JPH1038878A - Quantitative testing method of peripheral oil kind in light oil - Google Patents
Quantitative testing method of peripheral oil kind in light oilInfo
- Publication number
- JPH1038878A JPH1038878A JP19991196A JP19991196A JPH1038878A JP H1038878 A JPH1038878 A JP H1038878A JP 19991196 A JP19991196 A JP 19991196A JP 19991196 A JP19991196 A JP 19991196A JP H1038878 A JPH1038878 A JP H1038878A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- coumarin
- solution
- sample
- test tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は軽油中の周辺油種の
定量試験法及びそのための定量試験装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively determining the type of peripheral oil in light oil and a quantitative test apparatus therefor.
【0002】[0002]
【従来の技術】従来より、通産省資源エネルギー庁は軽
油周辺油種にクマリンを添加することとして、「軽油周
辺油種への識別剤添加実施要綱」及び「軽油周辺油種へ
の識別剤添加実施細則」を定めている。そして、同庁は
軽油引取税の脱税防止を通じて軽油流通秩序の正常化を
図るとの観点から、軽油周辺油種(灯油やA重油)にク
マリン1ppmを一定の精度で添加することによって軽
油への混和を迅速、簡便な方法でチェックできる体制の
整備を行なっている。従来クマリン分析法としては、路
上などで一次スクリーニングとして使用される簡易測定
法と、試験室などで分光蛍光光度計を使用してクマリン
を定量し検量線よりクマリン添加油の混入率を求める定
量分析法の2つの方法が主に用いられている。現行定量
法としては、試料20mlをn−ドデカン180mlで
希釈し、あらかじめ用意した所定濃度のアルカリ液およ
びアルコール液を一定量加えて強く振盪し、試料中のク
マリンをアルカリ層に抽出する。このアルカリ液5ml
を水で10倍希釈した後、分光蛍光光度計を用いて36
0nmで紫外線照射したときの500nmの蛍光強度を
測定し、標準液より作成した検量線に基づき試料に対す
るクマリン添加油の混入率を算出する。又、従来の簡易
測定法としては、試料20mlをねじ口試験管に採取
し、予め用意した所定濃度のアルカリ液およびアルコー
ル液を一定量加えて強く振盪し、試料中のクマリンをア
ルカリ層に抽出する。このアルカリ層に蛍光比色汁を用
いて、紫外線を一定時間照射し、別に用意した比色標準
液(クマリン含有0.035mg/l)とクマリン特有
の緑色の蛍光色相および輝度を比較して目視判定する軽
油周辺油種混入軽油判別法である。2. Description of the Related Art Conventionally, the Agency for Natural Resources and Energy of the Ministry of International Trade and Industry has decided to add coumarin to oil types around gas oil, Detailed rules have been established. From the standpoint of normalizing the distribution order of diesel oil by preventing tax evasion of the diesel oil tax, the Agency adds 1 ppm of coumarin to diesel oil around oil (kerosene and heavy oil A) with a certain degree of accuracy to mix it with diesel oil. We are developing a system that allows for quick and simple checks of the information. Conventional coumarin analysis methods include a simple measurement method used as primary screening on the road and the like, and a quantitative analysis method that uses a spectrofluorometer in a laboratory or the like to quantify coumarin and determine the mixing ratio of coumarin-added oil from a calibration curve. Two methods are mainly used. In the current quantification method, 20 ml of a sample is diluted with 180 ml of n-dodecane, a predetermined amount of an alkali solution and an alcohol solution having a predetermined concentration prepared in advance are added, and the mixture is vigorously shaken to extract coumarin in the sample into the alkali layer. 5 ml of this alkaline solution
Was diluted 10-fold with water, and then diluted 36 times using a spectrofluorometer.
The fluorescence intensity at 500 nm when irradiated with ultraviolet light at 0 nm is measured, and the mixing ratio of the coumarin-added oil to the sample is calculated based on the calibration curve prepared from the standard solution. As a conventional simple measuring method, a sample of 20 ml is taken in a screw-mouth test tube, a predetermined amount of an alkali solution and an alcohol solution having a predetermined concentration prepared in advance are added and shaken vigorously to extract coumarin in the sample into an alkali layer. I do. The alkali layer is irradiated with ultraviolet light for a certain period of time using a fluorescent colorimetric juice, and a separately prepared colorimetric standard solution (containing 0.035 mg / l of coumarin) is compared with a green fluorescent hue and luminance unique to coumarin and visually observed. This is a method for discriminating light oil around mixed light oil types.
【0003】[0003]
【発明が解決しようとする課題】前記現行定量分析法
は、500mlの分液ロートのなかにアルカリ液や有機
溶剤などを合計250ml近くも入れて抽出作業を行な
うため操作性が悪く、また一旦クマリンをアルカリ液に
抽出した後もアルカリ液を水で希釈するなど操作が煩雑
で、分析に時間と熟練を要した。また分析がうまくいっ
たとしても、測定後の分液ロートはアルカリ液と油でど
ろどろになっているために、器具の洗浄に時間をとられ
たり、さらに栓をしたままでしばらく置いておくと分液
ロートの口の部分にアルカリが固まって栓をとることが
できなくなり、やむをえず高価な分液ロートを破棄しな
ければならないという問題があった。したがって、作業
性がよく、短時間で再現性がよく定量できる方法及びそ
のための装置の出現が望まれるところである。However, the current quantitative analysis method described above has a poor operability because the extraction operation is performed with a total of nearly 250 ml of an alkaline solution or an organic solvent in a 500 ml separating funnel. The operation was complicated, such as diluting the alkaline solution with water even after extracting the alkaline solution into the alkaline solution, and the analysis required time and skill. Even if the analysis was successful, the separatory funnel after the measurement was muddy with alkaline solution and oil, so it was necessary to take some time to wash the instruments or leave them for a while with the stopper still on. There was a problem that the alkali was hardened at the mouth of the separating funnel and the stopper could not be removed, and the expensive separating funnel had to be discarded. Therefore, there is a demand for a method and an apparatus for quantifying the workability with good reproducibility in a short time.
