JP2018131666A - Tin coat copper powder, manufacturing method thereof and conductive paste - Google Patents

Tin coat copper powder, manufacturing method thereof and conductive paste Download PDF

Info

Publication number
JP2018131666A
JP2018131666A JP2017027206A JP2017027206A JP2018131666A JP 2018131666 A JP2018131666 A JP 2018131666A JP 2017027206 A JP2017027206 A JP 2017027206A JP 2017027206 A JP2017027206 A JP 2017027206A JP 2018131666 A JP2018131666 A JP 2018131666A
Authority
JP
Japan
Prior art keywords
tin
copper powder
copper
particles
coated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017027206A
Other languages
Japanese (ja)
Inventor
金子 勲
Isao Kaneko
勲 金子
尚樹 山岡
Naoki Yamaoka
尚樹 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017027206A priority Critical patent/JP2018131666A/en
Publication of JP2018131666A publication Critical patent/JP2018131666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide tin coat copper powder that can be favorably used as a material for a conductive paste, etc. through covering a surface of copper powder with tin (Sn) or a tin alloy, the tin coat copper alloy simultaneously having sinterability and oxidation resistance while being minute, high crystal and high filling, and also to provide a manufacturing method thereof and a conductive paste.SOLUTION: Tin coat copper powder has copper particles having an octahedral particle and a granular particle other than octahedron mixed together, a surface of the copper particle is covered with tin or a tin alloy. In the tin coat copper powder, an average particle diameter is 0.1-3.0 μm, a crystallite diameter of the copper particle/the average particle diameter of the tin coat copper powder is 0.10 or more, and a tap density is 3.0-5.0 g/cm. A coating amount of the tin or the tin alloy is 1-33 mass% with regard to the tin coat copper powder in total.SELECTED DRAWING: None

Description

本発明は、錫コート銅粉とその製造方法、および導電性ペーストに関し、より詳しくは、銅粉表面に錫(Sn)または錫合金を被覆したことで導電性ペースト等の材料に高充填でき、焼結性と耐酸化性とを兼ね備えた微細で高結晶な錫コート銅粉とその製造方法、および導電性ペーストに関する。   The present invention relates to a tin-coated copper powder and a method for producing the same, and a conductive paste. More specifically, the surface of the copper powder is coated with tin (Sn) or a tin alloy so that a material such as a conductive paste can be highly filled. The present invention relates to a fine and highly crystalline tin-coated copper powder having both sinterability and oxidation resistance, a method for producing the same, and a conductive paste.

電子機器における配線層や電極等を形成するために、樹脂型ペーストや焼成型ペーストのような、銀粉や銅粉等の金属フィラーを使用した導電性ペーストが多用されている。銀粉や銅粉の金属フィラーを使用したペーストは、各種基材上に塗布又は印刷され、加熱硬化あるいは加熱焼成の処理を受けて、配線層や電極等となる導電膜を形成する。   In order to form wiring layers, electrodes, and the like in electronic devices, conductive pastes using metal fillers such as silver powder and copper powder, such as resin pastes and fired pastes, are frequently used. A paste using a metal filler such as silver powder or copper powder is applied or printed on various substrates, and is subjected to heat curing or heat baking treatment to form a conductive film to be a wiring layer, an electrode, or the like.

また、電子材料分野で高集積化、高密度化が進む中で、多層化の方法として、プリント配線板の表面と裏面の導通を得るために貫通孔(スルーホール)を設けて、その壁面部分にスルーホールめっきを施し、さらにその貫通孔に導電性ペーストを充填する方法がある。   Also, as integration and density increase in the electronic material field, as a multilayering method, a through hole (through hole) is provided to obtain conduction between the front and back surfaces of the printed wiring board, and the wall surface portion There is a method in which through-hole plating is applied to the through hole and a conductive paste is filled in the through hole.

ペーストのタイプには、樹脂型導電性ペーストがあり、金属フィラーと、樹脂、硬化剤、溶剤等からなり、導電体回路パターン又は端子の上に印刷され、100℃〜200℃で加熱硬化されて導電膜となり、配線や電極を形成する。樹脂型導電性ペーストでは、熱によって熱硬化型樹脂が硬化収縮するために金属フィラーが圧着され相互に接触することで金属フィラー同士が重なり、その結果、電気的に接続した電流パスが形成される。さらに、金属粉は一般的に粒径が微細になるほど焼結性が向上するので、粒径がより小さい金属フィラーを用いると、焼結の効果も加わり低抵抗となる。この樹脂型導電性ペーストは、200℃以下の硬化温度で処理されることから、プリント配線板等の熱に弱い材料を用いる基板に使用されている。この樹脂型導電性ペーストに使用される金属フィラーとしては、銀粉、銅粉、銀コート銅粉等が用いられる。   The type of paste is a resin-type conductive paste, which consists of a metal filler, resin, curing agent, solvent, etc., printed on a conductor circuit pattern or terminal, and heated and cured at 100 ° C to 200 ° C. A conductive film is formed, and wiring and electrodes are formed. In the resin-type conductive paste, since the thermosetting resin is cured and contracted by heat, the metal fillers are pressed and brought into contact with each other, so that the metal fillers overlap each other, and as a result, an electrically connected current path is formed. . Furthermore, since the metal powder generally has a higher sinterability as the particle size becomes finer, the use of a metal filler having a smaller particle size also increases the sintering effect and lowers the resistance. Since this resin-type conductive paste is processed at a curing temperature of 200 ° C. or lower, it is used for a substrate using a heat-sensitive material such as a printed wiring board. As the metal filler used in this resin-type conductive paste, silver powder, copper powder, silver-coated copper powder, or the like is used.

もう一種類のペーストタイプには焼成型導電性ペーストがあり、金属フィラーと、ガラス、溶剤等からなり、導電体回路パターン又は端子の上に印刷され、600℃〜800℃の高温に加熱焼成されて導電膜となり、配線や電極を形成する。焼成型導電性ペーストでは、高温で処理され、金属フィラーが焼結して導通性が確保される。焼成型導電性ペーストは、このように高い焼成温度で処理されるため、金属粒子を拡散アロイ化させることで導通を図るものであり、高接続信頼性が期待できる。この焼成型導電性ペーストに使用される金属フィラーとしては、共晶半田(Sn‐Pb合金)、Pbフリー半田粉(例えば、Sn−Ag−Cu合金)、銅粉に錫(Sn)めっき、銀粉にSnめっきしたものが挙げられる。   Another type of paste is a baked conductive paste, which consists of a metal filler, glass, solvent, etc., printed on a conductor circuit pattern or terminal, and baked at a high temperature of 600 ° C to 800 ° C. Thus, a conductive film is formed, and wirings and electrodes are formed. In the firing type conductive paste, it is processed at a high temperature, and the metal filler is sintered to ensure conductivity. Since the fired conductive paste is treated at such a high firing temperature, the metal particles are diffused and alloyed to conduct, and high connection reliability can be expected. Examples of the metal filler used in the fired conductive paste include eutectic solder (Sn—Pb alloy), Pb-free solder powder (for example, Sn—Ag—Cu alloy), copper powder with tin (Sn) plating, and silver powder. And those plated with Sn.

しかしながら、鉛含有半田の場合は、それを使用した配線基板等を廃棄した際に、鉛が溶出して環境汚染のおそれがあることから、電子部品のPbフリー化の観点で使用が制限される。
Sn−Pb合金の代替であるPbフリー半田粉としては、銀、ビスマス、銅、インジウム、アンチモン、亜鉛等を含む二元あるいは多元のSn合金が候補として挙げられる。このPbフリー半田粉では、より高性能な配線基板を作製するという観点から、多層基板として層間の導通を得るためにビアホールを形成し、そのビアホールに導電性ペーストやめっきで充填することが行われる。導電性ペーストを充填する場合には、ビア中の導電性ペースト組成物を高度に金属拡散接合させ、ビアの抵抗値を低くすることが要求される。ところが、積層温度より低融点のSn合金が積層時にその温度によって融解してしまい、充填した形状が変形収縮挙動を起こすことによって変形して、ビアホール内の接続信頼性が低下するという問題がある。
However, in the case of lead-containing solder, when a wiring board or the like using it is discarded, lead is eluted and there is a risk of environmental pollution. .
As a Pb-free solder powder that is an alternative to the Sn—Pb alloy, a binary or multi-element Sn alloy containing silver, bismuth, copper, indium, antimony, zinc or the like can be cited as a candidate. With this Pb-free solder powder, via holes are formed in order to obtain electrical continuity between layers as a multilayer substrate from the viewpoint of producing a higher performance wiring substrate, and the via holes are filled with a conductive paste or plating. . When the conductive paste is filled, it is required that the conductive paste composition in the via is highly metal diffusion bonded to reduce the resistance value of the via. However, there is a problem that the Sn alloy having a melting point lower than the stacking temperature is melted by the temperature at the time of stacking, and the filled shape is deformed due to deformation / shrinkage behavior, thereby reducing the connection reliability in the via hole.

これらの問題を解決するためには、溶融による形状変形を最小化する必要があり、積層温度によって溶融するSn合金の領域を可能な限り減少させる必要がある。そのためには、使用する金属フィラー粒子をPbフリー半田粉とするのではなく、銅や銀を核とした粉末にSn合金が被覆された金属フィラー粒子とすることが考えられる。   In order to solve these problems, it is necessary to minimize shape deformation due to melting, and it is necessary to reduce as much as possible the region of the Sn alloy that is melted by the lamination temperature. For this purpose, it is conceivable that the metal filler particles used are not Pb-free solder powder, but metal filler particles in which Sn alloy is coated on a powder having copper or silver as a core.

ここで、樹脂型ペースト、焼成型ペーストのいずれにも使用される金属粉で、核となる銅粉末の製造方法としては、銅イオンを含有する電解液を電気分解して陰極上に銅粉を析出させる電解法や、銅原料を熔解しその熔湯を液滴化して急冷、凝固させることで銅粉を生成するアトマイズ法、溶液中で還元剤を添加して銅粉を生成する湿式法等が知られている。これらの製造方法は、生産性が高く製造コストも安価であるため、工業的生産法として採用されている。   Here, the metal powder used for both the resin-type paste and the fired-type paste, and as a method for producing the core copper powder, the electrolytic solution containing copper ions is electrolyzed and the copper powder is deposited on the cathode. Electrolytic method for precipitation, atomizing method for melting copper raw material and making the molten liquid into droplets, quenching and solidifying to produce copper powder, wet method for producing copper powder by adding reducing agent in solution, etc. It has been known. These production methods are employed as industrial production methods because of their high productivity and low production costs.

電解法で得られる銅粉は、高純度なものになるという特長があるが、その電解銅粉の多くは樹枝状の形状で析出し、しかも粒径が10μm以上と粗大なものになりやすく、さらに粒度分布が広く導電性ペーストで特に低抵抗が求められる配線用途には適していない。
また、アトマイズ法は、例えば特許文献1に示されるように、金属を高温で熔解した熔湯の流れにジェット流体を吹き付けて微粉末化する方法であるが、金属を熔解するときに不純物を含有しやすく、また噴霧するときに酸化されやすいこと、さらに1μm以下の銅微粒子を作製できないといった問題がある。上述したように、アトマイズ法、電解法で得られた銅粉は、粒径が2μm以上で焼結性が劣るので低抵抗になりにくいこと、多結晶で粒界を持つため耐酸化性に劣ることなどの欠点があり、導通性が要求される導電性ペーストとして使用分野が限定されている。
Although the copper powder obtained by the electrolytic method has a feature that it becomes highly pure, most of the electrolytic copper powder is precipitated in a dendritic shape, and moreover, the particle size tends to be as coarse as 10 μm or more. Furthermore, it is not suitable for wiring applications requiring a low resistance with a conductive paste having a wide particle size distribution.
In addition, the atomizing method is a method in which a jet fluid is blown into a flow of molten metal obtained by melting a metal at a high temperature as shown in, for example, Patent Document 1, but it contains impurities when the metal is melted. There is a problem that it is easy to oxidize and is easily oxidized when sprayed, and copper fine particles of 1 μm or less cannot be produced. As described above, the copper powder obtained by the atomizing method and the electrolytic method has a particle size of 2 μm or more and poor sinterability, so it is difficult to be low resistance, and it is polycrystalline and has grain boundaries, so it has poor oxidation resistance. The field of use is limited as a conductive paste that requires electrical conductivity.

これに対して、湿式法は、溶液中の銅イオン等を還元剤により還元析出させる方法である。具体的には、例えば特許文献2に示されるように、銅塩を含む溶液中にアルカリ剤を添加し反応させて水酸化銅を析出させ、次いでブドウ糖のような還元剤を添加して亜酸化銅まで還元させ、さらにヒドラジンのような二次還元剤を添加して金属銅にまで還元させて銅粉を得る。このような湿式法では、サブミクロンの非常に微細な球状の銅微粉を作製できるという特長があるが、特許文献1と同じく多結晶で粒界を持つため耐酸化性が劣り、同じく導電性ペーストとして使用分野が限定されている。   On the other hand, the wet method is a method of reducing and precipitating copper ions or the like in a solution with a reducing agent. Specifically, for example, as shown in Patent Document 2, an alkaline agent is added to a solution containing a copper salt to cause reaction to precipitate copper hydroxide, and then a reducing agent such as glucose is added to suboxidize. It reduces to copper, Furthermore, a secondary reducing agent like hydrazine is added and it reduces to metal copper, and obtains copper powder. Such a wet method has the advantage that a very fine spherical copper fine powder of submicron can be produced. However, as in Patent Document 1, since it is polycrystalline and has grain boundaries, its oxidation resistance is inferior. As a field of use is limited.

一方で、特許文献3、4には、一定の結晶方位を持つ単結晶銅粉末を得る方法が提案されているが、主な粒径は2〜5μm程度と硬化温度100〜200℃の樹脂型導電性ペーストでは低抵抗化を満足できていない。また低抵抗とするために硬化温度を200℃以上とすると、耐酸化性が不十分となる。
この特許文献3には、正八角錐型の単結晶となった銅粉末を製造するために、銅塩と銅に対して1〜5倍のモル比の酒石酸と水酸化アルカリとを含む溶液に還元剤としてホルムアルデヒドを1分間以内に加えることが記載されている。
また、特許文献4の製造方法は、酒石酸塩などのキレート剤が銅に対して1〜5倍のモル比で必要とされるため薬液コストが高くなり、同時に廃液処理のコストも高くなるため、製造コストが高くなるという問題もある。さらに還元剤であるホルムアルデヒドを1分以内に加えて還元するとの条件もあり、工業的に大量生産するには不向きである。さらに、特許文献4により得られる銅粉は、高結晶ではあるが板状であり、比表面積が高くなって酸化しやすく、また配線エッジが凸凹となることから導電膜の用途には不向きである。
On the other hand, Patent Documents 3 and 4 propose a method for obtaining single crystal copper powder having a fixed crystal orientation, but the main particle size is about 2 to 5 μm and the resin mold has a curing temperature of 100 to 200 ° C. The conductive paste does not satisfy the low resistance. Further, if the curing temperature is 200 ° C. or higher in order to reduce the resistance, the oxidation resistance becomes insufficient.
In Patent Document 3, in order to produce copper powder that is a regular octagonal pyramidal single crystal, it is reduced to a solution containing tartaric acid and alkali hydroxide in a molar ratio of 1 to 5 times the copper salt and copper. It is described that formaldehyde is added within 1 minute as an agent.
Moreover, since the manufacturing method of patent document 4 requires a chelating agent such as tartrate at a molar ratio of 1 to 5 times with respect to copper, the cost of the chemical solution increases, and at the same time the cost of waste liquid treatment also increases. There is also a problem that the manufacturing cost becomes high. Furthermore, there is a condition that formaldehyde as a reducing agent is added within 1 minute for reduction, which is unsuitable for industrial mass production. Furthermore, although the copper powder obtained by patent document 4 is a high crystal | crystallization, it is plate shape, a specific surface area becomes high and it is easy to oxidize, and since a wiring edge becomes uneven, it is unsuitable for the use of an electrically conductive film. .

一般に、導電性ペーストをIC基板やプリント基板等に利用する際には、微細なパターンを形成するために、例えば、熱重量(TG)分析で大気中200℃の酸化増量1質量%以下という耐酸化性に優れ、微細で分散性の良い金属フィラーが要求される。また基板耐熱性などから、低温で樹脂硬化させて収縮させた際の接触抵抗が低くなり、またフィラーを大気中で焼成すると、例えば、圧粉抵抗率500μΩ・cm以下という低抵抗になることが求められる。しかしながら、金属粉末、特に銅粉末の場合には顕著に、粒径が微細になるほど酸化が進みやすくなる傾向があるため、微細であり、しかも耐酸化性に優れた銅粉末を得る方法が求められている。   In general, when a conductive paste is used for an IC substrate, a printed circuit board, or the like, in order to form a fine pattern, for example, an acid resistance of 1% by mass or less at an oxidation increase of 200 ° C. in the atmosphere by thermogravimetric (TG) analysis. There is a demand for metal fillers that are excellent in chemical properties, fine, and have good dispersibility. In addition, due to the substrate heat resistance, etc., the contact resistance when the resin is cured and contracted at a low temperature is lowered, and when the filler is fired in the air, for example, the powder resistivity may be as low as 500 μΩ · cm or less. Desired. However, in the case of metal powders, particularly copper powders, there is a tendency to oxidize more easily as the particle size becomes finer. Therefore, there is a demand for a method of obtaining copper powders that are fine and excellent in oxidation resistance. ing.

そのため特許文献5には、気相反応によって単結晶の銅微粉を得る方法が提案されているが、得られる銅粉は、走査型電子顕微鏡(SEM)を用いて観察すると、面取りされた多面体の単結晶で、しかも粉末粒子は単結晶であるために、表面が滑らかで欠陥がなく耐酸化性に優れている。しかしながら、気相反応による銅粉の製造では、塩化第一銅を還元性ガスと700℃以上の高温で反応させて単結晶銅粉を得るため、装置の機構が複雑となって製造コストがかかり、さらに得られた銅粉末が再溶融して連結するなど収率が悪いという問題がある。   Therefore, Patent Document 5 proposes a method for obtaining single-crystal copper fine powder by gas phase reaction. However, when the obtained copper powder is observed using a scanning electron microscope (SEM), it is a chamfered polyhedron. Since it is a single crystal and the powder particles are a single crystal, it has a smooth surface, no defects, and excellent oxidation resistance. However, in the production of copper powder by gas phase reaction, cuprous chloride is reacted with a reducing gas at a high temperature of 700 ° C. or higher to obtain single crystal copper powder, which complicates the mechanism of the apparatus and increases production costs. Further, there is a problem that the yield is poor, for example, the obtained copper powder is remelted and connected.

