JP2018135599A - Inspection method of carbonaceous inner package granular particles and production method of carbonaceous inner package sintered ore - Google Patents

Inspection method of carbonaceous inner package granular particles and production method of carbonaceous inner package sintered ore Download PDF

Info

Publication number
JP2018135599A
JP2018135599A JP2018009335A JP2018009335A JP2018135599A JP 2018135599 A JP2018135599 A JP 2018135599A JP 2018009335 A JP2018009335 A JP 2018009335A JP 2018009335 A JP2018009335 A JP 2018009335A JP 2018135599 A JP2018135599 A JP 2018135599A
Authority
JP
Japan
Prior art keywords
carbonaceous material
carbonaceous
granulated particles
particles
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018009335A
Other languages
Japanese (ja)
Other versions
JP6631644B2 (en
Inventor
永野 英樹
Hideki Nagano
英樹 永野
友司 岩見
Tomoji Iwami
友司 岩見
山本 哲也
Tetsuya Yamamoto
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018135599A publication Critical patent/JP2018135599A/en
Application granted granted Critical
Publication of JP6631644B2 publication Critical patent/JP6631644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of confirming an inner package state of carbonaceous core without destroying carbonaceous inner package granular particles.SOLUTION: An inspection method of carbonaceous inner package granular particles obtained in such a manner that iron ore powder and a lime-containing raw material are mixed to form a mixed powder, and a granulation raw material containing carbonaceous cores and the mixed powder is granulated to form an exterior layer of the mixed powder on the surrounding of the carbonaceous cores includes to calculate at least one of a carbonaceous core content, a carbonaceous core diameter and a thickness of the exterior layer of the mixed powder using transmission image data generated by transmission imaging the carbonaceous inner package granular particles.SELECTED DRAWING: Figure 3

Description

本発明は、高炉などで鉄含有原料として使用される焼結鉱の製造技術に関するものであり、具体的には、炭材内装造粒粒子の検査方法および炭材内装造粒粒子を用いた炭材内装焼結鉱の製造方法に関するものである。   The present invention relates to a technique for producing sintered ore used as an iron-containing raw material in a blast furnace or the like. Specifically, the present invention relates to a method for inspecting carbon material-containing granulated particles and charcoal using carbon material-containing granulated particles. The present invention relates to a method for producing a material interior sintered ore.

高炉製鉄法では、現在、鉄源として、焼結鉱や鉄鉱石、ペレットなどの鉄含有原料を主に用いている。ここで、焼結鉱とは、粒径が10mm未満の鉄鉱石の他に、製鉄所内で発生する各種ダスト、精錬ニッケルスラグ、珪石や蛇紋岩などからなるSiO含有原料、石灰石や生石灰などの石灰含有原料、粉コークスや無煙炭などからなる固体燃料等から構成された造粒原料に適量の水を添加し、ドラムミキサーなどを用いて混合・造粒した造粒粒子を焼結原料とし、当該焼結原料を焼結機の循環移動するパレットに装入し、造粒粒子中に含まれる固体燃料を燃焼させて焼結し、得られた焼結ケーキを破砕し、整粒して、一定の粒径以上のものを成品として回収した塊成鉱の一種である。 In the blast furnace iron manufacturing method, iron-containing raw materials such as sintered ore, iron ore, and pellets are mainly used as iron sources. Here, the sintered ore means, in addition to iron ores having a particle size of less than 10 mm, various kinds of dust generated in the ironworks, refined nickel slag, SiO 2 -containing raw materials such as silica and serpentine, limestone and quicklime, etc. Add a suitable amount of water to a granulated raw material composed of lime-containing raw material, solid fuel such as powdered coke and anthracite, etc., and mix and granulate using a drum mixer etc. The sintered raw material is charged into a circulating pallet of the sintering machine, the solid fuel contained in the granulated particles is burned and sintered, and the resulting sintered cake is crushed, sized and fixed. It is a kind of agglomerated mineral that has been collected as a product with a particle size of more than.

近年、塊成鉱として、鉄鉱石や製鉄ダスト等の鉄源と小塊コークス等の炭材を近接配置したものが注目されている。この理由は、鉄鉱石等の鉄源と炭材とを一つの塊成鉱の中で近接配置すると、鉄源側の還元反応(発熱反応)と炭材側のガス化反応(吸熱反応)とが速い速度で繰り返し起きるので製鉄反応効率が向上し、高炉の生産性を低下させることなく、炉内温度を低下できるからである。   In recent years, attention has been paid to agglomerates in which iron sources such as iron ore and iron-making dust and carbon materials such as small coke are arranged close to each other. The reason for this is that when an iron source such as iron ore and a carbon material are placed close together in one agglomerate, a reduction reaction (exothermic reaction) on the iron source side and a gasification reaction (endothermic reaction) on the carbon material side This is because the iron-making reaction efficiency is improved because it occurs repeatedly at a high speed, and the temperature in the furnace can be lowered without lowering the productivity of the blast furnace.

このような塊成鉱の製造方法として、特許文献1には、炭材を鉄鉱石粉とCaO含有原料で被覆した炭材内装造粒粒子を作製し、これを通常の焼結原料を造粒した造粒粒子に混合後、下方吸引型焼結機において焼結する方法が開示されている。   As a method for producing such agglomerated ore, in Patent Document 1, carbon material-containing granulated particles coated with a carbonaceous material with iron ore powder and a CaO-containing raw material were produced, and this was granulated with a normal sintered raw material. A method of sintering in a downward suction type sintering machine after mixing with granulated particles is disclosed.

特許第5790966号公報Japanese Patent No. 5790966

特許文献1に記載された炭材内装造粒粒子における炭材核の内装状況は必ずしも一定とは限らず、造粒条件によっては外層が十分な厚さで形成されなかったり、炭材核が内装されない場合もある。炭材内装造粒粒子における炭材核の内装状況を確認するためには、造粒された粒子を切断する等の破壊検査でしか確認できない、といった課題があった。本発明は、上記課題を鑑みてなされたものであり、その目的は、炭材内装造粒粒子を破壊することなく、迅速に炭材内装造粒粒子の品質を管理するための管理指標を算出できる炭材内装造粒粒子の検査方法を提供することにある。   The interior condition of the carbonaceous material core in the carbonized material interior granulated particles described in Patent Document 1 is not necessarily constant, and depending on the granulation conditions, the outer layer may not be formed with a sufficient thickness, It may not be done. In order to confirm the interior condition of the carbonaceous material core in the carbonized material interior granulated particles, there is a problem that it can be confirmed only by destructive inspection such as cutting the granulated particles. The present invention has been made in view of the above problems, and its purpose is to calculate a management index for quickly managing the quality of carbonaceous material-containing granulated particles without destroying the carbonaceous material-containing granulated particles. An object of the present invention is to provide a method for inspecting carbon material-containing granulated particles.

