剤22により混合油抜出し通路12、液体セル17の有機物などの汚染物を除去するようにしてもよい。   Further, in the fuel monitoring device 10D according to the present embodiment, the organic solvent supply unit 23 is provided in the mixed oil extraction passage 12 on the upstream side of the mixed oil adjusting device 13, but the present invention is limited to this. It is not a thing. For example, the organic solvent supply unit 23 may be provided in both the mixed oil adjusting device 13 and the mixed oil extraction passage 12 to supply the organic solvent 22. Thus, the organic solvent 22 supplied to the mixed oil adjusting device 13 is used to increase the fluidity of the mixed oil 11 in the mixed oil extracting passage 12 and the mixed oil extracting passage is supplied by the organic solvent 22 supplied to the mixed oil extracting passage 12. 12. Contaminants such as organic substances in the liquid cell 17 may be removed.

また、混合油抜出し通路12に供給する有機溶剤22も混合油抜出し通路12内の混合油11の流動性を高めるために用いるようにしてもよい。   Further, the organic solvent 22 supplied to the mixed oil extraction passage 12 may also be used to enhance the fluidity of the mixed oil 11 in the mixed oil extraction passage 12.

また、混合油調整装置13に供給する有機溶剤22も混合油抜出し通路12、液体セル17の有機物などの汚染物を除去するために用いるようにしてもよい。   Further, the organic solvent 22 supplied to the mixed oil adjusting device 13 may also be used to remove contaminants such as organic substances in the mixed oil extraction passage 12 and the liquid cell 17.

本発明による実施例5に係る燃料監視装置について、図7を参照して説明する。
図7は、本発明による実施例5に係る燃料監視装置の構成を簡略に示す概念図である。
図7に示すように、本実施例に係る燃料監視装置10Eは、図1に示す実施例1に係る燃料監視装置10Aの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
A fuel monitoring apparatus according to Embodiment 5 of the present invention will be described with reference to FIG.
FIG. 7 is a conceptual diagram schematically showing the configuration of the fuel monitoring apparatus according to the fifth embodiment of the present invention.
As shown in FIG. 7, the fuel monitoring apparatus 10E according to the present embodiment has the same configuration as the fuel monitoring apparatus 10A according to the first embodiment shown in FIG. A duplicate description is omitted.

図7に示すように、本実施例に係る燃料監視装置10Eは、前記図4に示した実施例2に係る燃料監視装置10Bの混合油調整装置13に混合油11を加熱するヒータ21と、前記図5に示した実施例3に係る燃料監視装置10Cの混合油調整装置13に混合油11に有機溶剤22を添加する有機溶剤供給部23とを有するものである。   As shown in FIG. 7, the fuel monitoring device 10E according to the present embodiment includes a heater 21 that heats the mixed oil 11 to the mixed oil adjusting device 13 of the fuel monitoring device 10B according to the second embodiment shown in FIG. The mixed oil adjusting device 13 of the fuel monitoring device 10C according to the third embodiment shown in FIG. 5 includes the organic solvent supply unit 23 for adding the organic solvent 22 to the mixed oil 11.

混合油抜出し通路12内を通過する混合油11を混合油調整装置13内でヒータ21により加熱し、混合油11に有機溶剤22を添加した後、液体セル17に供給し、混合油11の混合比を判定する。   The mixed oil 11 passing through the mixed oil extraction passage 12 is heated by the heater 21 in the mixed oil adjusting device 13, the organic solvent 22 is added to the mixed oil 11, and then supplied to the liquid cell 17 to mix the mixed oil 11. Determine the ratio.

混合油抜出し通路12内を通過する混合油11を混合油調整装置13内で加熱し、有機溶剤22を添加することにより、混合油11の流動性を高め、液体セル17に収容する混合油11の置換を更に容易に行うことができる。   The mixed oil 11 passing through the mixed oil extraction passage 12 is heated in the mixed oil adjusting device 13, and the organic solvent 22 is added to increase the fluidity of the mixed oil 11, and the mixed oil 11 accommodated in the liquid cell 17. Can be more easily performed.

また、有機溶剤22を混合油11に添加することで混合油11中の水分が希釈されるため、水分による測定時の妨害を減少させることができると共に、液体セル17の有機物、水分などに起因する汚染を除去することができる。   Moreover, since the water | moisture content in the mixed oil 11 is diluted by adding the organic solvent 22 to the mixed oil 11, the interference at the time of the measurement by a water | moisture content can be reduced, and it originates in the organic substance of a liquid cell 17, a water | moisture content, etc. Contamination can be removed.

また、混合油11の温度、添加する有機溶剤22の種類、有機溶剤22を添加する希釈量に応じて混合油11の密度が変化し、1740cm-1付近、又は1160cm-1付近の吸光度が変化するため、予め混合油11の温度、添加する有機溶剤22の種類、添加した有機溶剤22の希釈量ごとに補正係数を求めておき、混合油11の温度、添加された有機溶剤22の種類、添加した有機溶剤22の希釈量ごとに応じた吸光度を求めておくようにする。 The temperature of the oil mixture 11, the type of the organic solvent 22 to be added, depending on the amount of dilution is added an organic solvent 22 and a density change in the mixed oil 11, 1740 cm near -1 or 1160cm absorbance around -1 changes Therefore, the correction coefficient is obtained in advance for each temperature of the mixed oil 11, the type of the organic solvent 22 to be added, and the diluted amount of the added organic solvent 22, and the temperature of the mixed oil 11, the type of the added organic solvent 22, The absorbance corresponding to each diluted amount of the added organic solvent 22 is obtained.