【0004】[0004]
【課題を解決するための手段】本発明者は前記の課題を
解決すべく、鋭意研究の結果、軽油試料に対して、希釈
剤、アルカリ液及びアルコール液を特定の割合にして、
軽油中のクマリンを水溶液中に抽出し、特定の波長の紫
外線で励起し、クマリンの蛍光強度を測定し、検量線よ
り得られた特定の式より軽油中の周辺油種の定量試験が
でき、前記の課題が解決し得ることを見出し、本発明に
到達したものである。即ち、本発明の(1)軽油試料を
定量用試験管中で希釈剤n−ドデカンで希釈し、これに
アルカリ液とアルコール液を加えて混合振盪、ついで静
置し、軽油中に含まれるクマリンを水溶液中に抽出、加
水分解し、該抽出液を360nmの紫外線で励起し、ク
マリン特有の500nmの蛍光強度により、軽油中のク
マリン添加油の混入率を下記検量線より得られた一般式
に基いて、算出測定することを特徴とする軽油中の周辺
油種の定量試験法、Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and found that a diluent, an alkali solution and an alcohol solution were used in a specific ratio with respect to a light oil sample.
Coumarin in light oil is extracted into an aqueous solution, excited by ultraviolet light of a specific wavelength, the fluorescence intensity of coumarin is measured, and a quantitative test of the peripheral oil type in light oil can be performed from a specific formula obtained from a calibration curve. The inventors have found that the above-mentioned problems can be solved, and have reached the present invention. That is, (1) a light oil sample of the present invention is diluted with a diluent n-dodecane in a test tube for quantification, an alkali solution and an alcohol solution are added thereto, mixed and shaken, and then allowed to stand, and coumarin contained in the light oil is diluted. Is extracted into an aqueous solution, hydrolyzed, and the extract is excited by ultraviolet light of 360 nm, and the mixing ratio of the coumarin-added oil in the light oil is calculated from the following calibration curve by the fluorescence intensity of 500 nm specific to coumarin. Quantitative test method of peripheral oil type in light oil, characterized by calculating and measuring
【0005】[0005]
【数2】 (Equation 2)
【0006】(2)軽油試料1容量に対して希釈剤n−
ドデカン4〜8容量、アルカリ液4〜6容量及びアルコ
ール液6〜10容量の割合で用いる(1)記載の定量試
験法、(3)軽油試料1容量に対して希釈剤n−ドデカ
ン6容量、アルカリ液5容量及びアルコール液8容量の
割合で用いる(1)記載の定量試験法、(4)混合振盪
時間1〜5分好ましくは3分間であり、ついで静置を4
〜6分好ましくは5分間行う(1)記載の定量試験法、
(5)撹拌子を内蔵する定量用試験管を装着した分光蛍
光光度計からなり、試験管の水溶液中のクマリン加水分
解物を異性化するための360nmの紫外線を照射する
装置及び500nmの蛍光強度を測定する装置及び検量
線より得られた一般式からクマリン添加油の混入率算出
装置を具備する(1)記載の軽油中の周辺油種の定量試
験法のための軽油中の周辺油種の定量試験装置、(6)
分光蛍光光度計が試料室部、試料室部へ紫外線を照射す
るための励起側波長選択部、試料室部からの蛍光強度を
測定する蛍光測定室部からなるものである(5)記載の
軽油中の周辺油種の定量試験装置、(7)定量試験管
が、ねじ口、平底の円筒状のガラス管であり、長さが1
5〜18、直径1.5〜2.0cmのものである(5)
記載の定量試験装置、に関する。(2) Diluent n-
(1) The quantitative test method described in (1), which is used in a ratio of 4 to 8 volumes of dodecane, 4 to 6 volumes of alkali solution and 6 to 10 volumes of alcohol solution, (3) 6 volumes of diluent n-dodecane per 1 volume of light oil sample, (1) The quantitative test method described in (1), which is used at a ratio of 5 volumes of an alkali solution and 8 volumes of an alcohol solution, and (4) a mixing and shaking time of 1 to 5 minutes, preferably 3 minutes.
The quantitative test method according to (1), wherein
(5) A spectrofluorimeter equipped with a quantitative test tube with a built-in stirrer, a device for irradiating ultraviolet light of 360 nm for isomerizing a coumarin hydrolyzate in an aqueous solution of the test tube, and a fluorescent intensity of 500 nm And a device for calculating the mixing ratio of the coumarin-added oil from the general formula obtained from the calibration curve. Quantitative test equipment, (6)
The light oil according to (5), wherein the spectrofluorometer comprises a sample chamber, an excitation-side wavelength selector for irradiating the sample chamber with ultraviolet light, and a fluorescence measurement chamber for measuring the fluorescence intensity from the sample chamber. (7) Quantitative test tube is a screw hole, flat bottom cylindrical glass tube, length 1
5-18, 1.5-2.0 cm in diameter (5)
The present invention relates to the quantitative test apparatus described above.
【0007】本発明は、試料油中に含まれているクマリ
ンを抽出液に濃縮し、アルカリ性にて加水分解しcis
−o−ヒドロキシ桂皮酸とし、次いで紫外線を照射して
蛍光を発するtrans型へと転移した後その蛍光光度
を測定することにより定量分析する。その際、試料油中
にもtrans−o−ヒドロキシ桂皮酸からの蛍光測定
を妨害するような蛍光を発する物質(由来蛍光物質)が
含まれている。この由来蛍光物質の影響を出来るだけ防
ぐ必要がある。以上の工程において抽出液に要求される
条件としては、 (1)クマリンをより早く、高濃度に抽出する。 (2)抽出液中のクマリンを迅速に加水分解する。 (3)由来蛍光物質は抽出しない。 (4)抽出液と試料油の分離が早い。 などが挙げられる。これらの条件を備える混合抽出液と
して以下の(A)アルカリ液、(B)アルコール液、
(C)炭化水素液が用いられる。これら、(A)、
(B)、(C)はそれぞれ従来のクマリン定量法におい
て使用、検討された優れた性能を有する組成液である。 (A)アルカリ液 :水酸化ナトリウム10g、硝酸ナ
トリウム20gを水に加えて100mlとしたもので、
水酸化ナトリウムの代わりに水酸化カリウムも使用で
き、硝酸ナトリウムの代わりに硝酸カリウム、塩化ナト
リウム、塩化カリウムやそれらを種々に組み合わせた溶
液が使用出来る。 (B)アルコール液:1−ブチルアルコール4部とエチ
ルアルコール3部を混合したものであるが、メチルアル
コール、エチルアルコール、プロピルアルコール類とブ
チルアルコール類の種々の組み合わせの混合物及びブチ
ルアルコール類の単一組成物が使用出来る。 (C)炭化水素液 :n−ドデカンを使用するが、n−
ドデカンの他C9〜C13程度の由来蛍光の無い炭化水素
化合物を単独又は混合して使用することが出来る。 本発明ではこれらの(A)アルカリ液、(B)アルコー
ル液及び(C)炭化水素液の配合割合が重要である。According to the present invention, coumarin contained in a sample oil is concentrated into an extract, hydrolyzed with an alkali, and cis-
-O-Hydroxycinnamic acid is converted to a trans-form which emits fluorescence by irradiating ultraviolet rays, and then quantitatively analyzed by measuring the fluorescence intensity. At this time, the sample oil also contains a substance (originating fluorescent substance) that emits fluorescence that interferes with the measurement of fluorescence from trans-o-hydroxycinnamic acid. It is necessary to prevent the influence of this derived fluorescent substance as much as possible. The conditions required for the extract in the above steps are as follows: (1) Coumarin is extracted faster and at a higher concentration. (2) The coumarin in the extract is rapidly hydrolyzed. (3) The derived fluorescent substance is not extracted. (4) Separation of the extract and the sample oil is fast. And the like. As a mixed extract satisfying these conditions, the following (A) alkaline solution, (B) alcohol solution,
(C) A hydrocarbon liquid is used. These, (A),
(B) and (C) are composition liquids having excellent performance which have been used and studied in the conventional coumarin determination method. (A) Alkaline liquid: 10 g of sodium hydroxide and 20 g of sodium nitrate were added to water to make 100 ml.
