JP2018130770A - Classification/recovery system, and working liquid cleaning system - Google Patents

Classification/recovery system, and working liquid cleaning system Download PDF

Info

Publication number
JP2018130770A
JP2018130770A JP2017023856A JP2017023856A JP2018130770A JP 2018130770 A JP2018130770 A JP 2018130770A JP 2017023856 A JP2017023856 A JP 2017023856A JP 2017023856 A JP2017023856 A JP 2017023856A JP 2018130770 A JP2018130770 A JP 2018130770A
Authority
JP
Japan
Prior art keywords
classification
recovery
liquid
classifying
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017023856A
Other languages
Japanese (ja)
Inventor
進一 二ノ宮
Shinichi Ninomiya
進一 二ノ宮
文雄 古賀
Fumio Koga
文雄 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGA KK
Original Assignee
KOGA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGA KK filed Critical KOGA KK
Priority to JP2017023856A priority Critical patent/JP2018130770A/en
Publication of JP2018130770A publication Critical patent/JP2018130770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a classification/recovery system capable of classifying and recovering particles contained in liquid by a comparatively simple constitution; and to provide a working liquid cleaning system.SOLUTION: A system for classifying and recovering particles contained in liquid, includes a conveyance route 111 for forming a channel of liquid (working liquid), a plurality of particle classification holes formed in a direction from the upstream to the downstream of the conveyance route 111, and a plurality of recovery parts 112 for recovering particles settling through each particle classification hole, respectively. Thus, particles are classified and recovered by each recovery part 112.SELECTED DRAWING: Figure 2

Description

本発明は、液体に含まれる粒子を分級、回収することが可能な分級・回収装置及び加工液浄化システムに関する。   The present invention relates to a classification / recovery device and a processing liquid purification system capable of classifying and recovering particles contained in a liquid.

液体中に含まれるなんらかの個相(粒子等)を除去したいという要望は色々な分野・局面であり、そのようなものの一つに、工業的な生産工程において使用される各種の加工液に含まれる粒子(砥粒、切削屑、研削屑、その他の異物など)を除去したいという要請がある。
これに関する技術が特許文献1や2によって開示されている。
The desire to remove some individual phase (particles, etc.) contained in the liquid is in various fields and aspects, and one of them is included in various processing liquids used in industrial production processes. There is a demand to remove particles (abrasive grains, cutting scraps, grinding scraps, other foreign matters, etc.).
Techniques relating to this are disclosed in Patent Documents 1 and 2.

特開平9−29636JP-A-9-29636 特開平11−58235JP-A-11-58235

液中の粒子を除去する方式としては、特許文献1で示されるようなフィルタで濾過するものや、遠心分離、沈降分離等がある。沈降分離は、特許文献2に記載されているように、液中の粒子を分級するためにも用いられる。
ペーパーフィルタやカートリッジフィルタなどによる濾過の場合、フィルタ詰まりの問題及びフィルタ交換が必須となるため、ランニングコストがかかるものである。遠心分離の場合は、サイクロン方式の遠心分離装置等を要するため、イニシャル及びランニングコストがかかる。沈降分離方式においては、従来、大きな沈降槽を必要としていた。また、特許文献2の図2に記載されているように、沈降分離方式にて分級をする場合にはそのための複数の分級槽を要するものであるため、装置が比較的大掛かりとなり、イニシャル及びランニングコストがかかるものであった。
As a method of removing particles in the liquid, there are a method of filtering with a filter as shown in Patent Document 1, a centrifugal separation, a sedimentation separation, and the like. As described in Patent Document 2, the sedimentation separation is also used for classifying particles in the liquid.
In the case of filtration using a paper filter, a cartridge filter or the like, the problem of filter clogging and the replacement of the filter are indispensable, which increases the running cost. Centrifugation requires a cyclone centrifuge and the like, so initial and running costs are required. In the sedimentation separation system, a large sedimentation tank has been conventionally required. Further, as described in FIG. 2 of Patent Document 2, when classification is performed by a sedimentation separation method, since a plurality of classification tanks are required, the apparatus becomes relatively large, and initial and running It was costly.

本発明は、上記の点に鑑み、比較的簡易な構成によって、液体に含まれる粒子を分級、回収することが可能な分級・回収装置及び加工液浄化システムを提供することを目的とする。   In view of the above points, an object of the present invention is to provide a classification / recovery device and a processing liquid purification system capable of classifying and recovering particles contained in a liquid with a relatively simple configuration.

(構成1)
液体に含まれる粒子を分級、回収する装置であって、前記液体の流路を形成する搬送路と、前記搬送路の上流から下流方向に複数形成された粒子分級孔と、前記各粒子分級孔を介して沈降してくる前記粒子をそれぞれ回収する複数の回収部と、を備えることを特徴とする分級・回収装置。
(Configuration 1)
An apparatus for classifying and recovering particles contained in a liquid, comprising: a transport path that forms a flow path for the liquid; a plurality of particle classification holes formed in an upstream to downstream direction of the transport path; and each of the particle classification holes A classification / collection device comprising: a plurality of recovery units for recovering the particles that have settled through each of the particles.

(構成2)
前記搬送路が傾斜していることを特徴とする構成1に記載の分級・回収装置。
(Configuration 2)
The classifying / collecting apparatus according to Configuration 1, wherein the conveying path is inclined.

(構成3)
前記傾斜角度を調節可能な傾斜角度調節機構を備えていることを特徴とする構成2に記載の分級・回収装置。
(Configuration 3)
The classifying / collecting apparatus according to Configuration 2, further comprising an inclination angle adjusting mechanism capable of adjusting the inclination angle.

(構成4)
前記回収部の下部に排出口を備えることを特徴とする構成1から3の何れかに記載の分級・回収装置。
(Configuration 4)
4. The classifying / collecting device according to any one of configurations 1 to 3, wherein a discharge port is provided at a lower portion of the recovery unit.

(構成5)
前記粒子分級孔の近傍に磁性粒子回収用磁石を備えることを特徴とする構成1から4の何れかに記載の分級・回収装置。
(Configuration 5)
5. The classification / collection device according to any one of configurations 1 to 4, further comprising a magnet for collecting magnetic particles in the vicinity of the particle classification hole.

(構成6)
前記粒子分級孔と前記回収部の接続部の下流側において、前記搬送路の流路方向と略平行に上流側に突出し、当該突出量が下方に行くに従い漸減して最終的に前記回収部の側壁と同一となる整流部材が形成されていることを特徴とする構成1から5の何れかに記載の分級・回収装置。
(Configuration 6)
On the downstream side of the connection part of the particle classification hole and the recovery part, it protrudes to the upstream side substantially in parallel with the flow path direction of the transport path, and gradually decreases as the protrusion amount goes downward, and finally the recovery part. 6. The classification / collection device according to any one of configurations 1 to 5, wherein a rectifying member that is the same as the side wall is formed.

(構成7)
前記粒子分級孔と前記回収部の接続部の下流側において、フィン部材を備えることを特徴とする構成1から6の何れかに記載の分級・回収装置。
(Configuration 7)
The classification / recovery device according to any one of configurations 1 to 6, further comprising a fin member on a downstream side of a connection portion between the particle classification hole and the recovery portion.