従って、本実施例に係る燃料監視装置10Dによれば、混合油調整装置13に混合油11を加熱するヒータ21と、混合油11に有機溶剤22を添加する有機溶剤供給部23とを設けているため、混合油抜出し通路12内の混合油11の流動性を高め、液体セル17に収容する混合油11の置換を更に容易に行うことができる。また、有機溶剤22を混合油11に添加することで水分による測定時の妨害を減少させることができると共に、液体セル17の有機物、水分などに起因する汚染を除去することができる。   Therefore, according to the fuel monitoring device 10D according to the present embodiment, the mixed oil adjusting device 13 is provided with the heater 21 that heats the mixed oil 11 and the organic solvent supply unit 23 that adds the organic solvent 22 to the mixed oil 11. Therefore, the fluidity of the mixed oil 11 in the mixed oil extraction passage 12 can be improved and the mixed oil 11 accommodated in the liquid cell 17 can be replaced more easily. Further, by adding the organic solvent 22 to the mixed oil 11, it is possible to reduce interference during measurement due to moisture, and it is possible to remove contamination caused by organic substances, moisture, and the like in the liquid cell 17.

本発明による実施例6に係る燃料監視装置について、図8を参照して説明する。
本実施例に係る燃料監視装置の構成は、図5、6に示す実施例3、4に係る燃料監視装置10C、10Dの構成と同様であるため、本発明による実施例5に係る燃料監視装置の構成を示す図は省略し、図5、6を用いて説明する。
本実施例に係る燃料監視装置は、予め混合油11に添加した有機溶剤22の波長付近の吸光度と用いた有機溶剤22の希釈率との関係を表す有機溶剤22の検量線を求め、用いた有機溶剤22の波長付近の吸光度を検出することで得られた有機溶剤22の希釈率から前記パームステアリン油と前記C重油との混合比を求めるようにしている。
A fuel monitoring apparatus according to Embodiment 6 of the present invention will be described with reference to FIG.
Since the configuration of the fuel monitoring device according to the present embodiment is the same as the configuration of the fuel monitoring devices 10C and 10D according to Embodiments 3 and 4 shown in FIGS. 5 and 6, the fuel monitoring device according to Embodiment 5 of the present invention. FIG. 5 and FIG.
The fuel monitoring apparatus according to the present example obtained and used a calibration curve of the organic solvent 22 representing the relationship between the absorbance near the wavelength of the organic solvent 22 added to the mixed oil 11 in advance and the dilution rate of the organic solvent 22 used. The mixing ratio of the palm stearin oil and the C heavy oil is obtained from the dilution rate of the organic solvent 22 obtained by detecting the absorbance around the wavelength of the organic solvent 22.

即ち、本実施例に係る燃料監視装置は、予め作成した混合油11に添加した有機溶剤22の希釈率と有機溶剤22から得られる波長付近の吸光度との関係を表す有機溶剤22の検量線を用いて有機溶剤22から得られる波長付近の吸光度から有機溶剤22の希釈率を求め、予め作成した有機溶剤22の希釈率と有機溶剤22で希釈したパームステアリン油の吸光度との関係を表す有機溶剤22の検量線を用いて有機溶剤22の希釈率から前記パームステアリン油の吸光度を求め、予め作成した混合油11における前記パームステアリン油の混合率と前記パームステアリン油の吸光度との関係を表す前記パームステアリン油の検量線を用いて前記パームステアリン油の吸光度から前記パームステアリン油の混合率を求めるものである。   That is, the fuel monitoring apparatus according to the present embodiment generates a calibration curve for the organic solvent 22 that represents the relationship between the dilution rate of the organic solvent 22 added to the previously prepared mixed oil 11 and the absorbance near the wavelength obtained from the organic solvent 22. The organic solvent 22 is used to determine the dilution rate of the organic solvent 22 from the absorbance near the wavelength obtained from the organic solvent 22, and represents the relationship between the dilution rate of the organic solvent 22 prepared in advance and the absorbance of palm stearin oil diluted with the organic solvent 22. The absorbance of the palm stearin oil is obtained from the dilution rate of the organic solvent 22 using the calibration curve of 22, and the relationship between the mixing rate of the palm stearin oil and the absorbance of the palm stearin oil in the mixed oil 11 prepared in advance is represented. The mixing ratio of the palm stearin oil is determined from the absorbance of the palm stearin oil using a calibration curve of palm stearin oil.

図8は、四塩化炭素の赤外線吸収スペクトルを示す図である。図8に示すように、四塩化炭素の赤外線吸収スペクトルが800cm-1付近での吸収ピークが観察される。よって、有機溶剤22として四塩化炭素を用いる場合には、800cm-1付近の四塩化炭素の吸光度と四塩化炭素の希釈率との関係を表す四塩化炭素の検量線を作成するのが好ましい。 FIG. 8 is a diagram showing an infrared absorption spectrum of carbon tetrachloride. As shown in FIG. 8, an absorption peak in the vicinity of 800 cm −1 of the infrared absorption spectrum of carbon tetrachloride is observed. Therefore, when carbon tetrachloride is used as the organic solvent 22, it is preferable to prepare a calibration curve of carbon tetrachloride representing the relationship between the absorbance of carbon tetrachloride near 800 cm −1 and the dilution rate of carbon tetrachloride.

そして、混合油11の800cm-1付近の吸光度を測定し、予め作成した四塩化炭素の吸光度と四塩化炭素の希釈率との関係を表す四塩化炭素の検量線と比較することにより四塩化炭素の希釈率が分かる。そして、予め作成した四塩化炭素の希釈率と前記パームステアリン油の吸光度との関係を表すパームステアリン油の検量線と比較することにより前記パームステアリン油の吸光度が分かる。そして、図3に示すようなパームステアリン油の混合率に応じた吸光度から得られる検量線に基づいて前記パームステアリン油の吸光度からパームステアリン油の混合比を求めることができる。 Then, the absorbance of the mixed oil 11 near 800 cm −1 is measured and compared with a carbon tetrachloride calibration curve representing the relationship between the absorbance of carbon tetrachloride and the dilution ratio of carbon tetrachloride prepared in advance. You can see the dilution ratio. And the light absorbency of the said palm stearin oil is understood by comparing with the calibration curve of the palm stearin oil showing the relationship between the dilution rate of the carbon tetrachloride and the light absorbency of the said palm stearin oil prepared beforehand. And the mixing ratio of palm stearin oil can be calculated | required from the light absorbency of the said palm stearin oil based on the calibration curve obtained from the light absorbency according to the mixing rate of palm stearin oil as shown in FIG.