Potassium hydroxide can be used instead of sodium hydroxide, and potassium nitrate, sodium chloride, potassium chloride, or a solution obtained by variously combining them can be used instead of sodium nitrate. (B) Alcohol solution: a mixture of 4 parts of 1-butyl alcohol and 3 parts of ethyl alcohol, but a mixture of methyl alcohol, ethyl alcohol, various combinations of propyl alcohol and butyl alcohol, and a simple mixture of butyl alcohol One composition can be used. (C) Hydrocarbon liquid: n-dodecane is used.
In addition to dodecane, a hydrocarbon compound having no derived fluorescence of about C 9 to C 13 can be used alone or in combination. In the present invention, the mixing ratio of the (A) alkali liquid, (B) alcohol liquid and (C) hydrocarbon liquid is important.
【0008】各液の配合割合としては表1に示すよう
に、試料油1部に対してB液とC液を種々の割合で使用
することが出来る。また、A液はクマリンの加水分解に
作用するものであり、試料油1部に対し2部以上の使用
が可能であるが、分析容器の関係上液量を考慮すれば5
部程度が適当である。B液とC液の割合については、C
液(n−ドデカン)の混合割合を増大させると抽出液相
と試料油相の分離は早くなるが、由来蛍光物質の影響が
増大して来る。また、B液(アルコール液)を増大させ
た場合には、由来蛍光物質の影響は大きく低減できる
が、逆に液相分離の時間が長くなる。分析の迅速性と精
度の観点よりRun4に示す配合組成の時に良好な結果
が得られた。つまり、 試料油 1部 C液(n−ドデカン) 6部 B液(アルコール液) 8部 A液(アルカリ液) 5部 となる。As shown in Table 1, various ratios of the liquid B and the liquid C can be used with respect to 1 part of the sample oil. Solution A acts on the hydrolysis of coumarin, and two or more parts can be used for one part of the sample oil.
Part is appropriate. About the ratio of B liquid and C liquid,
When the mixing ratio of the liquid (n-dodecane) is increased, the separation between the extract liquid phase and the sample oil phase is accelerated, but the influence of the fluorescent substance derived from the extract is increased. In addition, when the amount of the liquid B (alcohol liquid) is increased, the influence of the originating fluorescent substance can be greatly reduced, but on the contrary, the time of liquid phase separation becomes longer. From the viewpoint of the speed and accuracy of analysis, good results were obtained when the composition was as shown in Run4. That is, sample oil 1 part C liquid (n-dodecane) 6 parts B liquid (alcohol liquid) 8 parts A liquid (alkali liquid) 5 parts
【0009】[0009]
【表1】 [Table 1]
【0010】本発明では、図1のような構造を有する分
光蛍光光度計1で軽油試料を測定する。試料室2中の試
験管ホルダーに試料を入れた試験管3を設置し、該試験
管中の試料に励起光源(紫外線)室5より紫外線を照射
する。紫外線を照射された試料から発生する蛍光を蛍光
測定室6にて蛍光強度を測定する。試料室2は励起光照
射窓7及び蛍光強度測定窓8を有する。又試験管3の底
部にはスターラー9が設けられている。本発明では試験
管として好ましくは図2に示すねじ口式平底試験管を使
用する。このねじ口式平底試験管の大きさは長さが15
〜18cm、直径1.5〜2.0cm、好ましくは長さ
が16.5cm、直径が1.8cmである。このねじ口
式平底試験管について、試薬比率、異性化条件、
振盪時間の検討ならびに、直線性の確認を行った。 表1に示す試薬比率は検討の結果、試薬全量で20m
lになるように試料:n−ドデカン(C液):アルカリ
液(A液):アルコール液(B液)を1:6:5:8m
lとした。但し、試料量とアルカリ液量は1mlと5m
lに固定し、20mlからこれらを差し引いた残りの1
4mlについてn−ドデカンとアルコール液の比率を検
討した。実験からn−ドデカン量の多いほうが分離時間
がやや短く、アルコール液量の多い方が由来蛍光の影響
が小さいことがわかったが、限られた液量の中で両者を
多くすることは実際上できないため、由来蛍光の影響が
現行の定量分析法と同等になるような試薬比率を選択し
た。 異性化条件の検討の結果、バンド幅は励起側、蛍光側
とも10nm、異性化時間は5分間とした。また撹拌子
のサイズは将来使い捨てで使用することを考慮して、鉄
製の1mm×5mmとした。スターラーの強度が弱いと
5分間でも異性化が完了しないし、逆に強度が強すぎる
と蛍光強度の低下がみられることがあるので、装置ごと
にあらかじめスターラーの最適強度目盛りを確認してお
くことが必要になる。 振盪時間の検討結果より、振盪時間が3分間なら抽出
効率は97%以上、1分間なら抽出効率は80%以上で
あった。この結果振盪時間として3分間を採用した。た
だし、時間短縮が必要な場合は、振盪時間が1分間でも
再現性が良好であったので、振盪時間を厳守しあらかじ
め再現性を確認した上でならば振盪時間を1分間にして
もさしつかえないと考えられる。 直線性の確認では、振盪時間が1分間の条件でも、ク
マリン蛍光強度と混入率の間に相関係数r=0.999
9という強い相関が確認される。In the present invention, a light oil sample is measured with a spectrofluorometer 1 having a structure as shown in FIG. A test tube 3 containing a sample is placed in a test tube holder in the sample chamber 2, and the sample in the test tube is irradiated with ultraviolet rays from an excitation light source (ultraviolet) chamber 5. The fluorescence intensity of the fluorescence generated from the sample irradiated with the ultraviolet rays is measured in the fluorescence measurement chamber 6. The sample chamber 2 has an excitation light irradiation window 7 and a fluorescence intensity measurement window 8. A stirrer 9 is provided at the bottom of the test tube 3. In the present invention, a screw mouth type flat bottom test tube shown in FIG. 2 is preferably used as the test tube. This screw-mouthed flat bottom test tube has a length of 15
1818 cm, 1.5-2.0 cm in diameter, preferably 16.5 cm in length and 1.8 cm in diameter. For this screw-mouthed flat bottom test tube, the reagent ratio, isomerization conditions,
The shaking time was examined and the linearity was confirmed. As a result of the examination, the reagent ratio shown in Table 1 was 20 m in total amount of the reagent.