(構成8)
前記搬送路における前記液体の流れを阻害する、流れ阻害部材を備えることを特徴とする構成1から7の何れかに記載の分級・回収装置。
(Configuration 8)
The classification / recovery device according to any one of configurations 1 to 7, further comprising a flow inhibition member that inhibits the flow of the liquid in the conveyance path.

(構成9)
前記液体が研削または切削加工に使用される加工液であり、構成1から8の何れかに記載の分級・回収装置と、前記分級・回収装置の下流に備えられる加工液タンクと、前記加工液タンクにマイクロバブルを発生させるマイクロバブル発生装置と、を備えることを特徴とする加工液浄化システム。
(Configuration 9)
The liquid is a processing liquid used for grinding or cutting, and the classifying / collecting apparatus according to any one of configurations 1 to 8, a processing liquid tank provided downstream of the classifying / collecting apparatus, and the processing liquid A machining liquid purification system comprising: a microbubble generator that generates microbubbles in a tank.

本発明の分級・回収装置及び加工液浄化システムによれば、液体の流路となる搬送路上に形成される比較的簡易な構成の分級・回収装置を提供することができる。   According to the classification / recovery device and the processing liquid purification system of the present invention, it is possible to provide a classification / recovery device having a relatively simple configuration formed on a conveyance path serving as a liquid flow path.

本発明に係る実施形態の分級・回収装置の設置例を示す概略図Schematic which shows the example of installation of the classification and collection | recovery apparatus of embodiment which concerns on this invention 実施形態の分級・回収装置を示す概略図Schematic showing the classification and recovery device of the embodiment 実施形態の分級・回収装置の性能実験の結果を示す図The figure which shows the result of the performance experiment of the classification and collection | recovery apparatus of embodiment ストークスの式を用いて算出した各粒子(切り屑等を想定)の沈降速度を示したグラフGraph showing the sedimentation velocity of each particle (assuming chips, etc.) calculated using Stokes' formula 分級・回収効率を向上させるための変形例を示した図Figure showing a modification to improve classification and collection efficiency 分級・回収効率を向上させるための変形例を示した図Figure showing a modification to improve classification and collection efficiency 加工液収集シートを用いた分級・回収装置の設置例を示す概略図Schematic showing an installation example of a classification / collection device using a processing fluid collection sheet 傾斜角度と加工液流速の関係についての実験装置の概略図Schematic diagram of the experimental apparatus regarding the relationship between the tilt angle and the machining fluid flow velocity マニングの公式の設定条件についての説明図Illustration of Manning's official setting conditions 傾斜角度と加工液流速の関係についての実験結果とマニングの公式の計算結果を示すグラフGraph showing the experimental results and the Manning formula calculation results on the relationship between the tilt angle and the machining fluid flow velocity

以下、本発明の実施態様について、図面を参照しながら具体的に説明する。なお、以下の実施態様は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In addition, the following embodiment is one form at the time of actualizing this invention, Comprising: This invention is not limited within the range.

<実施形態1>
図1は、本実施形態の分級・回収装置の設置例を示す概略図であり、図2は本実施形態の分級・回収装置を示す概略図である。
本実施形態の分級・回収装置11は、研削・研摩に使用される加工液に含まれる切り屑や砥粒を取り除くための加工液浄化システム1として設置されるものである。図1にその概略を示したように、研削機械2が備える砥石21(加工点)に対して加工液を供給するための、「ノズル32から加工点へ加工液を供給 → 加工液タンク12に加工液を回収 → ポンプ31によって加工液タンク12からノズル32へ加工液を供給」という循環システムにおいて、加工点へ供給後の加工液(切り屑や砥粒等が含まれている)の回収経路の一部として分級・回収装置11が設置されるものである。
<Embodiment 1>
FIG. 1 is a schematic diagram illustrating an installation example of the classification / collection device of the present embodiment, and FIG. 2 is a schematic diagram illustrating the classification / collection device of the present embodiment.
The classification / recovery device 11 of this embodiment is installed as a processing liquid purification system 1 for removing chips and abrasive grains contained in a processing liquid used for grinding / polishing. As schematically shown in FIG. 1, “Supplying the processing fluid from the nozzle 32 to the processing point for supplying the processing fluid to the grindstone 21 (processing point) included in the grinding machine 2 → into the processing fluid tank 12. In the circulation system of “collecting the machining fluid → supplying the machining fluid from the machining fluid tank 12 to the nozzle 32 by the pump 31”, the collection path of the machining fluid (including chips and abrasive grains) after being supplied to the machining point A classification / collection device 11 is installed as a part of the system.

分級・回収装置11は、液体(加工液等)の流路を形成する搬送路111と、搬送路111の上流から下流方向に複数形成された粒子分級孔111h(図5参照)と、各粒子分級孔111hを介して沈降してくる粒子(切り屑や砥粒等)をそれぞれ回収する複数の回収部112と、磁性粒子回収用磁石114を備える。
搬送路111はパイプ状の閉塞された流路として形成されるものであってもよいし、樋状に上部を解放された流路として形成されるものであってもよい。また、流路の断面形状についても円形状であるものや矩形状であるもの等であってよい。本実施形態では上部が解放された断面矩形状の流路として形成された搬送路111を例とする。
搬送路111には、図5に示されるように、複数の粒子分級孔111hが形成され、それぞれの粒子分級孔111hに接続されるように各回収部112が設けられる。本実施形態においては、粒子分級孔111hは矩形状の穴であり、これと接続される回収部112も断面が矩形状(即ち、基本態様が略四角柱)である。なお、粒子分級孔111hやこれと接続される回収部112の形状をこれに限るものではなく、円形や多角形等であってよい。
各回収部112は、本実施形態においては同一の構成であり、下部に排出口113を備える。本実施形態における回収部112は、下部がロート状に先細りに形成され、その先端部に着脱可能なキャップを備えることで、排出口113が形成されている。
磁性粒子回収用磁石114は、粒子分級孔111hの近傍に設けられ、本実施形態では、図2に示されるように、各回収部112の側面上部に備えられる。
The classification / recovery device 11 includes a conveyance path 111 that forms a flow path for liquid (processing liquid, etc.), a plurality of particle classification holes 111h (see FIG. 5) formed in the upstream to downstream direction of the conveyance path 111, and each particle. A plurality of collection units 112 for collecting particles (such as chips and abrasive grains) that have settled through the classification holes 111h and a magnet for collecting magnetic particles 114 are provided.
The conveyance path 111 may be formed as a pipe-shaped closed flow path, or may be formed as a flow path whose upper portion is released in a bowl shape. Also, the cross-sectional shape of the flow path may be circular or rectangular. In this embodiment, the conveyance path 111 formed as a channel having a rectangular cross section with the upper part released is taken as an example.
As shown in FIG. 5, a plurality of particle classification holes 111h are formed in the conveyance path 111, and each recovery unit 112 is provided so as to be connected to each particle classification hole 111h. In the present embodiment, the particle classification hole 111h is a rectangular hole, and the collection unit 112 connected to the particle classification hole 111h also has a rectangular cross section (that is, the basic aspect is a substantially quadrangular prism). In addition, the shape of the particle classification hole 111h and the collection | recovery part 112 connected with this is not restricted to this, A round shape, a polygon, etc. may be sufficient.
Each collection part 112 is the same structure in this embodiment, and is provided with the discharge port 113 in the lower part. The recovery unit 112 in this embodiment has a lower portion tapered in a funnel shape, and a discharge cap 113 is formed by including a detachable cap at the tip.
The magnetic particle recovery magnet 114 is provided in the vicinity of the particle classification hole 111h. In the present embodiment, as shown in FIG.