このような課題を解決するための本発明の特徴は、以下の通りである。
(1)鉄鉱石粉と石灰含有原料とを混合して混合粉とし、炭材核と前記混合粉とを含む造粒原料を造粒することで、前記炭材核の周囲に前記混合粉の外層を形成させた炭材内装造粒粒子の検査方法であって、前記炭材内装造粒粒子を透過撮影して生成された透過画像データを用いて、炭材核含有率、炭材核粒径および前記混合粉の外層の厚さの少なくとも1つを算出する、炭材内装造粒粒子の検査方法。
(2)前記透過撮影は、前記炭材内装造粒粒子を透過できるX線またはテラヘルツ波を用いて行う、(1)に記載の炭材内装造粒粒子の検査方法。
(3)(1)または(2)に記載の炭材内装造粒粒子の検査方法で前記炭材核含有率を算出し、焼結原料に対する前記炭材核を含有する炭材内装造粒粒子の割合が一定になるように、前記炭材核含有率に応じて前記炭材内装造粒粒子の焼結原料への混合比率を調整する、炭材内装焼結鉱の製造方法。
The features of the present invention for solving such problems are as follows.
(1) An iron oxide ore powder and a lime-containing raw material are mixed to form a mixed powder, and a granulated raw material containing the carbonaceous material core and the mixed powder is granulated, so that the outer layer of the mixed powder is disposed around the carbonaceous material core. A method for inspecting carbonaceous material-incorporated granulated particles formed using the transmission image data generated by transmission imaging of the carbonaceous material-internally granulated particles, And at least one of the thicknesses of the outer layers of the mixed powder, and the method for inspecting the carbonaceous material-containing granulated particles.
(2) The inspection method for carbon material-containing granulated particles according to (1), wherein the transmission photography is performed using X-rays or terahertz waves that can pass through the carbon material-containing granulated particles.
(3) The carbonaceous material-containing granulated particles, wherein the carbonaceous material core content is calculated by the method for inspecting the carbonized material-incorporated granulated particles according to (1) or (2), and contains the carbonaceous material nuclei with respect to the sintered raw material A method for producing a carbonaceous material-containing sintered ore, wherein the mixing ratio of the carbonized material-internally granulated particles to the sintered raw material is adjusted according to the carbonaceous material core content so that the ratio of the carbonaceous material is constant.

本発明に係る炭材内装造粒粒子の検査方法を用いることで、炭材内装造粒粒子を破壊することなく、炭材内装造粒粒子の炭材内装状況を確認し、炭材内装造粒粒子の管理指標となる炭材核含有率、炭材核粒径、前記混合粉の外層の厚さの少なくとも1つを算出できる。当該管理指標で、炭材内装造粒粒子の造粒を管理することで品質の安定した炭材内装造粒粒子を造粒できる。   By using the inspection method for the carbonaceous material-incorporated granulated particles according to the present invention, the carbonaceous material-incorporated granulated particles are confirmed without being destroyed, and the carbonaceous material-internally granulated particles are confirmed. It is possible to calculate at least one of the carbon material core content, the carbon material core particle size, and the thickness of the outer layer of the mixed powder, which is a particle management index. By controlling the granulation of the carbonaceous material-incorporated granulated particles with the management index, the carbonaceous material-incorporated granulated particles having stable quality can be granulated.

高炉における還元反応速度と、炭材−鉄含有原料間距離の関係を示した概念図である。It is the conceptual diagram which showed the relationship between the reduction | restoration reaction rate in a blast furnace, and the distance between carbonaceous material and iron containing raw materials. 鉄鉱石と炭材とが近接しているときの、熱交換と鉄鉱石の還元反応と炭材(コークス)のガス化反応の関係を示した概念図である。It is the conceptual diagram which showed the relationship between the heat exchange, the reduction reaction of an iron ore, and the gasification reaction of a carbonaceous material (coke) when an iron ore and a carbonaceous material are adjoining. 本実施形態に係る炭材内装造粒粒子の検査方法を含む、炭材内装焼結鉱の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of a carbonaceous material interior granulated particle | grain including the inspection method of the carbonaceous material interior granulated particle which concerns on this embodiment. 炭材内装造粒粒子32の透過画像である。It is the transmission image of the carbonaceous material interior granulated particle 32. 炭材内装造粒粒子をサンプル台62に設置した状況を示す写真である。It is a photograph which shows the condition which installed the carbonaceous material interior granulated particle in the sample stand 62.

高炉製鉄法では、鉄鉱石や焼結鉱などの鉄含有原料を、コークスなどの炭材の燃焼熱で高温に加熱するとともに還元して銑鉄を製造している。このとき、高炉の炉頂からの製鉄原料の装入は、高炉内の通気性を向上させるために、鉄含有原料と炭材とを分別して層状に装入している。一方、鉄含有原料の還元反応速度を高めるという観点では、鉄含有原料と炭材との間の距離を小さくすることが好ましいが、鉄含有原料と炭材との距離を小さくするために鉄含有原料層および炭材層の層厚を薄くすると、高炉内の通気性が悪化し、却って、還元反応速度が遅くなる。   In the blast furnace ironmaking process, iron-containing raw materials such as iron ore and sintered ore are heated to a high temperature by the combustion heat of carbonaceous materials such as coke and reduced to produce pig iron. At this time, in order to improve the air permeability in the blast furnace, the iron-containing raw material is charged from the top of the blast furnace in a layered manner by separating the iron-containing raw material and the carbonaceous material. On the other hand, from the viewpoint of increasing the reduction reaction rate of the iron-containing raw material, it is preferable to reduce the distance between the iron-containing raw material and the carbonaceous material, but in order to reduce the distance between the iron-containing raw material and the carbonaceous material, When the thickness of the raw material layer and the carbon material layer is reduced, the air permeability in the blast furnace is deteriorated, and on the contrary, the reduction reaction rate is reduced.

そこで、還元反応速度を高める方法として検討されているのが、フェロコークス、炭材内装焼結鉱および超微細化の技術である。図1は、高炉における還元反応速度と、炭材−鉄含有原料間距離の関係を示した概念図である。ここで、フェロコークスとは、炭材と鉄含有原料とを混合・成形した後に焼き固めた製鉄原料である。また、炭材内装とは、鉄含有原料中に炭材を内装したものを製鉄原料とする技術であり、超微細化とは、主として炭材を微細化して使用する技術である。   Therefore, ferro-coke, carbonaceous material-containing sintered ore, and ultrafine technology have been studied as methods for increasing the reduction reaction rate. FIG. 1 is a conceptual diagram showing the relationship between the reduction reaction rate in the blast furnace and the distance between the carbonaceous material and the iron-containing raw material. Here, ferro-coke is an iron-making raw material that is baked and hardened after mixing and forming a carbonaceous material and an iron-containing raw material. Carbonaceous material interior is a technology that uses an iron-containing raw material with carbonaceous material as an iron-making raw material, and ultra-miniaturization is a technology that mainly uses finely refined carbonaceous material.

これらの技術の考え方は、図2に示す理論に基づくものである。図2は、高炉内の現象を模式的に示した図であり、図2(a)は、従来の高炉内の現象の概念図を示し、図2(b)は、鉄鉱石と炭材を近接配置した場合の高炉内の現象の概念図を示している。鉄鉱石側では、FeとCOとが反応して、FeとCOとなる還元反応が起きる。この反応は発熱反応である。一方、炭材側では、COとCとが反応してCOを発生する「ブドワール反応」と呼ばれるガス化反応(ガス改質反応)が起きる。この反応は吸熱反応である(以後の説明において、上記還元反応と、上記ガス化反応とを合わせて「製鉄反応」ともいう)。 The concept of these technologies is based on the theory shown in FIG. FIG. 2 is a diagram schematically showing the phenomenon in the blast furnace, FIG. 2 (a) shows a conceptual diagram of the phenomenon in the conventional blast furnace, and FIG. 2 (b) shows the iron ore and the carbonaceous material. The conceptual diagram of the phenomenon in a blast furnace at the time of arranging close is shown. On the iron ore side, Fe 2 O 3 and CO react with each other to cause a reduction reaction to become Fe and CO 2 . This reaction is an exothermic reaction. On the other hand, on the carbonaceous material side, a gasification reaction (gas reforming reaction) called “Budwar reaction” in which CO 2 and C react to generate CO occurs. This reaction is an endothermic reaction (in the following description, the reduction reaction and the gasification reaction are collectively referred to as “iron-making reaction”).