また、有機溶剤22として、四塩化炭素の他に二硫化炭素を用いる場合には赤外線吸収スペクトルが2200cm-1付近で、ベンゼンを用いる場合には赤外線吸収スペクトルが1950cm-1付近で二硫化炭素、ベンゼンの各々吸収ピークが観察される。 As the organic solvent 22, when carbon disulfide is used in addition to carbon tetrachloride, the infrared absorption spectrum is about 2200 cm −1 , and when benzene is used, the carbon absorption is about 1950 cm −1 . Each absorption peak of benzene is observed.

従って、本実施例に係る燃料監視装置によれば、予め混合油11に添加した有機溶剤22の波長付近の吸光度と用いた有機溶剤22の希釈率との関係を表す有機溶剤22の検量線を求めておくことで、用いた有機溶剤22の所定の波長付近での吸光度を検出することで得られた有機溶剤22の希釈率が求められ、この有機溶剤22の希釈率から前記パームステアリン油の吸光度が求められるため、有機溶剤22の希釈量の変動が生じた場合でも、この前記パームステアリン油の吸光度から前記パームステアリン油の混合比を求めることができる。   Therefore, according to the fuel monitoring apparatus according to the present embodiment, the calibration curve of the organic solvent 22 representing the relationship between the absorbance near the wavelength of the organic solvent 22 previously added to the mixed oil 11 and the dilution rate of the used organic solvent 22 is obtained. By determining, the dilution rate of the organic solvent 22 obtained by detecting the absorbance in the vicinity of the predetermined wavelength of the used organic solvent 22 is determined, and from the dilution rate of the organic solvent 22, the palm stearin oil is obtained. Since the absorbance is determined, even when the amount of dilution of the organic solvent 22 varies, the mixing ratio of the palm stearin oil can be determined from the absorbance of the palm stearin oil.

また、本実施例に係る燃料監視装置の構成は、図4に示す実施例2に係る燃料監視装置10Bのように燃料監視装置10Bの混合油調整装置13に混合油11を加熱するヒータ21を設けるようにしてもよい。   Further, the configuration of the fuel monitoring device according to the present embodiment is such that a heater 21 that heats the mixed oil 11 is added to the mixed oil adjusting device 13 of the fuel monitoring device 10B as in the fuel monitoring device 10B according to the second embodiment shown in FIG. You may make it provide.

本発明による実施例7に係る燃料監視装置について、図9を参照して説明する。
図9は、本発明による実施例7に係る燃料監視装置の構成を簡略に示す概念図である。
図9に示すように、本実施例に係る燃料監視装置10Fは、図1に示す実施例1に係る燃料監視装置10Aの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
A fuel monitoring apparatus according to Embodiment 7 of the present invention will be described with reference to FIG.
FIG. 9 is a conceptual diagram schematically showing the configuration of the fuel monitoring apparatus according to the seventh embodiment of the present invention.
As shown in FIG. 9, the fuel monitoring device 10F according to the present embodiment has the same configuration as the fuel monitoring device 10A according to the first embodiment shown in FIG. A duplicate description is omitted.

図9に示すように、本実施例に係る燃料監視装置10Fは、前記図1に示した実施例1に係る燃料監視装置10Aの混合油調整装置13と燃料混合比測定装置14との間の混合油抜出し通路12上に液体セル17内に混合油11を封入する混合油封入手段として混合油流量調整バルブ26−1、26−2を有するものである。   As shown in FIG. 9, the fuel monitoring device 10F according to the present embodiment is provided between the mixed oil adjusting device 13 and the fuel mixture ratio measuring device 14 of the fuel monitoring device 10A according to the first embodiment shown in FIG. Mixed oil flow rate adjusting valves 26-1 and 26-2 are provided as mixed oil enclosing means for enclosing the mixed oil 11 in the liquid cell 17 on the mixed oil extraction passage 12.

燃料混合比測定装置14の液体セル17内に混合油11を入れた後、混合油流量調整バルブ26−1、26−2を閉鎖し、液体セル17内の混合油11が停止した状態で液体セル17に赤外線を照射して液体セル17内の混合油11の混合比の測定を複数回行う。   After the mixed oil 11 is put into the liquid cell 17 of the fuel mixture ratio measuring device 14, the mixed oil flow rate adjusting valves 26-1 and 26-2 are closed, and the mixed oil 11 in the liquid cell 17 is stopped. The cell 17 is irradiated with infrared rays, and the mixing ratio of the mixed oil 11 in the liquid cell 17 is measured a plurality of times.

混合油抜出し通路12内を通過する混合油11を混合油流量調整バルブ24により液体セル17に入れた同じ混合油11を用いて複数回測定することができるため、測定時の積算回数を重ねることで分析感度を向上させ、得られる吸光度の精度を向上させることができる。   Since the mixed oil 11 passing through the mixed oil extraction passage 12 can be measured a plurality of times using the same mixed oil 11 put in the liquid cell 17 by the mixed oil flow rate adjusting valve 24, the number of integrations at the time of measurement is repeated. Thus, the analytical sensitivity can be improved and the accuracy of the absorbance obtained can be improved.