分級・回収装置11は、前述のごとく、切り屑や砥粒等が含まれている加工後の加工液の回収経路の一部として設置されるものであり、その設置においては、各回収部112に液体(システムで循環する加工液と同一であることが望ましい)が充填される。これにより、搬送路111上を流れる加工液は、粒子分級孔111h上においても、その流れに大きな乱れを受けずに流れていく。
当該搬送路111上を流れる加工液には、前述のごとく切り屑や砥粒等が含まれている。切り屑や砥粒等は、基本的には加工液より比重が重いため、時間とともに沈降するものであるが、その大きさや比重が異なっているため、沈降速度に差が生じる。即ち、搬送路111上を流れる加工液に含まれる切り屑や砥粒のうち、重いもの程早く沈降し、従って、より上流側の粒子分級孔111hから落ちて上流側の回収部112に溜まることとなる。一方、軽いものは沈降に時間がかかるため、加工液の流れによって搬送路111上を長い距離運ばれ、結果としてより下流側の粒子分級孔111hから落ちて下流側回収部112に溜まることとなる。
分級・回収装置11では、このようにして、切り屑や砥粒の分級及び回収が行われるものである。
As described above, the classification / recovery device 11 is installed as a part of the processing fluid recovery path after processing including chips, abrasive grains, and the like. Are filled with liquid (preferably the same as the working fluid circulating in the system). As a result, the machining fluid flowing on the conveyance path 111 flows on the particle classification hole 111h without being greatly disturbed by the flow.
As described above, the machining fluid flowing on the conveyance path 111 includes chips, abrasive grains, and the like. Chips, abrasive grains, and the like basically have a higher specific gravity than the machining fluid, and thus settle with time. However, since their sizes and specific gravity are different, there is a difference in settling speed. That is, among the chips and abrasive grains contained in the machining fluid flowing on the conveyance path 111, the heavier one settles faster, and therefore falls from the upstream particle classification hole 111h and accumulates in the upstream collection unit 112. It becomes. On the other hand, since the lighter one takes time for sedimentation, it is transported over a long distance on the conveyance path 111 by the flow of the processing liquid, and as a result, it falls from the downstream particle classification hole 111h and accumulates in the downstream collection unit 112. .
In the classification / recovery device 11, chips and abrasive grains are classified and recovered in this way.

加工液流れが緩やかで乱れが無いと仮定すると、粒子(切り屑や砥粒等)の沈降速度vは、粒子密度ρs、加工液密度ρw、粒子平均径d、加工液粘度ηとすると、ストークスの式より、
v=(ρs−ρw)gd/18η ・・・・・式1
で表され、粒子径や密度が大きい粒子が先に沈降して回収される。なお、gは重力加速度である。
ここで、砥石21の砥石幅をB(m)、切込み深さをap(m)、被加工材の送り速度をVw(m/min)とした時、単位時間当たりの研削除去率Mは、次式で与えられる。
M=B・ap・Vw ・・・・・式2
従って、一般的な平面研削盤作業における一日の切り屑量を推定すると、B=10mmの砥石でap=10μm/pass、Vw=10m/minの時、エアカット無しで連続10時間研削加工した場合の切り屑量は0.6×10−3であり、切り屑回収用となる回収部112の容量は1〜3L/日程度あれば十分である。
Assuming that the flow of the machining fluid is gentle and there is no turbulence, the settling velocity v of particles (chips, abrasive grains, etc.) is Stokes, where particle density ρs, machining fluid density ρw, particle average diameter d, and machining fluid viscosity η From the equation
v = (ρs−ρw) gd 2 / 18η Equation 1
The particles having a large particle size and density are first settled and collected. In addition, g is a gravitational acceleration.
Here, when the grindstone width of the grindstone 21 is B (m), the cutting depth is ap (m), and the feed rate of the workpiece is Vw (m / min), the grinding removal rate M per unit time is: It is given by
M = B · ap · Vw Equation 2
Therefore, when estimating the amount of chips per day in a general surface grinder operation, when ap = 10 μm / pass and Vw = 10 m / min with a B = 10 mm grindstone, grinding was performed continuously for 10 hours without air cut. In this case, the amount of chips is 0.6 × 10 −3 m 3 , and it is sufficient that the capacity of the collection unit 112 for chip collection is about 1 to 3 L / day.

次に、分級・回収装置11の性能実験として、加工液に粒子(砂塵)をまぜ、これを分級・回収装置11によって、分級・回収する実験を行った。
当該実験は、ランダムな粒径の粒子を想定してグラウンドの砂塵を用い、この砂塵50000mgを、分級・回収装置11の上流に設置したトレー上に置き、このトレーに対して流量Q=2L/min、および10L/minで加工液を5分間供給した。即ち、概ねこれと同等の流量となる砂塵入りの加工液を、分級・回収装置11に供給する実験とした。
なお、分級・回収装置11としては、上流側からP0〜P4の5つの回収部112を有するものを使用し、分級・回収装置11の設置においては、これを20度傾斜させて流路を形成した。
Next, as a performance experiment of the classification / recovery device 11, an experiment was conducted in which particles (dust) were mixed in the processing liquid, and this was classified and recovered by the classification / recovery device 11.
In the experiment, ground dust is assumed assuming particles having a random particle size, and 50000 mg of this dust is placed on a tray installed upstream of the classifying / collecting device 11, and a flow rate Q = 2L / The working fluid was supplied for 5 minutes at min and 10 L / min. In other words, an experiment was conducted in which a processing fluid containing dust having a flow rate substantially equal to this was supplied to the classification / recovery device 11.
As the classifying / collecting device 11, a device having five collecting parts 112 from P0 to P4 from the upstream side is used, and when the classifying / collecting device 11 is installed, it is inclined by 20 degrees to form a flow path. did.