Sample: n-dodecane (solution C): alkaline solution (solution A): alcohol solution (solution B) 1: 6: 5: 8 m
l. However, the sample amount and the alkaline solution amount are 1 ml and 5 m
l and subtract 1 from 20 ml.
The ratio of n-dodecane to alcohol solution was examined for 4 ml. From the experiments, it was found that the separation time was slightly shorter when the amount of n-dodecane was larger, and the influence of the derived fluorescence was smaller when the amount of alcohol solution was larger. However, it was practically impossible to increase both in a limited amount of solution. Therefore, the ratio of the reagents was selected such that the influence of the derived fluorescence was equivalent to that of the current quantitative analysis method. As a result of studying the isomerization conditions, the bandwidth was 10 nm for both the excitation side and the fluorescence side, and the isomerization time was 5 minutes. The size of the stirrer was set to 1 mm × 5 mm made of iron in consideration of disposable use in the future. If the intensity of the stirrer is low, the isomerization will not be completed in 5 minutes, and if the intensity is too high, the fluorescence intensity may decrease. Therefore, check the optimal intensity scale of the stirrer in advance for each device. Is required. According to the examination result of the shaking time, the extraction efficiency was 97% or more if the shaking time was 3 minutes, and the extraction efficiency was 80% or more if the shaking time was 1 minute. As a result, a shaking time of 3 minutes was adopted. However, when time reduction was necessary, the reproducibility was good even if the shaking time was 1 minute. Therefore, if the reproducibility is confirmed in advance by strictly observing the shaking time, the shaking time may be 1 minute. it is conceivable that. In the confirmation of the linearity, the correlation coefficient r = 0.999 between the coumarin fluorescence intensity and the mixing ratio even under the condition that the shaking time is 1 minute.
A strong correlation of 9 is confirmed.
【0011】表2の測定条件に基づいて、今度は30種
類の模擬試料について分離時間、異性化時間、由
来蛍光、定量性の確認ならびに現行の定量分析法
(B)との比較について測定し本発明の定量試験法の実
用性の有無を検討した。なお、本発明の定量試験法
(A)と現行定量分析法(B)との分析方法フロー図は
図3に示す通りである。試験試料は以下の通りであっ
た。*試験試料:クマリン1ppm添加灯油、LSA重
油、超LSA重油各種10種類を混入率を変えて軽油に
混入した試料その結果以下のことが明らかとなった。 分離時間の確認では、1.5分でほぼ分離の終了が確
認された。 異性化時間の確認では、3分で異性化が96%以上完
了した。 燃料由来蛍光の確認では、混入油の種類が蛍光強度に
影響を及ぼすかどうかを調べたが、n−ドデカンベース
の標準試料とあまりかわらない値であったので、定量値
への由来蛍光の影響は小さいものと思われる。 定量性の確認では、ベース油や混入油の由来蛍光の影
響をほとんど受けることなく、混入率と蛍光強度の間に
相関係数r=0.9999という強い相関が得られた。 現行の定量分析法との比較のために、3種類の軽油に
9種類の軽油周辺油種(灯油、A重油)を10%混入し
た27点の模擬試料について現行法と本発明の定量試験
法の2法で分析を行い混入率を求めた。表3に示すよう
に両者の値はほぼ、一致しており、本発明の定量試験法
は現行の定量分析法と同等の方法であると云える。 以上、本発明の定量試験法は現行の定量分析法と同等の
測定結果が得られるだけでなく、簡便さ、少試料、測定
時間の短縮の点からみて、現行定量法をうわまわるもの
があることが分かる。Based on the measurement conditions shown in Table 2, this time, the separation time, the isomerization time, the derived fluorescence, the confirmation of the quantitative property, and the comparison with the current quantitative analysis method (B) were measured for 30 kinds of the simulated samples. The practicality of the quantitative test method of the invention was examined. In addition, the analysis method flow chart of the quantitative test method (A) of the present invention and the current quantitative analysis method (B) is as shown in FIG. The test samples were as follows. * Test sample: A sample in which 10 types of coumarin 1 ppm added kerosene, LSA heavy oil, and ultra-LSA heavy oil were mixed into light oil at various mixing ratios. As a result, the following became clear. In the confirmation of the separation time, it was confirmed that the separation was almost completed in 1.5 minutes. In the confirmation of the isomerization time, isomerization was completed in 96 minutes or more in 3 minutes. In checking the fuel-derived fluorescence, it was examined whether the type of oil contaminated affected the fluorescence intensity. However, the value was little different from that of the n-dodecane-based standard sample. Seems small. In the confirmation of the quantitativeness, a strong correlation of a correlation coefficient r = 0.9999 was obtained between the mixing ratio and the fluorescence intensity with almost no influence of the fluorescence derived from the base oil or the mixed oil. For comparison with the current quantitative analysis method, the simulation method of the present method and the quantitative test method of the present invention were carried out on 27 simulated samples in which 9 types of light oil peripheral oil types (kerosene, heavy oil A) were mixed at 10% in 3 types of light oil. Analysis was performed by two methods to determine the mixing ratio. As shown in Table 3, the values are almost the same, and it can be said that the quantitative test method of the present invention is equivalent to the current quantitative analysis method. As described above, the quantitative test method of the present invention not only can obtain the same measurement results as the current quantitative analysis method, but also has advantages over the current quantitative method in view of simplicity, small sample size, and reduction in measurement time. You can see that.