前記したとおり、焼成型導電性ペーストに使用される金属フィラーとして、銅粉に錫(Sn)めっきしたものが知られているが、核となる銅粉として、特許文献3〜5のようなものを用いたのでは、その表面を錫で被覆しても焼結性と耐酸化性を兼ね備えたものとはならず、耐候性や充填性も不十分である。これらの特性を有する錫コート銅粉を工業的に安価に製造するのに適した方法も求められている。   As described above, as a metal filler used in the baked conductive paste, a copper powder obtained by tin (Sn) plating is known. However, as a core copper powder, those described in Patent Documents 3 to 5 are used. However, even if the surface is coated with tin, it does not have both sinterability and oxidation resistance, and weatherability and filling properties are insufficient. There is also a need for a method suitable for industrially producing tin-coated copper powder having these characteristics at low cost.

特許第4342746号公報Japanese Patent No. 4342746 特許第4406738号公報Japanese Patent No. 4406738 特公平7−115992号公報Japanese Patent Publication No.7-111592 特開2014−58713号公報JP 2014-58713 A 特公平6−76609号公報Japanese Patent Publication No. 6-76609

本発明の目的は、上述した従来技術の問題点に鑑み、導電性ペースト等の材料として好適に用いることができる、高充填で焼結性と耐酸化性を兼ね備え、さらに耐候性も高い微細で高結晶な錫コート銅粉とその製造方法、および導電性ペーストを提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is a fine material that can be suitably used as a material such as a conductive paste, has high filling, has both sinterability and oxidation resistance, and has high weather resistance. The object is to provide a highly crystalline tin-coated copper powder, a method for producing the same, and a conductive paste.

本発明者らは、上記目的を解決するため、大量生産に優れる湿式還元法に着目して鋭意研究を重ね、八面体粒子と八面体以外の粒状粒子とが混在した銅粒子表面に錫または錫合金が被覆された錫コート銅粉であって、平均粒径が0.1μm〜3.0μmであり、銅粒子の結晶子径/錫コート銅粉の平均粒径、タップ密度が特定範囲であると、タップ密度と耐候性を高めることができ、このような錫コート銅粉は、銅塩溶液に対して酸化還元電位の異なる2種類の還元剤を添加・混合して還元反応を行うことで銅粉を合成した後、得られた銅粉の表面に錫または錫合金を被覆することで得られ、従来の製造方法では得られなかった高結晶性で粒径が小さく、かつタップ密度と耐酸化性と耐候性を高めた錫コート銅粉となることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned object, the inventors of the present invention have made extensive studies focusing on a wet reduction method that is excellent in mass production, and tin or tin on the surface of copper particles in which octahedral particles and non-octahedral granular particles are mixed. An alloy-coated tin-coated copper powder having an average particle size of 0.1 μm to 3.0 μm, and a crystallite diameter of copper particles / an average particle size of tin-coated copper powder and a tap density within a specific range. The tap density and weather resistance can be increased, and such a tin-coated copper powder can be reduced by adding and mixing two types of reducing agents having different oxidation-reduction potentials to the copper salt solution. After synthesizing copper powder, it is obtained by coating the surface of the obtained copper powder with tin or a tin alloy, and has high crystallinity, small particle size, tap density and acid resistance, which were not obtained by conventional manufacturing methods. And found that the tin-coated copper powder with improved weatherability and weather resistance, It came to be completed.

すなわち、本発明の第1の発明によれば、八面体粒子と八面体以外の粒状粒子とが混在した銅粒子表面に錫または錫合金が被覆された錫コート銅粉であって、
平均粒径が0.1μm〜3.0μm、銅粒子の結晶子径/錫コート銅粉の平均粒径が0.10以上で、タップ密度が3.0g/cm〜5.0g/cmであり、
錫または錫合金の被覆量は、錫コート銅粉全体の1質量%〜33質量%であることを特徴とする錫コート銅粉が提供される。
That is, according to the first invention of the present invention, tin-coated copper powder in which tin or a tin alloy is coated on the surface of copper particles in which octahedral particles and granular particles other than octahedral particles are mixed,
The average particle diameter is 0.1 μm to 3.0 μm, the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder is 0.10 or more, and the tap density is 3.0 g / cm 3 to 5.0 g / cm 3. And
A tin-coated copper powder is provided, wherein the coating amount of tin or a tin alloy is 1% by mass to 33% by mass of the entire tin-coated copper powder.

また、本発明の第2の発明によれば、第1の発明において、前記錫合金は、銀、ビスマス及び亜鉛から選ばれる1種以上の元素を含有することを特徴とする錫コート銅粉が提供される。   According to a second aspect of the present invention, there is provided the tin-coated copper powder according to the first aspect, wherein the tin alloy contains one or more elements selected from silver, bismuth and zinc. Provided.

また、本発明の第3の発明によれば、本発明の第2の発明において、前記錫合金の元素含有量は、錫合金に対して0.1質量%〜50質量%であることを特徴とする錫コート銅粉が提供される。   According to a third aspect of the present invention, in the second aspect of the present invention, the element content of the tin alloy is 0.1% by mass to 50% by mass with respect to the tin alloy. A tin-coated copper powder is provided.

また、本発明の第4の発明によれば、銅化合物水溶液とアルカリ金属の水酸化物水溶液と分散剤水溶液とを混合した銅塩溶液に、酸化還元電位が異なる強還元剤、弱還元剤の2種類の還元剤を添加して反応液とし、この反応液中で銅粒子を生成させた後、錫めっきを行う錫コート銅粉の製造方法であって、
銅粒子を生成させる工程において、まず、前記銅塩溶液へ前記銅化合物中の銅量に対して0.07当量以上0.5当量以下の強還元剤を添加し、反応させて八面体粒子の核を生成させながら、反応液を保持し八面体粒子を粒成長させ、次に、該反応液に弱還元剤を添加し反応させて八面体粒子の結晶性を高めて、八面体粒子と八面体以外の粒状粒子とが混在した銅粒子とし、該銅粒子が分散した銅粒子スラリーに錫塩を含む水溶液を添加することで銅粒子表面に錫または錫合金の被膜を形成させることを特徴とする錫コート銅粉の製造方法が提供される。
According to the fourth aspect of the present invention, a strong reducing agent and a weak reducing agent having different oxidation-reduction potentials are added to a copper salt solution obtained by mixing a copper compound aqueous solution, an alkali metal hydroxide aqueous solution, and a dispersant aqueous solution. A method for producing a tin-coated copper powder in which two kinds of reducing agents are added to form a reaction solution, and copper particles are produced in the reaction solution, followed by tin plating.
In the step of generating copper particles, first, a strong reducing agent of 0.07 equivalents or more and 0.5 equivalents or less is added to the copper salt solution with respect to the amount of copper in the copper compound, and reacted to form octahedral particles. While generating nuclei, the reaction solution is held and octahedral particles are grown, and then a weak reducing agent is added to the reaction solution and reacted to increase the crystallinity of the octahedral particles. It is characterized by forming a copper or tin alloy film on the copper particle surface by adding an aqueous solution containing a tin salt to a copper particle slurry in which the copper particles are dispersed, and copper particles mixed with granular particles other than the faceted particles. A method for producing a tin-coated copper powder is provided.

また、本発明の第5の発明によれば、本発明の第4の発明において、前記弱還元剤の添加量は、前記銅化合物中の銅量に対して1当量以上7当量以下であることを特徴とする錫コート銅粉の製造方法が提供される。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the amount of the weak reducing agent added is 1 equivalent or more and 7 equivalents or less with respect to the amount of copper in the copper compound. A method for producing a tin-coated copper powder is provided.

また、本発明の第6の発明によれば、本発明の第5の発明において、前記反応液は、前記強還元剤添加時と前記弱還元剤添加時の酸化還元電位の差が1.0V以上であることを特徴とする錫コート銅粉の製造方法が提供される。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the reaction solution has a difference in oxidation-reduction potential between the addition of the strong reducing agent and the addition of the weak reducing agent of 1.0 V. The manufacturing method of the tin coat copper powder characterized by the above is provided.

また、本発明の第7の発明によれば、本発明の第4〜6の発明において、前記反応液は、強還元剤を添加した後10分以上保持することを特徴とする錫コート銅粉の製造方法が提供される。   According to a seventh invention of the present invention, in the fourth to sixth inventions of the present invention, the reaction solution is retained for 10 minutes or more after the addition of a strong reducing agent. A manufacturing method is provided.

また、本発明の第8の発明によれば、本発明の第4〜7のいずれかの発明において、前記銅化合物は、硫酸銅五水和物であることを特徴とする錫コート銅粉の製造方法が提供される。   According to an eighth aspect of the present invention, there is provided the tin-coated copper powder according to any one of the fourth to seventh aspects of the present invention, wherein the copper compound is copper sulfate pentahydrate. A manufacturing method is provided.

また、本発明の第9の発明によれば、本発明の第4〜8のいずれかの発明において、前記アルカリ金属の水酸化物は、水酸化ナトリウムであることを特徴とする錫コート銅粉の製造方法が提供される。   According to a ninth aspect of the present invention, there is provided the tin-coated copper powder according to any one of the fourth to eighth aspects of the present invention, wherein the alkali metal hydroxide is sodium hydroxide. A manufacturing method is provided.

また、本発明の第10の発明によれば、本発明の第4〜9のいずれかの発明において、前記強還元剤は、ヒドラジン一水和物であることを特徴とする錫コート銅粉の製造方法が提供される。   According to a tenth aspect of the present invention, there is provided the tin-coated copper powder according to any one of the fourth to ninth aspects of the present invention, wherein the strong reducing agent is hydrazine monohydrate. A manufacturing method is provided.

また、本発明の第11の発明によれば、本発明の第4〜10のいずれかの発明において、前記弱還元剤は、アスコルビン酸であることを特徴とする錫コート銅粉の製造方法が提供される。   According to an eleventh aspect of the present invention, there is provided the method for producing tin-coated copper powder according to any one of the fourth to tenth aspects of the present invention, wherein the weak reducing agent is ascorbic acid. Provided.

また、本発明の第12の発明によれば、本発明の第4〜11のいずれかの発明において、前記分散剤が、ポリビニルアルコール、ポリエチレンイミン、ポリビニルピロリドン、変性シリコーンオイル系界面活性剤、またはポリエーテル系界面活性剤から選択される少なくとも1種であることを特徴とする錫コート銅粉の製造方法が提供される。   According to a twelfth aspect of the present invention, in any one of the fourth to eleventh aspects of the present invention, the dispersant is polyvinyl alcohol, polyethyleneimine, polyvinylpyrrolidone, a modified silicone oil surfactant, or There is provided a method for producing tin-coated copper powder, which is at least one selected from polyether surfactants.

また、本発明の第13の発明によれば、本発明の第4〜12のいずれかの発明において、前記分散剤の添加量が、前記銅化合物中の銅量に対して0.1質量%〜10質量%であることを特徴とする錫コート銅粉の製造方法が提供される。   According to the thirteenth aspect of the present invention, in any one of the fourth to twelfth aspects of the present invention, the amount of the dispersant added is 0.1% by mass relative to the amount of copper in the copper compound. The manufacturing method of the tin coat copper powder characterized by being -10 mass% is provided.

さらに、本発明の第14の発明によれば、本発明の第4〜13のいずれかの発明において、得られる錫コート銅粉は、平均粒径が0.1〜3.0μmで、銅粒子の結晶子径/錫コート銅粉の平均粒径が0.10以上、タップ密度が3.0g/cm〜5.0g/cmであることを特徴とする錫コート銅粉の製造方法が提供される。 Furthermore, according to the fourteenth aspect of the present invention, in any one of the fourth to thirteenth aspects of the present invention, the obtained tin-coated copper powder has an average particle size of 0.1 to 3.0 μm and a copper particle an average particle size of the crystallite diameter / tin coating copper powder is 0.10 or more, a manufacturing method of tin-coated copper powder, wherein tap density of 3.0g / cm 3 ~5.0g / cm 3 Provided.

また、本発明の第15の発明によれば、本発明の第4〜14のいずれかの発明において、錫または錫合金の被覆量は、錫コート銅粉全体の1質量%〜33質量%以下であることを特徴とする錫コート銅粉の製造方法が提供される。   According to the fifteenth aspect of the present invention, in any one of the fourth to fourteenth aspects of the present invention, the coating amount of tin or a tin alloy is 1% by mass to 33% by mass or less of the entire tin-coated copper powder. A method for producing a tin-coated copper powder is provided.

また、本発明の第16の発明によれば、本発明の第15の発明において、前記錫合金として添加される元素は、銀、ビスマス及び亜鉛から選ばれる少なくとも1種以上であることを特徴とする請求項15に記載の錫コート銅粉の製造方法が提供される。   According to a sixteenth aspect of the present invention, in the fifteenth aspect of the present invention, the element added as the tin alloy is at least one selected from silver, bismuth and zinc. A method for producing a tin-coated copper powder according to claim 15 is provided.

さらに、本発明の第17の発明によれば、本発明の第16の発明において、前記錫合金として添加される元素は、錫合金に対して0.1質量%〜20質量%であることを特徴とする錫コート銅粉の製造方法が提供される。   Further, according to a seventeenth aspect of the present invention, in the sixteenth aspect of the present invention, the element added as the tin alloy is 0.1% by mass to 20% by mass with respect to the tin alloy. A method for producing a tin-coated copper powder is provided.

一方、本発明の第18の発明によれば、本発明の第1〜3のいずれかの発明の錫コート銅粉と、樹脂と、溶媒とを含む導電性ペーストが提供される。   On the other hand, according to the eighteenth aspect of the present invention, there is provided a conductive paste containing the tin-coated copper powder of any one of the first to third aspects of the present invention, a resin, and a solvent.

本発明の錫コート銅粉は、高結晶性で粒径が小さく、八面体粒子と八面体以外の粒状粒子とが混在しているのでタップ密度を高くしうる。この錫コート銅粉は、硫酸銅など安価で取り扱いが容易な原料を用い、工業的な大量生産に適した水溶液系において還元反応を行って銅粒子を得た後、めっきにより錫コートを施すという比較的簡易な方法で製造できる。さらに、本発明の製造方法によれば2種の還元剤を用いた1回の還元反応で、異なる形状と粒径の粒子が混在した錫コート銅粉を得ることができるので、従来のブレンド法よりも生産性よく、低コスト化できる。   The tin-coated copper powder of the present invention has a high crystallinity and a small particle size, and since octahedral particles and non-octahedral particles are mixed, the tap density can be increased. This tin-coated copper powder uses inexpensive raw materials such as copper sulfate and is easy to handle, and after carrying out a reduction reaction in an aqueous solution system suitable for industrial mass production to obtain copper particles, it is said that a tin coat is applied by plating. It can be manufactured by a relatively simple method. Furthermore, according to the production method of the present invention, a tin-coated copper powder in which particles having different shapes and particle sizes are mixed can be obtained by a single reduction reaction using two kinds of reducing agents. Productivity and cost can be reduced.

したがって、このような高結晶性で粒径が小さく、タップ密度が高い錫コート銅粉を用いれば、電子材料の配線形成用として好適な導電性ペーストが得られる。また耐酸化性と対候性にも優れているので、この導電性ペーストは、低温焼成による導電膜の形成に適しており、さらには導電膜の細線化にも対応可能である。   Therefore, if such tin-coated copper powder having high crystallinity, a small particle size, and a high tap density is used, a conductive paste suitable for forming an electronic material wiring can be obtained. Moreover, since it is excellent in oxidation resistance and weather resistance, this conductive paste is suitable for forming a conductive film by low-temperature firing, and can also cope with thinning of the conductive film.

以下、本発明に係る錫コート銅粉とその製造方法、及びそれを用いた導電性ペーストの具体的な実施形態を詳細に説明する。なお、本発明の目的を逸脱しない限りにおいて、本発明は以下の実施の形態によってのみ限定されるものではない。   Hereinafter, specific embodiments of the tin-coated copper powder according to the present invention, a manufacturing method thereof, and a conductive paste using the same will be described in detail. It should be noted that the present invention is not limited only to the following embodiments without departing from the object of the present invention.

1.(錫コート銅粉)
本発明の錫コート銅粉は、八面体粒子と八面体以外の粒状粒子とが混在した銅粒子表面に錫または錫合金が被覆された錫コート銅粉であって、平均粒径が0.1μm〜3.0μm、銅粒子の結晶子径/錫コート銅粉の平均粒径が0.10以上で、タップ密度が3.0g/cm〜5.0g/cmであることを特徴とする。
1. (Tin coated copper powder)
The tin-coated copper powder of the present invention is a tin-coated copper powder in which tin or a tin alloy is coated on the surface of a copper particle in which octahedral particles and granular particles other than octahedral particles are mixed, and the average particle size is 0.1 μm. ~3.0Myuemu, an average particle diameter of the crystallite diameter / tin-coated copper powder of the copper particles 0.10 or more, the tap density is characterized by a 3.0g / cm 3 ~5.0g / cm 3 .

すなわち、本発明に係る錫コート銅粉は、八面体粒子と八面体以外の粒状粒子の混合物であり、高結晶性でタップ密度が高く、特定の範囲に制御された平均粒径を有している。   That is, the tin-coated copper powder according to the present invention is a mixture of octahedral particles and non-octahedral granular particles, has high crystallinity, high tap density, and an average particle size controlled within a specific range. Yes.

錫コート銅粉は、八面体粒子と八面体以外の粒状粒子が混在した混合物で、錫または錫合金の被覆前の八面体粒子は単結晶、双晶であるか、粒子に含まれる結晶粒が数十以下の粒子で構成されているため、混合物の結晶性を高める効果を有する。八面体粒子には、八面体を呈した粒子のほか、頂点の一部を切り欠いた切頂八面体の形状を持つ粒子も含まれる。八面体粒子としては、特定の結晶面で区切られ、平滑な面を形成しているのが好ましい。   Tin-coated copper powder is a mixture of octahedral particles and non-octahedron particles, and the octahedral particles before coating with tin or tin alloy are single crystals, twin crystals, or the grains contained in the particles are Since it is composed of several tens of particles or less, it has the effect of increasing the crystallinity of the mixture. The octahedral particles include particles having a shape of a truncated octahedron in which a part of the apex is cut out in addition to particles exhibiting an octahedron. The octahedral particles are preferably separated by specific crystal planes to form smooth surfaces.