次に、本発明の燃料監視装置を用いたボイラ設備について、図10を参照して説明する。
図10は、本発明による実施例8に係るボイラ設備の構成を簡略に示す概念図である。
燃料監視装置の構成は、本発明の実施例1に係る燃料監視装置10Aと同様であるため、ここでは説明は省略する。
また、本実施例では、添加燃料としてパームステアリン油を用い、重油系燃料としてC重油を用いて説明する。
図10に示すように、本実施例に係るボイラ設備30は、C重油を貯蔵するC重油タンク31と、パームステアリン油を貯蔵するパームステアリン油タンク32と、C重油をボイラ33に送給するC重油送給ライン34と、パームステアリン油をボイラ33に送給するパームステアリン油送給ライン35と、C重油とパームステアリン油とを混合するライン混合器36と、ライン混合器36において混合されたC重油とパームステアリン油との混合油11をライン混合器36からボイラ33に送給する混合油送給ライン37と、混合油送給ライン37に混合油11の一部を抜き出す混合油抜出しライン38と、混合油抜出しライン38に設けられ、混合油11の混合比を検出する燃料監視装置39とを有するものである。
燃料監視装置39として例えば本発明の実施例1に係る燃料監視装置10Aが用いられる。
Next, boiler equipment using the fuel monitoring apparatus of the present invention will be described with reference to FIG.
FIG. 10: is a conceptual diagram which shows simply the structure of the boiler equipment which concerns on Example 8 by this invention.
Since the configuration of the fuel monitoring device is the same as that of the fuel monitoring device 10A according to the first embodiment of the present invention, the description thereof is omitted here.
Further, in this embodiment, palm stearin oil is used as the additive fuel, and C heavy oil is used as the heavy oil fuel.
As shown in FIG. 10, the boiler facility 30 according to this embodiment supplies a C heavy oil tank 31 that stores C heavy oil, a palm stearin oil tank 32 that stores palm stearin oil, and a C heavy oil to the boiler 33. In the line mixer 36, the C heavy oil feed line 34, the palm stearin oil feed line 35 for feeding palm stearin oil to the boiler 33, the line mixer 36 for mixing C heavy oil and palm stearin oil, and the line mixer 36 are mixed. A mixed oil feed line 37 that feeds the mixed oil 11 of C heavy oil and palm stearin oil from the line mixer 36 to the boiler 33, and a mixed oil extraction that extracts a part of the mixed oil 11 to the mixed oil feed line 37. A line 38 and a fuel monitoring device 39 that is provided in the mixed oil extraction line 38 and detects the mixing ratio of the mixed oil 11 are provided.
As the fuel monitoring device 39, for example, the fuel monitoring device 10A according to the first embodiment of the present invention is used.

燃料監視装置39で得られた混合比データは、C重油送給ライン34とパームステアリン油送給ライン35とに設けた流量制御バルブV11、V12にフィードバックされ、パームステアリン油、及びC重油の流量を制御するようにしている。 The mixture ratio data obtained by the fuel monitoring device 39 is fed back to the flow control valves V 11 and V 12 provided in the C heavy oil feed line 34 and the palm stearin oil feed line 35, so that palm stearin oil and C heavy oil are fed. The flow rate is controlled.

燃料監視装置39で得られた混合比データに基づいて流量制御バルブV11、V12によりパームステアリン油、及びC重油の流量を調整することができるため、混合油11を所定の混合比となるように一定に保つことができる。これにより、混合油11の連続的な混合比の監視が可能となり、ボイラ33等の安定な燃焼を保持することができる。 Since the flow rates of palm stearin oil and C heavy oil can be adjusted by the flow rate control valves V 11 and V 12 based on the mixing ratio data obtained by the fuel monitoring device 39, the mixed oil 11 has a predetermined mixing ratio. Can be kept constant. Thereby, the continuous mixing ratio of the mixed oil 11 can be monitored, and stable combustion of the boiler 33 and the like can be maintained.

よって、本実施例に係るボイラ設備30を用いれば、混合油11を混合油送給ライン37から混合油抜出しライン38に混合油11の一部を抜き出し、本実施例に係る燃料監視装置39を用いて混合油11の混合比を連続的に監視し、パームステアリン油、及びC重油の流量を調整することができるため、混合油11を所定の混合比となるように一定に保つことができ、安定且つ信頼性の高いボイラ設備を提供することができる。   Therefore, if the boiler equipment 30 according to the present embodiment is used, a part of the mixed oil 11 is extracted from the mixed oil supply line 37 to the mixed oil discharge line 38 and the fuel monitoring device 39 according to the present embodiment is installed. Since the mixing ratio of the mixed oil 11 can be continuously monitored and the flow rates of palm stearin oil and C heavy oil can be adjusted, the mixed oil 11 can be kept constant at a predetermined mixing ratio. It is possible to provide a stable and highly reliable boiler facility.

また、本実施例においては、燃料監視装置39として実施例1の燃料監視装置10Aを用いて説明したが、本発明はこれに限定されるものではなく、実施例2乃至実施例7の何れか一つの燃料監視装置を用いるようにしてもよい。   In the present embodiment, the fuel monitoring apparatus 10A according to the first embodiment is used as the fuel monitoring apparatus 39. However, the present invention is not limited to this, and any one of the second to seventh embodiments. One fuel monitoring device may be used.

以上のように、本発明に係る燃料監視装置及びボイラ設備は、混合油の混合比を連続的に監視し、前記混合油を所定の混合比となるように一定に保つことによりボイラなどでの安定な燃焼を保持することができるため、混合油を用いた燃料監視装置及びボイラ設備に用いるのに適している。   As described above, the fuel monitoring device and the boiler equipment according to the present invention continuously monitor the mixing ratio of the mixed oil, and keep the mixed oil constant so that the predetermined mixing ratio is obtained. Since stable combustion can be maintained, it is suitable for use in a fuel monitoring device and boiler equipment using a mixed oil.