【0012】[0012]
【表2】 [Table 2]
【0013】[0013]
【表3】 [Table 3]
【0014】[0014]
【発明の実施の形態】本発明の定量試験法は以下の手順
で行うことができる。 1.使用する装置及び試薬 (1)装置 a.分光蛍光光度計 b.振盪計 (3)試薬類 a.アルカリ液 〔組成:硝酸ナトリウム/水酸化ナトリウム=10g/
20g(水溶液100ml中の含有量)〕 b.アルコール液 (組成:1−ブタノール/エタノール=4/3) c.検量線作成用クマリン標準液(クマリン濃度0.8
mg/l)(組成:クマリン/芳香族溶剤/n−ドデカ
ン) d.n−ドデカン 2.検量線作成用標準サンプルの調製 (クマリン濃度0.8ppmのクマリン標準液を使用し
た場合) (1)0%サンプルの調製 n−ドデカン液7mlを分注器で採取し、平底試験管
に入れる。 アルコール液8mlを分注器で採取し、上記平底試
験管に入れる。 アルカリ液5mlを分注器で採取し、上記平底試験
管に入れる。 スターラーピースを入れる。 (2)20%サンプルの調製 クマリン標準液0.25mlを分注器で採取し、平底
試験管に入れる。 n−ドデカン液6.75mlを分注器で採取し、上記
平底試験管に入れる。 アルコール液8mlを分注器で採取し、上記平底試
験管に入れる。 アルカリ液5mlを分注器で採取し、上記平底試験
管に入れる。 スターラーピースを入れる。 (3)40%サンプルの調製 クマリン標準液0.5mlを分注器で採取し、平底試
験管に入れる。 n−ドデカン液6.5mlを分注器で採取し、上記
平底試験管に入れる。 アルコール液8mlを分注器で採取し、上記平底試
験管に入れる。 アルカリ液5mlを分注器で採取し、上記平底試験
管に入れる。 スターラーピースを入れる。 (4)80%サンプルの調製 クマリン標準液1mlを分注器で採取し、平底試験管
に入れる。 n−ドデカン液6mlを分注器で採取し、上記平底
試験管に入れる。 アルコール液8mlを分注器で採取し、上記平底試
験管に入れる。 アルカリ液5mlを分注器で採取し、上記平底試験
管に入れる。 スターラーピースを入れる。 (5)振盪器による振盪及び静置 2の(1)〜(4)の平底試験管を振盪器に装着し、
3分間振盪する。 各平底試験管を試験管立てに装着し、5分間静置す
る。これら検量線作成用試料について表4に示す。BEST MODE FOR CARRYING OUT THE INVENTION The quantitative test method of the present invention can be performed according to the following procedure. 1. Apparatus and reagents to be used (1) Apparatus a. Spectrofluorimeter b. Shake meter (3) Reagents a. Alkaline liquid [Composition: sodium nitrate / sodium hydroxide = 10 g /
20 g (content in 100 ml of aqueous solution)] b. Alcohol solution (composition: 1-butanol / ethanol = 4/3) c. Coumarin standard solution for preparing a calibration curve (coumarin concentration 0.8
mg / l) (composition: coumarin / aromatic solvent / n-dodecane) d. 1. n-dodecane Preparation of a standard sample for preparing a calibration curve (when a coumarin standard solution having a coumarin concentration of 0.8 ppm is used) (1) Preparation of a 0% sample 7 ml of an n-dodecane solution is collected with a pipettor and placed in a flat bottom test tube. 8 ml of the alcohol solution is collected with a pipettor and placed in the flat-bottom test tube. Take 5 ml of the alkaline solution with a pipettor and place it in the flat-bottom test tube. Put in the stirrer piece. (2) Preparation of 20% sample 0.25 ml of coumarin standard solution is collected with a pipettor and placed in a flat bottom test tube. 6.75 ml of n-dodecane solution is collected with a pipettor and placed in the flat-bottom test tube. 8 ml of the alcohol solution is collected with a pipettor and placed in the flat-bottom test tube. Take 5 ml of the alkaline solution with a pipettor and place it in the flat-bottom test tube. Put in the stirrer piece. (3) Preparation of 40% sample A 0.5 ml coumarin standard solution is collected with a pipettor and placed in a flat bottom test tube. Take 6.5 ml of n-dodecane solution with a pipettor and place in the flat bottom test tube. 8 ml of the alcohol solution is collected with a pipettor and placed in the flat-bottom test tube. Take 5 ml of the alkaline solution with a pipettor and place it in the flat-bottom test tube. Put in the stirrer piece. (4) Preparation of 80% sample Take 1 ml of coumarin standard solution with a pipettor and put it in a flat bottom test tube. Take 6 ml of n-dodecane solution with a pipettor and place in the flat bottom test tube. 8 ml of the alcohol solution is collected with a pipettor and placed in the flat-bottom test tube. Take 5 ml of the alkaline solution with a pipettor and place it in the flat-bottom test tube. Put in the stirrer piece. (5) Shaking with a shaker and standing still The flat-bottom test tube of (1) to (4) in 2 was attached to the shaker,
Shake for 3 minutes. Each flat-bottom test tube is attached to a test tube stand, and allowed to stand for 5 minutes. Table 4 shows these calibration curve preparation samples.
【0015】[0015]
【表4】 [Table 4]
【0016】3.検量線の作成 上記各平底試験管を分光蛍光光度計に順次装着し、検
量線を作成する。 検量線より最小2乗法により直線回帰式である以下の
一般式を求める。3. Preparation of calibration curve Each of the flat-bottom test tubes is sequentially mounted on a spectrofluorometer, and a calibration curve is prepared. From the calibration curve, the following general formula, which is a linear regression formula, is obtained by the least squares method.
【0017】[0017]
【数3】 (Equation 3)
【0018】4.定量試験サンプルの調製 試験サンプル1mlを分注器で採取し、平底試験管に
入れる。 n−ドデカン液6mlを分注器で採取し、上記平底
試験管に入れる。 アルコール液8mlを分注器で採取し、上記平底試
験管に入れる。 アルカリ液5mlを分注器で採取し、上記平底試験
管に入れる。 スターラーピースを入れる。 上記平底試験管を振盪器に装着し、3分間振盪する。 上記平底試験管を試験管立てに装着し、5分間静置す
る。 5.蛍光強度の測定 4で調製した平底試験管を分光蛍光光度計に装着し、
蛍光光度xを測定し、検量線より得られた上記直線回帰
式である一般式に代入し周辺油種混入率を定量する。4. Preparation of Quantitative Test Sample 1 ml of the test sample is collected with a pipettor and placed in a flat bottom test tube. Take 6 ml of n-dodecane solution with a pipettor and place in the flat bottom test tube. 8 ml of the alcohol solution is collected with a pipettor and placed in the flat-bottom test tube. Take 5 ml of the alkaline solution with a pipettor and place it in the flat-bottom test tube. Put in the stirrer piece. The flat bottom test tube is attached to a shaker and shaken for 3 minutes. The above flat-bottom test tube is attached to a test tube stand, and left still for 5 minutes. 5. Measurement of fluorescence intensity The flat-bottom test tube prepared in 4 was attached to a spectrofluorometer,
The fluorescence intensity x is measured and substituted into the above-mentioned linear regression equation obtained from the calibration curve to determine the mixing ratio of peripheral oil species.