ただし、八面体粒子のみでは、錫コート銅粉のタップ密度が向上しない。本発明の錫コート銅粉では、八面体粒子のみではなく八面体以外の粒状粒子が混在するので、タップ密度を高めることができる。
なお粒状粒子は、結晶粒が数十を超えるように集合した大きな粒子であって、形状によって限定されるものではないが、角や凸部がないか、角が少ない多面体、例えば略球状の形状を呈しているものが好ましい。
However, the tap density of the tin-coated copper powder is not improved only by the octahedral particles. In the tin-coated copper powder of the present invention, not only octahedral particles but also granular particles other than octahedrons are present, so that the tap density can be increased.
The granular particles are large particles that are aggregated so that the number of crystal grains exceeds several tens, and are not limited by the shape, but there are no corners or protrusions, or a polyhedron with few corners, for example, a substantially spherical shape. The thing which exhibits is preferable.

本発明に係る錫コート銅粉中に占める八面体粒子の個数比率は、錫コート銅粉の個数全体の20%〜80%であるのが好ましい。この比率は例えば走査型電子顕微鏡(SEM)で錫コート銅粉を観察し、この画像から画像処理等の方法で、八面体粒子とそれ以外の粒子を識別して個数比率を計測する方法で求めることができる。   The number ratio of octahedral particles in the tin-coated copper powder according to the present invention is preferably 20% to 80% of the total number of tin-coated copper powders. This ratio is obtained by, for example, observing tin-coated copper powder with a scanning electron microscope (SEM), and discriminating octahedral particles and other particles from this image by a method such as image processing, and measuring the number ratio. be able to.

錫コート銅粉中の八面体粒子の個数比率を20%以上とし、後述するように平均粒径と比較して相対的に結晶子径が大きい高結晶性の粒子を含む銅粉とすることが好ましい。錫コート銅粉中の八面体粒子の個数比率が80%を超えると、タップ密度が低下し、この錫コート銅粉を含むペーストを用いて導電膜を形成した時に、導電膜の電気抵抗値が高くなり、所望の値(規格値)を満たさなくなることがある。したがって、錫コート銅粉中に占める八面体粒子の個数比率は、錫コート銅粉個数全体の30%〜70%であるとより好ましい。   The number ratio of octahedral particles in the tin-coated copper powder is 20% or more, and as described later, a copper powder containing highly crystalline particles having a relatively large crystallite diameter compared to the average particle diameter may be used. preferable. When the number ratio of octahedral particles in the tin-coated copper powder exceeds 80%, the tap density decreases, and when the conductive film is formed using the paste containing the tin-coated copper powder, the electric resistance value of the conductive film is It may become high and may not satisfy a desired value (standard value). Therefore, the number ratio of octahedral particles in the tin-coated copper powder is more preferably 30% to 70% of the total number of tin-coated copper powders.

本発明に係る錫コート銅粉の平均粒径は0.1μm〜3.0μmであり、0.3μm〜2.5μmであることがより好ましい。平均粒径をこの範囲とすることで、ペースト化したとき、細線化された配線を形成することができる。なお平均粒径は、一定数の錫コート銅粉を走査型電子顕微鏡(SEM)で観察、測定した一次粒子の粒径の平均値である。また一次粒子は、SEM観察像より単位粒子と考えられるものを指し、単位粒子が凝集、結合してできた粒子(二次粒子)を意味するものではない。平均粒径が0.1μm未満だと、粒子が凝集しやすくなるだけでなく、タップ密度も上記した範囲を満たさないことがある。平均粒径が3.0μmを超えると、配線を形成させた時に線幅を狭くすることが難しくなり、配線の細線化に向かない。   The average particle diameter of the tin-coated copper powder according to the present invention is 0.1 μm to 3.0 μm, and more preferably 0.3 μm to 2.5 μm. By setting the average particle size within this range, a thinned wiring can be formed when pasted. The average particle diameter is an average value of the particle diameters of primary particles obtained by observing and measuring a certain number of tin-coated copper powders with a scanning electron microscope (SEM). The primary particles refer to those considered as unit particles from the SEM observation image, and do not mean particles (secondary particles) formed by aggregation and bonding of the unit particles. When the average particle size is less than 0.1 μm, not only the particles are likely to aggregate, but also the tap density may not satisfy the above range. When the average particle diameter exceeds 3.0 μm, it is difficult to reduce the line width when the wiring is formed, which is not suitable for thinning the wiring.

本発明に係る錫コート銅粉は、銅粒子の結晶子径/錫コート銅粉の平均粒径が0.10以上となるようにする。ここで銅粒子結晶子径は、X線回折結果から、Scherrer法を用いて計算することができる。この指標が高いほど各粉末を構成する結晶粒の個数が少ないことから、高結晶性である。銅粒子の結晶子径/錫コート銅粉の平均粒径の上限値は特に限定されないが、八面体粒子と粒状粒子の混合錫コート銅粉では0.40以内の値を示すことが確認されている。好ましい銅粒子の結晶子径/錫コート銅粉の平均粒径の範囲は、0.10〜0.38であり、0.12〜0.35がより好ましい。   In the tin-coated copper powder according to the present invention, the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder is 0.10 or more. Here, the copper particle crystallite diameter can be calculated from the X-ray diffraction result using the Scherrer method. The higher the index, the higher the crystallinity because the number of crystal grains constituting each powder is smaller. The upper limit of the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder is not particularly limited, but it has been confirmed that the mixed tin-coated copper powder of octahedral particles and granular particles shows a value within 0.40. Yes. The range of the preferable crystallite diameter of the copper particles / average particle diameter of the tin-coated copper powder is 0.10 to 0.38, and more preferably 0.12 to 0.35.

本発明に係る錫コート銅粉は、タップ密度が3.0g/cm〜5.0g/cmであり、3.3g/cm〜5.0g/cmが好ましく、3.5g/cm〜5.0g/cmがより好ましい。この範囲であれば、錫コート銅粉を導電性ペーストに用いて配線形成材料の導電膜を形成した時に、導電膜中の錫コート銅粉の充填密度が高くなり、導電膜の電気抵抗値を低下させることができる。タップ密度が3.0g/cm未満では導電膜中の錫コート銅粉の充填密度が低下し、電気抵抗値が配線形成材料として所望の値(規格値)を満たさなくなることがあるので好ましくない。また、タップ密度が5.0g/cmを超えるものは、現在のところ製造するのが困難である。 Tin-coated copper powder according to the present invention is a tap density of 3.0g / cm 3 ~5.0g / cm 3 , 3.3g / cm 3 ~5.0g / cm 3 is preferable, 3.5 g / cm 3 to 5.0 g / cm 3 is more preferable. Within this range, when the conductive film of the wiring forming material is formed using the tin-coated copper powder as the conductive paste, the filling density of the tin-coated copper powder in the conductive film increases, and the electric resistance value of the conductive film is reduced. Can be reduced. When the tap density is less than 3.0 g / cm 3 , the filling density of the tin-coated copper powder in the conductive film is lowered, and the electrical resistance value may not satisfy a desired value (standard value) as a wiring forming material. . Moreover, what has a tap density exceeding 5.0 g / cm < 3 > is difficult to manufacture at present.

本発明に係る錫コート銅粉は、錫または錫合金の被覆量を、錫コート銅粉全体の1質量%以上33質量%以下とすることが好ましい。1質量%未満では、錫による被覆が不十分となることがあり、場合によっては表面が酸化されて抵抗が高くなることがある。一方で、33質量%を超えると被膜強度が低下して耐酸化性が劣り、またコストが高くなるため、好ましくない。なお、上記錫または錫合金の被覆量では、表面にコートされる錫または錫合金の平均厚みが最大でも0.1μm程度であり、錫または錫合金被覆前後で平均粒径、タップ密度、および八面体構造が実質的に変化することはない。好ましい錫または錫合金の被覆量は、銅粉の5質量%以上30質量%以下であり、5質量%以上25質量%以下がより好ましい。   In the tin-coated copper powder according to the present invention, the coating amount of tin or tin alloy is preferably 1% by mass or more and 33% by mass or less of the entire tin-coated copper powder. If it is less than 1% by mass, the coating with tin may be insufficient, and in some cases, the surface may be oxidized to increase the resistance. On the other hand, if it exceeds 33% by mass, the film strength is lowered, the oxidation resistance is inferior, and the cost is increased, which is not preferable. Note that, with the coating amount of tin or tin alloy, the average thickness of tin or tin alloy coated on the surface is about 0.1 μm at the maximum, and the average particle diameter, tap density, and eight before and after the tin or tin alloy coating. The face structure does not change substantially. The coating amount of tin or tin alloy is preferably 5% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 25% by mass or less of the copper powder.

さらに後述するように、錫コート銅粉において、銅粒子に被覆される錫は錫合金でもよい。錫合金として添加される元素としては、銀、ビスマス及び亜鉛から選ばれる1種以上が好ましい。   Further, as will be described later, in the tin-coated copper powder, the tin coated with the copper particles may be a tin alloy. As an element added as a tin alloy, 1 or more types chosen from silver, bismuth, and zinc are preferable.

これらの錫合金を構成する錫以外の金属元素の含有割合としては、融点や濡れ性の観点から、当該錫コート銅粉に被覆されている錫合金の被膜全体に対して0.1質量%〜50質量%の含有量であることが好ましい。含有量が多くなりすぎると、融点の上昇や機械的強度が低下する等の原因となることから、50質量%以下であることが好ましい。一方で、含有量が0.1質量%未満であると、融点を低下させたり濡れ性を向上させる効果が十分に得られないことがある。このことから、錫合金被膜全体に対して、1質量%〜20質量%の含有量がより好ましく、2質量%〜10質量%の含有量がさらに好ましい。   As a content ratio of metal elements other than tin constituting these tin alloys, from the viewpoint of melting point and wettability, 0.1% by mass to the entire coating film of the tin alloy coated with the tin-coated copper powder. The content is preferably 50% by mass. If the content is too large, it causes an increase in melting point and a decrease in mechanical strength, and therefore it is preferably 50% by mass or less. On the other hand, if the content is less than 0.1% by mass, the effect of lowering the melting point or improving wettability may not be obtained sufficiently. Accordingly, the content of 1% by mass to 20% by mass is more preferable, and the content of 2% by mass to 10% by mass is more preferable with respect to the entire tin alloy coating film.

なお、錫合金を構成する金属の含有量は、例えば高周波誘導結合プラズマ(ICP)発光分光分析法により、錫コート銅粉を構成する各元素の含有量を換算することによって測定できる。また、エネルギー分散型X線分光(EDX)法やオージェ電子分光(AES)法によって、錫コート銅粉の断面等から錫合金被膜中の各元素の定量分析することもできる。   In addition, content of the metal which comprises a tin alloy can be measured by converting content of each element which comprises tin coat copper powder, for example by a high frequency inductively coupled plasma (ICP) emission-spectral-analysis method. In addition, each element in the tin alloy film can be quantitatively analyzed from the cross section of the tin-coated copper powder by an energy dispersive X-ray spectroscopy (EDX) method or an Auger electron spectroscopy (AES) method.

2.(錫コート銅粉の製造方法)
本発明の錫コート銅粉の製造方法は、銅化合物水溶液とアルカリ金属の水酸化物水溶液と分散剤水溶液とを混合した銅塩溶液に、酸化還元電位が異なる強還元剤、弱還元剤の2種類の還元剤を添加して反応液とし、この反応液中で銅粒子を生成させた後、錫めっきを行う錫コート銅粉の製造方法であって、
銅粒子を生成させる工程において、まず、前記銅塩溶液へ前記銅化合物中の銅量に対して0.07当量以上0.5当量以下の強還元剤を添加し、反応させて八面体粒子の核を生成させながら、反応液を保持し八面体粒子を粒成長させ、次に、該反応液に弱還元剤を添加し反応させて八面体粒子の結晶性を高めて、八面体粒子と八面体以外の粒状粒子とが混在した銅粒子とし、該銅粒子が分散した銅粒子スラリーに錫塩を含む水溶液を添加することで銅粒子表面に錫または錫合金の被膜を形成させることを特徴とする。
2. (Method for producing tin-coated copper powder)
The method for producing tin-coated copper powder according to the present invention comprises a copper salt solution in which a copper compound aqueous solution, an alkali metal hydroxide aqueous solution and a dispersant aqueous solution are mixed, a strong reducing agent having a different redox potential, and a weak reducing agent 2. A method for producing a tin-coated copper powder comprising adding a reducing agent of a kind to form a reaction solution, producing copper particles in the reaction solution, and then performing tin plating,
In the step of generating copper particles, first, a strong reducing agent of 0.07 equivalents or more and 0.5 equivalents or less is added to the copper salt solution with respect to the amount of copper in the copper compound, and reacted to form octahedral particles. While generating nuclei, the reaction solution is held and octahedral particles are grown, and then a weak reducing agent is added to the reaction solution and reacted to increase the crystallinity of the octahedral particles. It is characterized by forming a copper or tin alloy film on the copper particle surface by adding an aqueous solution containing a tin salt to a copper particle slurry in which the copper particles are dispersed, and copper particles mixed with granular particles other than the faceted particles. To do.

すなわち、本発明は、銅化合物水溶液とアルカリ金属の水酸化物水溶液と分散剤水溶液とを混合して銅塩溶液を作製し、上記銅塩溶液へ強還元剤を添加し所定時間保持した後に弱還元剤を添加し銅粒子を生成させ、得られた銅粒子を分散させた銅粒子スラリーに錫塩水溶液を添加することで、めっきを行うことで錫コート銅粉を生成させる製造方法であって、酸化還元電位の異なる2種類の還元剤を用いることによって銅粒子を得るようにする。   That is, the present invention prepares a copper salt solution by mixing a copper compound aqueous solution, an alkali metal hydroxide aqueous solution and a dispersant aqueous solution, and after adding a strong reducing agent to the copper salt solution and holding it for a predetermined time, A method for producing a tin-coated copper powder by plating by adding a tin salt aqueous solution to a copper particle slurry in which copper particles are dispersed by adding a reducing agent and dispersing the obtained copper particles. The copper particles are obtained by using two kinds of reducing agents having different oxidation-reduction potentials.

従来の製造方法では、形状や粒径が異なる錫コート銅粉をブレンドすることで、結晶性が高く、タップ密度が高く、平均粒径が特定の範囲内で小さい錫コート銅粉を製造しようとしており、従来は湿式法による一連の操作で錫コート銅粉を製造できなかった。これに対して、本発明は、酸化還元電位の異なる2種類の還元剤を使用するとともに、強還元剤の添加量を適度に制御することで、湿式法による一連の操作で錫コート銅粉の製造を可能とした。   In conventional manufacturing methods, tin-coated copper powders with different shapes and particle sizes are blended to produce tin-coated copper powders with high crystallinity, high tap density, and small average particle size within a specific range. In the past, tin-coated copper powder could not be produced by a series of operations using a wet method. On the other hand, the present invention uses two types of reducing agents having different oxidation-reduction potentials, and appropriately controls the amount of strong reducing agent added so that the tin-coated copper powder can be used in a series of operations by a wet method. Manufacturing was possible.

具体的には、銅化合物水溶液とアルカリ金属の水酸化物水溶液と分散剤水溶液とを混合して銅塩溶液を作製し、上記銅塩溶液へ強還元剤を添加して反応液とし、所定時間保持した後にさらに弱還元剤を添加し銅微粒子を生成させ、銅微粒子が分散した銅粒子スラリーに錫塩水溶液を添加して、めっきを行うことで錫コート銅粉を生成させる。   Specifically, an aqueous copper compound solution, an alkali metal hydroxide aqueous solution, and an aqueous dispersant solution are mixed to prepare a copper salt solution, and a strong reducing agent is added to the copper salt solution to obtain a reaction solution, for a predetermined time. After holding, a weak reducing agent is further added to produce copper fine particles, a tin salt aqueous solution is added to the copper particle slurry in which the copper fine particles are dispersed, and plating is performed to produce tin-coated copper powder.

ここで、強還元剤とは、本実施の形態で用いる2種類の還元剤のうち還元力の強い還元剤であることを意味し、弱還元剤とは、その強還元剤より標準電極電位が高い、すなわち還元力の弱い還元剤であることを意味する。強還元剤を、銅化合物中の銅量に対して0.07当量以上0.5当量以下添加することで、高結晶性でタップ密度の高く、平均粒径が特定の範囲内で小さい錫コート銅粉を得ることができる。
以下、本発明に係る錫コート銅粉の製造方法について、より詳細に説明する。
Here, the strong reducing agent means a reducing agent having a strong reducing power among the two types of reducing agents used in the present embodiment, and the weak reducing agent means that the standard electrode potential is higher than that of the strong reducing agent. It means that the reducing agent is high, that is, the reducing power is weak. Tin coating with high crystallinity, high tap density, and small average particle size within a specific range by adding a strong reducing agent to 0.07 equivalents or more and 0.5 equivalents or less with respect to the amount of copper in the copper compound Copper powder can be obtained.
Hereinafter, the manufacturing method of the tin coat copper powder which concerns on this invention is demonstrated in detail.

(1)銅塩溶液の調製
まず、銅化合物を含む銅塩溶液を調製する。出発原料である銅化合物としては、公知の硫酸銅、塩化銅、炭酸銅、酢酸銅、リン酸銅など、水溶液として溶解すればいずれの塩でもよく、また1種類単独でも複数の各種銅化合物でも使用できるが、塩化銅、炭酸銅、硫酸銅五水和物を用いることが好ましい。特に硫酸銅五水和物は、他の銅化合物よりも銅粉に陰イオン元素が混入せず不純物が少なく、排水処理費も含めて安価なものが入手しやすいからである。
(1) Preparation of copper salt solution First, a copper salt solution containing a copper compound is prepared. As a copper compound which is a starting material, any salt may be used as long as it dissolves as an aqueous solution, such as known copper sulfate, copper chloride, copper carbonate, copper acetate, copper phosphate, and one kind alone or a plurality of various copper compounds may be used. Although it can be used, it is preferable to use copper chloride, copper carbonate, or copper sulfate pentahydrate. In particular, copper sulfate pentahydrate is easier to obtain than other copper compounds because anionic elements are not mixed in the copper powder, and there are few impurities and it is easy to obtain inexpensive ones including wastewater treatment costs.