図3に実験結果を示した。
図3の下には、P0〜P3の回収部112で捕集された砂塵の写真を示した。写真に示されるごとく、上流側の回収部112(P0)から下流側の回収部112(P3)に行くに従い細かい砂塵が捕集され、分級が可能であることが示された。
各回収部112の砂塵をSS測定用吸引濾過装置で収集して乾燥させて重量を測定し、回収率を算出した。当該結果が図3のグラフである。
流量2L/minでは、最初の回収部112(P0)で回収率は97.0%となり、流量10L/minのP0の回収率は85.0%であった。分級・回収装置11の最終回収率はそれぞれ97.2%、98.0%となった。本実験によれば、加工液タンク内に2〜3%の残存物質が流れ込むことになるが、今回の実験ではグラウンドの砂塵を用いたので、比重が加工液よりも小さな物質(枯れ葉等)も含まれている可能性がある。実際の研削加工システム等においてはこのような物質が混入する可能性は比較的小さく、加工液タンクまで到達する粒子は、加工に影響を及ぼさないほど軽量かつ微細な粒子にすることができると考えられる。
なお、加工液タンク12内(若しくは加工液タンクの上流側に設置されるタンク内)に、マイクロバブルを発生させるマイクロバブル発生装置を備えさせることにより、残存物質(微細な粒子や浮遊物)についても、マイクロバブル浮選で除去することができる。実際の生産現場では、水溶性加工液の腐敗が問題視されているが、このような、マイクロバブル発生装置を備えた加工液浄化システムとすることにより、腐敗原因となる細菌類やその死骸や排泄物などもマイクロバブル浮選で除去されるため、加工液の悪臭防止および長寿命化が図られる。
The experimental results are shown in FIG.
The photograph of the dust collected by the collection part 112 of P0-P3 was shown under the FIG. As shown in the photograph, it was shown that fine dust was collected from the upstream collection unit 112 (P0) to the downstream collection unit 112 (P3), and classification was possible.
The dust in each recovery unit 112 was collected with a suction filter for SS measurement and dried to measure the weight, and the recovery rate was calculated. The result is the graph of FIG.
At a flow rate of 2 L / min, the recovery rate at the first recovery unit 112 (P0) was 97.0%, and the recovery rate of P0 at a flow rate of 10 L / min was 85.0%. The final collection rates of the classification / collection apparatus 11 were 97.2% and 98.0%, respectively. According to this experiment, 2 to 3% of remaining material flows into the machining fluid tank. However, in this experiment, ground dust was used, so substances with a specific gravity smaller than the machining fluid (dead leaves, etc.) May be included. In an actual grinding system, etc., the possibility of such substances being mixed is relatively small, and the particles that reach the machining liquid tank can be made so light and fine that they do not affect the processing. It is done.
In addition, by providing a microbubble generating device that generates microbubbles in the processing liquid tank 12 (or in a tank installed on the upstream side of the processing liquid tank), residual substances (fine particles and suspended matters) are provided. Can also be removed by microbubble flotation. In actual production sites, the spoilage of water-soluble processing fluid is regarded as a problem. By using such a processing fluid purification system equipped with a micro-bubble generator, bacteria that cause spoilage, their dead bodies, Since excreta and the like are also removed by microbubble flotation, it is possible to prevent malodor of the processing liquid and extend its life.

次に、ストークスの式1を用いて、切り屑と砥粒を想定した粒子の沈降速度を算出した結果を図4に示す。加工液粘度ηには水の粘度を用いた。同図より、材料密度順に応じて沈降速度が決定される。また、沈降速度は粒子径の2乗に比例して増加するため、研削加工に悪影響を及ぼす大きな粒子等が優先的に除去できることになる。密度差を利用することで、砥粒(砥石21から脱落した砥粒)と切り屑との分離回収が期待できる。   Next, FIG. 4 shows the result of calculating the sedimentation speed of particles assuming chips and abrasive grains using Stokes' equation 1. The viscosity of water was used as the working fluid viscosity η. From the figure, the sedimentation speed is determined according to the order of material density. Moreover, since the sedimentation speed increases in proportion to the square of the particle diameter, large particles that adversely affect grinding can be removed preferentially. By utilizing the density difference, separation and recovery of abrasive grains (abrasive grains dropped from the grindstone 21) and chips can be expected.

以上のごとく、本実施形態よれば、研削機械と研削加工液タンクとの間の流路内に設置することが可能(回収経路の一部として設置可能)な、非常にコンパクトな分級・回収装置11によって、加工液に含まれる切り屑や砥粒を回収することができる。加工液タンクへの流路の一部として分級・回収装置を設置することができ、加工液タンクへ粒子が到達してしまうことを抑止すること(事前処理)が可能であり、ろ過の効率化及び省力化が図られる。
さらに、砥粒(砥石21から脱落した砥粒)と切り屑との分離回収をすることが可能となるため、ダイヤモンド等の砥粒を回収して再利用することが簡便にできる。また、粒子分級孔111hの近傍に磁性粒子回収用磁石114を備えているため、金属などの磁性体の切り屑の回収効率が向上される。
本実施形態によれば、このような分級・回収の機能を有する装置でありながら、簡易な構成でこれを実現することができ、分級・回収装置11の動作において動力を必要とせず、また、フィルタ等の部材も不要である。従って、その導入コストを低廉なものとすることができ、分級・回収の処理動作に対するエネルギーを要せず、また、消耗品としてのフィルタの取り換え若しくはフィルタの洗浄等の手間やコストもかからないため非常に有用である。
加えて、各回収部112は下部に排出口113を備えるため、分級した粒子をそれぞれ容易に回収できる。例えば、生産現場で本方式を採用すれば、その日の稼働で除去した実際の切り屑量等が把握できるため、生産加工の管理に用いることもでき、非常に有用である。
As described above, according to this embodiment, a very compact classification / collection device that can be installed in the flow path between the grinding machine and the grinding fluid tank (can be installed as a part of the recovery path). 11 can collect chips and abrasive grains contained in the machining fluid. A classification / recovery device can be installed as part of the flow path to the machining fluid tank, and it is possible to prevent particles from reaching the machining fluid tank (pre-treatment), thus increasing the efficiency of filtration. And labor saving.
Furthermore, since it becomes possible to separate and collect the abrasive grains (the abrasive grains dropped from the grindstone 21) and the chips, it is easy to collect and reuse the abrasive grains such as diamond. In addition, since the magnetic particle collecting magnet 114 is provided in the vicinity of the particle classification hole 111h, the efficiency of collecting chips of magnetic material such as metal is improved.
According to this embodiment, although it is an apparatus having such a classification / recovery function, this can be realized with a simple configuration, no power is required in the operation of the classification / recovery apparatus 11, and A member such as a filter is also unnecessary. Therefore, the introduction cost can be reduced, energy is not required for classification / recovery processing operation, and it is not necessary to replace the filter as a consumable or to clean the filter. Useful for.
In addition, since each recovery unit 112 is provided with a discharge port 113 in the lower part, the classified particles can be easily recovered. For example, if this method is adopted at the production site, the actual amount of chips removed by the operation of the day can be grasped, so that it can be used for management of production processing and is very useful.

なお、本実施形態では、分級のために複数形成される各粒子分級孔111hや各回収部112が同一の形状・大きさのものとして説明したが、分級の目的に応じてそれぞれ異ならせるようにしてもよい。例えば、下流側の微細な粒子を捕集するための粒子分級孔111hについては、流れに沿って長い孔として形成する等してもよい(微細(軽い)粒子ほど沈降速度が遅くなり、落下するまでの時間(=距離)の誤差も大きくなりがちと考えられるため)。また、上流側の回収部112について、その容量を大きく形成し、下流側の回収部112の容量は小さくする等してもよい。   In the present embodiment, the particle classification holes 111h and the collection parts 112 formed for classification are described as having the same shape and size. However, the particle classification holes 111h and the collection parts 112 may be different depending on the purpose of classification. May be. For example, the particle classification holes 111h for collecting the fine particles on the downstream side may be formed as long holes along the flow, etc. (the finer (lighter) particles have a lower sedimentation speed and fall. The error in time (= distance) is likely to increase.) Further, the capacity of the upstream collection unit 112 may be increased, and the capacity of the downstream collection unit 112 may be reduced.