ここで、図2(a)に示すように、高炉内に鉄含有原料と炭材とが層状に装入されている従来の高炉内では、発熱反応である還元反応と吸熱反応であるガス化反応とが別々の場所で起こる。このため、上記反応に必要な熱の伝達およびCO、COの供給にはガスの移動が必要となる。一方、図2(b)に示したように、鉄含有原料と炭材とを近接配置した場合には、発熱反応である還元反応と吸熱反応であるガス化反応とが速い速度で繰り返されるので製鉄反応効率が向上する。従って、鉄含有原料と炭材を近接配置することが製鉄反応効率を高める上では有効であると考えられる。このような考えの下では、炭材核が鉄含有原料中に埋設された炭材内装焼結鉱が理想的な形態となる。 Here, as shown in FIG. 2 (a), in a conventional blast furnace in which an iron-containing raw material and a carbonaceous material are charged in layers in a blast furnace, gasification that is an exothermic reaction and an endothermic reaction. The reaction takes place in different places. For this reason, the movement of gas is required for the transfer of heat necessary for the reaction and the supply of CO and CO 2 . On the other hand, as shown in FIG. 2B, when the iron-containing raw material and the carbon material are arranged close to each other, the reduction reaction that is an exothermic reaction and the gasification reaction that is an endothermic reaction are repeated at a high rate. Iron-making reaction efficiency is improved. Therefore, it is considered that placing the iron-containing raw material and the carbonaceous material close to each other is effective in increasing the iron-making reaction efficiency. Under such an idea, the carbonaceous material-containing sintered ore in which the carbonaceous material core is embedded in the iron-containing raw material is an ideal form.

さらに、炭材内装焼結鉱において、上述したガス化反応に必要な熱が炭材内装焼結鉱の内部に及ぶと、そのガス化反応で発生したCOによってFeが還元される還元反応が起こり、その還元反応で発生したCOが次のガス化反応を引き起こすというように、塊成鉱の内部から外部に向って反応が連鎖的に起こり、内部のFeが順次に自己還元されてFe(金属鉄)が生じる。このように、還元反応とガス化反応が塊成鉱の内部で進行することから、外部からの熱供給が少なくて済み、その分だけ、炉内温度を低下させることができる。 Further, in the carbon material-containing sintered ore, when the heat necessary for the gasification reaction reaches the inside of the carbon material-containing sintered ore, the reduction of Fe n O m by the CO generated by the gasification reaction is reduced. As the reaction takes place and the CO 2 generated by the reduction reaction causes the next gasification reaction, the reaction takes place in a chain from the inside of the agglomerate to the outside, and the Fe n O m in the inside sequentially It is self-reduced to produce Fe (metallic iron). Thus, since the reduction reaction and the gasification reaction proceed inside the agglomerate, the heat supply from the outside can be reduced, and the furnace temperature can be lowered accordingly.

このように、製鉄反応効率を高め、炉内温度を低下できる炭材内装焼結鉱であるが、これを実現するには、炭材内装焼結鉱を安定して製造できることが必要になり、このためには、造粒段階で炭材が内装されていること、さらには、焼結時に炭材核が燃焼消失しない程度の緻密な外層が十分な厚さで形成されている、といった品質の安定した炭材内装造粒粒子を造粒することが必要になる。   In this way, it is a carbonaceous material-containing sintered ore that can increase the efficiency of iron making reaction and lower the temperature in the furnace, but to realize this, it is necessary to be able to stably manufacture the carbonaceous material-containing sintered ore, For this purpose, the quality is such that the carbonaceous material is embedded in the granulation stage, and that a dense outer layer is formed with a sufficient thickness so that the carbonaceous material core does not disappear during sintering. It is necessary to granulate stable carbonaceous material-containing granulated particles.

そこで、本発明者らは、造粒された炭材内装造粒粒子における炭材の内装状況を検査できる炭材内装造粒粒子の検査方法を検討した結果、炭材内装造粒粒子を透過撮影した透過画像を用いて、全造粒粒子に対する炭材内装造粒粒子の割合である炭材核含有率、炭材核として内装されている炭材の粒径である炭材核粒径および炭材核の周囲を覆う混合粉の外層の厚さを算出でき、これらを管理指標として、炭材内装造粒粒子を管理できることを見出して本発明を完成させた。以下、本発明の実施形態を通じて本発明を説明する。   Therefore, the present inventors have examined a method for inspecting the carbonaceous material-incorporated granulated particles that can inspect the interior state of the carbonaceous material in the granulated carbonaceous material-internally granulated particles. Using the transmitted image, the carbon material core content, which is the ratio of the carbon material-containing granulated particles to the total granulated particles, the particle size of the carbon material embedded as the carbon material core, The present invention has been completed by finding that the thickness of the outer layer of the mixed powder covering the periphery of the material core can be calculated, and that these can be used as a management index to manage the carbonaceous material-containing granulated particles. Hereinafter, the present invention will be described through embodiments of the present invention.

図3は、本実施形態に係る炭材内装造粒粒子の検査方法を含む、炭材内装焼結鉱の製造方法の一例を示す模式図である。貯蔵槽10に保管された鉄鉱石粉16は、搬送機14に所定量切り出される。同じく貯蔵槽12に保管された石灰含有原料18も、搬送機14に所定量切り出される。鉄鉱石粉16と、石灰含有原料18は、搬送機14によって混練機20に搬送される。鉄鉱石粉16と、石灰含有原料18は、適量の水19とともに混練機20で均一に撹拌・混合されて混合粉22にされる。   FIG. 3 is a schematic view showing an example of a method for producing a carbonaceous material-containing sintered ore including a method for inspecting carbonaceous material-containing granulated particles according to the present embodiment. A predetermined amount of iron ore powder 16 stored in the storage tank 10 is cut out by the transporting machine 14. Similarly, a predetermined amount of the lime-containing raw material 18 stored in the storage tank 12 is also cut out by the conveyor 14. The iron ore powder 16 and the lime-containing raw material 18 are conveyed to the kneader 20 by the conveyor 14. The iron ore powder 16 and the lime-containing raw material 18 are uniformly stirred and mixed by a kneader 20 together with an appropriate amount of water 19 to be mixed powder 22.

本実施形態で用いる鉄鉱石粉16としては、粒径が10μm以上1000μm未満の割合が90質量%以上の鉄鉱石を用いることが好ましく、粒径が10μm以上250μm未満のペレットフィードを用いることがより好ましい。このペレットフィードは、粒径が10μm以上250μm未満の割合が90質量%以上の微粒鉱石であって、高品位(高Fe、低脈石)のヘマタイトやマグネタイトを主成分とし、かつ、安価に大量に入手できる点で優れる。また、粒径が上記範囲内であれば、ペレットフィードの他に、ミルスケール、転炉排ガス回収ダスト(OGダスト)、選鉱時に発生したテーリング等を用いてもよく、また、これらをペレットフィードに混合したものを用いてもよい。   As the iron ore powder 16 used in the present embodiment, it is preferable to use an iron ore having a particle size of 10 μm or more and less than 1000 μm, and more preferably a pellet feed having a particle size of 10 μm or more and less than 250 μm. . This pellet feed is a fine ore with a particle size of 10 μm or more and less than 250 μm of 90% by mass or more, mainly composed of high-grade (high Fe, low gangue) hematite and magnetite, and a large amount at a low cost. It is excellent in that it can be obtained. If the particle diameter is within the above range, in addition to pellet feed, mill scale, converter exhaust gas recovery dust (OG dust), tailing generated during the beneficiation, etc. may be used. A mixture may be used.