銅塩溶液中の硫酸銅五水和物濃度は、特に限定されないが、100〜2000g/Lとすることが好ましい。銅濃度が低くても粒子の成長が生じて銅粒子を得ることはできるが、100g/L未満では、排水量が増大して高コストになるとともに、生産性を高めることができない。一方で、硫酸銅五水和物の濃度が2000g/Lを越えると、水に対する硫酸銅五水和物の溶解度に近くなり、十分に溶解しない可能性があるため、好ましくない。   The copper sulfate pentahydrate concentration in the copper salt solution is not particularly limited, but is preferably 100 to 2000 g / L. Even if the copper concentration is low, the growth of particles can occur and copper particles can be obtained. However, if the concentration is less than 100 g / L, the amount of drainage increases and the cost increases, and the productivity cannot be increased. On the other hand, if the concentration of copper sulfate pentahydrate exceeds 2000 g / L, it is close to the solubility of copper sulfate pentahydrate in water and may not be sufficiently dissolved, which is not preferable.

アルカリ金属の水酸化物としては、公知の各種水酸化物を使用できるが、水酸化ナトリウム、水酸化カリウムを用いることが好ましく、水酸化ナトリウムがより好ましい。これらのアルカリ金属の水酸化物は、入手が容易で、他のアルカリ金属の水酸化物よりも安価である。
アルカリ金属の水酸化物水溶液は、後述する弱還元剤を添加後、弱還元剤の還元反応が十分に進行するpHとなるように、添加量を調整するのが好ましい。具体的には弱還元剤としてアスコルビン酸を用いる場合は、添加量を反応液のpHが3.0以上となるようにすることが好ましい。反応液のpHが3.0未満の場合、弱還元剤であるアスコルビン酸による還元反応が進行しにくい。
Various known hydroxides can be used as the alkali metal hydroxide, but sodium hydroxide and potassium hydroxide are preferably used, and sodium hydroxide is more preferable. These alkali metal hydroxides are readily available and are less expensive than other alkali metal hydroxides.
It is preferable to adjust the amount of the alkali metal hydroxide aqueous solution so as to have a pH at which the reduction reaction of the weak reducing agent proceeds sufficiently after adding the weak reducing agent described later. Specifically, when ascorbic acid is used as the weak reducing agent, the addition amount is preferably set so that the pH of the reaction solution is 3.0 or more. When the pH of the reaction solution is less than 3.0, the reduction reaction with ascorbic acid, which is a weak reducing agent, hardly proceeds.

本発明では、還元反応により生成した銅粒子が凝集を起こさないように、分散剤の水溶液を使用する。分散剤としては、ポリビニルアルコール、ポリエチレンイミン、ポリビニルピロリドン、変性シリコーンオイル系界面活性剤、またはポリエーテル系界面活性剤から選択される少なくとも1種が好ましい。分散剤の添加量としては、銅化合物中の銅量に対して0.01質量%〜10質量%とすることが好ましく、0.05質量%〜3質量%とすることがより好ましい。添加量が0.01質量%未満であると、凝集抑制効果が十分に得られないことがあり、一方で、添加量が10質量%を超えると、凝集抑制効果に対して排水処理等の負荷が増加する。   In the present invention, an aqueous solution of a dispersant is used so that the copper particles produced by the reduction reaction do not aggregate. The dispersant is preferably at least one selected from polyvinyl alcohol, polyethyleneimine, polyvinyl pyrrolidone, a modified silicone oil surfactant, or a polyether surfactant. The addition amount of the dispersant is preferably 0.01% by mass to 10% by mass and more preferably 0.05% by mass to 3% by mass with respect to the amount of copper in the copper compound. When the addition amount is less than 0.01% by mass, the aggregation suppressing effect may not be sufficiently obtained. On the other hand, when the addition amount exceeds 10% by mass, a load such as wastewater treatment is exerted on the aggregation suppressing effect. Will increase.

(2)銅塩溶液と強還元剤の反応
次に、銅塩溶液に強還元剤を添加して反応させる。なお還元剤を添加した銅塩溶液を以降反応液とする。強還元剤としては、標準電極電位が低く還元力の強い還元剤であり、具体的には、標準電極電位が−1.15Vのヒドラジン、−1.24Vの水素化ホウ素ナトリウム、0.056Vのホルマリン、またはジメチルアミンボラン等を好ましく用いることができる。その中でも、特に還元力が強いヒドラジンおよびその水和物であるヒドラジン一水和物を用いると、多量の核を発生させることができ、平均粒径が小さくなりやすいので、より好ましい。
(2) Reaction of copper salt solution and strong reducing agent Next, a strong reducing agent is added to the copper salt solution and reacted. The copper salt solution to which the reducing agent is added is hereinafter referred to as a reaction solution. The strong reducing agent is a reducing agent having a low standard electrode potential and a strong reducing power. Specifically, the standard electrode potential is −1.15 V hydrazine, −1.24 V sodium borohydride, 0.056 V. Formalin, dimethylamine borane, or the like can be preferably used. Among them, it is more preferable to use hydrazine having a particularly strong reducing power and hydrazine monohydrate, which is a hydrate thereof, because a large amount of nuclei can be generated and the average particle size tends to be small.

強還元剤の添加量は、銅化合物中の銅量に対して0.07当量以上、0.5当量以下とすることが必要であり、強還元剤の添加量がこの範囲から外れると、結晶性の高い八面体粒子と粒状粒子との混合物を得ることができない。強還元剤の添加量は、0.08当量以上、0.4当量以下とすることが好ましく、0.1当量以上、0.3当量以下とすることがより好ましい。
強還元剤の添加量が銅化合物中の銅量に対して0.07当量未満であると、強還元剤を添加した効果が小さく、粒状粒子しか得らない。一方、0.5当量を超えると、強還元剤による核発生と粒成長が急激に起きるため、八面体粒子を構成する結晶粒が細かくなり、結晶性は低くなる。
The addition amount of the strong reducing agent needs to be 0.07 equivalent or more and 0.5 equivalent or less with respect to the copper amount in the copper compound, and if the addition amount of the strong reducing agent is out of this range, It is not possible to obtain a mixture of highly octahedral particles and granular particles. The addition amount of the strong reducing agent is preferably 0.08 equivalents or more and 0.4 equivalents or less, and more preferably 0.1 equivalents or more and 0.3 equivalents or less.
When the addition amount of the strong reducing agent is less than 0.07 equivalent to the copper amount in the copper compound, the effect of adding the strong reducing agent is small, and only granular particles are obtained. On the other hand, when the amount exceeds 0.5 equivalents, nucleation and grain growth by the strong reducing agent occur rapidly, so that the crystal grains constituting the octahedral grains become fine and the crystallinity becomes low.

反応温度は、30〜80℃が好ましい。反応温度が30℃未満では、粒状粒子しか得られない場合があり、80℃を超えると、八面体粒子を構成する結晶粒が細かくなり、結晶性は低くなることがある。好ましい反応温度は、40〜70℃である。また、強還元剤としてヒドラジンまたはヒドラジン一水和物を用いた場合、還元反応時に発泡する場合があるため、反応液に消泡剤を添加してもよい。   The reaction temperature is preferably 30 to 80 ° C. When the reaction temperature is less than 30 ° C., only granular particles may be obtained. When the reaction temperature exceeds 80 ° C., the crystal grains constituting the octahedral particles become fine and the crystallinity may be lowered. The preferred reaction temperature is 40-70 ° C. Further, when hydrazine or hydrazine monohydrate is used as a strong reducing agent, foaming may occur during the reduction reaction, so an antifoaming agent may be added to the reaction solution.

強還元剤添加後の反応液の保持時間は、10分以上とすることが好ましい。保持時間が10分未満の場合、強還元剤による反応と次に添加される弱還元剤との還元反応が同時に起き、還元速度が速くなるため、八面体粒子の結晶性が低くなる。強還元剤添加後の反応液の保持時間の上限については、特に限定されないが、強還元剤による還元反応が終了するまで、例えば120分程度保持すればよい。好ましいのは10〜100分であり、より好ましいのは20〜60分である。   It is preferable that the retention time of the reaction liquid after addition of the strong reducing agent is 10 minutes or longer. When the retention time is less than 10 minutes, the reaction with the strong reducing agent and the reduction reaction with the next weakly reducing agent occur simultaneously, and the reduction rate is increased, so that the crystallinity of the octahedral particles is lowered. The upper limit of the holding time of the reaction liquid after addition of the strong reducing agent is not particularly limited, but may be held, for example, for about 120 minutes until the reduction reaction with the strong reducing agent is completed. Preferred is 10 to 100 minutes, and more preferred is 20 to 60 minutes.

この反応で反応液中に主として結晶性の高い八面体粒子が析出する。本発明に係る錫コート銅粉中に占める八面体粒子の個数比率は、前記のとおり、錫コート銅粉個数全体の20%〜80%とするのが好ましいが、この個数比率は、銅粉の製造時に使用する強還元剤の添加量等により制御される。   By this reaction, octahedral particles mainly having high crystallinity are precipitated in the reaction solution. As described above, the number ratio of octahedral particles in the tin-coated copper powder according to the present invention is preferably 20% to 80% of the total number of tin-coated copper powders. It is controlled by the amount of strong reducing agent added during production.

(3)弱還元剤の添加による銅微粒子の生成
その後、反応液に強還元剤とは標準電極電位が異なる弱還元剤を添加して銅微粒子を生成させる。用いる弱還元剤は、強還元剤よりも標準電極電位が高く、還元力の弱い還元剤である。弱還元剤としては、標準電極電位が0.058Vのアスコルビン酸、あるいは類似のラクトン構造を持つ有機化合物を用いることが好ましい。アスコルビン酸は還元作用が緩やかであり、このようなラクトン構造を持つ有機化合物を用いれば結晶性の高い銅粉が得られやすい。
(3) Production of copper fine particles by addition of weak reducing agent Thereafter, a copper reducing fine particle is produced by adding a weak reducing agent having a standard electrode potential different from that of the strong reducing agent to the reaction solution. The weak reducing agent used is a reducing agent having a higher standard electrode potential than that of the strong reducing agent and having a weak reducing power. As the weak reducing agent, it is preferable to use ascorbic acid having a standard electrode potential of 0.058 V or an organic compound having a similar lactone structure. Ascorbic acid has a mild reducing action, and if an organic compound having such a lactone structure is used, copper powder with high crystallinity can be easily obtained.

反応液中での強還元剤と弱還元剤の還元力の差が大きいほど、高結晶性の八面体粒子が生成されやすい。還元力の差は酸化還元電位の差として表すことができ、反応液において、強還元剤添加時の酸化還元電位と弱還元剤添加時の酸化還元電位との差が1.0V以上とするのが好ましく、1.2V以上がより好ましい。電位差が1.0V未満では、生成された銅粉の結晶性が低下してしまう。   The higher the difference in reducing power between the strong reducing agent and the weak reducing agent in the reaction solution, the more easily the highly crystalline octahedral particles are produced. The difference in reducing power can be expressed as a difference in redox potential. In the reaction solution, the difference between the redox potential when a strong reducing agent is added and the redox potential when a weak reducing agent is added is 1.0 V or more. Is preferable, and 1.2 V or more is more preferable. When the potential difference is less than 1.0 V, the crystallinity of the produced copper powder is lowered.

弱還元剤の添加量は、特に限定されないが、銅化合物中の銅量に対して1当量〜7当量とすることが好ましい。添加量が銅塩溶液中の銅量に対して1当量未満の場合、未還元の銅塩が残留することがあり、7当量より多いとコストが高くなる。なお後述するように、還元型無電解めっき法を用いて錫、錫合金コート処理を行い、かつ生成させた銅粒子を含む銅粒子スラリーをろ過しないで錫塩水溶液を添加して、銅粒子の生成に用いた還元剤を用いて連続的に錫コート処理を行う場合には、還元剤は銅量に対して1.5当量以上、より好ましくは2当量以上とするのがよい。   Although the addition amount of a weak reducing agent is not specifically limited, It is preferable to set it as 1 equivalent-7 equivalent with respect to the amount of copper in a copper compound. When the addition amount is less than 1 equivalent with respect to the amount of copper in the copper salt solution, unreduced copper salt may remain, and when it exceeds 7 equivalents, the cost increases. As will be described later, tin, tin alloy coating treatment is performed using a reduction type electroless plating method, and a tin salt aqueous solution is added without filtering the copper particle slurry containing the produced copper particles, When the tin coating treatment is continuously performed using the reducing agent used for generation, the reducing agent is preferably 1.5 equivalents or more, more preferably 2 equivalents or more with respect to the amount of copper.

反応温度は、30〜80℃が好ましい。反応温度が30℃未満では、未還元の銅塩が残留する場合があり、80℃を超えると、八面体粒子以外の結晶粒が増えて、タップ密度が低くなることがある。好ましい反応温度は、40〜70℃である。弱還元剤添加後の反応液の保持時間は、特に限定されないが、1時間以上とすることが好ましい。反応液の保持時間が1時間未満の場合、還元反応が終わっておらず、未還元の銅塩が残留するため、好ましくない。弱還元剤添加後の反応液の保持時間の上限は特に限定されないが、弱還元剤による還元反応が終了するまで、例えば5時間以内保持すればよい。好ましいのは1〜4時間であり、より好ましいのは2〜3時間である。
反応液には、必要に応じてpH調整剤、錯化剤、消泡剤等を適宜添加することもできる。これらの添加量も、その目的に応じて適宜調整すればよい。
The reaction temperature is preferably 30 to 80 ° C. If the reaction temperature is less than 30 ° C., unreduced copper salt may remain, and if it exceeds 80 ° C., crystal grains other than octahedral particles may increase and the tap density may be lowered. The preferred reaction temperature is 40-70 ° C. The holding time of the reaction solution after addition of the weak reducing agent is not particularly limited, but is preferably 1 hour or longer. When the retention time of the reaction solution is less than 1 hour, the reduction reaction is not completed and an unreduced copper salt remains, which is not preferable. The upper limit of the holding time of the reaction liquid after addition of the weak reducing agent is not particularly limited, but may be held within, for example, 5 hours until the reduction reaction with the weak reducing agent is completed. Preferred is 1 to 4 hours, more preferred is 2 to 3 hours.
A pH adjuster, a complexing agent, an antifoaming agent, and the like can be appropriately added to the reaction solution as necessary. What is necessary is just to adjust these addition amounts suitably according to the objective.

(4)錫コート処理
以上のようにして生成させた銅粒子スラリーは、例えば還元型無電解めっき法を用いて銅粒子の表面に錫コート処理を行い、錫コート銅粒子とする。
(4) Tin coating treatment The copper particle slurry produced as described above is subjected to tin coating treatment on the surface of the copper particles using, for example, a reduction type electroless plating method to obtain tin coated copper particles.

しかし、錫コート処理は無電解めっき法に限定されることはなく、公知の他の方法で銅粉の表面に錫コート処理を行ってもよい。ただ無電解めっき法で銅粒子の表面を錫でコートすれば、比較的低コストで生産性よく粉末表面の酸化が抑えられるとともに、この粉末を用いて導電膜を形成した時に、導電性を高めることができる。   However, the tin coating treatment is not limited to the electroless plating method, and the tin coating treatment may be performed on the surface of the copper powder by other known methods. However, if the surface of the copper particles is coated with tin by an electroless plating method, oxidation of the powder surface can be suppressed with high productivity at a relatively low cost, and the conductivity is increased when a conductive film is formed using this powder. be able to.

具体的には、生成させた銅粒子を分散させた銅粒子スラリーとし、この銅粒子スラリーに錫塩水溶液を添加して錫コート処理を行う。
この銅粒子スラリーとする方法としては、銅粒子を反応液からろ過して、反応液を水等で洗浄してから乾燥させて銅粒子を取出し、その銅粒子を液中に分散させて銅粒子スラリーとする方法、デカンテーション等で反応液を除去し、水等を加えて銅粒子スラリーとする方法、反応液中をそのまま利用して銅粒子を反応液中に分散させて銅粒子スラリーとする方法がある。
Specifically, a copper particle slurry in which the generated copper particles are dispersed is used, and a tin salt aqueous solution is added to the copper particle slurry to perform a tin coating treatment.
As a method of making this copper particle slurry, the copper particles are filtered from the reaction solution, the reaction solution is washed with water and dried, the copper particles are taken out, and the copper particles are dispersed in the solution to obtain the copper particles. A method of making a slurry, a method of removing a reaction solution by decantation, etc., adding water or the like to make a copper particle slurry, and using the reaction solution as it is to disperse copper particles in the reaction solution to make a copper particle slurry There is a way.

銅粉の表面に均一な厚みで錫または錫合金を被覆するためには、錫めっきの前に洗浄を行うことが好ましく、銅粒子を洗浄液中に分散させ、攪拌しながら洗浄を行うことができる。この洗浄処理としては、酸性溶液中で行うのが好ましく、洗浄後には、銅粒子のろ過、分離と、水洗とを適宜繰り返して、水中に銅粒子が分散した水スラリーとする。なお、ろ過、分離と、水洗については、公知の方法を用いればよい。   In order to coat tin or tin alloy with a uniform thickness on the surface of the copper powder, it is preferable to wash before tin plating, and the copper particles can be dispersed in the washing solution and washed with stirring. . This washing treatment is preferably carried out in an acidic solution. After washing, filtration and separation of copper particles and washing with water are repeated as appropriate to obtain a water slurry in which copper particles are dispersed in water. In addition, what is necessary is just to use a well-known method about filtration, isolation | separation, and water washing.

具体的に、無電解めっき法で錫コートする場合には、銅粒子を洗浄した後に得られた銅粒子スラリーに無電解錫めっき液を加えるか、無電解錫めっき液中に銅粒子スラリーを加え、均一に撹拌することで銅粉の表面に錫または錫合金をより均一に被覆させることができる。   Specifically, when tin coating is performed by an electroless plating method, an electroless tin plating solution is added to the copper particle slurry obtained after washing the copper particles, or a copper particle slurry is added to the electroless tin plating solution. By stirring uniformly, the surface of the copper powder can be coated more uniformly with tin or a tin alloy.

無電解めっき法で錫または錫合金を被覆する方法としては、特に限定されない。無電解錫めっきとしては、下地である銅粒子の溶出に伴ってめっき液中の錫イオンが還元析出する置換型錫めっきと、めっき液中の錫イオンを還元剤によって還元して錫被覆を行う還元型錫めっきと、錫イオンの不均化反応によって金属錫となることを利用して錫被覆を行う不均化反応型錫めっきが挙げられ、いずれの方法でもよい。   A method for coating tin or a tin alloy by an electroless plating method is not particularly limited. Electroless tin plating includes substitutional tin plating in which tin ions in the plating solution are reduced and precipitated as the underlying copper particles are eluted, and tin coating is performed by reducing the tin ions in the plating solution with a reducing agent. Examples include reduction-type tin plating and disproportionation-type tin plating in which tin coating is performed using the fact that tin ion is disproportionated to form metal tin, and any method may be used.