【0019】[0019]
1.検量線の作成 検量線作成用試料は、周辺油種混入率(以下、混入率と
言う。)0%、20%、40%、80%相当(クマリン
含有率0ppm、0.2ppm、0.4ppm、0.8
ppm)の各n−ドデカン液1mlを図1に示す平底試
験管(以下、試験管と言う。)に採取し、それぞれn−
ドデカン液6ml、アルコール液8ml、アルカリ液5
mlを加え、攪拌子を入れ蓋をする。それぞれの試験管
を図3に示す振盪器に装着し、240回/分以上の速度
で水平方向に3分間振盪し油中のクマリンを加水分解さ
せアルカリ層に抽出する。振盪後、試験管立てに立て5
分間静置し、油層・アルコール層・アルカリ層に分離さ
せる。分離後、試験管を図4に示す分光蛍光光度計の試
料室部に装着し、360nmの紫外線をアルカリ層に5
分間照射し、cis−o−ヒドロキシ桂皮酸を異性化さ
せ、500nmの蛍光強度の経時的変化(図5〜8)を
モニターして蛍光強度が一定になることにより異性化の
終了を確認する。異性化終了後の混入率0%、20%、
40%、80%のそれぞれについて500±10nmに
ピークを物蛍光強度を測定し、混入率を横軸に、蛍光強
度を縦軸に、それぞれプロットして検量線(図9)を作
成する。図10に示すように紫外線360nmでの照射
による異性化は約3分間以上行なう。又蛍光強度の測定
は図11に示すように蛍光波長500nmで行なう。検
量線作成用データを表5に示す。1. Preparation of Calibration Curve A sample for preparing a calibration curve is equivalent to 0%, 20%, 40%, and 80% of the peripheral oil type mixing ratio (hereinafter referred to as mixing ratio) (coumarin content ratio 0 ppm, 0.2 ppm, 0.4 ppm). , 0.8
ppm) of each n-dodecane solution was collected in a flat bottom test tube (hereinafter referred to as a test tube) shown in FIG.
Dodecane solution 6ml, alcohol solution 8ml, alkali solution 5
ml, add a stirrer and cover. Each test tube is mounted on a shaker shown in FIG. 3 and shaken horizontally at a speed of 240 times / min or more for 3 minutes to hydrolyze coumarin in oil and extract it into an alkaline layer. After shaking, stand in a test tube stand 5
Let stand for minutes and separate into oil layer, alcohol layer and alkali layer. After the separation, the test tube was attached to the sample chamber of the spectrofluorometer shown in FIG.
Cis-o-Hydroxycinnamic acid is isomerized, and the time-dependent change in the fluorescence intensity at 500 nm (FIGS. 5 to 8) is monitored, and the end of the isomerization is confirmed when the fluorescence intensity becomes constant. 0%, 20%, after completion of isomerization
Fluorescence intensity is measured for peaks at 500 ± 10 nm for each of 40% and 80%, and the calibration curve (FIG. 9) is created by plotting the mixing ratio on the horizontal axis and the fluorescence intensity on the vertical axis. As shown in FIG. 10, isomerization by irradiation with ultraviolet rays at 360 nm is performed for about 3 minutes or more. The fluorescence intensity is measured at a fluorescence wavelength of 500 nm as shown in FIG. Table 5 shows the data for preparing the calibration curve.
【0020】[0020]
【表5】 [Table 5]
【0021】上記データを代入して直線回帰式を求める
と、以下の通りである。A linear regression equation is obtained by substituting the above data, and is as follows.
【0022】[0022]
【数4】 (Equation 4)
【0023】2.試料軽油の周辺油種混入率の測定 実測定の一例として、灯油が約10%混入した軽油の測
定を行なう。試料軽油1mlを試験管に採取し、n−ド
デカン液6ml、アルコール液8ml、アルカリ液5m
lを加え、攪拌子を入れ蓋をする。試験管を振盪器に装
着し、240回/分以上の速度で水平方向に3分間振盪
し試料中のクマリンを加水分解させアルカリ層に抽出す
る。振盪後、試験管立てに立て5分間静置し、油層・ア
ルコール層・アルカリ層に分離させる。分離後、試験管
を分光蛍光光度計の試料室部に装着し、360nmの紫
外線をアルカリ層に5分間照射し、cis−o−ヒドロ
キシ桂皮酸を異性化させ、500nmの蛍光強度の経時
的変化をモニターして蛍光強度が一定となった値から図
1の検量線より試料軽油混入率を算出する。 測定データ 試料軽油の蛍光強度 : x=112.6 を検量線(式)に代入すると 112.6 =9.729C+3.085 C=11.3% よって周辺油種混入率は11.3%である。2. As an example of actual measurement of the peripheral oil type contamination rate of a sample gas oil, measurement of gas oil containing about 10% of kerosene is performed. 1 ml of sample gas oil was collected in a test tube, and 6 ml of n-dodecane solution, 8 ml of alcohol solution, and 5 m of alkali solution were collected.
1 is added, a stirrer is put in, and the lid is put. The test tube is mounted on a shaker and shaken horizontally at a speed of 240 times / min or more for 3 minutes to hydrolyze coumarin in the sample and extract it into an alkali layer. After shaking, stand in a test tube stand and let stand for 5 minutes to separate into an oil layer, alcohol layer and alkali layer. After the separation, the test tube was attached to the sample chamber of the spectrofluorometer, and the alkali layer was irradiated with ultraviolet light of 360 nm for 5 minutes to isomerize cis-o-hydroxycinnamic acid, and the change over time of the fluorescence intensity at 500 nm. Is monitored, and the gas oil mixing ratio of the sample is calculated from the calibration curve of FIG. 1 from the value at which the fluorescence intensity becomes constant. Measurement data Fluorescence intensity of sample gas oil: x = 112.6 is substituted into a calibration curve (formula). 112.6 = 9.729C + 3.085 C = 11.3% Therefore, the peripheral oil type contamination rate is 11.3% . .