また、図5、6に例示したように、回収効率をさらに向上させる構成をとりいれてもよい。
図5は、各回収部112の下流側の堰の部分にコーナーRを設けることによって、液中に漂流する粒子の分級・回収効率を向上させるものである。即ち、粒子分級孔111hと回収部112の接続部の下流側において、搬送路111の流路方向と略平行に上流側に突出し、当該突出量が下方に行くに従い漸減して最終的に回収部112の側壁と同一となる整流部材117を形成した。これにより、図5の一部拡大図に示したように、粒子径と密度が大きい物質が優先的に沈降するため、比較的流量が少なく、特に層流で安定的な流れの場合は分級精度が高くなる。
図6は、粒子分級孔111hと回収部112の接続部の下流側となる堰の部分に脱着可能な分離フィン(フィン部材)115を設けたものである。分離フィン115は、その高さや形状を任意に設定することができ、これが搬送路111内に少し突出する形となることで、粒子分級孔111hへ粒子を落とす(沈降させる)効果を有するものである。例えば、分離フィン115の幅を、搬送路111の幅より小さく形成し、分離フィン115の幅方向の設置位置を各回収部112で異ならせることにより、加工液の流れをコントロールする等してもよい。また、分離フィン115の高さを変えることにより分級をアレンジする等してもよい。
なお、図5で示した整流部材117についてもアタッチメント式としてもよい。
Moreover, as illustrated in FIGS. 5 and 6, a configuration that further improves the recovery efficiency may be adopted.
FIG. 5 improves the classification / recovery efficiency of particles drifting in the liquid by providing a corner R in the portion of the weir downstream of each recovery unit 112. That is, on the downstream side of the connection part between the particle classification hole 111h and the recovery part 112, it protrudes to the upstream side substantially in parallel with the flow path direction of the transport path 111, and the protrusion amount gradually decreases as it goes downward, and finally the recovery part A straightening member 117 that is the same as the side wall of 112 was formed. As a result, as shown in the partially enlarged view of FIG. 5, since a substance having a large particle size and density is preferentially settled, classification accuracy is relatively small especially in the case of a laminar and stable flow. Becomes higher.
FIG. 6 shows a detachable separation fin (fin member) 115 provided on the weir portion on the downstream side of the connecting portion between the particle classification hole 111h and the recovery portion 112. FIG. The separation fin 115 can be arbitrarily set in height and shape, and has a shape that slightly protrudes into the conveyance path 111, thereby having the effect of dropping (sedimenting) particles into the particle classification hole 111h. is there. For example, the flow of the processing liquid may be controlled by forming the width of the separation fin 115 smaller than the width of the conveyance path 111 and changing the installation position in the width direction of the separation fin 115 in each recovery unit 112. Good. Further, the classification may be arranged by changing the height of the separation fin 115.
The rectifying member 117 shown in FIG. 5 may also be an attachment type.

また、搬送路111における加工液の流れを阻害する流れ阻害部材を設けるようにしても良い。搬送路111における加工液の流量や流速は分級能力を左右する要因であり、これを流れ阻害部材を設けることによってコントロールするものである。
流れ阻害部材は、搬送路111における加工液の流れを阻害する何らかの部材であればよく、例えば流れをコントロールしたい箇所に棒状の部材を複数配置するものや、スポンジ状の部材を配置するもの、ブラシ状の部材を配置するもの等、加工液の流れに対する障害物となるものであればよい。上記説明した分離フィン115も、流れ阻害部材の一例といえる。どのような部材をどのような大きさや数で設けるかについては、コントロールしたい流れに応じて適宜設定すればよい。
Moreover, you may make it provide the flow inhibition member which inhibits the flow of the process liquid in the conveyance path 111. FIG. The flow rate and flow rate of the working fluid in the conveyance path 111 are factors that affect the classification ability, and are controlled by providing a flow blocking member.
The flow-inhibiting member may be any member that inhibits the flow of the processing liquid in the conveyance path 111. For example, a member in which a plurality of rod-like members are arranged at a position where the flow is to be controlled, a member in which a sponge-like member is arranged, a brush As long as it is an obstacle to the flow of the machining fluid, such as a member in which a shaped member is arranged. The separation fin 115 described above can be said to be an example of the flow blocking member. What kind of member is provided in what size and number may be appropriately set according to the flow to be controlled.

<実施形態2>
次に、切削加工のシステムにおいて、本発明に係る分級・回収装置を設置することで、特別な清浄化装置(遠心分離、ペーパーフィルタ、マグネットセパレータ等)を要せずに、研削加工を行えるようにした加工液浄化システムについて説明する。
近年、切削加工機の多軸化・複合化が主流となっており、切削加工機で研削するニーズも増えてきている。この場合、加工液は切削・研削ともに共通であり、つまり切削屑、研削屑(+脱落砥粒)の両者が一つの加工液タンクに収納されることになる。切削屑と研削屑(研削加工で生じる加工屑は極めて小さい)が大容量の加工液タンクに投入されると、加工液の清浄化は困難になり、加工液タンクとは別に、特別な清浄化装置(遠心分離、ペーパーフィルタ、マグネットセパレータ等)を直列配置する必要がある。
これに対し、研削時においては加工屑を含んだ加工液を別途に集合させ、本発明に係る分級・回収装置を通過させることで、特別な清浄化装置を要することなく、容易に清浄化できるものである。
<Embodiment 2>
Next, by installing the classification / collection device according to the present invention in the cutting system, grinding can be performed without requiring a special cleaning device (centrifugation, paper filter, magnet separator, etc.). An explanation will be given of the machining fluid purification system.
In recent years, multi-axis and compounding of cutting machines have become mainstream, and the needs for grinding with cutting machines have increased. In this case, the machining fluid is common to both cutting and grinding, that is, both cutting waste and grinding waste (+ dropped abrasive grains) are stored in one working fluid tank. When cutting scraps and grinding scraps (the processing scraps generated by grinding are extremely small) are put into a large-capacity machining fluid tank, it becomes difficult to clean the machining fluid, and special cleaning is performed separately from the machining fluid tank. Devices (centrifugation, paper filter, magnet separator, etc.) need to be arranged in series.
On the other hand, during grinding, machining fluid containing machining waste is separately collected and passed through the classification / collection device according to the present invention, so that it can be easily cleaned without requiring a special cleaning device. Is.

図7は、旋盤型5軸複合加工機で研削加工する場合の配置模式図である。なお、実施形態1と同様の構成要素については同一の符号を使用している。
旋盤型5軸複合加工機に砥石21を取り付けて研削加工をする場合には、加工エリアの下部に加工液収集シート13を広げることによって、飛散して落下する加工液を収集して一箇所から排出できるようにする。加工液収集シート13による加工液の流れのイメージを図7(b)に示す。この加工液収集シート13を、切削時には収納しておき、研削時にだけ拡げることができるように構成することで、加工液タンク12内への研削屑の混入を最小限に留めることができる。
FIG. 7 is an arrangement schematic diagram in the case of grinding with a lathe type 5-axis multi-tasking machine. In addition, the same code | symbol is used about the component similar to Embodiment 1. FIG.
When grinding is performed by attaching a grindstone 21 to a lathe type 5-axis multi-tasking machine, the working fluid collecting sheet 13 is spread at the lower part of the working area, thereby collecting the scattered working fluid and dropping it from one place. Allow to drain. An image of the flow of the machining liquid by the machining liquid collection sheet 13 is shown in FIG. The machining liquid collecting sheet 13 is stored at the time of cutting and can be expanded only at the time of grinding, so that mixing of grinding waste into the machining liquid tank 12 can be minimized.