具体的に、置換型錫めっき液としては、錫化合物と、錫化合物を水溶液中に安定に保つための錯化剤とを必須成分とし、必要に応じて界面活性剤、pH調整剤等を添加してなるものを用いることができる。また、還元型錫めっき液としては、上述した置換型錫めっき液の組成に還元剤を添加したものを用いることができる。   Specifically, as a substitutional tin plating solution, a tin compound and a complexing agent for keeping the tin compound stable in an aqueous solution are essential components, and a surfactant, a pH adjuster, etc. are added as necessary. Can be used. Further, as the reduced tin plating solution, a composition obtained by adding a reducing agent to the above-described substitutional tin plating solution can be used.

また、不均化反応型錫めっきでは、アルカリ水溶液中において錫イオンがHSnO2−イオンとして存在し、そのHSnO2−イオンが、下記式で示される不均化反応によって金属錫となる。不均化反応型錫めっきでは、反応により生成する金属錫によって錫めっきを行うもので、強アルカリ浴の置換型錫めっき液と同様の組成のめっき液を用いることができる。
2HSnO2− + 2HO ⇔ Sn(OH) 2− + Sn
In the disproportionation reaction type tin plating, tin ions exist as HSnO 2− ions in an alkaline aqueous solution, and the HSnO 2− ions become metal tin by a disproportionation reaction represented by the following formula. In the disproportionation reaction type tin plating, tin plating is performed with metallic tin generated by the reaction, and a plating solution having the same composition as the substitutional tin plating solution in the strong alkaline bath can be used.
2HSnO 2 + + 2H 2 O ⇔ Sn (OH) 6 2 + + Sn

錫化合物としては、2価の錫化合物と4価の錫化合物があり、2価の錫化合物と4価の錫化合物をそれぞれ単独で、またはそれぞれ併用してもよい。
具体的に、錫化合物としては、例えば、ホウフッ化第一錫、スルホコハク酸第一錫、塩化第一錫、塩化第二錫、硫酸第一錫、硫酸第二錫、酸化第一錫、酸化第二錫、メタンスルホン酸第一錫、エタンスルホン酸第一錫、2−ヒドロキシプロパン−1−スルホン酸第一錫、p−フェノールスルホン酸第一錫、ホウフッ化錫、ケイフッ化錫、スルファミン酸錫、シュウ酸錫、酒石酸錫、グルコン酸錫、スルホコハク酸錫、ピロリン酸錫、1−ヒドロキシエタン−1,1−ビスホスホン酸錫、トリポリリン酸錫等が挙げられる。
As the tin compound, there are a divalent tin compound and a tetravalent tin compound, and the divalent tin compound and the tetravalent tin compound may be used alone or in combination, respectively.
Specifically, as the tin compound, for example, stannous borofluoride, stannous sulfosuccinate, stannous chloride, stannic chloride, stannous sulfate, stannic sulfate, stannous oxide, stannous oxide Distinous, stannous methanesulfonate, stannous ethanesulfonate, stannous 2-hydroxypropane-1-sulfonate, stannous p-phenolsulfonate, tin borofluoride, tin silicofluoride, tin sulfamate Tin oxalate, tin tartrate, tin gluconate, tin sulfosuccinate, tin pyrophosphate, 1-hydroxyethane-1,1-bisphosphonic acid tin, tripolyphosphate, and the like.

錯化剤としては、チオ尿素誘導体、カルボン酸又はアミン系化合物、塩化チタン等を用いることができる。
具体的に、チオ尿素誘導体としては、チオ尿素、1,3−ジメチルチオ尿素、トリメチルチオ尿素、ジエチルチオ尿素(例えば、1,3−ジエチル−2−チオ尿素)、N,N’−ジイソプロピルチオ尿素、アリルチオ尿素、アセチルチオ尿素、エチレンチオ尿素、1,3−ジフェニルチオ尿素、二酸化チオ尿素、チオセミカルバジド等が挙げられる。
また、カルボン酸又はアミン系化合物としては、クエン酸、酒石酸、リンゴ酸、グルコン酸、ゴルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、アスコルビン酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、コハク酸、メルカプトコハク酸、スルホコハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸、グリコール酸、クエン酸ナトリウム、グリシン、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四酢酸、エチレンジアミン四酢酸二ナトリウム塩、エチレンジアミン四プロピオン酸、ニトリロ三酢酸、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、イミノジプロピオン酸、アミノトリメチレンリン酸、アミノトリメチレンリン酸五ナトリウム塩、ベンジルアミン、2−ナフチルアミン、イソブチルアミン、イソアミルアミン、1,3−プロパンジアミン四酢酸、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2−ジアミノシクロヘキサン−N,N,N’,N’−四酢酸、ジアミノプロピオン酸、エチレンジアミンテトラメチレンリン酸、ジエチレントリアミンペンタメチレンリン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N−ビス(2−ヒドロキシエチル)グリシン、(S、S)−エチレンジアミンコハク酸、メチレンジアミン、エチレンジアミン、エチレンジアミン四酢酸、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミン、シンナミルアミン、p−メトキシシンナミルアミン等が挙げられる。
As the complexing agent, a thiourea derivative, a carboxylic acid or an amine compound, titanium chloride, or the like can be used.
Specifically, thiourea derivatives include thiourea, 1,3-dimethylthiourea, trimethylthiourea, diethylthiourea (eg, 1,3-diethyl-2-thiourea), N, N′-diisopropylthiourea, Examples include allyl thiourea, acetyl thiourea, ethylene thiourea, 1,3-diphenyl thiourea, thiourea dioxide, and thiosemicarbazide.
In addition, as carboxylic acid or amine compound, citric acid, tartaric acid, malic acid, gluconic acid, golcoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid , Citramalic acid, succinic acid, mercaptosuccinic acid, sulfosuccinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid, glycolic acid, sodium citrate, glycine, hydroxyethylethylenediamine Triacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid disodium salt, ethylenediaminetetrapropionic acid, nitrilotriacetic acid, iminodiacetic acid, hydroxyethylimino Acetic acid, iminodipropionic acid, aminotrimethylene phosphate, aminotrimethylene phosphate pentasodium salt, benzylamine, 2-naphthylamine, isobutylamine, isoamylamine, 1,3-propanediaminetetraacetic acid, 1,3-diamino- 2-hydroxypropanetetraacetic acid, glycol etherdiaminetetraacetic acid, metaphenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid, diaminopropionic acid, ethylenediaminetetramethylene phosphate, diethylenetriamine Pentamethylene phosphoric acid, glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, N, N-bis (2-hydroxyethyl) glycine, (S, S) -ethylenediamine succinic acid, methylenediamine, ethylenediamine, ethyl Diaminetetraacetic acid, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, diethylenetriamine, tetraethylenepentamine, pentaethylenehexamine, hexaethyleneheptamine, cinnamylamine, p-methoxycinnamylamine and the like.

還元剤としては、リン酸系化合物、水素化ホウ素化合物、ヒドラジン誘導体等が挙げられ、これらを単独で又は2種以上を併せて用いることができる。
具体的に、リン酸系化合物としては、次亜リン酸、亜リン酸、ピロリン酸、ポリリン酸等が挙げられる。また、水素化ホウ素化合物としては、メチルヘキサボラン、ジメチルアミンボラン、ジエチルアミンボラン、モルホリンボラン、ピリジンアミンボラン、ピペリジンボラン、エチレンジアミンボラン、エチレンジアミンビスボラン、t−ブチルアミンボラン、イミダゾールボラン、メトキシエチルアミンボラン、水素化ホウ素ナトリウム等が挙げられる。
また、ヒドラジン誘導体としては、硫酸ヒドラジン、塩酸ヒドラジン等のヒドラジン塩や、ピラゾール類、トリアゾール類、ヒドラジド類等のヒドラジン誘導体等を用いることができる。これらの中で、ピラゾール類としては、ピラゾールの他に、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン等のピラゾール誘導体を用いることができる。また、トリアゾール類としては、4−アミノ−1,2,4−トリアゾール、1,2,3−トリアゾール等を用いることができる。また、ヒドラジド類としては、アジピン酸ヒドラジド、マレイン酸ヒドラジド、カルボヒドラジド等を用いることができる。
Examples of the reducing agent include phosphoric acid compounds, borohydride compounds, hydrazine derivatives, and the like, and these can be used alone or in combination of two or more.
Specifically, examples of the phosphoric acid compound include hypophosphorous acid, phosphorous acid, pyrophosphoric acid, polyphosphoric acid, and the like. Examples of the borohydride compound include methylhexaborane, dimethylamineborane, diethylamineborane, morpholineborane, pyridineamineborane, piperidineborane, ethylenediamineborane, ethylenediaminebisborane, t-butylamineborane, imidazoleborane, methoxyethylamineborane, hydrogen Examples thereof include sodium borohydride.
As the hydrazine derivative, hydrazine salts such as hydrazine sulfate and hydrazine hydrochloride, hydrazine derivatives such as pyrazoles, triazoles and hydrazides, and the like can be used. Among these, as pyrazoles, pyrazole derivatives such as 3,5-dimethylpyrazole and 3-methyl-5-pyrazolone can be used in addition to pyrazole. As triazoles, 4-amino-1,2,4-triazole, 1,2,3-triazole, and the like can be used. As hydrazides, adipic hydrazide, maleic hydrazide, carbohydrazide, and the like can be used.

なお、そのほか、必要に応じて、pH緩衝剤、pH調整剤、界面活性剤等の添加剤を含有させることができる。さらに必要に応じて、消泡剤や分散剤を使用してもよい。
pH緩衝剤としては、公知の錯化剤を使用することができる。例えば、塩化アンモニウム、硫酸アンモニウム、ホウ酸、酢酸ナトリウム等が挙げられる。
pH調整剤としては、公知の錯化剤を使用することができる。例えば、酸やアルカリの化合物を使用することができ、例えば、アンモニア、水酸化ナトリウム等のアルカリ金属の水酸化物,炭酸、硫酸、塩酸等が挙げられる。なお、アンモニアを用いる場合、アンモニア水として供給することができる。
In addition, additives such as a pH buffer, a pH adjuster, and a surfactant can be contained as necessary. Furthermore, you may use an antifoamer and a dispersing agent as needed.
A known complexing agent can be used as the pH buffering agent. For example, ammonium chloride, ammonium sulfate, boric acid, sodium acetate and the like can be mentioned.
A known complexing agent can be used as the pH adjuster. For example, an acid or alkali compound can be used, and examples thereof include alkali metal hydroxides such as ammonia and sodium hydroxide, carbonic acid, sulfuric acid, and hydrochloric acid. In addition, when using ammonia, it can supply as ammonia water.

界面活性剤は、めっき液の浸透性を向上させるために用いることができ、具体的に、界面活性剤としては、ノニオン性、カチオン性、アニオン性、両性等の界面活性剤のいずれを用いることができ、1種単独又は2種以上併せて用いることができる。   Surfactants can be used to improve the permeability of the plating solution. Specifically, any of nonionic, cationic, anionic, amphoteric, etc. surfactants should be used as the surfactant. It can be used alone or in combination of two or more.

さらに、形成される錫被膜中に、錫以外の他の元素が含有すること、すなわち、銅粉表面に錫合金の被膜を形成させることで、融点や濡れ性等の性質を変更することができる。例えば、Pbフリー半田の仕様としては、使用する用途や材料によって、使用温度や濡れ性、機械的強度が問題となる。この点において、錫合金の被膜を形成させることで、使用用途や材料に合った性質に変更することができる。   Furthermore, the properties such as melting point and wettability can be changed by containing other elements than tin in the formed tin film, that is, by forming a film of tin alloy on the surface of the copper powder. . For example, as a specification of Pb-free solder, use temperature, wettability, and mechanical strength become problems depending on the use and material used. In this respect, by forming a tin alloy film, the properties can be changed to suit the intended use and material.

具体的に、錫被膜中に含有させる元素、つまり錫合金を構成する錫以外の元素としては、銀、ビスマス、銅、インジウム、アンチモン、及び亜鉛等が挙げられる。錫合金としては、これらの元素を含む二元あるいは多元の合金とすることができる。その中でも、無電解めっき法で錫を被覆するときに合金化できる元素としては、銀、ビスマス、亜鉛があり、上述した無電解錫めっき液に、これら元素を含む化合物を1種以上添加することによって、容易に錫合金被膜を被覆することができる。   Specifically, elements contained in the tin coating, that is, elements other than tin constituting the tin alloy include silver, bismuth, copper, indium, antimony, and zinc. The tin alloy can be a binary or multi-element alloy containing these elements. Among them, elements that can be alloyed when tin is coated by the electroless plating method include silver, bismuth, and zinc. One or more compounds containing these elements should be added to the above-described electroless tin plating solution. Thus, the tin alloy coating can be easily coated.

具体的に、銀を含む錫合金とする場合、無電解錫めっき液中に添加する銀化合物としては、例えば、酸化銀、硝酸銀、硫酸銀、塩化銀、臭化銀、ヨウ化銀、安息香酸銀、スルファミン酸銀、クエン酸銀、乳酸銀、メルカプトコハク酸銀、リン酸銀、トリフルオロ酢酸銀、ピロリン酸銀、1−ヒドロキシエタン−1,1−ビスホスホン酸銀、ホウフッ化銀、酒石酸銀、グルコン酸銀、シュウ酸銀、メタンスルホン酸銀、p−フェノールスルホン酸銀、安息香酸銀等が挙げられる。   Specifically, when a tin alloy containing silver is used, examples of the silver compound added to the electroless tin plating solution include silver oxide, silver nitrate, silver sulfate, silver chloride, silver bromide, silver iodide, and benzoic acid. Silver, silver sulfamate, silver citrate, silver lactate, silver mercaptosuccinate, silver phosphate, silver trifluoroacetate, silver pyrophosphate, silver 1-hydroxyethane-1,1-bisphosphonate, silver borofluoride, silver tartrate Silver gluconate, silver oxalate, silver methanesulfonate, silver p-phenolsulfonate, silver benzoate and the like.

また、ビスマスを含む錫合金とする場合、無電解錫めっき液中に添加するビスマス化合物としては、例えば、硝酸ビスマス、塩化ビスマス、メタンスルホン酸ビスマス、エタンスルホン酸ビスマス、p−フェノールスルホン酸ビスマス等が挙げられる。   When a bismuth-containing tin alloy is used, examples of the bismuth compound added to the electroless tin plating solution include bismuth nitrate, bismuth chloride, bismuth methanesulfonate, bismuth ethanesulfonate, and bismuth p-phenolsulfonate. Is mentioned.

また、亜鉛を含む錫合金とする場合、無電解錫めっき液中に添加する亜鉛化合物としては、例えば、酸化亜鉛、塩化亜鉛、硫酸亜鉛等が挙げられる。   Moreover, when setting it as the tin alloy containing zinc, as a zinc compound added in an electroless tin plating solution, zinc oxide, zinc chloride, zinc sulfate etc. are mentioned, for example.

これらの錫合金を構成する錫以外の金属元素の含有割合としては、融点や濡れ性の観点から、当該錫コート銅粉に被覆されている錫合金の被膜全体に対して0.1質量%〜50質量%の含有量であることが好ましい。錫合金被膜全体に対して、1質量%〜20質量%の含有量がより好ましく、2質量%〜10質量%の含有量がさらに好ましい。   As a content ratio of metal elements other than tin constituting these tin alloys, from the viewpoint of melting point and wettability, 0.1% by mass to the entire coating film of the tin alloy coated with the tin-coated copper powder. The content is preferably 50% by mass. The content of 1% by mass to 20% by mass is more preferable, and the content of 2% by mass to 10% by mass is more preferable with respect to the entire tin alloy film.

さらに、錫合金被膜を形成する方法は、上述した無電解めっき法による方法に限定されない。例えば、錫を被覆する前の銅粒子中に錫合金を構成する錫以外の元素を含有させておき、錫のみからなる被膜(錫被膜)を形成させた後に、あらかじめ銅粒子に含有させておいた元素をその錫被膜に拡散させることによって、錫合金被膜を形成させることもできる。   Furthermore, the method for forming the tin alloy film is not limited to the above-described electroless plating method. For example, an element other than tin constituting the tin alloy is contained in the copper particles before coating with tin, and after forming a film made only of tin (tin film), the copper particles are previously included in the copper particles. The tin alloy film can also be formed by diffusing the elements contained in the tin film.

(5)ろ過、洗浄・乾燥
以上のようにして、錫コート銅粒子スラリーを生成後、その錫コート銅粒子スラリーをろ過し、錫コート銅粉を分離して洗浄し、乾燥する。
(5) Filtration, washing and drying After producing the tin-coated copper particle slurry as described above, the tin-coated copper particle slurry is filtered, and the tin-coated copper powder is separated, washed and dried.

洗浄方法は、特に限定されるものではないが、例えば錫コート銅粒子を水に投入し、撹拌機又は超音波洗浄器を使用して撹拌した後、吸引ろ過機やフィルタープレス等で濾過して回収する方法を用いることができる。この洗浄方法において、水への投入、撹拌洗浄及び濾過からなる操作を、数回繰り返して行うことが好ましい。また、洗浄水としては、錫コート銅粉に対して有害な不純物元素を含有しない水、特に純水を使用することが好ましい。   The cleaning method is not particularly limited, but for example, tin-coated copper particles are put into water, stirred using a stirrer or ultrasonic cleaner, and then filtered with a suction filter or a filter press. A method of recovery can be used. In this washing method, it is preferable to repeat the operations consisting of charging into water, stirring washing and filtration several times. Further, as cleaning water, it is preferable to use water that does not contain an impurity element harmful to tin-coated copper powder, particularly pure water.

また錫コート銅粉の凝集等を防止するために、洗浄液等に表面処理剤を添加して、洗浄中に錫コート銅粉を表面処理してもよい。例えば、洗浄中にカルボン酸水溶液による処理を追加することができる。表面処理を行った場合は、その後洗浄、ろ過を行い、余剰な表面処理剤を十分に除去するのが好ましい。   Further, in order to prevent aggregation of the tin-coated copper powder, a surface treatment agent may be added to the cleaning liquid or the like to surface-treat the tin-coated copper powder during cleaning. For example, a treatment with an aqueous carboxylic acid solution can be added during cleaning. When surface treatment is performed, it is preferable that washing and filtration are performed thereafter to sufficiently remove excess surface treatment agent.