本発明による実施例1に係る燃料監視装置の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the fuel monitoring apparatus which concerns on Example 1 by this invention. パームステアリン油とC重油の赤外線吸収スペクトルを表した図である。It is a figure showing the infrared absorption spectrum of palm stearin oil and C heavy oil. パームステアリン油の混合率と波数が1740cm-1の時の吸光度との関係を示す図である。It is a figure which shows the relationship between the mixing rate of palm stearin oil, and the light absorbency when a wave number is 1740cm < -1 >. 本発明による実施例2に係る燃料監視装置の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the fuel monitoring apparatus which concerns on Example 2 by this invention. 本発明による実施例3に係る燃料監視装置の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the fuel monitoring apparatus which concerns on Example 3 by this invention. 本発明による実施例4に係る燃料監視装置の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the fuel monitoring apparatus which concerns on Example 4 by this invention. 本発明による実施例5に係る燃料監視装置の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the fuel monitoring apparatus which concerns on Example 5 by this invention. 四塩化炭素の赤外線吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of carbon tetrachloride. 本発明による実施例7に係る燃料監視装置の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the fuel monitoring apparatus which concerns on Example 7 by this invention. 本発明による実施例8に係るボイラ設備の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the boiler equipment which concerns on Example 8 by this invention. 従来の測定の工程を示す図である。It is a figure which shows the process of the conventional measurement. 浮き式比重計の概略図である。It is the schematic of a floating type hydrometer. パームステアリン油及びC重油の比重を表す図である。It is a figure showing the specific gravity of palm stearin oil and C heavy oil.

符号の説明Explanation of symbols

10A〜10F 燃料監視装置
11 混合油
12 混合油抜出し通路
13 混合油調整装置
14 燃料混合比測定装置
15 混合油抜出しポンプ(混合油供給手段)
16 燃料配管
17 液体セル
18 検出器
19 データ処理装置
21 ヒータ
22 有機溶剤
23 有機溶剤供給部
24 有機溶剤送給ポンプ
25 有機溶剤送給ライン
26−1、26−2 混合油流量調整バルブ(混合油封入手段)
30 ボイラ設備
31 C重油タンク
32 パームステアリン油タンク
33 ボイラ
34 C重油送給ライン
35 パームステアリン油送給ライン
36 ライン混合器
37 混合油送給ライン
38 混合油抜出しライン
1、V2、V11、V12 流量制御バルブ
10A to 10F Fuel monitoring device 11 Mixed oil 12 Mixed oil extraction passage 13 Mixed oil adjustment device 14 Fuel mixture ratio measuring device 15 Mixed oil extraction pump (mixed oil supply means)
16 Fuel Piping 17 Liquid Cell 18 Detector 19 Data Processing Device 21 Heater 22 Organic Solvent 23 Organic Solvent Supply Unit 24 Organic Solvent Feeding Pump 25 Organic Solvent Feeding Line 26-1, 26-2 Mixed Oil Flow Control Valve (Mixed Oil Seal) Input method)
30 Boiler equipment 31 C heavy oil tank 32 Palm stearin oil tank 33 Boiler 34 C heavy oil feed line 35 Palm stearin oil feed line 36 Line mixer 37 Mixed oil feed line 38 Mixed oil extraction line V 1 , V 2 , V 11 , V 12 flow control valve

Claims (23)