<実施形態3>
実施形態3は、実施形態1や2の分級・回収装置11の設置において、その傾斜角度を調整可能としたものである。
分級・回収装置11の搬送路111の傾斜角度を調節することにより、そこを流れる加工液の流速を調節することができ、これにより、分級の効率や精度を調整することができるものである。
なお、分級・回収装置11の搬送路111の傾斜角度を調節可能とするための傾斜角度調節機構については特に図示しないが、周知の機構(例えばヒンジ機構やフレキシブル管等)を適宜採択・組み合わせる等して実現すればよい。
<Embodiment 3>
In the third embodiment, the inclination angle can be adjusted in the installation of the classification / collection device 11 of the first and second embodiments.
By adjusting the inclination angle of the conveying path 111 of the classifying / collecting device 11, the flow rate of the working fluid flowing therethrough can be adjusted, and thereby the efficiency and accuracy of classification can be adjusted.
An inclination angle adjusting mechanism for adjusting the inclination angle of the conveyance path 111 of the classifying / collecting apparatus 11 is not particularly illustrated, but a known mechanism (for example, a hinge mechanism or a flexible tube) is appropriately selected and combined. And it can be realized.

ここで、装置設置の勾配や供給流量を変更に基づいて変化する加工液の流速について検討する。
図8は当該検討の実験装置の概略を示した図である。また、図9は、マニングの公式の設定条件についての説明図である。
加工液の流速Vは、設定流量と実際に流れる液の断面積によって算出される。
V=Q/A ・・・・・式3
ここで、Q:設定流量、A:流れる液の断面積である。実際に流路を流れる水位(水の高さ)を測定した(図8参照)。
また、水路を流れる流体の流速を検討する場合、一般にマニングの式が用いられる。そこで、断面積が台形の場合(図9参照)について開水路の等流計算に用いる次のマニングの公式で算出した。
A=(b+mH)H ・・・・・式4
S=b+2H(1+m1/2 ・・・・・式5
R=A/S ・・・・・式6
V=(1/n)・R2/3・I1/2 ・・・・・式7
ここで、各記号は次のことを示している。
Q:流量
V:平均流速
n:粗度係数(水路壁面、底面の粗さを示す値で、水路の材質や状態により異なる。)
R:径深(水理学的平均水深とも言う。 流積を潤辺で割ったもの)
S:潤辺(水路断面において、水が周囲の壁や底と接する長さ。)図9中の点線の長さ。
A:水路における流水の断面積
I:動水勾配
hf/L(hf:エネルギー損失、L:水路延長)
等流では、動水勾配=水面勾配=水路床勾配であるので、計算には水路床勾配を用いることが多い。
流路の勾配と流量に対する加工液流速の関係を求めた実験結果およびマニング式による計算結果を図10に示す(図10(a):実験結果、図10(b):マニング式による計算結果)。マニング式の粗度係数はn=0.02を用いた。
流路の勾配によって、流路内を流れる加工液の流速を変更できることがわかる。
Here, the flow rate of the machining fluid that changes based on the change in the gradient of apparatus installation and the supply flow rate will be examined.
FIG. 8 is a diagram showing an outline of the experimental apparatus under consideration. FIG. 9 is an explanatory diagram of Manning's official setting conditions.
The flow velocity V of the machining liquid is calculated from the set flow rate and the cross-sectional area of the actually flowing liquid.
V = Q / A Equation 3
Here, Q is the set flow rate, and A is the cross-sectional area of the flowing liquid. The water level (water height) actually flowing through the flow path was measured (see FIG. 8).
Further, when examining the flow velocity of the fluid flowing through the water channel, the Manning equation is generally used. Therefore, when the cross-sectional area is a trapezoid (see FIG. 9), the following Manning formula used for the calculation of the equal flow in the open channel is used.
A = (b + mH) H Equation 4
S = b + 2H (1 + m 2 ) 1/2 Equation 5
R = A / S Equation 6
V = (1 / n) · R 2/3 · I 1/2 Equation 7
Here, each symbol indicates the following.
Q: Flow rate V: Average flow velocity n: Roughness coefficient (value indicating the roughness of the channel wall surface and bottom surface, and varies depending on the material and state of the channel)
R: Depth (also known as hydraulic mean water depth. Divided product divided by Junbe)
S: Junbe (the length of water in contact with the surrounding wall and bottom in the cross section of the waterway) The length of the dotted line in FIG.
A: Cross-sectional area of flowing water in a water channel I: Hydrodynamic gradient hf / L (hf: energy loss, L: water channel extension)
In the case of uniform flow, since the hydrodynamic gradient = the water surface gradient = the water channel gradient, the water channel gradient is often used for the calculation.
FIG. 10 shows the experimental results for determining the relationship between the gradient of the flow path and the flow rate of the machining fluid with respect to the flow rate, and the calculation results based on the Manning equation (FIG. 10 (a): experimental results, FIG. 10 (b): calculation results based on the Manning equation). . As the roughness coefficient of the Manning equation, n = 0.02 was used.
It can be seen that the flow rate of the machining fluid flowing in the flow path can be changed by the gradient of the flow path.

以上のごとく、分級・回収装置11の搬送路111の傾斜角度が調節可能であることにより、そこを流れる加工液の流速を調節することができ、これにより、分級能力、効率や精度を調整することができる。
なお、搬送路111の傾斜角度は、搬送路111の全体にわたって同一に傾斜させるものに限らず、場所によって傾斜角度を変化させることができるものであってよい。これにより、例えば、上流側から下流側に行くに従い傾斜角度を小さくしたもの等とすることができ、分級能力をより綿密に調整することが可能となる。
従来の装置において、回収や分級の能力を変更しようとした場合、装置そのものの入れ替えや大掛かりな改修等が必要になるものであったが、本実施形態によれば、分級・回収装置11の搬送路111の傾斜角度を調節するだけでこれを実現することができ、非常に有用である。
なお、傾斜角度の調整は、上流から下流に向かって下りであるものに限定されるものではなく、上流から下流に向かって上り勾配となるようにしてもよい。
As described above, since the inclination angle of the conveyance path 111 of the classification / collection device 11 can be adjusted, the flow rate of the working fluid flowing therethrough can be adjusted, thereby adjusting the classification ability, efficiency and accuracy. be able to.
In addition, the inclination angle of the conveyance path 111 is not limited to the same inclination throughout the entire conveyance path 111, and the inclination angle may be changed depending on the location. Thereby, for example, the inclination angle can be reduced as it goes from the upstream side to the downstream side, and the classification ability can be adjusted more closely.
In the conventional apparatus, when the collection and classification capabilities are to be changed, the apparatus itself needs to be replaced or extensively modified. However, according to the present embodiment, the classification / collection apparatus 11 is transported. This can be realized simply by adjusting the inclination angle of the path 111, which is very useful.
The adjustment of the tilt angle is not limited to the downward slope from the upstream to the downstream, but may be an upward slope from the upstream to the downstream.