混練機20で均一に撹拌・混合された混合粉22は、搬送機24に所定量切り出される。また、貯蔵槽26に保管されたコークス粒子28も、搬送機24に所定量切り出されて、混合粉22とコークス粒子28とを含む造粒原料となる。造粒原料は、搬送機24によって造粒機30に搬送される。   A predetermined amount of the mixed powder 22 that has been uniformly stirred and mixed by the kneading machine 20 is cut out to the conveying machine 24. Further, the coke particles 28 stored in the storage tank 26 are also cut out by a predetermined amount by the transporter 24 to become a granulated raw material including the mixed powder 22 and the coke particles 28. The granulated raw material is conveyed to the granulator 30 by the conveyor 24.

造粒機30では、適量の水19が供給されて撹拌されることで、供給された水の水架橋力等によってコークス粒子28の周囲に混合粉22が被覆される。これにより、コークス粒子28を炭材核とし、当該炭材核の周囲に混合粉22の外層が形成された炭材内装造粒粒子32が製造される。なお、本実施形態において、炭材内装造粒粒子32とは、必ずコークス粒子28を含有する造粒粒子を意味するものではなく、コークス粒子28と混合粉22とを含む造粒原料を造粒した、コークス粒子28を含有する造粒粒子と一部のコークス粒子28を含有しない造粒粒子とを含む造粒粒子を意味する。   In the granulator 30, an appropriate amount of water 19 is supplied and stirred, so that the mixed powder 22 is coated around the coke particles 28 by the water cross-linking force of the supplied water. As a result, the carbonaceous material-inner granulated particles 32 in which the coke particles 28 are used as the carbonaceous material core and the outer layer of the mixed powder 22 is formed around the carbonaceous material core are manufactured. In the present embodiment, the carbonaceous material-containing granulated particles 32 do not necessarily mean granulated particles containing the coke particles 28, but a granulated raw material containing the coke particles 28 and the mixed powder 22 is granulated. It means a granulated particle containing granulated particles containing coke particles 28 and granulated particles not containing some coke particles 28.

本実施形態において、炭材内装造粒粒子32の炭材核となるコークス粒子28は、焼結時における燃焼・消失を阻止する観点から、その大きさを3mm以上10mm未満とすることが好ましい。また、コークス粒子28の周囲に形成される外層の厚みを2mm以上8mm未満とすることが好ましい。外層の厚みを2mm未満とすると、焼結時に溶融しても、酸素遮断層として十分に機能しないおそれがある他、コークス粒子28には凹凸が多くあるので炭材核を完全に被覆ができないおそれがある。通常、造粒粒子は外部から加熱されるので、外層の厚みを厚くすると、加熱時において中心側が昇温しづらくなる。したがって、外層の厚さを8mm未満とすることが好ましい。同様の観点から、外層の厚みを3mm以上7mm未満とすることがより好ましい。さらに、炭材内装造粒粒子32の粒径も適正範囲に制御することが好ましい。   In the present embodiment, the size of the coke particles 28 serving as the carbon material core of the carbon material-containing granulated particles 32 is preferably 3 mm or more and less than 10 mm from the viewpoint of preventing combustion / disappearance during sintering. The thickness of the outer layer formed around the coke particles 28 is preferably 2 mm or more and less than 8 mm. If the thickness of the outer layer is less than 2 mm, it may not function sufficiently as an oxygen barrier layer even if it is melted during sintering, and the coke particles 28 have many irregularities, so that the carbon material core may not be completely covered. There is. Usually, since the granulated particles are heated from the outside, if the thickness of the outer layer is increased, it becomes difficult to raise the temperature at the center side during heating. Therefore, the thickness of the outer layer is preferably less than 8 mm. From the same viewpoint, the thickness of the outer layer is more preferably 3 mm or more and less than 7 mm. Furthermore, it is preferable to control the particle size of the carbon material-containing granulated particles 32 within an appropriate range.

このようにして造粒された炭材内装造粒粒子32は、搬送機34によって搬送されるとともに、搬送機34に設置された検査装置36によって炭材内装状況が検査される。検査装置36は、例えば、X線透過撮影部と画像解析部を有する装置である。X線透過撮影部は、搬送機34上においてX線照射領域に移動された炭材内装造粒粒子32にX線を透過させ、透過したX線をX線用フラットパネルで検出して透過画像データを生成する。X線透過条件は、コークス粒子28と周囲の混合粉22が判別できる条件であればよく、例えば、80kV以上150kV以下の管電圧が望ましい。また、搬送機34上でそのまま透過撮影してもよいが、X線照射方向に対して、炭材内装造粒粒子が重ならないように並べて透過撮影することがより好ましい。より正確に検査するには、別ラインに一部の炭材内装造粒粒子32を移動させて、所定数量、例えば100〜200個、好ましくは500個程度の炭材内装造粒粒子32を透過撮影してもよい。   The granulated carbonaceous material granulated particles 32 thus granulated are transported by the transporter 34 and the state of the carbonaceous material interior is inspected by the inspection device 36 installed in the transporter 34. The inspection device 36 is, for example, a device having an X-ray transmission imaging unit and an image analysis unit. The X-ray transmission imaging unit transmits X-rays to the carbonaceous material-containing granulated particles 32 moved to the X-ray irradiation region on the transport device 34, detects the transmitted X-rays with a flat panel for X-rays, and transmits the transmitted image. Generate data. The X-ray transmission conditions may be any conditions as long as the coke particles 28 and the surrounding mixed powder 22 can be distinguished. For example, a tube voltage of 80 kV to 150 kV is desirable. Further, the transmission imaging may be performed as it is on the transport device 34, but it is more preferable to perform the transmission imaging by arranging the carbonaceous material-inner granulated particles so as not to overlap with each other in the X-ray irradiation direction. In order to inspect more accurately, a part of the carbonaceous material-containing granulated particles 32 are moved to another line, and a predetermined quantity, for example, about 100 to 200, preferably about 500 carbonaceous material-containing granulated particles 32 are permeated. You may shoot.

次に、画像解析部による画像解析について説明する。図4は、炭材内装造粒粒子32の透過画像を示す。図4(a)は、炭材内装造粒粒子32の透過画像を示す。図4(b)は、コークス粒子28が内装されている炭材内装造粒粒子32の透過画像を示す。図4(c)は、コークス粒子28が内装されていない炭材内装造粒粒子32の透過画像を示す。図4(a)および図4(c)からわかるように、透過画像では背景が最も白く表示され、コークス粒子28が灰色で表示され、混合粉22は黒く表示される。   Next, image analysis by the image analysis unit will be described. FIG. 4 shows a transmission image of the carbonaceous material-containing granulated particles 32. FIG. 4A shows a transmission image of the carbonaceous material-containing granulated particles 32. FIG. 4B shows a transmission image of the carbonaceous material-containing granulated particles 32 in which the coke particles 28 are embedded. FIG. 4C shows a transmission image of the carbonaceous material-containing granulated particles 32 in which the coke particles 28 are not provided. As can be seen from FIGS. 4A and 4C, in the transmission image, the background is displayed whitest, the coke particles 28 are displayed in gray, and the mixed powder 22 is displayed in black.