次に、洗浄後の錫コート銅粉を乾燥させて、水分を蒸発させる。乾燥方法は、特に限定されるものではないが、例えば洗浄後の錫コート銅粒子をステンレスバット上に置き、大気オーブン又は真空乾燥機等の市販の乾燥装置を用いて、40℃〜80℃程度の温度で加熱することにより行うことができる。   Next, the washed tin-coated copper powder is dried to evaporate water. The drying method is not particularly limited. For example, the cleaned tin-coated copper particles are placed on a stainless steel vat, and a commercially available drying apparatus such as an atmospheric oven or a vacuum dryer is used, and the temperature is about 40 ° C to 80 ° C. It can carry out by heating at the temperature of.

(6)導電性ペースト
本発明では、少なくとも上記錫コート銅粉と、樹脂(バインダ樹脂)と溶剤とを混合し、それらを混練することで導電性ペーストを得ることができる。
(6) Conductive paste In the present invention, a conductive paste can be obtained by mixing at least the tin-coated copper powder, a resin (binder resin), and a solvent, and kneading them.

導電性ペーストには、構成成分として本発明に係る錫コート銅粉、樹脂、溶剤のほかに、さらに必要に応じて、硬化後の導電性を改善するために酸化防止剤やカップリング剤等の添加剤を配合することができる。   In addition to the tin-coated copper powder, resin, and solvent according to the present invention as a constituent component, the conductive paste further includes an antioxidant, a coupling agent, etc., if necessary, in order to improve the conductivity after curing. Additives can be blended.

樹脂の種類は、特に限定されないが、エポキシ樹脂、フェノール樹脂、エチルセルロース樹脂等を用いることができる。
また、溶剤としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、ターピネオール等の有機溶剤を用いることができる。また、その有機溶剤の量は、特に限定されないが、スクリーン印刷やディスペンサー等の導電膜形成方法に適した粘度となるように、銅粉の平均粒径を考慮して添加量を調整することができる。
Although the kind of resin is not specifically limited, An epoxy resin, a phenol resin, an ethyl cellulose resin, etc. can be used.
Moreover, as a solvent, organic solvents, such as ethylene glycol, diethylene glycol, triethylene glycol, glycerol, and terpineol, can be used. Further, the amount of the organic solvent is not particularly limited, but the addition amount can be adjusted in consideration of the average particle size of the copper powder so as to have a viscosity suitable for a conductive film forming method such as screen printing or a dispenser. it can.

また、酸化防止剤の種類は、特に限定されないが、例えばヒドロキシカルボン酸等を挙げることができる。より具体的には、クエン酸、リンゴ酸、酒石酸、乳酸等のヒドロキシカルボン酸が好ましく、銅への吸着力が高いクエン酸又はリンゴ酸が特に好ましい。その他にカップリング剤、粘度調整剤、分散剤、難燃剤、沈降防止剤などを使用することができる。   Moreover, the kind of antioxidant is not specifically limited, For example, hydroxycarboxylic acid etc. can be mentioned. More specifically, hydroxycarboxylic acids such as citric acid, malic acid, tartaric acid, and lactic acid are preferable, and citric acid or malic acid having a high adsorptive power to copper is particularly preferable. In addition, a coupling agent, a viscosity modifier, a dispersant, a flame retardant, an anti-settling agent, and the like can be used.

この導電性ペーストは、上述した構成成分を均一に分散させることができる限り、従来技術と同様の方法により製造することができる。たとえば、上述した各構成成分を、3本ロールミルなどにより均一に混練することができる。
なお、上述した添加剤を添加するタイミングも特に制限されることはなく、錫コート銅粉、バインダ樹脂と同時に溶剤に添加して混練してもよく、あるいは、錫コート銅粉とバインダ樹脂を溶剤と混練させた後、自公転ミキサ等などを用いて添加してもよい。
This conductive paste can be manufactured by a method similar to the conventional technique as long as the above-described constituent components can be uniformly dispersed. For example, the above-described constituent components can be uniformly kneaded by a three roll mill or the like.
The timing of adding the above-mentioned additives is not particularly limited, and the tin-coated copper powder and the binder resin may be added to the solvent and kneaded at the same time, or the tin-coated copper powder and the binder resin may be mixed with the solvent. And kneaded, and may be added using a self-revolving mixer or the like.

本発明の錫コート銅粉は、高結晶性で粒径が小さく、タップ密度を高くしうるので、電子材料の配線形成用として好適な導電性ペーストが得られる。この導電性ペーストは、低温焼成による導電膜の形成に適しており、さらには導電膜の細線化にも対応可能である。   Since the tin-coated copper powder of the present invention has high crystallinity, a small particle size, and a high tap density, a conductive paste suitable for forming an electronic material wiring can be obtained. This conductive paste is suitable for forming a conductive film by low-temperature firing, and can also cope with thinning of the conductive film.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES The present invention will be described in further detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.

(平均粒径)
得られた粒子は、走査型電子顕微鏡(SEM、JEOL,JSM−7100F)を用いて観察し、錫コート銅粉300個以上の一次粒子の粒径を測長し、その平均値を平均粒径とした。また同数の錫コート銅粉のうち、八面体のものを数えて比率を算出した。
(Average particle size)
The obtained particles were observed using a scanning electron microscope (SEM, JEOL, JSM-7100F), the particle size of primary particles of 300 or more tin-coated copper powders was measured, and the average value was determined as the average particle size. It was. Moreover, among the same number of tin-coated copper powders, octahedral ones were counted to calculate the ratio.

(タップ密度)
タップ密度は、20mLのメスシリンダーに、錫コート銅粉20gを入れ、振とう比重測定器((株)蔵持化学器械製作所、KRS−409)を用いて、500回タッピングし測定した。銅粉の重量/タッピング後の体積で求められた値を、タップ密度とした。
(Tap density)
The tap density was measured by putting 20 g of tin-coated copper powder in a 20 mL graduated cylinder and tapping 500 times using a shaking specific gravity measuring instrument (Kurachi Chemical Instruments Co., Ltd., KRS-409). A value obtained by weight of copper powder / volume after tapping was defined as a tap density.

(結晶子径)
得られた錫コート銅粉中の銅粒子の結晶子径は、X線回折装置(PANalytical、X‘pert PRO)を用いて測定し、このX線回折結果から、Scherrer法を用いて計算した。
(Crystallite diameter)
The crystallite diameter of the copper particles in the obtained tin-coated copper powder was measured using an X-ray diffractometer (PANallylic, X'pert PRO), and calculated from the X-ray diffraction results using the Scherrer method.

(耐酸化性)
耐酸化性は、乾燥して得られた錫コート銅粉を、打錠プレスにより直径約3mm、厚さ2mmの円筒状ペレットとし、熱重量法(TG;理学製)により、大気中で200℃まで温度を上げて、酸化による重量増量を測定した。1質量%以下が好ましい。
(Oxidation resistance)
Oxidation resistance was obtained by drying the tin-coated copper powder obtained by drying into cylindrical pellets having a diameter of about 3 mm and a thickness of 2 mm by a tableting press, and by thermogravimetry (TG; manufactured by Rigaku) in the atmosphere at 200 ° C. The temperature was raised to 0 and the weight gain due to oxidation was measured. 1 mass% or less is preferable.

(焼結抵抗)
焼結抵抗は、耐酸化性のTG評価後のペレットを、4端子法抵抗測定器(三菱化学アナリティカル製)により抵抗値を測定し、ペレット形状から抵抗率(μΩ・cm)を算出した。
(Sintering resistance)
Sintering resistance measured the resistance value of the pellet after oxidation-resistant TG evaluation with a 4-terminal resistance measuring instrument (manufactured by Mitsubishi Chemical Analytical), and calculated the resistivity (μΩ · cm) from the pellet shape.

(耐候性)
耐候性は、焼成抵抗を測定後のペレットを恒温恒湿下に放置し、一定時間ごとの抵抗率を上記4端子法抵抗測定器により抵抗値を測定して抵抗率を算出し、恒温恒湿測定前を基準として抵抗率の変化率(%)を算出した。具体的には恒温恒湿条件の代表例として温度85℃、湿度85%R.H.で500時間後の抵抗率の変化率を算出し、20%以下であることが求められる。
(Weatherability)
For weather resistance, the pellets after measuring the firing resistance are allowed to stand under constant temperature and humidity, and the resistivity is calculated by measuring the resistance value for each fixed time using the above four-terminal method resistance measuring instrument. The rate of change in resistivity (%) was calculated based on the pre-measurement. Specifically, as a typical example of constant temperature and humidity conditions, a temperature of 85 ° C. and a humidity of 85% R.D. H. Thus, the rate of change in resistivity after 500 hours is calculated, and is required to be 20% or less.

[実施例1]
硫酸銅五水和物(住友金属鉱山(株)製)25.0gを純水150mLに溶解させ、この水溶液へ、25%水酸化ナトリウム水溶液(関東化学(株)製)30mLと、分散剤であるポリビニルアルコール((株)クラレ製、PVA205)0.06gを純水50mLに溶解させた分散剤水溶液を添加した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液5mLを添加して銅塩溶液とした。上記銅塩溶液を撹拌しながら、40℃で保持した。
引き続き、この水溶液へ、ヒドラジン一水和物(和光純薬工業(株)製)0.25mL(ヒドラジンの還元反応が4電子反応とした場合、硫酸銅五水和物中の銅に対して0.1当量)を純水10mLへ溶解させた強還元剤溶液を投入し、40℃で30分間撹拌しながら保持した。
次に、アスコルビン酸(和光純薬工業(株)製)44g(硫酸銅五水和物中の銅に対して5当量)を純水100mLに溶解させた弱還元剤溶液を投入し、40℃で3時間撹拌しながら保持した。得られた銅粉は一旦濾別し、水洗と凝集防止のためのステアリン酸エマルション添加による表面処理後に再度濾別し、30℃の真空オーブンで6時間乾燥させた。
次に、上述した方法で作製した銅粒子を用いて、無電解錫めっきによりその銅粒子表面に錫の被覆を行い、錫コート銅粉を作製した。具体的には、この銅粒子100gを用いて、無電解めっき法によりその表面に錫被膜を形成させた。無電解錫めっき液として、ホウフッ化第一錫20g/L、ホウフッ酸200g/L、チオ尿素50g/L、水素化ホウ素ナトリウム40g/L、ホウ酸ナトリウム10g/Lを各濃度で添加しためっき液を用意した。この無電解錫めっき液に、上述した方法で作製した銅粒子100gを入れ、25℃で10分間撹拌した後、浴温を60℃まで加熱して60分間撹拌した。反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させた。
こうして得られた錫コート銅粉の形状を、上述したSEMを用いた方法で観察した。錫コート銅粉は、結晶性の高い八面体粒子63%と粒状粒子37%とが混在していた。平均粒径を測定すると、0.95μmであった。また、この錫コート銅粉のタップ密度は、3.8g/cmであった。銅粒子の結晶子径は、0.15μmであり、銅粒子の結晶子径/錫コート銅粉の平均粒径は、0.16であった。銅粒子の結晶子径/錫コート銅粉の平均粒径が0.1以上であるため、十分に高結晶性であり、異なる形状と粒径の粒子が混在しているため、高いタップ密度の錫コート銅粉が得られた。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して錫の被覆量は11.6質量%であり、さらに、200℃酸化増量(TG測定)は0.7質量%と小さく、抵抗率は200μΩ・cmと低抵抗となった。耐候性は12.7%と良好であった。以上の結果を表1にまとめて示した。
[Example 1]
25.0 g of copper sulfate pentahydrate (manufactured by Sumitomo Metal Mining Co., Ltd.) is dissolved in 150 mL of pure water, and 30 mL of 25% sodium hydroxide aqueous solution (manufactured by Kanto Chemical Co., Ltd.) and a dispersant are added to this aqueous solution. A dispersant aqueous solution in which 0.06 g of a certain polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA205) was dissolved in 50 mL of pure water was added. Further, an antifoaming agent (manufactured by Adeka Co., Ltd., Adecanol LG-126) was diluted 100 times by volume, and 5 mL of this antifoaming agent dilution was added to obtain a copper salt solution. The copper salt solution was kept at 40 ° C. with stirring.
Subsequently, 0.25 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (when the reduction reaction of hydrazine is a 4-electron reaction) was added to this aqueous solution with respect to copper in copper sulfate pentahydrate. 0.1 equivalent) was added to a strong reducing agent solution dissolved in 10 mL of pure water and held at 40 ° C. for 30 minutes with stirring.
Next, a weak reducing agent solution in which 44 g of ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) (5 equivalents with respect to copper in copper sulfate pentahydrate) was dissolved in 100 mL of pure water was added, and 40 ° C. For 3 hours with stirring. The obtained copper powder was once filtered, filtered again after surface treatment by washing with water and addition of a stearic acid emulsion for preventing aggregation, and dried in a vacuum oven at 30 ° C. for 6 hours.
Next, using the copper particles produced by the method described above, the surface of the copper particles was coated with tin by electroless tin plating to produce a tin-coated copper powder. Specifically, a tin film was formed on the surface of the copper particles using 100 g by an electroless plating method. As an electroless tin plating solution, a plating solution in which stannous borofluoride 20 g / L, borofluoric acid 200 g / L, thiourea 50 g / L, sodium borohydride 40 g / L, and sodium borate 10 g / L are added at various concentrations. Prepared. In this electroless tin plating solution, 100 g of the copper particles produced by the above-described method was added and stirred at 25 ° C. for 10 minutes, and then the bath temperature was heated to 60 ° C. and stirred for 60 minutes. After the reaction was completed, the powder was filtered, washed with water and dried through ethanol.
The shape of the tin-coated copper powder thus obtained was observed by the method using the SEM described above. In the tin-coated copper powder, 63% of highly crystalline octahedral particles and 37% of granular particles were mixed. The average particle size was measured to be 0.95 μm. Moreover, the tap density of this tin coat copper powder was 3.8 g / cm 3 . The crystallite diameter of the copper particles was 0.15 μm, and the average particle diameter of the crystallite diameter of the copper particles / tin-coated copper powder was 0.16. Since the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder is 0.1 or more, it is sufficiently high in crystallinity, and particles of different shapes and particle diameters are mixed, so that the high tap density Tin-coated copper powder was obtained.
Moreover, when the coating amount of tin was measured, the coating amount of tin was 11.6% by mass relative to the entire tin-coated copper powder, and the 200 ° C. oxidation increase (TG measurement) was as small as 0.7% by mass. The resistivity was as low as 200 μΩ · cm. The weather resistance was as good as 12.7%. The above results are summarized in Table 1.

[実施例2]
上記実施例1において、強還元剤であるヒドラジン一水和物の添加量を0.74mL(ヒドラジンの還元反応が4電子反応とした場合、硫酸銅五水和物中の銅に対して0.3当量)としたこと以外は、実施例1と同様にして錫コート銅粉を作製した。
この錫コート銅粉には、結晶性の高い八面体粒子51%と粒状粒子49%とが混在していた。平均粒径を測定すると、0.46μmであった。また、この錫コート銅粉のタップ密度は、3.4g/cmであった。銅粒子の結晶子径は、0.13μmであり、銅粒子の結晶子径/錫コート銅粉の平均粒径は、0.28であった。銅粒子の結晶子径/錫コート銅粉の平均粒径が0.1以上であるため、高結晶性であり、異なる形状と粒径の粒子が混在しているため、高いタップ密度の錫コート銅粉が得られた。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して15.0質量%であり、200℃酸化増量(TG測定)は0.7質量%と小さく、抵抗率は220μΩ・cmと低抵抗となった。耐候性は14.2%と良好であった。
[Example 2]
In Example 1 above, the amount of addition of hydrazine monohydrate, which is a strong reducing agent, was 0.74 mL (when the reduction reaction of hydrazine was a four-electron reaction, the amount was 0. 0 with respect to copper in copper sulfate pentahydrate. A tin-coated copper powder was produced in the same manner as in Example 1 except that the amount was 3 equivalents).
In this tin-coated copper powder, 51% of highly crystalline octahedral particles and 49% of granular particles were mixed. The average particle size was measured to be 0.46 μm. Moreover, the tap density of the tin-coated copper powder was 3.4 g / cm 3 . The crystallite diameter of the copper particles was 0.13 μm, and the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder was 0.28. Copper particle crystallite diameter / tin coat Since the average particle diameter of the copper powder is 0.1 or more, it has high crystallinity, and particles of different shapes and particle diameters are mixed, so a high tap density tin coat. Copper powder was obtained.
Moreover, when the coating amount of tin was measured, it was 15.0% by mass with respect to the entire tin-coated copper powder, the 200 ° C. oxidation increase (TG measurement) was as small as 0.7% by mass, and the resistivity was 220 μΩ · cm. Low resistance. The weather resistance was as good as 14.2%.

[実施例3]
上記実施例1において、強還元剤であるヒドラジン一水和物に替えてホルマリン(60体積%液)の添加量を4.9mL(ホルマリンの還元反応が1電子反応とした場合、硫酸銅五水和物中の銅に対して0.5当量)としたこと以外は、実施例1と同様にして錫コート銅粉を作製した。
この錫コート銅粉には、結晶性の高い八面体粒子68%と粒状粒子32%とが混在していた。平均粒径を測定すると、0.24μmであった。また、この錫コート銅粉のタップ密度は、3.1g/cmであった。銅粒子の結晶子径は、0.11μmであり、銅粒子の結晶子径/錫コート銅粉の平均粒径は、0.46であった。銅粒子の結晶子径/錫コート銅粉の平均粒径が0.1以上であるため、高結晶性であり、異なる形状と粒径の粒子が混在しているため、高いタップ密度の錫コート銅粉が得られた。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して18.1質量%であり、200℃酸化増量(TG測定)は0.9質量%と小さく、抵抗率は369μΩ・cmと低抵抗となった。耐候性は14.0%と良好であった。
[Example 3]
In Example 1 above, instead of hydrazine monohydrate, which is a strong reducing agent, the amount of formalin (60% by volume liquid) added was 4.9 mL (when the reduction reaction of formalin was a one-electron reaction, copper sulfate pentahydrate) A tin-coated copper powder was produced in the same manner as in Example 1 except that the amount was 0.5 equivalent to the copper in the Japanese product.
In this tin-coated copper powder, 68% of highly crystalline octahedral particles and 32% of granular particles were mixed. The average particle size was measured to be 0.24 μm. Moreover, the tap density of this tin-coated copper powder was 3.1 g / cm 3 . The crystallite diameter of the copper particles was 0.11 μm, and the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder was 0.46. Copper particle crystallite diameter / tin coat Since the average particle diameter of the copper powder is 0.1 or more, it has high crystallinity, and particles of different shapes and particle diameters are mixed, so a high tap density tin coat. Copper powder was obtained.
Moreover, when the coating amount of tin was measured, it was 18.1% by mass with respect to the entire tin-coated copper powder, the 200 ° C. oxidation increase (TG measurement) was as small as 0.9% by mass, and the resistivity was 369 μΩ · cm. Low resistance. The weather resistance was as good as 14.0%.