本発明に係る分級・回収装置は、簡易な構成にて省スペースに設置できる(加工液の流路上に設置できる)ものであるが、加工液の使用量が膨大である場合、単位時間当たりの処理量能力を担保するためには、それに応じた大きさを要することになる。
そこで、特許第4523329号公報の加工液供給方法および装置(フローティングノズルを利用した加工液供給法において、加工液の供給位置よりも工具回転順方向において加工液流の外層を可撓性の導液部材で覆うことにより、移動する加工液流を回転工具表面に封じ込め、加工点よりも手前で導液部材開放端から排出する技術)を用いることにより、加工液の有効活用が図られ、加工液の使用量を可及的に押さえることができる。これにより、本発明に係る分級・回収装置も可及的に小型化することが可能である。
特許第4523329号公報の加工液供給方法および装置と本発明に係る分級・回収装置を組み合わせることで、極めて効率的、経済的であり、環境に配慮したシステムとすることが可能である。
The classifying / collecting apparatus according to the present invention can be installed in a space-saving manner with a simple configuration (can be installed on the flow path of the machining fluid). However, when the amount of machining fluid used is enormous, In order to secure the throughput capacity, a size corresponding to that is required.
Therefore, in the machining fluid supply method and apparatus disclosed in Japanese Patent No. 4523329 (in the machining fluid supply method using a floating nozzle, the outer layer of the machining fluid flow is more flexible than the machining fluid supply position in the tool rotation forward direction. By covering with a member, the working fluid flow is confined to the surface of the rotary tool, and by using the technology that discharges from the open end of the fluid introduction member before the processing point, the working fluid can be effectively used. Can be used as much as possible. Thereby, the classifying / collecting apparatus according to the present invention can be miniaturized as much as possible.
By combining the processing liquid supply method and apparatus disclosed in Japanese Patent No. 4523329 and the classifying / collecting apparatus according to the present invention, it is possible to obtain an extremely efficient and economical system in consideration of the environment.

なお、上記各実施形態においては、搬送路111の断面形状が一定であるものを例として説明したが、搬送路111の断面形状を変化させるものであってもよい。例えば、上流側から下流側に行くに従い搬送路111が広くなるような構成等としてもよい。またこれと上記の傾斜角度の調整を組み合わせ、例えば、上流側から下流側に行くに従い、傾斜角度を小さくし、且つ、上流側から下流側に行くに従い搬送路111が広くなるような構成(下流側での微細粒子の捕集能力を高めつつ、時間あたりの処理能力を維持できるようにしたもの)等としてもよい。   In each of the above embodiments, the case where the cross-sectional shape of the transport path 111 is constant has been described as an example, but the cross-sectional shape of the transport path 111 may be changed. For example, a configuration in which the transport path 111 becomes wider as it goes from the upstream side to the downstream side may be adopted. Also, this is combined with the adjustment of the inclination angle described above, for example, a configuration in which the inclination angle decreases as it goes from the upstream side to the downstream side, and the conveyance path 111 becomes wider as it goes from the upstream side to the downstream side (downstream) It is also possible to increase the ability to collect fine particles on the side while maintaining the processing capacity per hour).

また、分級能力の均一化のため、加工液中の粒子を分散させる機構を、分級・回収装置11の上流側に設けてもよい。当該機構は、粒子を含んだ加工液を攪拌させるもの等であればよく、動力を用いて攪拌させるものであってもよいし、加工液の流れを乱す流路とすることにより、動力を用いずに攪拌させるもの等であってもよい。   Further, a mechanism for dispersing the particles in the working fluid may be provided on the upstream side of the classifying / collecting device 11 in order to make the classification ability uniform. The mechanism may be anything that stirs the machining fluid containing particles, and may be agitated using power, or the power is used by forming a flow path that disturbs the flow of the machining fluid. It is also possible to stir without stirring.

11...分級・回収装置
111...搬送路
111h...粒子分級孔
112...回収部
113...排出口
114...磁性粒子回収用磁石
115...分離フィン(フィン部材)
117...整流部材
12...加工液タンク
11. . . Classification / collection device 111. . . Transport path 111h. . . Particle classification hole 112. . . Collection unit 113. . . Outlet 114. . . Magnetic particle recovery magnet 115. . . Separation fin (fin member)
117. . . Rectifying member 12. . . Processing fluid tank

Claims (9)

液体に含まれる粒子を分級、回収する装置であって、
前記液体の流路を形成する搬送路と、
前記搬送路の上流から下流方向に複数形成された粒子分級孔と、
前記各粒子分級孔を介して沈降してくる前記粒子をそれぞれ回収する複数の回収部と、
を備えることを特徴とする分級・回収装置。
An apparatus for classifying and collecting particles contained in a liquid,
A transport path that forms a flow path for the liquid;
A plurality of particle classification holes formed in the downstream direction from the upstream of the conveying path;
A plurality of recovery portions for recovering the particles that have settled through the particle classification holes,
A classification / collection device characterized by comprising:
前記搬送路が傾斜していることを特徴とする請求項1に記載の分級・回収装置。   The classifying / collecting apparatus according to claim 1, wherein the conveyance path is inclined. 前記傾斜角度を調節可能な傾斜角度調節機構を備えていることを特徴とする請求項2に記載の分級・回収装置。   The classification / collection device according to claim 2, further comprising an inclination angle adjustment mechanism capable of adjusting the inclination angle. 前記回収部の下部に排出口を備えることを特徴とする請求項1から3の何れかに記載の分級・回収装置。   The classification / collection device according to any one of claims 1 to 3, further comprising a discharge port at a lower portion of the collection unit. 前記粒子分級孔の近傍に磁性粒子回収用磁石を備えることを特徴とする請求項1から4の何れかに記載の分級・回収装置。   The classification / recovery device according to claim 1, further comprising a magnet for collecting magnetic particles in the vicinity of the particle classification hole. 前記粒子分級孔と前記回収部の接続部の下流側において、前記搬送路の流路方向と略平行に上流側に突出し、当該突出量が下方に行くに従い漸減して最終的に前記回収部の側壁と同一となる整流部材が形成されていることを特徴とする請求項1から5の何れかに記載の分級・回収装置。   On the downstream side of the connection part of the particle classification hole and the recovery part, it protrudes to the upstream side substantially in parallel with the flow path direction of the transport path, and gradually decreases as the protrusion amount goes downward, and finally the recovery part. 6. The classifying / collecting device according to claim 1, wherein a rectifying member that is the same as the side wall is formed. 前記粒子分級孔と前記回収部の接続部の下流側において、フィン部材を備えることを特徴とする請求項1から6の何れかに記載の分級・回収装置。   The classification / recovery device according to any one of claims 1 to 6, further comprising a fin member on a downstream side of a connection portion between the particle classification hole and the recovery portion. 前記搬送路における前記液体の流れを阻害する、流れ阻害部材を備えることを特徴とする請求項1から7の何れかに記載の分級・回収装置。   The classification / recovery device according to claim 1, further comprising a flow inhibition member that inhibits the flow of the liquid in the conveyance path. 前記液体が研削または切削加工に使用される加工液であり、
請求項1から8の何れかに記載の分級・回収装置と、
前記分級・回収装置の下流に備えられる加工液タンクと、
前記加工液タンクにマイクロバブルを発生させるマイクロバブル発生装置と、
を備えることを特徴とする加工液浄化システム。
The liquid is a working fluid used for grinding or cutting,
Classifying / collecting device according to any one of claims 1 to 8,
A working fluid tank provided downstream of the classifying / collecting device;
A microbubble generator for generating microbubbles in the processing liquid tank;
A machining fluid purification system comprising:
JP2017023856A 2017-02-13 2017-02-13 Classification/recovery system, and working liquid cleaning system Pending JP2018130770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023856A JP2018130770A (en) 2017-02-13 2017-02-13 Classification/recovery system, and working liquid cleaning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023856A JP2018130770A (en) 2017-02-13 2017-02-13 Classification/recovery system, and working liquid cleaning system