【0024】[0024]
【発明の効果】本発明では従来方法に比して使用する試
薬量が少なく、試験管だけで試料調製ができ、試験管と
してねじ口平底試験管と撹拌子により、短時間で抽出で
き、作業性が極めてよいという効果が奏せられ、又測定
時例えば検量線作成及び試料測定が従来法の1/2〜1
/3の時間で行なうことができる。According to the present invention, the amount of reagent used is smaller than that of the conventional method, a sample can be prepared using only a test tube, and the test tube can be extracted in a short time by using a screw bottom flat bottom test tube and a stirrer. The effect of the method is extremely good, and the preparation of the calibration curve and the measurement of the sample at the time of measurement, for example, are 1/2 to 1 of the conventional method.
/ 3 hours.
【図1】本発明の分光蛍光光度計の構造模式概略図であ
る。FIG. 1 is a schematic structural diagram of a spectrofluorometer of the present invention.
【図2】平底試験管の外観模式図である。FIG. 2 is a schematic external view of a flat bottom test tube.
【図3】本発明の定量試験法(A)と従来の定量分析法
(B)の分析方法フロー図である。FIG. 3 is an analysis method flow chart of a quantitative test method (A) of the present invention and a conventional quantitative analysis method (B).
【図4】振盪器の外観模式図である。FIG. 4 is a schematic external view of a shaker.
【図5】周辺油種混入率0%における異性化時の蛍光強
度の経時的変化のグラフである。FIG. 5 is a graph showing the change over time in fluorescence intensity during isomerization at a peripheral oil species contamination rate of 0%.
【図6】周辺油種混入率20%における異性化時の蛍光
強度の経時的変化のグラフである。FIG. 6 is a graph showing the change over time in the fluorescence intensity during isomerization at a peripheral oil species contamination rate of 20%.
【図7】周辺油種混入率40%における異性化時の蛍光
強度の経時的変化のグラフである。FIG. 7 is a graph showing the change over time in fluorescence intensity during isomerization at a peripheral oil species contamination rate of 40%.
【図8】周辺油種混入率80%における異性化時の蛍光
強度の経時的変化のグラフである。FIG. 8 is a graph showing a change over time in fluorescence intensity during isomerization at a peripheral oil species contamination rate of 80%.
【図9】検量線のグラフである。FIG. 9 is a graph of a calibration curve.
【図10】試料軽油(灯油が約10%混入した軽油)の
異性化時の蛍光強度の経時的変化のグラフである。FIG. 10 is a graph showing the change over time in the fluorescence intensity at the time of isomerization of a sample light oil (light oil containing about 10% of kerosene).
【図11】試料軽油(灯油が約10%混入した軽油)の
スペクトル測定における蛍光強度時蛍光波長のグラフで
ある。FIG. 11 is a graph of the fluorescence wavelength at the time of fluorescence intensity in the spectrum measurement of a sample light oil (light oil mixed with about 10% of kerosene).
1.分光蛍光光度計 2.試料室部 3.試験管 4.試験管ホルダー 5.励起光源(紫外線)部 6.蛍光測定室部 7.励起光照射窓 8.蛍光強度測定窓 9.スターラー 10.試験管の蓋 11.振盪器 12.試験管固定台 13.タイマー 14.スイッチ 15.スピード調整ダイヤル 1. Spectrofluorometer 2. 2. Sample chamber section Test tube 4. Test tube holder 5. 5. Excitation light source (ultraviolet ray) section 6. Fluorescence measurement room 7. Excitation light irradiation window 8. Fluorescence intensity measurement window Stirrer 10. Test tube lid 11. Shaker 12. Test tube fixing base 13. Timer 14. Switch 15. Speed adjustment dial
Claims (7)
デカンで希釈し、これにアルカリ液とアルコール液を加
えて混合振盪、ついで静置し、軽油中に含まれるクマリ
ンを水溶液中に抽出、加水分解し、該抽出液を360n
mの紫外線で励起し、クマリン特有の500nmの蛍光
強度により、軽油中のクマリン添加油の混入率を下記検
量線より得られた一般式に基いて、算出測定することを
特徴とする軽油中の周辺油種の定量試験法。 【数1】 1. A gas oil sample is diluted with a diluent n-dodecane in a test tube for quantification, an alkali solution and an alcohol solution are added thereto, mixed and shaken, and then allowed to stand, and the coumarin contained in the gas oil is dissolved in an aqueous solution. Extract and hydrolyze it, and
m, the coumarin-added oil in the light oil is calculated and measured based on the general formula obtained from the following calibration curve, based on the fluorescence intensity of 500 nm specific to coumarin. Quantitative test method for surrounding oil types. (Equation 1)
ン4〜8容量、アルカリ液4〜6容量及びアルコール液
6〜10容量の割合で用いる請求項1記載の定量試験
法。2. The quantitative test method according to claim 1, wherein 4 to 8 volumes of diluent n-dodecane, 4 to 6 volumes of alkaline solution and 6 to 10 volumes of alcohol solution are used per 1 volume of the gas oil sample.
ン6容量、アルカリ液5容量及びアルコール液8容量の
割合で用いる請求項1記載の定量試験法。3. The quantitative test method according to claim 1, wherein the diluent is used in a ratio of 6 volumes of a diluent, 5 volumes of an alkaline solution and 8 volumes of an alcohol solution per 1 volume of a light oil sample.
置を4〜6分間行う請求項1記載の定量試験法。4. The quantitative test method according to claim 1, wherein the mixing and shaking time is 1 to 5 minutes, and then the mixture is allowed to stand for 4 to 6 minutes.
分光蛍光光度計からなり、試験管の水溶液中のクマリン
加水分解物を異性化するための360nmの紫外線を照
射する装置及び500nmの蛍光強度を測定する装置及
び検量線より得られた一般式よりクマリン添加油の混入
率算出装置を具備する請求項1記載の軽油中の周辺油種
の定量試験法のための軽油中の周辺油種の定量試験装
置。5. An apparatus for irradiating 360 nm ultraviolet light for isomerizing a coumarin hydrolyzate in an aqueous solution of a test tube, comprising a spectrofluorometer equipped with a quantitative test tube having a built-in stirrer, and a 500 nm 2. A peripheral oil in light oil for a quantitative test method of peripheral oil in gas oil according to claim 1, comprising a device for measuring fluorescence intensity and a device for calculating the mixing ratio of coumarin-added oil from a general formula obtained from a calibration curve. Seed quantitative test equipment.