[実施例4]
実施例1において、ホウフッ化第一錫を45g/Lとした以外は同様の条件にして錫コート銅粉を作製した。
この錫コート銅粉は、結晶性の高い八面体粒子と粒状粒子との混在比率、平均粒径、タップ密度、銅粒子の結晶子径は、実施例1と変わりなかった。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して28.6質量%であり、200℃酸化増量(TG測定)は0.5質量%と小さく、抵抗率は378μΩ・cmと低抵抗となった。耐候性は9.4%と良好であった。
[Example 4]
In Example 1, a tin-coated copper powder was produced under the same conditions except that stannous borofluoride was changed to 45 g / L.
In this tin-coated copper powder, the mixing ratio of octahedral particles and granular particles having high crystallinity, the average particle diameter, the tap density, and the crystallite diameter of the copper particles were the same as in Example 1.
Moreover, when the coating amount of tin was measured, it was 28.6% by mass with respect to the entire tin-coated copper powder, the 200 ° C. oxidation increase (TG measurement) was as small as 0.5% by mass, and the resistivity was 378 μΩ · cm. Low resistance. The weather resistance was as good as 9.4%.

[実施例5]
実施例1において、無電解錫めっき液として、塩化第一錫10g/L、クエン酸ナトリウム40g/L、エチレンジアミン四酢酸20g/L、塩化チタン50g/Lを各濃度で添加しためっき液を用意した。この無電解錫めっき液に、上述した方法で作製した銅粉100gを入れ、25℃で10分間撹拌した後、浴温を65℃まで加熱して60分間撹拌した。反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させた。
この錫コート銅粉は、結晶性の高い八面体粒子と粒状粒子との混在比率、平均粒径、タップ密度、銅粒子の結晶子径は、実施例1と変わりなかった。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して15.5質量%であり、200℃酸化増量(TG測定)は0.6質量%と小さく、抵抗率は280μΩ・cmと低抵抗となった。耐候性は13.8%と良好であった。
[Example 5]
In Example 1, as an electroless tin plating solution, a plating solution in which stannous chloride 10 g / L, sodium citrate 40 g / L, ethylenediaminetetraacetic acid 20 g / L, and titanium chloride 50 g / L were added at respective concentrations was prepared. . To this electroless tin plating solution, 100 g of the copper powder prepared by the above-described method was added and stirred at 25 ° C. for 10 minutes, and then the bath temperature was heated to 65 ° C. and stirred for 60 minutes. After the reaction was completed, the powder was filtered, washed with water and dried through ethanol.
In this tin-coated copper powder, the mixing ratio of octahedral particles and granular particles having high crystallinity, the average particle diameter, the tap density, and the crystallite diameter of the copper particles were the same as in Example 1.
Moreover, when the coating amount of tin was measured, it was 15.5% by mass with respect to the entire tin-coated copper powder, the 200 ° C. oxidation increase (TG measurement) was as small as 0.6% by mass, and the resistivity was 280 μΩ · cm. Low resistance. The weather resistance was as good as 13.8%.

[実施例6]
実施例1において、無電解錫めっき液として、塩化第一錫10g/L、水酸化ナトリウム100g/L、クエン酸ナトリウム40g/Lを各濃度で添加しためっき液を用意した。この無電解錫めっき液に、上述した方法で作製した銅粉100gを入れ、25℃で10分間撹拌した後、浴温を80℃まで加熱して60分間撹拌した。反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させた。
この錫コート銅粉は、結晶性の高い八面体粒子と粒状粒子との混在比率、平均粒径、タップ密度、銅粒子の結晶子径は、実施例1と変わりなかった。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して6.6質量%であり、200℃酸化増量(TG測定)は0.8質量%と小さく、抵抗率は415μΩ・cmと低抵抗となった。耐候性は15.8%と良好であった。
[Example 6]
In Example 1, as an electroless tin plating solution, a plating solution to which 10 g / L of stannous chloride, 100 g / L of sodium hydroxide, and 40 g / L of sodium citrate were added at respective concentrations was prepared. To this electroless tin plating solution, 100 g of the copper powder prepared by the above-described method was added and stirred at 25 ° C. for 10 minutes, and then the bath temperature was heated to 80 ° C. and stirred for 60 minutes. After the reaction was completed, the powder was filtered, washed with water and dried through ethanol.
In this tin-coated copper powder, the mixing ratio of octahedral particles and granular particles having high crystallinity, the average particle diameter, the tap density, and the crystallite diameter of the copper particles were the same as in Example 1.
Moreover, when the coating amount of tin was measured, it was 6.6% by mass with respect to the entire tin-coated copper powder, the 200 ° C. oxidation increase (TG measurement) was as small as 0.8% by mass, and the resistivity was 415 μΩ · cm. Low resistance. The weather resistance was as good as 15.8%.

[実施例7]
実施例1において、合金用無電解錫めっき液として、メタンスルホン酸第一錫50g/L、クエン酸銀20g/L、チオ尿素100g/L、次亜リン酸ナトリウム30g/Lを各濃度で添加しためっき液を用意した。この無電解錫めっき液に、上述した方法で作製した状銅粉100gを入れ、25℃で10分間撹拌した後、浴温を70℃まで加熱して60分間撹拌した。反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させた。
この錫コート銅粉は、結晶性の高い八面体粒子と粒状粒子との混在比率、平均粒径、タップ密度、銅粒子の結晶子径は、実施例1と変わりなかった。
錫合金の被覆量を測定したところ、錫コート銅粉全体に対して8.4質量%であり、錫合金に含まれる銀の含有量は、錫合金に対して5.0質量%であった。
また、200℃酸化増量(TG測定)は0.6質量%と小さく、抵抗率は150μΩ・cmと低抵抗となった。耐候性は9.1%と良好であった。
[Example 7]
In Example 1, 50 g / L of stannous methanesulfonate, 20 g / L of silver citrate, 100 g / L of thiourea, and 30 g / L of sodium hypophosphite at various concentrations were added as electroless tin plating solutions for alloys. A prepared plating solution was prepared. To this electroless tin plating solution, 100 g of the copper powder produced by the above-described method was added and stirred at 25 ° C. for 10 minutes, and then the bath temperature was heated to 70 ° C. and stirred for 60 minutes. After the reaction was completed, the powder was filtered, washed with water and dried through ethanol.
In this tin-coated copper powder, the mixing ratio of octahedral particles and granular particles having high crystallinity, the average particle diameter, the tap density, and the crystallite diameter of the copper particles were the same as in Example 1.
When the coating amount of the tin alloy was measured, it was 8.4% by mass with respect to the entire tin-coated copper powder, and the content of silver contained in the tin alloy was 5.0% by mass with respect to the tin alloy. .
The 200 ° C. oxidation increase (TG measurement) was as small as 0.6 mass%, and the resistivity was as low as 150 μΩ · cm. The weather resistance was as good as 9.1%.

[実施例8]
実施例1において、合金用無電解錫めっき液として、メタンスルホン酸第一錫40g/L、メタンスルホン酸ビスマス40g/L、チオ尿素100g/L、エチレンジアミン四酢酸20g/L、次亜リン酸ナトリウム80g/Lを各濃度で添加しためっき液を用意した。この無電解錫めっき液に、上述した方法で作製した銅粉100gを入れ、25℃で10分間撹拌した後、浴温を70℃まで加熱して60分間撹拌した。反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させた。
この錫コート銅粉は、結晶性の高い八面体粒子と粒状粒子との混在比率、平均粒径、タップ密度、銅粒子の結晶子径は、実施例1と変わりなかった。
錫の被覆量を測定したところ、錫コート銅粉全体に対して8.0質量%であり、錫合金に含まれるビスマスの含有量は、錫合金に対して10.1質量%であった。
また、200℃酸化増量(TG測定)は0.7質量%と小さく、抵抗率は305μΩ・cmと低抵抗となった。耐候性は16.1%と良好であった。
[Example 8]
In Example 1, as an electroless tin plating solution for an alloy, stannous methanesulfonate 40 g / L, bismuth methanesulfonate 40 g / L, thiourea 100 g / L, ethylenediaminetetraacetic acid 20 g / L, sodium hypophosphite A plating solution to which 80 g / L was added at each concentration was prepared. To this electroless tin plating solution, 100 g of the copper powder prepared by the above-described method was added and stirred at 25 ° C. for 10 minutes, and then the bath temperature was heated to 70 ° C. and stirred for 60 minutes. After the reaction was completed, the powder was filtered, washed with water and dried through ethanol.
In this tin-coated copper powder, the mixing ratio of octahedral particles and granular particles having high crystallinity, the average particle diameter, the tap density, and the crystallite diameter of the copper particles were the same as in Example 1.
When the coating amount of tin was measured, it was 8.0% by mass with respect to the entire tin-coated copper powder, and the content of bismuth contained in the tin alloy was 10.1% by mass with respect to the tin alloy.
The 200 ° C. oxidation increase (TG measurement) was as small as 0.7% by mass, and the resistivity was as low as 305 μΩ · cm. The weather resistance was as good as 16.1%.

[実施例9]
実施例1において、合金用無電解錫めっき液として、塩化第一錫10g/L、硫酸亜鉛5g/L、チオ尿素100g/L、クエン酸ナトリウム40g/L、次亜リン酸ナトリウム70g/Lを各濃度で添加しためっき液を用意した。この無電解錫めっき液に、上述した方法で作製した銅粉100gを入れ、25℃で10分間撹拌した後、浴温を70℃まで加熱して60分間撹拌した。反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させた。
この錫コート銅粉は、結晶性の高い八面体粒子と粒状粒子との混在比率、平均粒径、タップ密度、銅粒子の結晶子径は、実施例1と変わりなかった。
錫の被覆量を測定したところ、錫コート銅粉全体に対して7.9質量%であり、錫合金に含まれる亜鉛の含有量は、錫合金に対して10.2質量%であった。
また、200℃酸化増量(TG測定)は0.7質量%と小さく、抵抗率は268μΩ・cmと低抵抗となった。耐候性は14.7%と良好であった。
[Example 9]
In Example 1, as an electroless tin plating solution for an alloy, stannous chloride 10 g / L, zinc sulfate 5 g / L, thiourea 100 g / L, sodium citrate 40 g / L, sodium hypophosphite 70 g / L. A plating solution added at each concentration was prepared. To this electroless tin plating solution, 100 g of the copper powder prepared by the above-described method was added and stirred at 25 ° C. for 10 minutes, and then the bath temperature was heated to 70 ° C. and stirred for 60 minutes. After the reaction was completed, the powder was filtered, washed with water and dried through ethanol.
In this tin-coated copper powder, the mixing ratio of octahedral particles and granular particles having high crystallinity, the average particle diameter, the tap density, and the crystallite diameter of the copper particles were the same as in Example 1.
When the coating amount of tin was measured, it was 7.9% by mass with respect to the entire tin-coated copper powder, and the content of zinc contained in the tin alloy was 10.2% by mass with respect to the tin alloy.
The 200 ° C. oxidation increase (TG measurement) was as small as 0.7% by mass, and the resistivity was as low as 268 μΩ · cm. The weather resistance was as good as 14.7%.

[実施例10]
実施例1において、合金用無電解錫めっき液としては、メタンスルホン酸第一錫50g/L、メタンスルホン酸ビスマス5g/L、クエン酸銀20g/L、チオ尿素100g/L、次亜リン酸ナトリウム30g/Lを各濃度で添加しためっき液を用意した。この無電解錫めっき液に、上述した方法で作製した銅粉100gを入れ、25℃で10分間撹拌した後、浴温を70℃まで加熱して60分間撹拌した。反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させた。
この錫コート銅粉は、結晶性の高い八面体粒子と粒状粒子との混在比率、平均粒径、タップ密度、銅粒子の結晶子径は、実施例1と変わりなかった。
錫の被覆量を測定したところ、錫コート銅粉全体に対して13.4質量%であり、錫合金に含まれる銀とビスマスの含有量は、錫合金に対してそれぞれ4.3質量%と6.0質量%であった。
また、200℃酸化増量(TG測定)は0.5質量%と小さく、抵抗率は170μΩ・cmと低抵抗となった。耐候性は8.6%と良好であった。
[Example 10]
In Example 1, as an electroless tin plating solution for an alloy, 50 g / L of stannous methanesulfonate, 5 g / L of bismuth methanesulfonate, 20 g / L of silver citrate, 100 g / L of thiourea, hypophosphorous acid A plating solution to which 30 g / L of sodium was added at each concentration was prepared. To this electroless tin plating solution, 100 g of the copper powder prepared by the above-described method was added and stirred at 25 ° C. for 10 minutes, and then the bath temperature was heated to 70 ° C. and stirred for 60 minutes. After the reaction was completed, the powder was filtered, washed with water and dried through ethanol.
In this tin-coated copper powder, the mixing ratio of octahedral particles and granular particles having high crystallinity, the average particle diameter, the tap density, and the crystallite diameter of the copper particles were the same as in Example 1.
As a result of measuring the coating amount of tin, it was 13.4% by mass with respect to the entire tin-coated copper powder, and the content of silver and bismuth contained in the tin alloy was 4.3% by mass with respect to the tin alloy, respectively. It was 6.0 mass%.
The 200 ° C. oxidation increase (TG measurement) was as small as 0.5% by mass, and the resistivity was as low as 170 μΩ · cm. The weather resistance was as good as 8.6%.

[比較例1]
上記実施例1において、強還元剤であるヒドラジン一水和物の添加量を0.12mL(ヒドラジンの還元反応が4電子反応とした場合、硫酸銅五水和物中の銅に対して0.05当量)としたこと以外は、実施例1と同様にして錫コート銅粉を作製した。
この錫コート銅粉は、粒状粒子のみであった。平均粒径を測定すると、1.91μmであり、タップ密度は、2.5g/cmであった。銅粒子の銅粉の結晶子径は、0.12μmであり、銅粒子の結晶子径/錫コート銅粉の平均粒径は、0.06であった。銅粒子の結晶子径/錫コート銅粉の平均粒径が0.1未満であるため、高結晶性ではなく、また単一形状および粒径の粒子のみであるため、タップ密度が低くなった。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して錫の被覆量は8.5質量%であったが、200℃酸化増量(TG測定)は1.1質量%と酸化認められ、抵抗率は510μΩ・cm、耐候性は33.6%と共に悪化した。
[Comparative Example 1]
In Example 1 above, the addition amount of hydrazine monohydrate, which is a strong reducing agent, was 0.12 mL (when the reduction reaction of hydrazine was a four-electron reaction, the amount was 0. A tin-coated copper powder was produced in the same manner as in Example 1 except that the amount was changed to 05 equivalent).
This tin-coated copper powder was only granular particles. When the average particle size was measured, it was 1.91 μm, and the tap density was 2.5 g / cm 3 . The crystallite diameter of the copper powder of the copper particles was 0.12 μm, and the average particle diameter of the crystallite diameter of the copper particles / tin-coated copper powder was 0.06. Since the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder is less than 0.1, the tap density is low because it is not highly crystalline and is only a single shape and particle diameter. .
Further, when the tin coating amount was measured, the tin coating amount was 8.5% by mass with respect to the entire tin-coated copper powder, but the 200 ° C. oxidation increase (TG measurement) was 1.1% by mass. The resistivity deteriorated with 510 μΩ · cm, and the weather resistance with 33.6%.

[比較例2]
上記実施例1において、強還元剤であるヒドラジン一水和物の添加量を2.5mL(ヒドラジンの還元反応が4電子反応とした場合、硫酸銅五水和物中の銅に対して1.0当量)としたこと以外は、実施例1と同様にして錫コート銅粉を作製した。
この錫コート銅粉は、粒状粒子のみであった。平均粒径を測定すると、0.13μmであった。また、この錫コート銅粉のタップ密度は、0.6g/cmであった。銅粒子の結晶子径は、0.03μmであり、銅粒子の結晶子径/錫コート銅粉の平均粒径は、0.23であった。銅粒子の結晶子径/錫コート銅粉の平均粒径が0.1以上であるため高結晶性であるが、平均粒径が小さく単一形状の粒子のみであるためタップ密度が低く、導電性ペースト用銅粉としては好ましくない。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して錫の被覆量は8.1質量%であったが、200℃酸化増量(TG測定)は4.5質量%と酸化認められ、抵抗率は800μΩ・cm、耐候性は38.9%と共に悪化した。
[Comparative Example 2]
In Example 1 above, the addition amount of hydrazine monohydrate, which is a strong reducing agent, was 2.5 mL (when the reduction reaction of hydrazine was a 4-electron reaction, 1. A tin-coated copper powder was produced in the same manner as in Example 1 except that the amount was 0 equivalent).
This tin-coated copper powder was only granular particles. The average particle size was measured and found to be 0.13 μm. Moreover, the tap density of this tin-coated copper powder was 0.6 g / cm 3 . The crystallite diameter of the copper particles was 0.03 μm, and the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder was 0.23. The crystallite size of the copper particles / the average particle size of the tin-coated copper powder is 0.1 or more, so that the crystallinity is high. It is not preferable as a copper powder for adhesive paste.
Moreover, when the tin coating amount was measured, the tin coating amount was 8.1% by mass with respect to the entire tin-coated copper powder, but the 200 ° C. oxidation increase (TG measurement) was 4.5% by mass. The resistivity deteriorated with 800 μΩ · cm and the weather resistance with 38.9%.

[比較例3]
上記実施例1において、強還元剤であるヒドラジン一水和物を使用しなかったこと以外は、実施例1と同様にして錫コート銅粉を作製した。
この錫コート銅粉は、粒状粒子のみであった。平均粒径を測定すると、1.68μmであり、この銀コート銅粉のタップ密度は、2.5g/cmであった。銅粒子の結晶子径は、0.08μmであり、銅粒子の結晶子径/須所コート銅粉の平均粒径は、0.05である。銅粒子の結晶子径/錫コート銅粉の平均粒径が0.1未満であるため、高結晶性ではなく、また単一形状で比較的粒径の揃った粒子のみであるため、タップ密度が低くなった。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して錫の被覆量は7.6質量%であったが、200℃酸化増量(TG測定)は1.6質量%と酸化認められ、抵抗率は630μΩ・cm、耐候性は15.8%と共に悪化した。
[Comparative Example 3]
In Example 1 above, tin-coated copper powder was prepared in the same manner as in Example 1 except that hydrazine monohydrate, which is a strong reducing agent, was not used.
This tin-coated copper powder was only granular particles. When the average particle diameter was measured, it was 1.68 μm, and the tap density of this silver-coated copper powder was 2.5 g / cm 3 . The crystallite diameter of the copper particles is 0.08 μm, and the crystallite diameter of the copper particles / the average particle diameter of the Suko coat copper powder is 0.05. Since the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder is less than 0.1, the tap density is not high crystallinity and only particles having a single shape and a relatively uniform particle diameter. Became lower.
Further, when the tin coating amount was measured, the tin coating amount was 7.6% by mass with respect to the entire tin-coated copper powder, but the oxidation increase at 200 ° C. (TG measurement) was 1.6% by mass. The resistivity deteriorated with 630 μΩ · cm and the weather resistance with 15.8%.