画像解析部は、透過画像データの輝度値を用いて、透過画像データにおけるコークス粒子28を示す画像領域と、混合粉22を示す画像領域を特定する。画像解析部には、同じ透過撮影条件で透過撮影された過去の透過画像データの解析によってコークス粒子28およびコークス粒子28の外側の混合粉22の外層の画像領域を特定するために用いる、コークス粒子28と混合粉22の境界を定める輝度値(以後の説明において、コークス粒子28と混合粉22の境界を定める輝度値を「閾値」という)が記憶されている。画像解析部は、当該閾値を用いて、透過画像データにおけるコークス粒子28を示す画像データ領域およびコークス粒子28の外側の混合粉22の外層を示す画像データ領域を特定する。   The image analysis unit specifies an image region indicating the coke particles 28 and an image region indicating the mixed powder 22 in the transmission image data using the luminance value of the transmission image data. The image analysis unit uses the coke particles 28 and the coke particles 28 used to identify the image region of the outer layer of the mixed powder 22 outside the coke particles 28 by analyzing the past transmission image data taken through the same transmission imaging conditions. The luminance value that defines the boundary between 28 and the mixed powder 22 (in the following description, the luminance value that defines the boundary between the coke particles 28 and the mixed powder 22 is referred to as “threshold”) is stored. The image analysis unit specifies an image data region indicating the coke particles 28 in the transmission image data and an image data region indicating the outer layer of the mixed powder 22 outside the coke particles 28 using the threshold value.

また、標準測定用の炭材内装造粒粒子を準備し、当該炭材内装造粒粒子をX線透過撮影部で定期的に透過撮影し、記憶された閾値を更新してもよい。X線管球や装置は、装置の使用によりその状態が変動する場合がある。上述したように閾値を更新することで、X線管球や装置の状態が変動したとしてもその変動に対応して閾値も更新されるので、当該状態が変動する前と同様に、コークス粒子28を示す画像データ領域およびコークス粒子28の外側の混合粉22の外層を示す画像データ領域を特定できる。   Alternatively, carbonaceous material-containing granulated particles for standard measurement may be prepared, the carbonized material-containing granulated particles may be periodically transmitted and photographed by an X-ray transmission imaging unit, and the stored threshold value may be updated. The state of the X-ray tube or device may vary depending on the use of the device. By updating the threshold value as described above, even if the state of the X-ray tube or the apparatus changes, the threshold value is also updated in response to the change, so that the coke particles 28 are the same as before the state changes. And an image data region indicating the outer layer of the mixed powder 22 outside the coke particles 28 can be specified.

例えば、コークス粒子28の粒径(炭材核粒径)を算出する場合において、画像解析部は、特定されたコークス粒子28を示す画像データ領域の輪郭を検出し、当該輪郭の周長を算出する。画像解析部は、当該周長が同じ周長円相当径がコークス粒子28の粒径(炭材核粒径)であるとして、コークス粒子28の粒径を算出する。   For example, when calculating the particle size (carbon material core particle size) of the coke particles 28, the image analysis unit detects the contour of the image data region indicating the identified coke particles 28, and calculates the perimeter of the contour. To do. The image analysis unit calculates the particle size of the coke particles 28, assuming that the equivalent circular equivalent diameter is the particle size of the coke particles 28 (carbon material core particle size).

また、例えば、混合粉22の外層の厚さを算出する場合において、画像解析部は、コークス粒子28を示す画像データ領域の有無からコークス粒子28を有する炭材内装造粒粒子32を特定する。画像解析部は、特定された炭材内装造粒粒子32の混合粉の外層を示す画像データ領域の輪郭を検出し、当該輪郭の周長を算出する。画像解析部は、当該周長が同じ周長円相当径が炭材内装造粒粒子32の粒径であるとして、炭材内装造粒粒子32の粒径を算出する。また、画像解析部は、上述した方法で、特定された炭材内装造粒粒子32に内装されるコークス粒子28の粒径を算出する。画像解析部は、算出された炭材内装造粒粒子32の粒径と、当該炭材内装造粒粒子32に内装されたコークス粒子28の粒径と、下記(1)式とを用いて混合粉22の外層の厚さを算出する。
「外層の厚さ」=(「炭材内装造粒粒子の粒径」−「コークス粒子の粒径」)/2・・・(1)
Further, for example, when calculating the thickness of the outer layer of the mixed powder 22, the image analysis unit specifies the carbonaceous material-containing granulated particles 32 having the coke particles 28 from the presence or absence of the image data region indicating the coke particles 28. The image analysis unit detects the contour of the image data area indicating the outer layer of the mixed powder of the specified carbonaceous material-containing granulated particles 32, and calculates the perimeter of the contour. The image analysis unit calculates the particle diameter of the carbonaceous material-containing granulated particles 32 on the assumption that the circumference equivalent circle diameter having the same peripheral length is the particle diameter of the carbonized material-containing granulated particles 32. Further, the image analysis unit calculates the particle size of the coke particles 28 embedded in the identified carbonaceous material-containing granulated particles 32 by the method described above. The image analysis unit mixes using the calculated particle diameter of the carbonaceous material-containing granulated particles 32, the particle diameter of the coke particles 28 embedded in the carbonaceous material-containing granulated particles 32, and the following equation (1). The thickness of the outer layer of the powder 22 is calculated.
“Outer layer thickness” = (“Particle size of carbonaceous material-inner granulated particles” − “Particle size of coke particles”) / 2 (1)

また、例えば、炭材核含有率を算出する場合において、画像解析部は、混合粉22の外層を示す画像データ領域と、コークス粒子28を示す画像データ領域とを特定し、当該画像データ領域の数から炭材内装造粒粒子32とコークス粒子28の個数を特定する。画像解析部は、特定されたコークス粒子28の個数を特定された炭材内装造粒粒子32の個数で除し100を乗ずることで炭材核含有率を算出する。   In addition, for example, when calculating the carbonaceous material core content rate, the image analysis unit identifies an image data region indicating the outer layer of the mixed powder 22 and an image data region indicating the coke particles 28, and the image data region The numbers of the carbonaceous material-inner granulated particles 32 and the coke particles 28 are specified from the number. The image analysis unit calculates the carbon material core content by dividing the number of the specified coke particles 28 by the number of the specified carbon material interior granulated particles 32 and multiplying by 100.

このように、画像解析部は、炭材内装造粒粒子32を透過撮影した透過画像データを用いて、炭材核含有率、炭材核粒径、前記混合粉の外層の厚さの少なくとも1つを算出する。そして、算出された炭材核含有率、炭材核粒径、前記混合粉の外層の厚さの少なくとも1つが、予め定められた基準を満たさない場合に、同じロットの当該炭材内装造粒粒子32は不良品であると判断し、不良品と判断されたロットの炭材内装造粒粒子32を解砕して再度造粒して通常の焼結原料としてもよい。このように、炭材核含有率、炭材核粒径および混合粉の外層の厚さの少なくとも1つを管理指標として炭材内装造粒粒子32を管理することで、品質の安定した炭材内装造粒粒子32を用いて、品質の安定した炭材内装焼結鉱を安定して製造できるようになる。   As described above, the image analysis unit uses the transmission image data obtained by photographing the carbon material-containing granulated particles 32, and uses at least one of the carbon material core content rate, the carbon material core particle size, and the thickness of the outer layer of the mixed powder. Calculate one. And when at least one of the calculated carbon material core content rate, the carbon material core particle size, and the thickness of the outer layer of the mixed powder does not satisfy a predetermined standard, the carbon material internal granulation of the same lot The particles 32 are determined to be defective, and the carbonaceous material-containing granulated particles 32 of the lot determined to be defective may be crushed and granulated again to obtain a normal sintered raw material. Thus, the quality stable carbon material is managed by managing the carbon material interior granulated particles 32 using at least one of the carbon material core content rate, the carbon material core particle size, and the thickness of the outer layer of the mixed powder as a management index. The interior granulated particles 32 can be used to stably produce a carbonaceous interior sintered ore with stable quality.