Publications (1)

Publication Number Publication Date
JP2018130770A true JP2018130770A (en) 2018-08-23

Family

ID=63247829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023856A Pending JP2018130770A (en) 2017-02-13 2017-02-13 Classification/recovery system, and working liquid cleaning system

Country Status (1)

Country Link
JP (1) JP2018130770A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482842A (en) * 2020-04-26 2020-08-04 利科机电设备(深圳)有限公司 Cleaning system and high-precision machining center
CN113275120A (en) * 2021-05-11 2021-08-20 西安正唐矿业科技有限公司 Mineral critical flow velocity sorting method and device thereof
JP2022138772A (en) * 2021-03-11 2022-09-26 Jfeスチール株式会社 Detection method and detection device of pipe clogging

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB707763A (en) * 1950-08-30 1954-04-21 Miag Vertriebs Gmbh A new and improved method and apparatus for separating impurities from grain, such as cereals, seeds and the like
JPS62193661A (en) * 1986-02-19 1987-08-25 Shizuoka Pref Gov Separation of inorganic staple and inorganic particle
JPS63218265A (en) * 1987-03-04 1988-09-12 Shigehiko Tamagawa Device for washing ballast with water
JPH02265661A (en) * 1987-12-09 1990-10-30 Canon Inc Apparatus for refining superconducting fine particles
JPH0411959A (en) * 1990-05-01 1992-01-16 Japan Tobacco Inc Wet classifier
EP0469903A2 (en) * 1990-08-01 1992-02-05 CENTRO SVILUPPO SETTORI IMPIEGO S.r.l. Process and apparatus for separating a mixture of plastic material into fractions
JPH09206627A (en) * 1996-02-01 1997-08-12 Nippon Micro Coating Kk Powder classifying apparatus and method
JP2008259943A (en) * 2007-04-11 2008-10-30 Toyo Constr Co Ltd Apparatus for treating earth and sand slurry
JP2010167727A (en) * 2009-01-26 2010-08-05 Satake Corp Pretreatment method in classifying material quality of waste plastic crushed piece
JP2010227751A (en) * 2009-03-26 2010-10-14 Fuji Xerox Co Ltd Classification method and classifier
JP2011025111A (en) * 2009-07-22 2011-02-10 Fuji Xerox Co Ltd Classifying device, and classifying method
JP2011245612A (en) * 2010-04-28 2011-12-08 Shibaura Mechatronics Corp Cleaning apparatus
JP2015131273A (en) * 2014-01-14 2015-07-23 新泉産業株式会社 Jig screening equipment, and jig selecting method
JP2016536123A (en) * 2013-10-29 2016-11-24 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ Specific gravity sorter capable of simultaneously sorting heavy mineral components and magnetic mineral components

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB707763A (en) * 1950-08-30 1954-04-21 Miag Vertriebs Gmbh A new and improved method and apparatus for separating impurities from grain, such as cereals, seeds and the like
JPS62193661A (en) * 1986-02-19 1987-08-25 Shizuoka Pref Gov Separation of inorganic staple and inorganic particle
JPS63218265A (en) * 1987-03-04 1988-09-12 Shigehiko Tamagawa Device for washing ballast with water
JPH02265661A (en) * 1987-12-09 1990-10-30 Canon Inc Apparatus for refining superconducting fine particles
JPH0411959A (en) * 1990-05-01 1992-01-16 Japan Tobacco Inc Wet classifier
EP0469903A2 (en) * 1990-08-01 1992-02-05 CENTRO SVILUPPO SETTORI IMPIEGO S.r.l. Process and apparatus for separating a mixture of plastic material into fractions
JPH09206627A (en) * 1996-02-01 1997-08-12 Nippon Micro Coating Kk Powder classifying apparatus and method
JP2008259943A (en) * 2007-04-11 2008-10-30 Toyo Constr Co Ltd Apparatus for treating earth and sand slurry
JP2010167727A (en) * 2009-01-26 2010-08-05 Satake Corp Pretreatment method in classifying material quality of waste plastic crushed piece
JP2010227751A (en) * 2009-03-26 2010-10-14 Fuji Xerox Co Ltd Classification method and classifier
JP2011025111A (en) * 2009-07-22 2011-02-10 Fuji Xerox Co Ltd Classifying device, and classifying method
JP2011245612A (en) * 2010-04-28 2011-12-08 Shibaura Mechatronics Corp Cleaning apparatus
JP2016536123A (en) * 2013-10-29 2016-11-24 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ Specific gravity sorter capable of simultaneously sorting heavy mineral components and magnetic mineral components
JP2015131273A (en) * 2014-01-14 2015-07-23 新泉産業株式会社 Jig screening equipment, and jig selecting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482842A (en) * 2020-04-26 2020-08-04 利科机电设备(深圳)有限公司 Cleaning system and high-precision machining center
JP2022138772A (en) * 2021-03-11 2022-09-26 Jfeスチール株式会社 Detection method and detection device of pipe clogging
JP7435508B2 (en) 2021-03-11 2024-02-21 Jfeスチール株式会社 Piping clogging detection method and detection device
CN113275120A (en) * 2021-05-11 2021-08-20 西安正唐矿业科技有限公司 Mineral critical flow velocity sorting method and device thereof

Similar Documents

Publication Publication Date Title
JP2018130770A (en) Classification/recovery system, and working liquid cleaning system
JP4122348B2 (en) Apparatus and method for separating and recovering waste liquid-containing components such as recovered coolant
JP2011005362A (en) Slurry treatment apparatus
JP4231901B2 (en) Coolant cleaning device
JP2007098538A (en) Solid-liquid separation system
JP5702567B2 (en) Method and apparatus for purifying contaminated soil
JP5317887B2 (en) Cleaning device
JP2003275938A (en) Coolant cleaning device
JP2001137743A (en) Apparatus for cleaning and recovering coolant
JP2012020365A (en) Coolant recovery system
JP5470657B2 (en) Treatment liquid purification device
JP6496931B2 (en) Processing fluid treatment system
JP5479046B2 (en) Separation apparatus and separation method for grinding sludge contained in grinding fluid
KR102237989B1 (en) Apparatus for separating oil-water
JP2014046396A (en) Recovery method and recovery system
JP2011083845A (en) Solid liquid recovery separation apparatus for polishing
JP2003251542A (en) Cutting fluid filtering device
JP2000288327A (en) Liquid treatment apparatus
JP4376178B2 (en) Shredder dust treatment method and equipment
JP2010227826A (en) System and method for treating granule
JP3973150B2 (en) Sludge separation device, sludge recovery device, and sludge separation method
JP2004058240A (en) Cutting liquid tank for machine tool
JP5201459B2 (en) Grinding fluid purification device
JP2010240508A (en) Cyclone device
JP3603541B2 (en) Liquid processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200804