外線を照射するための励起側波長選択部、試料室部から
の蛍光強度を測定する蛍光測定室部からなるものである
請求項5記載の軽油中の周辺油種の定量試験装置。6. A spectrofluorometer comprising a sample chamber, an excitation-side wavelength selector for irradiating the sample chamber with ultraviolet light, and a fluorescence measurement chamber for measuring the intensity of fluorescence from the sample chamber. Item 6. A quantitative test device for peripheral oil types in light oil according to item 5.
ラス管であり、長さが15〜18、直径1.5〜2.0
cmのものである請求項5記載の軽油中の周辺油種の定
量試験装置。7. The quantitative test tube is a cylindrical glass tube having a screw mouth and a flat bottom, having a length of 15 to 18 and a diameter of 1.5 to 2.0.
The quantitative testing device for peripheral oil types in light oil according to claim 5, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19991196A JPH1038878A (en) | 1996-07-30 | 1996-07-30 | Quantitative testing method of peripheral oil kind in light oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19991196A JPH1038878A (en) | 1996-07-30 | 1996-07-30 | Quantitative testing method of peripheral oil kind in light oil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1038878A true JPH1038878A (en) | 1998-02-13 |
Family
ID=16415662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19991196A Withdrawn JPH1038878A (en) | 1996-07-30 | 1996-07-30 | Quantitative testing method of peripheral oil kind in light oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1038878A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100390529C (en) * | 2005-01-17 | 2008-05-28 | 中国海洋大学 | Method for measuring oil content of debris and core in oil logging |
JP2008261811A (en) * | 2007-04-13 | 2008-10-30 | Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd | Fuel discrimination device of construction machine |
JP2009264940A (en) * | 2008-04-25 | 2009-11-12 | Dkk Toa Corp | Light oil monitor |
CN103868916A (en) * | 2013-11-15 | 2014-06-18 | 四川省中医药科学院 | Biological test method for rapidly detecting comprehensive toxicity of traditional Chinese medicine |
JP2018136151A (en) * | 2017-02-20 | 2018-08-30 | 日清オイリオグループ株式会社 | Determination method and production method for oil and fat composition |
JP2020038088A (en) * | 2018-09-03 | 2020-03-12 | 株式会社日立ハイテクサイエンス | Coumarin measurement method, and coumarin automatic measurement device |
CN111492241A (en) * | 2017-09-29 | 2020-08-04 | 由联邦材料研究和检测机构主席所代表的经济与能源部长所代表的德意志联邦共和国 | Detection of hydrocarbon contamination in soil and water |
-
1996
- 1996-07-30 JP JP19991196A patent/JPH1038878A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100390529C (en) * | 2005-01-17 | 2008-05-28 | 中国海洋大学 | Method for measuring oil content of debris and core in oil logging |
JP2008261811A (en) * | 2007-04-13 | 2008-10-30 | Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd | Fuel discrimination device of construction machine |
JP4614984B2 (en) * | 2007-04-13 | 2011-01-19 | 住友建機株式会社 | Construction machine fuel discriminator |
JP2009264940A (en) * | 2008-04-25 | 2009-11-12 | Dkk Toa Corp | Light oil monitor |
CN103868916A (en) * | 2013-11-15 | 2014-06-18 | 四川省中医药科学院 | Biological test method for rapidly detecting comprehensive toxicity of traditional Chinese medicine |
JP2018136151A (en) * | 2017-02-20 | 2018-08-30 | 日清オイリオグループ株式会社 | Determination method and production method for oil and fat composition |
CN111492241A (en) * | 2017-09-29 | 2020-08-04 | 由联邦材料研究和检测机构主席所代表的经济与能源部长所代表的德意志联邦共和国 | Detection of hydrocarbon contamination in soil and water |
JP2020038088A (en) * | 2018-09-03 | 2020-03-12 | 株式会社日立ハイテクサイエンス | Coumarin measurement method, and coumarin automatic measurement device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12111260B2 (en) | Apparatus and method for determination of banned substances | |
JPH1038878A (en) | Quantitative testing method of peripheral oil kind in light oil | |
Capote et al. | Determination of copper, iron and zinc in spirituous beverages by total reflection X-ray fluorescence spectrometry | |
Pulgarín et al. | Rapid simultaneous determination of four non-steroidal anti-inflammatory drugs by means of derivative nonlinear variable-angle synchronous fluorescence spectrometry | |
US11692954B1 (en) | Trace detection method of heavy metals and application thereof | |
CN107421935A (en) | A kind of fluorescence micro RNA detection means and detection method | |
CN103185686B (en) | Particulate matter component assay method in transformer oil | |
TWI412494B (en) | Detection kit of melamine and detection method thereof | |
Wilson et al. | Design and operation of a fluorometric reaction rate instrument | |
Singer et al. | Spectrophotometric determination of bischlorophenol and other phenolic compounds | |
Latz et al. | Luminescence analysis of food antioxidants; determination of propyl gallate in lard | |
Li et al. | Derivative matrix isopotential synchronous fluorescence spectroscopy for the direct determination of 1-hydroxypyrene as a urinary biomarker of exposure to polycyclic aromatic hydrocarbons | |
RU2760002C2 (en) | Method for determining mass concentration of total iron in associated waters and waters of oil and gas condensate fields by x-ray fluorescence method | |
CN109900692A (en) | Green high-efficient detects the preparation method of the gel of mercury ion and the application of the gel | |
RU2236916C1 (en) | Method of determining weight concentration of benzo-a-pyrene in soil | |
EP0446975B1 (en) | Installation for the rapid analysis of tar components and method for such an analysis | |
JP6553267B1 (en) | Measuring method of coumarin and automatic measuring device of coumarin | |
US4918022A (en) | Analysis of bulk asbestos samples | |
JP3081309U (en) | Inspection kit for light oil | |
CN109916873B (en) | Method for simultaneously detecting two antibiotic residues in water by time-resolved synchronous fluorescence method | |
RU2006024C1 (en) | Pyrazidol determination method | |
RU2670726C1 (en) | Ir-spectrometric method of determination of non-hydrocarbon cutting fluid in compressed air | |
CN1083928A (en) | Oil phenol fluorescence analyser and utilize the quick oily phenol analytical approach of this analyser | |
RU2018807C1 (en) | Method of atom-absorption determination of scandium in complex-salt content solutions | |
Liu et al. | Resonance double light scattering method for the determination of nucleic acids with cetylpyridine bromide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20031007 |