炭材内装造粒粒子32は、検査装置36によって検査された後、搬送機42に切り出される。また、炭材核が内装されていない通常の造粒粒子40も搬送機42に所定量切り出されて、これらが混合されて焼結原料となる。なお、通常の造粒粒子とは、粉鉄鉱石と、石灰石およびドロマイトなどの石灰含有原料と、生石灰等の造粒助剤と、コークス粉や無煙炭などの炭材(以下、「凝結材」ともいう)と、を混合し、ドラムミキサー等の造粒機を用いて造粒した造粒粒子である。焼結原料は、下方吸引式焼結機のパレットに装入され、下方吸引式焼結機で焼結され、その後、破砕・冷却・篩分けされて炭材内装焼結鉱が製造され、当該炭材内装焼結鉱が鉄含有原料として高炉60に装入される。   The charcoal-containing granulated particles 32 are inspected by the inspection device 36 and then cut out by the transporting device 42. In addition, normal granulated particles 40 without carbonaceous material cores are also cut out by a predetermined amount by a conveyor 42 and mixed to become a sintered raw material. Normal granulated particles include pulverized iron ore, lime-containing raw materials such as limestone and dolomite, granulation aids such as quick lime, and carbonaceous materials such as coke powder and anthracite (hereinafter referred to as “coagulating material”). And the like, and granulated using a granulator such as a drum mixer. The sintered raw material is charged into the pallet of the lower suction type sintering machine, sintered by the lower suction type sintering machine, and then crushed, cooled and sieved to produce a carbonaceous material-containing sintered ore. The carbonaceous material-containing sintered ore is charged into the blast furnace 60 as an iron-containing raw material.

本実施形態に係る炭材内装造粒粒子32の検査方法では、炭材内装造粒粒子32を透過撮影して生成された透過画像データを用いて、炭材核含有率、炭材核粒径および混合粉の外層の厚さの少なくとも1つを算出する。これにより、炭材核含有率、炭材核粒径および混合粉の外層の厚さの少なくとも1つを管理指標として炭材内装造粒粒子32を管理でき、これにより、品質の安定した炭材内装造粒粒子32を用いて、品質の安定した炭材内装焼結鉱を安定して製造できるようになる。そして、品質の安定した炭材内装焼結鉱が鉄含有原料として高炉に装入されることで、製鉄反応効率を高め、高炉の生産性を低下させることなく炉内温度を低下できる。   In the inspection method for the carbonaceous material-incorporated granulated particles 32 according to the present embodiment, the carbonaceous material core content rate, the carbonaceous material core particle size is obtained by using transmission image data generated by transmitting through the carbonaceous material-internally granulated particles 32. And at least one of the thicknesses of the outer layers of the mixed powder is calculated. Thereby, the carbonaceous material interior granulated particles 32 can be managed by using at least one of the carbonaceous material core content rate, the carbonaceous material core particle size, and the thickness of the outer layer of the mixed powder as a management index. The interior granulated particles 32 can be used to stably produce a carbonaceous interior sintered ore with stable quality. And, the carbonaceous material-containing sintered ore with stable quality is charged into the blast furnace as an iron-containing raw material, so that the iron-making reaction efficiency can be improved and the furnace temperature can be lowered without reducing the productivity of the blast furnace.

なお、本実施形態において、炭材内装造粒粒子32を搬送機42に所定量切り出し、通常の造粒粒子40を搬送機42に所定量切り出して焼結原料とする例を示したが、これに限られない。例えば、検査装置36によって算出された炭材核含有率に応じて、炭材内装造粒粒子32の焼結原料への混合比率を調整してもよい。具体的には、検査装置36によって算出された炭材核含有率が高い場合には焼結原料への炭材内装造粒粒子32の混合比率を下げ、炭材核含有率が低い場合には、焼結原料への炭材内装造粒粒子32の混合比率を上げる。これにより、焼結原料に対するコークス粒子28を含有する炭材内装造粒粒子32の割合を一定にできる。   In the present embodiment, the carbonaceous material-containing granulated particles 32 are cut into the conveying machine 42 by a predetermined amount, and the normal granulated particles 40 are cut into the conveying machine 42 by a predetermined amount to obtain a sintered raw material. Not limited to. For example, the mixing ratio of the carbonaceous material interior granulated particles 32 to the sintered raw material may be adjusted according to the carbonaceous material core content calculated by the inspection device 36. Specifically, when the carbon material core content rate calculated by the inspection device 36 is high, the mixing ratio of the carbon material interior granulated particles 32 to the sintered raw material is lowered, and when the carbon material core content rate is low. The mixing ratio of the carbonaceous material-containing granulated particles 32 to the sintered raw material is increased. Thereby, the ratio of the carbonaceous material-containing granulated particles 32 containing the coke particles 28 to the sintered raw material can be made constant.

上述したように、炭材内装焼結鉱を用いると製鉄反応効率が向上するが、製鉄反応効率向上の程度に応じて高炉の操業条件を最適化しないと、高炉の内部状態が変動して高炉の操業が不安定になる。これに対し、焼結原料に対するコークス粒子28を含有する炭材内装造粒粒子32の割合を一定にできれば、製鉄反応効率が向上する度合いの変動を抑制でき、これにより高炉の内部状態の変動も抑制され、安定した高炉操業が可能になる。   As described above, the use of carbonaceous material-containing sintered ore improves the iron-making reaction efficiency, but if the operating conditions of the blast furnace are not optimized according to the degree of improvement in the iron-making reaction efficiency, the internal state of the blast furnace fluctuates and the blast furnace The operation becomes unstable. On the other hand, if the ratio of the carbonaceous material-containing granulated particles 32 containing the coke particles 28 to the sintered raw material can be made constant, fluctuations in the degree of improvement in iron-making reaction efficiency can be suppressed, and thereby fluctuations in the internal state of the blast furnace can also be achieved. Suppressed and stable blast furnace operation becomes possible.

また、本実施形態において、炭材内装造粒粒子32は、搬送機34上で透過撮影される例を示したが、これに限られない。例えば、X線照射領域においては、床面に凸形状が設けられた搬送機で搬送させ、凸形状によって炭材内装造粒粒子32同士を離間させてもよい。また、炭材内装造粒粒子32の透過撮影もX線に限られず、透過撮影して、コークス粒子28と周囲の混合粉22の外層が判別できれば良く、例えば、テラヘルツ波等の電磁波を用いて透過撮影を行ってもよい。   Moreover, in this embodiment, although the carbon material interior granulated particle 32 showed the example imaged by transmission on the conveying machine 34, it is not restricted to this. For example, in the X-ray irradiation region, the carbonaceous material-incorporated granulated particles 32 may be separated from each other by a convex shape by being conveyed by a conveyor having a convex shape on the floor surface. Further, transmission imaging of the carbonaceous material-incorporated granulated particles 32 is not limited to X-rays, and it is only necessary to be able to discriminate the outer layer of the coke particles 28 and the surrounding mixed powder 22 by using transmission imaging. Transmission imaging may be performed.