重油系燃料に添加燃料を添加してなる混合油の一部を抜き出す混合油抜出し通路と、
抜出した混合油を測定用に調整する混合油調整装置と、
該混合油調整装置で調整された混合油中の前記添加燃料と前記重油系燃料との混合比を測定する前記混合油抜出し通路に介装された燃料混合比測定装置と、
前記燃料混合比測定装置に前記混合油を連続的に供給する混合油供給手段とを有することを特徴とする燃料監視装置。
A mixed oil extraction passage for extracting a part of the mixed oil obtained by adding the added fuel to the heavy oil fuel;
A mixed oil adjusting device that adjusts the extracted mixed oil for measurement; and
A fuel mixture ratio measuring device interposed in the mixed oil extraction passage for measuring a mixing ratio of the added fuel and the heavy oil fuel in the mixed oil adjusted by the mixed oil adjusting device;
A fuel monitoring device comprising: a mixed oil supply means for continuously supplying the mixed oil to the fuel mixture ratio measuring device.
請求項1において、
前記燃料混合比測定装置が、前記混合油を収容する液体セルと、前記液体セルに赤外線を照射する赤外線照射装置と、前記混合油により吸収された赤外波長を検出する検出器とを有することを特徴とする燃料監視装置。
In claim 1,
The fuel mixture ratio measuring device includes a liquid cell that contains the mixed oil, an infrared irradiation device that irradiates the liquid cell with infrared rays, and a detector that detects an infrared wavelength absorbed by the mixed oil. A fuel monitoring device.
請求項1又は2において、
抜出した混合油を検出することで得られた前記混合油の吸光度から、前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料監視装置。
In claim 1 or 2,
A fuel monitoring apparatus, wherein a mixing ratio of the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil obtained by detecting the extracted mixed oil.
請求項2又は3において、
前記添加燃料が、パームステアリン油、テンプラ油、廃油、アルコールの何れか一つであり、
前記重油系燃料が、C重油、原油、重質油の何れか一つであることを特徴とする燃料監視装置。
In claim 2 or 3,
The additive fuel is one of palm stearin oil, tempura oil, waste oil, alcohol,
The fuel monitoring apparatus according to claim 1, wherein the heavy oil-based fuel is any one of C heavy oil, crude oil, and heavy oil.
請求項4において、
前記添加燃料がパームステアリン油であり、前記重油系燃料がC重油である場合、
予め前記添加燃料と前記重油系燃料との混合比とその時の前記混合油の1740cm-1付近、又は1160cm-1付近の吸光度との関係を表す検量線を求め、
抜出した混合油を検出することで得られた前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料監視装置。
In claim 4,
When the additive fuel is palm stearin oil and the heavy oil fuel is C heavy oil,
Advance the added fuel and the mixing ratio of the heavy oil based fuel and around 1740 cm -1 of the mixed oil at that time, or obtains a calibration curve showing the relationship between the absorbance of 1160cm around -1,
A fuel monitoring device, characterized in that a mixing ratio between the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil obtained by detecting the extracted mixed oil.
請求項4において、
前記添加燃料がテンプラ油である場合、
予め前記添加燃料と前記重油系燃料との混合比とその時の前記混合油の1700cm-1付近の吸光度との関係を表す検量線を求め、
抜出した混合油を検出することで得られた前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料監視装置。
In claim 4,
When the additive fuel is tempura oil,
In advance, a calibration curve representing the relationship between the mixing ratio of the added fuel and the heavy oil-based fuel and the absorbance at around 1700 cm −1 of the mixed oil at that time is obtained.
A fuel monitoring apparatus, characterized in that a mixing ratio between the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil obtained by detecting the extracted mixed oil.
請求項4において、
前記添加燃料がアルコールである場合、
予め前記添加燃料と前記重油系燃料との混合比とその時の前記混合油の1600cm-1付近の吸光度との関係を表す検量線を求め、
抜出した混合油を検出することで得られた前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料監視装置。
In claim 4,
When the additive fuel is alcohol,
In advance, a calibration curve representing the relationship between the mixing ratio of the added fuel and the heavy oil-based fuel and the absorbance at around 1600 cm −1 of the mixed oil at that time is obtained.
A fuel monitoring device, characterized in that a mixing ratio between the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil obtained by detecting the extracted mixed oil.
請求項1乃至7の何れか一つにおいて、
前記混合油調整装置が、前記混合油を加熱する加熱手段を有することを特徴とする燃料監視装置。
In any one of Claims 1 thru | or 7,
The fuel monitoring device, wherein the mixed oil adjusting device has a heating means for heating the mixed oil.
請求項1乃至8の何れか一つにおいて、
前記混合油調整装置の内部、上流側の何れか一方又は両方の前記混合油抜出し通路に有機溶剤を添加する有機溶剤供給手段を有することを特徴とする燃料監視装置。
In any one of Claims 1 thru | or 8,
A fuel monitoring device comprising organic solvent supply means for adding an organic solvent to one or both of the mixed oil extraction passages inside and / or upstream of the mixed oil adjusting device.
請求項9において、
予め作成した前記混合油に添加した前記有機溶剤の希釈率と前記有機溶剤から得られる波長付近の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤から得られる波長付近の吸光度から前記有機溶剤の希釈率を求め、
予め作成した前記有機溶剤の希釈率と前記有機溶剤で希釈した前記添加燃料の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤の希釈率から前記添加燃料の吸光度を求め、
予め作成した前記混合油における前記添加燃料の混合率と前記添加燃料の吸光度との関係を表す前記添加燃料の検量線を用いて前記添加燃料の吸光度から前記添加燃料の混合率を求めることを特徴とする燃料監視装置。
In claim 9,
Absorbance near the wavelength obtained from the organic solvent using a calibration curve of the organic solvent representing the relationship between the dilution ratio of the organic solvent added to the mixed oil prepared in advance and the absorbance near the wavelength obtained from the organic solvent The dilution ratio of the organic solvent is determined from
Obtain the absorbance of the added fuel from the dilution rate of the organic solvent using a calibration curve of the organic solvent representing the relationship between the dilution rate of the organic solvent prepared in advance and the absorbance of the added fuel diluted with the organic solvent,
The mixing ratio of the added fuel is obtained from the absorbance of the added fuel using a calibration curve of the added fuel representing the relationship between the mixing ratio of the added fuel and the absorbance of the added fuel in the mixed oil prepared in advance. A fuel monitoring device.
請求項9又は10において、
前記有機溶剤が、四塩化炭素、二硫化炭素、ヘキサン、ベンゼン、アセトンの少なくとも何れか一つ以上であることを特徴とする燃料監視装置。
In claim 9 or 10,
The fuel monitoring apparatus, wherein the organic solvent is at least one of carbon tetrachloride, carbon disulfide, hexane, benzene, and acetone.
請求項9乃至11の何れか一つにおいて、
前記混合油抜出し通路に設けられ、前記液体セル内に前記混合油を封入する混合油封入手段を有することを特徴とする燃料監視装置。
In any one of Claims 9 thru | or 11,
A fuel monitoring apparatus comprising a mixed oil sealing means provided in the mixed oil extraction passage and configured to seal the mixed oil in the liquid cell.
重油系燃料を貯蔵する重油系燃料タンクと、
添加燃料を貯蔵する添加燃料タンクと、
前記重油系燃料を前記ボイラに送給する重油系燃料送給ラインと、
前記添加燃料を前記ボイラに送給する添加燃料送給ラインと、
前記重油系燃料と前記添加燃料とを混合するライン混合器と、
前記ライン混合器において混合された重油系燃料と添加燃料との混合油を前記ライン混合器から前記ボイラに送給する混合油送給ラインと、