[比較例4]
実施例1において、ホウフッ化第一錫を4g/Lとした以外は同様の条件にして錫コート銅粉を作製した。
この錫コート銅粉は、結晶性の高い八面体粒子と粒状粒子との混在比率、平均粒径、タップ密度、銅粒子の結晶子径は、実施例1と変わりなかった。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して錫の被覆量は0.9質量%と低下し、200℃酸化増量(TG測定)は2.6質量%と酸化認められ、抵抗率は1000μΩ・cm以上、耐候性は22.7%と共に悪化した。
[Comparative Example 4]
In Example 1, tin-coated copper powder was prepared under the same conditions except that stannous borofluoride was changed to 4 g / L.
In this tin-coated copper powder, the mixing ratio of octahedral particles and granular particles having high crystallinity, the average particle diameter, the tap density, and the crystallite diameter of the copper particles were the same as in Example 1.
When the tin coating amount was measured, the tin coating amount was reduced to 0.9% by mass with respect to the entire tin-coated copper powder, and the 200 ° C. oxidation increase (TG measurement) was found to be 2.6% by mass. The resistivity deteriorated with 1000 μΩ · cm or more, and the weather resistance deteriorated with 22.7%.

[比較例5]
上記実施例1において、ホウフッ化第一錫を100g/Lとした以外は同様の条件にして錫コート銅粉を作製した。
この錫コート銅粉は、結晶性の高い八面体粒子と粒状粒子との混在比率、平均粒径、タップ密度、銅粒子の結晶子径は、実施例1と変わりなかった。
また錫の被覆量を測定したところ、錫コート銅粉全体に対して錫の被覆量は40.4質量%と低下し、200℃酸化増量(TG測定)は2.2質量%と酸化認められ、抵抗率は1000μΩ・cm以上、耐候性は10.7%と共に悪化した。
[Comparative Example 5]
A tin-coated copper powder was produced under the same conditions as in Example 1 except that stannous borofluoride was changed to 100 g / L.
In this tin-coated copper powder, the mixing ratio of octahedral particles and granular particles having high crystallinity, the average particle diameter, the tap density, and the crystallite diameter of the copper particles were the same as in Example 1.
Moreover, when the tin coating amount was measured, the tin coating amount was reduced to 40.4% by mass with respect to the entire tin-coated copper powder, and the 200 ° C. oxidation increase (TG measurement) was found to be 2.2% by mass. The resistivity was 1000 μΩ · cm or more, and the weather resistance was deteriorated with 10.7%.

Figure 2018131666
Figure 2018131666

「評価」
以上の実施例1〜10および比較例1〜5の結果をまとめた表1から、次のことがいえる。実施例1〜10では、湿式法で得られた銅粉は八面体粒子と八面体粒子以外の粒状粒子が混在しており、平均粒径が0.1μm〜3.0μm、銅粒子の結晶子径/錫コート銅粉の平均粒径が0.10以上で、タップ密度が3.0g/cm〜5.0g/cmであり、錫または錫合金の被覆量は、錫コート銅粉全体の1質量%〜33質量%なので、高結晶性であった。また、銅粉の表面に錫または錫合金が被覆されていることで、200℃酸化増量(TG測定)は0.5〜0.9質量%と小さく、抵抗率は150〜415μΩ・cmと低抵抗となり、抵抗変化率(耐候性)は16.1%以下と良好であった。このように高結晶性で粒径が小さく、タップ密度が高い錫コート銅粉を用いれば、電子材料の配線形成用として好適な導電性ペーストが得られる。この導電性ペーストは、低温焼成による導電膜の形成に適しており、さらには導電膜の細線化にも対応可能である。
"Evaluation"
From Table 1 that summarizes the results of Examples 1 to 10 and Comparative Examples 1 to 5, the following can be said. In Examples 1 to 10, the copper powder obtained by the wet method is mixed with octahedral particles and granular particles other than octahedral particles, the average particle size is 0.1 μm to 3.0 μm, and the crystallites of the copper particles The average particle diameter of the diameter / tin-coated copper powder is 0.10 or more, the tap density is 3.0 g / cm 3 to 5.0 g / cm 3 , and the coating amount of tin or tin alloy is the entire tin-coated copper powder Therefore, it was highly crystalline. Further, the surface of the copper powder is coated with tin or a tin alloy, so that the 200 ° C. oxidation increase (TG measurement) is as small as 0.5 to 0.9 mass%, and the resistivity is as low as 150 to 415 μΩ · cm. Resistance was obtained, and the rate of change in resistance (weather resistance) was as good as 16.1% or less. Thus, if a tin coat copper powder with high crystallinity, a small particle size, and a high tap density is used, a conductive paste suitable for forming a wiring of an electronic material can be obtained. This conductive paste is suitable for forming a conductive film by low-temperature firing, and can also cope with thinning of the conductive film.

これに対して、比較例1〜3は湿式法ではあるが、条件が本発明の条件を満たさなかったため、得られる銅粉は八面体粒子を含まず、タップ密度が小さくなった。また比較例4、5では得られた錫コート銅粉が、所望の錫被覆量ではなかったため、200℃酸化増量(TG測定)は2.2質量%以上、抵抗率は1000μΩ・cm以上と大きくなった。このような錫コート銅粉は、配線形成用導電性ペーストへの原料フィラーとして使用しにくい。   On the other hand, although Comparative Examples 1-3 were wet processes, since the conditions did not satisfy the conditions of the present invention, the obtained copper powder did not contain octahedral particles, and the tap density was small. In Comparative Examples 4 and 5, the obtained tin-coated copper powder did not have the desired tin coating amount, so the 200 ° C. oxidation increase (TG measurement) was 2.2% by mass or more, and the resistivity was as large as 1000 μΩ · cm or more. became. Such tin-coated copper powder is difficult to use as a raw material filler for conductive paste for wiring formation.

本発明の錫コート銅粉は、導電性ペーストのような電子部品の配線形成材料として、プリント配線、半導体の内部配線、プリント配線板と電子部品との接続等に利用できる。近年、特に太陽電池用電極等の分野で、低温焼成化と配線の細線化に対する需要が高まってきているが、低温焼成でも低抵抗となり、細線化に対応できる導電性ペーストとして有用である。   The tin-coated copper powder of the present invention can be used as a wiring forming material for an electronic component such as a conductive paste, for printed wiring, semiconductor internal wiring, connection between a printed wiring board and an electronic component, and the like. In recent years, especially in the field of solar cell electrodes and the like, demand for low-temperature firing and thinning of wiring has been increased. However, low-temperature firing has low resistance and is useful as a conductive paste that can cope with thinning.

Claims (18)

八面体粒子と八面体以外の粒状粒子とが混在した銅粒子表面に、錫または錫合金が被覆された錫コート銅粉であって、
平均粒径が0.1μm〜3.0μm、銅粒子の結晶子径/錫コート銅粉の平均粒径が0.10以上で、タップ密度が3.0g/cm〜5.0g/cmであり、
錫または錫合金の被覆量は、錫コート銅粉全体の1質量%〜33質量%であることを特徴とする錫コート銅粉。
The copper particle surface in which octahedral particles and granular particles other than octahedral particles are mixed, tin-coated copper powder coated with tin or a tin alloy,
The average particle diameter is 0.1 μm to 3.0 μm, the crystallite diameter of the copper particles / the average particle diameter of the tin-coated copper powder is 0.10 or more, and the tap density is 3.0 g / cm 3 to 5.0 g / cm 3. And
The tin-coated copper powder is characterized in that the coating amount of tin or tin alloy is 1% by mass to 33% by mass of the entire tin-coated copper powder.
前記錫合金は、銀、ビスマス及び亜鉛から選ばれる1種以上の元素を含有することを特徴とする請求項1に記載の錫コート銅粉。   The tin-coated copper powder according to claim 1, wherein the tin alloy contains one or more elements selected from silver, bismuth, and zinc. 前記錫合金の元素含有量は、錫合金に対して0.1質量%〜50質量%であることを特徴とする請求項2に記載の錫コート銅粉。   The tin-coated copper powder according to claim 2, wherein an element content of the tin alloy is 0.1 mass% to 50 mass% with respect to the tin alloy. 銅化合物水溶液とアルカリ金属の水酸化物水溶液と分散剤水溶液とを混合した銅塩溶液に、酸化還元電位が異なる強還元剤、弱還元剤の2種類の還元剤を添加して反応液とし、該反応液中で銅粒子を生成させた後、錫めっきを行う錫コート銅粉の製造方法であって、
銅粒子を生成させる工程において、まず、前記銅塩溶液へ前記銅化合物中の銅量に対して0.07当量以上0.5当量以下の強還元剤を添加し、反応させて八面体粒子の核を生成させながら、反応液を保持し八面体粒子を粒成長させ、次に、該反応液に弱還元剤を添加し反応させて八面体粒子の結晶性を高めて、八面体粒子と八面体以外の粒状粒子とが混在した銅粒子とし、該銅粒子が分散した銅粒子スラリーに錫塩を含む水溶液を添加することで銅粒子表面に錫または錫合金の被膜を形成させることを特徴とする錫コート銅粉の製造方法。
To a copper salt solution obtained by mixing a copper compound aqueous solution, an alkali metal hydroxide aqueous solution and a dispersing agent aqueous solution, two kinds of reducing agents having different oxidation-reduction potentials, a strong reducing agent and a weak reducing agent, are added to form a reaction solution, After producing copper particles in the reaction solution, a method for producing tin-coated copper powder for tin plating,
In the step of generating copper particles, first, a strong reducing agent of 0.07 equivalents or more and 0.5 equivalents or less is added to the copper salt solution with respect to the amount of copper in the copper compound, and reacted to form octahedral particles. While generating nuclei, the reaction solution is held and octahedral particles are grown, and then a weak reducing agent is added to the reaction solution and reacted to increase the crystallinity of the octahedral particles. It is characterized by forming a copper or tin alloy film on the copper particle surface by adding an aqueous solution containing a tin salt to a copper particle slurry in which the copper particles are dispersed, and copper particles mixed with granular particles other than the faceted particles. A method for producing tin-coated copper powder.
前記弱還元剤の添加量は、前記銅化合物中の銅量に対して1当量以上7当量以下であることを特徴とする請求項4に記載の錫コート銅粉の製造方法。   5. The method for producing a tin-coated copper powder according to claim 4, wherein the addition amount of the weak reducing agent is 1 equivalent or more and 7 equivalents or less with respect to the amount of copper in the copper compound. 前記反応液は、前記強還元剤添加時と前記弱還元剤添加時の酸化還元電位の差が1.0V以上であることを特徴とする請求項4または5に記載の錫コート銅粉の製造方法。   6. The tin-coated copper powder according to claim 4, wherein the reaction liquid has a difference in oxidation-reduction potential of 1.0 V or more when the strong reducing agent is added and when the weak reducing agent is added. Method. 前記反応液は、強還元剤を添加した後10分以上保持することを特徴とする請求項4〜6のいずれか1項に記載の錫コート銅粉の製造方法。   The method for producing a tin-coated copper powder according to any one of claims 4 to 6, wherein the reaction solution is held for 10 minutes or more after the addition of a strong reducing agent. 前記銅化合物は、硫酸銅五水和物であることを特徴とする請求項4〜7のいずれか1項に記載の錫コート銅粉の製造方法。   The said copper compound is copper sulfate pentahydrate, The manufacturing method of the tin coat copper powder of any one of Claims 4-7 characterized by the above-mentioned. 前記アルカリ金属の水酸化物は、水酸化ナトリウムであることを特徴とする請求項4〜8のいずれか1項に記載の錫コート銅粉の製造方法。   The method for producing tin-coated copper powder according to any one of claims 4 to 8, wherein the alkali metal hydroxide is sodium hydroxide. 前記強還元剤は、ヒドラジン一水和物であることを特徴とする請求項4〜9のいずれか1項に記載の錫コート銅粉の製造方法。   The method for producing a tin-coated copper powder according to any one of claims 4 to 9, wherein the strong reducing agent is hydrazine monohydrate. 前記弱還元剤は、アスコルビン酸であることを特徴とする請求項4〜10のいずれか1項に記載の錫コート銅粉の製造方法。   The said weak reducing agent is ascorbic acid, The manufacturing method of the tin coat copper powder of any one of Claims 4-10 characterized by the above-mentioned. 前記分散剤が、ポリビニルアルコール、ポリエチレンイミン、ポリビニルピロリドン、変性シリコーンオイル系界面活性剤、またはポリエーテル系界面活性剤から選択される少なくとも1種であることを特徴とする、請求項4〜11のいずれか1項に記載の錫コート銅粉の製造方法。   The dispersant according to any one of claims 4 to 11, wherein the dispersant is at least one selected from polyvinyl alcohol, polyethyleneimine, polyvinylpyrrolidone, a modified silicone oil surfactant, or a polyether surfactant. The manufacturing method of the tin coat copper powder of any one. 前記分散剤の添加量が、前記銅化合物中の銅量に対して0.1質量%〜10質量%であることを特徴とする請求項4〜12のいずれか1項に記載の錫コート銅粉の製造方法。   The tin-coated copper according to any one of claims 4 to 12, wherein an addition amount of the dispersant is 0.1% by mass to 10% by mass with respect to an amount of copper in the copper compound. Powder manufacturing method. 得られる錫コート銅粉は、平均粒径が0.1〜3.0μmで、銅粒子の結晶子径/錫コート銅粉の平均粒径が0.10以上、タップ密度が3.0g/cm〜5.0g/cmであることを特徴とする請求項4〜13のいずれか1項に記載の錫コート銅粉の製造方法。 The obtained tin-coated copper powder has an average particle diameter of 0.1 to 3.0 μm, a crystallite diameter of copper particles / an average particle diameter of tin-coated copper powder of 0.10 or more, and a tap density of 3.0 g / cm. 3 to 5.0 g / cm 3 a method of manufacturing a tin-coated copper powder according to any one of claims 4-13, characterized in that. 錫または錫合金の被覆量は、錫コート銅粉全体の1質量%〜33質量%であることを特徴とする請求項4〜14のいずれか1項に記載の錫コート銅粉の製造方法。   The method for producing a tin-coated copper powder according to any one of claims 4 to 14, wherein the coating amount of tin or a tin alloy is 1% by mass to 33% by mass of the entire tin-coated copper powder. 前記錫合金として添加される元素は、銀、ビスマス、及び亜鉛から選ばれる1種以上であることを特徴とする請求項15に記載の錫コート銅粉の製造方法。   The element added as said tin alloy is 1 or more types chosen from silver, bismuth, and zinc, The manufacturing method of the tin coat copper powder of Claim 15 characterized by the above-mentioned. 前記錫合金として添加される元素は、錫合金に対して0.1質量%〜50質量%であることを特徴とする請求項16に記載の錫コート銅粉の製造方法。   The element added as said tin alloy is 0.1 mass%-50 mass% with respect to a tin alloy, The manufacturing method of the tin coat copper powder of Claim 16 characterized by the above-mentioned. 請求項1〜3のいずれか1項に記載の錫コート銅粉と、樹脂と、溶剤とを含む導電性ペースト。

The electrically conductive paste containing the tin coat copper powder of any one of Claims 1-3, resin, and a solvent.

JP2017027206A 2017-02-16 2017-02-16 Tin coat copper powder, manufacturing method thereof and conductive paste Pending JP2018131666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017027206A JP2018131666A (en) 2017-02-16 2017-02-16 Tin coat copper powder, manufacturing method thereof and conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027206A JP2018131666A (en) 2017-02-16 2017-02-16 Tin coat copper powder, manufacturing method thereof and conductive paste

Publications (1)

Publication Number Publication Date
JP2018131666A true JP2018131666A (en) 2018-08-23

Family

ID=63247993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027206A Pending JP2018131666A (en) 2017-02-16 2017-02-16 Tin coat copper powder, manufacturing method thereof and conductive paste

Country Status (1)

Country Link
JP (1) JP2018131666A (en)

Similar Documents

Publication Publication Date Title
JP4868716B2 (en) Flake copper powder and conductive paste
JP5392884B2 (en) Method for producing copper powder
US8282702B2 (en) Silver powder and method for producing same
TWI510592B (en) Method for manufacturing conductive copper particles
JP2017110299A (en) Silver coated copper powder production method and conductive paste production method
JP6666723B2 (en) Silver-coated tellurium powder, method for producing the same, and conductive paste
JP2007270334A (en) Silver powder and its manufacturing method
JP4651533B2 (en) Method for producing copper particles
JP6278969B2 (en) Silver coated copper powder
JP2017137573A (en) Silver coated copper powder and manufacturing method therefor
JP2016139598A (en) Silver coated copper powder, and copper paste, conductive coating and conductive sheet using the same
JP5255580B2 (en) Method for producing flake copper powder
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
JP6159505B2 (en) Flat copper particles
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
WO2017061443A1 (en) Sn-COATED COPPER POWDER, CONDUCTIVE PASTE USING SAME, AND PRODUCING METHOD FOR Sn-COATED COPPER POWDER
JP2018204047A (en) Method for producing a nickel-coated copper powder and method for producing a conductive paste
JP2017137530A (en) Copper powder and manufacturing method therefor
JP2017166048A (en) Copper powder and manufacturing method therefor, and conductive paste
JP2016139597A (en) Manufacturing method of dendritic silver coated copper powder
JP2018199844A (en) Method for producing tin-coated copper powder, and method for producing conductive paste
JP2018131666A (en) Tin coat copper powder, manufacturing method thereof and conductive paste
JP2018135564A (en) Tin-coated copper powder, method for manufacturing the same, and conductive paste
JP2018131665A (en) Nickel coat copper powder, manufacturing method thereof and conductive paste
JP2018104724A (en) Production method of silver-coated copper powder