さらに、本実施形態において、コークス粒子28および炭材内装造粒粒子32の粒径を、周長が同じである周長円相当径で算出する例を示したが、これに限られない。例えば、画像解析部は、特定されたコークス粒子28または炭材内装造粒粒子32を示す画像データ領域の面積を算出し、コークス粒子28または炭材内装造粒粒子32の粒径は、面積が同じである面積円相当径であるとして、コークス粒子28または炭材内装造粒粒子32の粒径を算出してもよい。   Furthermore, in this embodiment, although the example which calculates the particle size of the coke particle | grains 28 and the carbonaceous material interior granulation particle | grains 32 by the circumference equivalent circle diameter with the same circumference was shown, it is not restricted to this. For example, the image analysis unit calculates the area of the image data region indicating the identified coke particles 28 or the carbonaceous material-incorporated granulated particles 32, and the particle size of the coke particles 28 or the carbonaceous material-incorporated granulated particles 32 is the area. The diameter of the coke particles 28 or the carbonaceous material-containing granulated particles 32 may be calculated on the assumption that they have the same area circle equivalent diameter.

(実施例1)
試験用の撹拌混合装置、造粒装置を用いて、ペレットフィードおよび生石灰を混合した混合粉と、コークス粒子とを用いて、炭材内装造粒粒子を造粒する実験を行った。90質量%の粒径250μm未満のペレットフィード(ヘマタイト(Fe):97.7質量%)と10質量%の生石灰を混合して混合粉とし、当該混合粉95質量%と、炭材核となる粒径3mmのコークス粒子5質量%を混合し、造粒して炭材内装造粒粒子を準備した。この際、コークス粒子を内装した炭材内装造粒粒子とともに、コークス粒子を内装しない造粒粒子も準備し、コークス粒子の内装状況を検査した。実験には、(株)リガク社製X線透過装置を用いた。X線源は3530CP、X線検出器は、Xmaru0707CF(Flat Panel 75×75mm、ピクセルサイズ48μm)を用い、管電圧を120kV、焦点と検出器距離を800mmに設定して透過撮影した。
Example 1
Using a test mixing device and a granulating device, an experiment was conducted to granulate carbonaceous material-containing granulated particles using mixed powder obtained by mixing pellet feed and quicklime and coke particles. A 90% by mass pellet feed (hematite (Fe 2 O 3 ): 97.7% by mass) with a particle size of less than 250 μm and 10% by mass quicklime are mixed to obtain a mixed powder. 5 mass% of coke particles having a particle diameter of 3 mm as a core were mixed and granulated to prepare carbonaceous material-containing granulated particles. At this time, agglomerated particles not including the coke particles were prepared together with the carbonized particles including the coke particles, and the interior condition of the coke particles was inspected. In the experiment, an X-ray transmission device manufactured by Rigaku Corporation was used. The X-ray source was 3530CP, the X-ray detector was Xmar0707CF (Flat Panel 75 × 75 mm, pixel size 48 μm), the tube voltage was set to 120 kV, and the focus and detector distance was set to 800 mm.

この透過撮影によって得られた透過画像が、図4(a)である。上述したように、透過画像においては、背景が最も白く表示され、コークス粒子28が灰色で表示され、混合粉22は黒く表示される。このため、上述したように、コークス粒子を示す画像データ領域と、混合粉22の外層を示す画像データ領域とを特定することで、炭材核含有率、炭材核粒径および混合粉の外層の厚さの少なくとも1つが算出できることは明らかである。   A transmission image obtained by the transmission imaging is shown in FIG. As described above, in the transmission image, the background is displayed whitest, the coke particles 28 are displayed in gray, and the mixed powder 22 is displayed in black. For this reason, as above-mentioned, by specifying the image data area | region which shows a coke particle | grain, and the image data area | region which shows the outer layer of the mixed powder 22, a carbon material nucleus content rate, a carbon material nucleus particle size, and the outer layer of mixed powder It is clear that at least one of the thicknesses can be calculated.

(実施例2)
実施例1と同様の条件で炭材内装造粒粒子を準備し、X線透過法を用いて炭材の内装状況を検査する実験を行った。松定プレシジョン株式会社社製X線検査装置を用いて、X線管電圧を110kV、パワーを20W、測定時間を各造粒粒子5秒に設定して炭材の内装状況の検査を実施した。
(Example 2)
The carbonaceous material interior granulated particles were prepared under the same conditions as in Example 1, and an experiment was conducted to inspect the interior condition of the carbonaceous material using the X-ray transmission method. Using an X-ray inspection apparatus manufactured by Matsusada Precision Co., Ltd., the X-ray tube voltage was set to 110 kV, the power was set to 20 W, the measurement time was set to 5 seconds for each granulated particle, and the interior condition of the carbonaceous material was inspected.

図5は、炭材内装造粒粒子をサンプル台62に設置した状況を示す写真である。図5に示すように、実施例2では、縦180mm、横400mmのサンプル台62に125個の炭材内装造粒粒子を設置し、1個の造粒粒子を透過撮影した後にサンプル台62を移動させることを繰り返し実施して、125個の炭材内装造粒粒子を透過撮影した。移動時間を除く総撮影時間は約10分であった。   FIG. 5 is a photograph showing a situation in which the carbonaceous material-containing granulated particles are installed on the sample table 62. As shown in FIG. 5, in Example 2, 125 carbonaceous material-incorporated granulated particles are placed on a sample table 62 having a length of 180 mm and a width of 400 mm. The movement was repeated, and 125 carbon material-containing granulated particles were photographed by transmission. The total shooting time excluding travel time was about 10 minutes.

125個の炭材内装造粒粒子を透過撮影し、閾値を用いてコークス粒子を示す画像データ領域を特定した結果、101個の炭材内装造粒粒子においてコークス粒子を示す画像データ領域が特定され、24個の炭材内装造粒粒子においてコークス粒子を示す画像データ領域が特定されなかった。これらの結果から算出される炭材核含有率は81%となった。   As a result of transmitting and photographing 125 carbonaceous material-containing granulated particles and specifying the image data area indicating the coke particles using the threshold value, the image data area indicating the coke particles in the 101 carbonaceous material-containing granulated particles is specified. In the 24 carbonaceous material-containing granulated particles, the image data area indicating the coke particles was not specified. The carbon material core content calculated from these results was 81%.

透過撮影後に、この炭材内装造粒粒子を割ってコークス粒子内装の有無を確認した所、101個の炭材内装造粒粒子はコークス粒子を内装し、24個の炭材内装造粒粒子はコークス粒子を内装しておらず、その炭材核含有率は81%であった。これらの結果から、透過撮影により生成された透過画像データを用いて算出された炭材核含有率と、炭材内装造粒粒子を割って確認された炭材核含有率は一致し、本実施形態に係る炭材内装造粒粒子の検査方法を用いることで、炭材内装造粒粒子の炭材核含有率が算出できることが確認された。   After transmission photography, the carbon material-containing granulated particles were divided to confirm the presence or absence of coke particles. 101 carbon material-containing granulated particles contained coke particles, and 24 carbon material-containing granulated particles were Coke particles were not included, and the carbon material core content was 81%. From these results, the carbon material core content rate calculated using transmission image data generated by transmission photography and the carbon material core content rate confirmed by dividing the carbon material interior granulated particles are the same. It was confirmed that the carbonaceous material core content rate of the carbonaceous material interior granulated particles can be calculated by using the inspection method of the carbonaceous material interior granulated particles according to the embodiment.