前記混合油送給ラインに前記混合油の一部を抜き出す混合油抜出しラインと、
前記混合油抜出しラインに設けられ、請求項1乃至12の何れか一つの燃料監視装置とを有することを特徴とするボイラ設備。
A heavy oil fuel tank for storing heavy oil fuel;
An added fuel tank for storing the added fuel;
A heavy oil fuel supply line for supplying the heavy oil fuel to the boiler;
An additive fuel supply line for supplying the additive fuel to the boiler;
A line mixer for mixing the heavy oil fuel and the added fuel;
A mixed oil feeding line for feeding a mixed oil of the heavy oil fuel and the added fuel mixed in the line mixer from the line mixer to the boiler;
A mixed oil extraction line for extracting a part of the mixed oil to the mixed oil supply line;
A boiler facility comprising the fuel monitoring device according to any one of claims 1 to 12, which is provided in the mixed oil extraction line.
重油系燃料に添加燃料を添加してなる混合油の一部を抜き出し、抜き出した混合油を液体セルに連続的に供給し、前記液体セルに赤外線を照射し、前記混合油により吸収された赤外波長を検出し、
抜出した混合油を検出することで得られた前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料油の混合比判定方法。
A portion of the mixed oil obtained by adding the added fuel to the heavy oil fuel is extracted, the extracted mixed oil is continuously supplied to the liquid cell, the infrared rays are irradiated to the liquid cell, and the red oil absorbed by the mixed oil is absorbed. Detect outside wavelengths,
A method for determining a mixing ratio of fuel oil, wherein a mixing ratio of the added fuel and the heavy oil fuel is obtained from the absorbance of the mixed oil obtained by detecting the extracted mixed oil.
請求項14において、
前記添加燃料が、パームステアリン油、テンプラ油、廃油、アルコールの何れか一つであり、
前記重油系燃料が、C重油、原油、重質油の何れか一つであることを特徴とする燃料油の混合比判定方法。
In claim 14,
The additive fuel is one of palm stearin oil, tempura oil, waste oil, alcohol,
The fuel oil mixing ratio determination method, wherein the heavy oil-based fuel is any one of C heavy oil, crude oil, and heavy oil.
請求項15において、
前記添加燃料がパームステアリン油であり、前記重油系燃料がC重油である場合、
予め求めておいた前記添加燃料と前記重油系燃料との混合比と前記混合油の1740cm-1付近、又は1160cm-1付近の吸光度との関係を表す検量線を用いて検出された前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料油の混合比判定方法。
In claim 15,
When the additive fuel is palm stearin oil and the heavy oil fuel is C heavy oil,
Previously obtained with the addition of fuel had been the mixing ratio of the heavy oil based fuel 1740cm around -1 of the mixed oil or the mixed oil was detected using a calibration curve showing the relationship between the absorbance of 1160cm around -1 A method for determining a mixing ratio of fuel oil, wherein a mixing ratio of the added fuel and the heavy oil fuel is obtained from the absorbance of the fuel oil.
請求項15において、
前記添加燃料がテンプラ油である場合、
予め求めておいた前記添加燃料と前記重油系燃料との混合比と前記混合油の1700cm-1付近の吸光度との関係を表す検量線を用いて検出された前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料油の混合比判定方法。
In claim 15,
When the additive fuel is tempura oil,
From the absorbance of the mixed oil detected using a calibration curve representing the relationship between the mixing ratio of the added fuel and the heavy oil fuel obtained in advance and the absorbance of the mixed oil near 1700 cm −1. And determining the mixing ratio between the fuel oil and the heavy oil fuel.
請求項15において、
前記添加燃料がアルコールである場合、
予め求めておいた前記添加燃料と前記重油系燃料との混合比と前記混合油の1600cm-1付近の吸光度との関係を表す検量線を用いて検出された前記混合油の吸光度から前記添加燃料と前記重油系燃料との混合比を求めることを特徴とする燃料油の混合比判定方法。
In claim 15,
When the additive fuel is alcohol,
From the absorbance of the mixed oil detected using a calibration curve representing the relationship between the mixing ratio of the added fuel and the heavy oil fuel obtained in advance and the absorbance around 1600 cm −1 of the mixed oil, the added fuel is obtained. And determining the mixing ratio between the fuel oil and the heavy oil fuel.
請求項14乃至18の何れか一つにおいて、
抜き出した混合油を加熱した後、測定することを特徴とする燃料油の混合比判定方法。
In any one of Claims 14 thru | or 18,
A method for determining a mixing ratio of fuel oil, wherein the extracted mixed oil is heated and then measured.
請求項14乃至19の何れか一つにおいて、
前記抜き出した混合油に有機溶剤を添加した後、測定することを特徴とする燃料油の混合比判定方法。
In any one of claims 14 to 19,
A method for determining a mixing ratio of fuel oil, wherein an organic solvent is added to the extracted mixed oil and then measured.
請求項14乃至20の何れか一つにおいて、
予め作成した前記混合油に添加した前記有機溶剤の希釈率と前記有機溶剤から得られる波長付近の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤から得られる波長付近の吸光度から前記有機溶剤の希釈率を求め、
予め作成した前記有機溶剤の希釈率と前記有機溶剤で希釈した前記添加燃料の吸光度との関係を表す前記有機溶剤の検量線を用いて前記有機溶剤の希釈率から前記添加燃料の吸光度を求め、
予め作成した前記混合油における前記添加燃料の混合率と前記添加燃料の吸光度との関係を表す前記添加燃料の検量線を用いて前記添加燃料の吸光度から前記添加燃料の混合率を求めることを特徴とする燃料油の混合比判定方法。
In any one of claims 14 to 20,
Absorbance near the wavelength obtained from the organic solvent using a calibration curve of the organic solvent representing the relationship between the dilution ratio of the organic solvent added to the mixed oil prepared in advance and the absorbance near the wavelength obtained from the organic solvent The dilution ratio of the organic solvent is determined from
Obtain the absorbance of the added fuel from the dilution rate of the organic solvent using a calibration curve of the organic solvent representing the relationship between the dilution rate of the organic solvent prepared in advance and the absorbance of the added fuel diluted with the organic solvent,
The mixing ratio of the added fuel is obtained from the absorbance of the added fuel using a calibration curve of the added fuel representing the relationship between the mixing ratio of the added fuel and the absorbance of the added fuel in the mixed oil prepared in advance. A fuel oil mixing ratio determination method.
請求項14乃至21の何れか一つにおいて、
前記有機溶剤が、四塩化炭素、二硫化炭素、ヘキサン、ベンゼン、アセトンの少なくとも何れか一つ以上であることを特徴とする燃料油の混合比判定方法。
In any one of Claims 14 to 21,
A method for determining a fuel oil mixing ratio, wherein the organic solvent is at least one of carbon tetrachloride, carbon disulfide, hexane, benzene, and acetone.
請求項20乃至22の何れか一つにおいて、
前記液体セル内に前記混合油を封入した後、測定することを特徴とする燃料油の混合比判定方法。
In any one of claims 20 to 22,
A method for determining a mixing ratio of fuel oil, wherein the mixed oil is measured after sealing the liquid oil in the liquid cell.
JP2008042047A 2008-02-22 2008-02-22 Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil Pending JP2009198124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042047A JP2009198124A (en) 2008-02-22 2008-02-22 Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042047A JP2009198124A (en) 2008-02-22 2008-02-22 Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil

Publications (1)

Publication Number Publication Date
JP2009198124A true JP2009198124A (en) 2009-09-03

Family

ID=41141808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042047A Pending JP2009198124A (en) 2008-02-22 2008-02-22 Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil

Country Status (1)

Country Link
JP (1) JP2009198124A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364368A (en) * 2013-07-12 2013-10-23 南京富岛信息工程有限公司 Rapid detection method for properties of mixed crude oil
CN104215601B (en) * 2014-07-08 2017-01-11 南京富岛信息工程有限公司 Oil product property modeling method based on automatic addition of virtual spectral point
JP2017138205A (en) * 2016-02-03 2017-08-10 川口 健 Analysis method of trace amount and unknown amount of body fluid
JP2018136151A (en) * 2017-02-20 2018-08-30 日清オイリオグループ株式会社 Determination method and production method for oil and fat composition
JP2019094813A (en) * 2017-11-21 2019-06-20 株式会社豊田中央研究所 Biofuel measuring device and engine system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095437A (en) * 1983-10-28 1985-05-28 Hoya Corp Photomask blank
JPS6370163A (en) * 1986-09-11 1988-03-30 Shimadzu Corp Oil concentration analyzer
JPH0432748A (en) * 1990-05-30 1992-02-04 Hitachi Ltd Method and instrument for measuring mixing ratio of mixed liquid of hydrocarbon liquid fuel and alcohol or the like
JP2008032694A (en) * 2006-07-04 2008-02-14 Dkk Toa Corp Method of identifying kind of oil, and kind of oil identifying unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095437A (en) * 1983-10-28 1985-05-28 Hoya Corp Photomask blank
JPS6370163A (en) * 1986-09-11 1988-03-30 Shimadzu Corp Oil concentration analyzer
JPH0432748A (en) * 1990-05-30 1992-02-04 Hitachi Ltd Method and instrument for measuring mixing ratio of mixed liquid of hydrocarbon liquid fuel and alcohol or the like
JP2008032694A (en) * 2006-07-04 2008-02-14 Dkk Toa Corp Method of identifying kind of oil, and kind of oil identifying unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364368A (en) * 2013-07-12 2013-10-23 南京富岛信息工程有限公司 Rapid detection method for properties of mixed crude oil
CN104215601B (en) * 2014-07-08 2017-01-11 南京富岛信息工程有限公司 Oil product property modeling method based on automatic addition of virtual spectral point
JP2017138205A (en) * 2016-02-03 2017-08-10 川口 健 Analysis method of trace amount and unknown amount of body fluid
JP2018136151A (en) * 2017-02-20 2018-08-30 日清オイリオグループ株式会社 Determination method and production method for oil and fat composition
JP2019094813A (en) * 2017-11-21 2019-06-20 株式会社豊田中央研究所 Biofuel measuring device and engine system

Similar Documents

Publication Publication Date Title
Haarlemmer et al. Analysis and comparison of bio-oils obtained by hydrothermal liquefaction and fast pyrolysis of beech wood
JP2009198124A (en) Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil
Richard et al. On-line monitoring of the transesterification reaction carried out in microreactors using near infrared spectroscopy
AU2014329517B2 (en) Multiple wavelength light source for colorimetric measurement
Ribeiro et al. A single-phase spectrophotometric procedure for in situ analysis of free glycerol in biodiesel
Batista et al. Liquid–liquid microextraction in sequential injection analysis for the direct spectrophotometric determination of acid number in biodiesel
Wu et al. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition
Capper et al. Progression towards online tar detection systems
JP5086787B2 (en) Component analysis apparatus and method for ethanol mixed gasoline
CN202869975U (en) Online automatic testing device for liquid or gas sulfur content
CN106290217A (en) Multiparameter on-line computing model
CN205785988U (en) Variable amount of gas evolved gases dissolved in insulation oil ON-LINE SEPARATION device and wall-mounted analysis system
US10222326B2 (en) Method and apparatus for determining siloxane content of a gas
Yang et al. Development of inexpensive, automatic, real-time measurement system for on-line methane content and biogas flowrate
JP5534329B2 (en) Particle measurement water quality analyzer
Sahito et al. Development of volumetric methane measurement instrument for laboratory scale anaerobic reactors
CN104266986A (en) Method for detecting sulphur content in iron and steel sample
CN205910145U (en) Total organic carbon water quality analyzer based on firing method
CN104297418B (en) A kind of solid sample surveys sulfur equipment
Borgmeyer Continuous on-line tar monitoring in hot process gases from biomass gasification by means of fluorescence spectroscopy
CN219348631U (en) Device for monitoring furfural content in transformer oil in real time
Ward et al. Using Near Infrared Spectroscopy to Predict Volatile Fatty Acids in Biogas Processes Utilising Different Feedstocks
CN201909764U (en) Gaseous fluid element monitoring system
JP6128523B2 (en) Method for chemiluminescence analysis of water-soluble selenium
Birgersson et al. Investigations of gas evolution in an unsaturated KBS-3 repository

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207