なお、実施例2では、1視野で1個の炭材内装造粒粒子を透過撮影する例を示したが、1視野で複数の炭材内装造粒粒子を透過撮影してもよい。この場合に、画像解析部は、複数の炭材内装造粒粒子を透過画像データごとに解析してもよく、当該画像データをつなげて125個の炭材内装造粒粒子の透過画像データを作製し、当該画像データを解析してもよい。これにより、多数の炭材内装造粒粒子を短時間で透過撮影でき、炭材内装造粒粒子の検査時間を短くできる。   In addition, in Example 2, the example which permeate | transmits one carbonaceous material granulation particle | grain with 1 visual field was shown, However, You may carry out the radiographic imaging of several carbonaceous material interior granulated particle | grains with 1 visual field. In this case, the image analysis unit may analyze the plurality of carbonaceous material-incorporated granulated particles for each transmission image data, and connect the image data to produce transmission image data of 125 carbonaceous material-incorporated granulated particles. Then, the image data may be analyzed. Thereby, a large number of carbonaceous material-containing granulated particles can be photographed in a short time, and the inspection time of the carbonaceous material-containing granulated particles can be reduced.

10 貯蔵槽
12 貯蔵槽
14 搬送機
16 鉄鉱石粉
18 石灰含有原料
19 水
20 混練機
22 混合粉
24 搬送機
26 貯蔵槽
28 コークス粒子
30 造粒機
32 炭材内装造粒粒子
34 搬送機
36 検査装置
40 通常の造粒粒子
42 搬送機
50 焼結機
60 高炉
62 サンプル台
DESCRIPTION OF SYMBOLS 10 Storage tank 12 Storage tank 14 Conveyor 16 Iron ore powder 18 Lime containing raw material 19 Water 20 Kneading machine 22 Mixed powder 24 Conveyor 26 Storage tank 28 Coke particle 30 Granulator 32 Carbonaceous material granulated particle 34 Conveyor 36 Inspection apparatus 40 Normal granulated particles 42 Conveyor 50 Sintering machine 60 Blast furnace 62 Sample stand

Claims (3)

鉄鉱石粉と石灰含有原料とを混合して混合粉とし、
炭材核と前記混合粉とを含む造粒原料を造粒することで、前記炭材核の周囲に前記混合粉の外層を形成させた炭材内装造粒粒子の検査方法であって、
前記炭材内装造粒粒子を透過撮影して生成された透過画像データを用いて、炭材核含有率、炭材核粒径および前記混合粉の外層の厚さの少なくとも1つを算出する、炭材内装造粒粒子の検査方法。
Mixing iron ore powder and lime-containing raw material to make a mixed powder,
By granulating a granulated raw material containing a carbonaceous material core and the mixed powder, an inspection method of carbonized material-containing granulated particles in which an outer layer of the mixed powder is formed around the carbonaceous material core,
Using transmission image data generated by transmission imaging of the carbonaceous material-containing granulated particles, calculating at least one of the carbonaceous material core content rate, the carbonaceous material core particle size, and the thickness of the outer layer of the mixed powder, Inspection method for granulated particles of carbon material interior.
前記透過撮影は、前記炭材内装造粒粒子を透過できるX線またはテラヘルツ波を用いて行う、請求項1に記載の炭材内装造粒粒子の検査方法。   2. The inspection method for carbon material-containing granulated particles according to claim 1, wherein the transmission photographing is performed using X-rays or terahertz waves that can penetrate the carbon material-containing granulated particles. 請求項1または請求項2に記載の炭材内装造粒粒子の検査方法で前記炭材核含有率を算出し、焼結原料に対する前記炭材核を含有する炭材内装造粒粒子の割合が一定になるように、前記炭材核含有率に応じて前記炭材内装造粒粒子の焼結原料への混合比率を調整する、炭材内装焼結鉱の製造方法。   The said carbon material nucleus content rate is computed with the inspection method of the carbon material interior granulated particle of Claim 1 or Claim 2, and the ratio of the carbon material interior granulated particle containing the said carbon material nucleus with respect to a sintering raw material is set. A method for producing a carbonaceous material-containing sintered ore, wherein a mixing ratio of the carbonaceous material-containing granulated particles to a sintered raw material is adjusted according to the carbonaceous material core content so as to be constant.
JP2018009335A 2017-02-22 2018-01-24 Method for inspecting granulated particles inside carbon material and method for manufacturing sintered ore inside carbon material Active JP6631644B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017030650 2017-02-22
JP2017030650 2017-02-22

Publications (2)

Publication Number Publication Date
JP2018135599A true JP2018135599A (en) 2018-08-30
JP6631644B2 JP6631644B2 (en) 2020-01-15

Family

ID=63366608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009335A Active JP6631644B2 (en) 2017-02-22 2018-01-24 Method for inspecting granulated particles inside carbon material and method for manufacturing sintered ore inside carbon material

Country Status (1)

Country Link
JP (1) JP6631644B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123944A (en) * 1984-07-12 1986-02-01 Nippon Steel Corp Method for measuring grain size of powdery and granular material
WO2010073718A1 (en) * 2008-12-26 2010-07-01 新日本製鐵株式会社 Sintering material granulation method using x-ray ct
JP2015129353A (en) * 2013-07-10 2015-07-16 Jfeスチール株式会社 Grain particle for carbonaceous material inner package for sinter ore production and production method thereof
JP2016172903A (en) * 2015-03-17 2016-09-29 株式会社神戸製鋼所 Method for producing raw material for sintered ore production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123944A (en) * 1984-07-12 1986-02-01 Nippon Steel Corp Method for measuring grain size of powdery and granular material
WO2010073718A1 (en) * 2008-12-26 2010-07-01 新日本製鐵株式会社 Sintering material granulation method using x-ray ct
JP2015129353A (en) * 2013-07-10 2015-07-16 Jfeスチール株式会社 Grain particle for carbonaceous material inner package for sinter ore production and production method thereof
JP2016172903A (en) * 2015-03-17 2016-09-29 株式会社神戸製鋼所 Method for producing raw material for sintered ore production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐々木 哲朗: "テラヘルツ波イメージング", 映像情報メディア学会誌, vol. 67, no. 6, JPN6019018701, 2013, pages 460 - 464, ISSN: 0004040202 *

Also Published As

Publication number Publication date
JP6631644B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP5540859B2 (en) Carbon steel interior agglomerate for iron making and method for producing the same
Pal et al. Development of pellet-sinter composite agglomerate for blast furnace
JP5705726B2 (en) Process for producing manganese pellets from uncalcined manganese ore and agglomerates obtained by this process
EP0199818A1 (en) Agglomerate and a process for producing the same
JP2015014015A (en) Production method of sintered ore
JP6631644B2 (en) Method for inspecting granulated particles inside carbon material and method for manufacturing sintered ore inside carbon material
CN110168118B (en) Method for producing sintered ore
JP6855897B2 (en) Oxidized ore smelting method
JP5463571B2 (en) Method of agglomerating iron raw material and its agglomeration equipment
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP2007277683A (en) Nonfired agglomerated ore for iron manufacture
JP5517501B2 (en) Method for producing sintered ore
JP4893347B2 (en) Operation method of mobile hearth furnace
JP2015063716A (en) Iron ore mini pellet for sintered ore manufacturing
WO2017221774A1 (en) Method for manufacturing carbon-material-incorporated sintered ore
JP2017172020A (en) Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same
JP2007277684A (en) Nonfired agglomerated ore for iron manufacture
JP2016183368A (en) Material for sintered ore and method for producing material for sintered ore
JP2013221185A (en) Manufacturing method of agglomerated reduced iron
JP2007100150A (en) Method for producing sintered ore
JP2015101740A (en) Method for manufacturing reduced iron
JP2005307253A (en) Method for producing sintered ore
JP2005290489A (en) Method for producing sintered ore for blast furnace

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6631644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250