JP2018129296A - Discharge lamp and electrodeless discharge lamp - Google Patents

Discharge lamp and electrodeless discharge lamp Download PDF

Info

Publication number
JP2018129296A
JP2018129296A JP2018017954A JP2018017954A JP2018129296A JP 2018129296 A JP2018129296 A JP 2018129296A JP 2018017954 A JP2018017954 A JP 2018017954A JP 2018017954 A JP2018017954 A JP 2018017954A JP 2018129296 A JP2018129296 A JP 2018129296A
Authority
JP
Japan
Prior art keywords
discharge lamp
quantum dot
dot material
electrodeless discharge
lamp according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018017954A
Other languages
Japanese (ja)
Other versions
JP2018129296A5 (en
Inventor
木田 徹也
Tetsuya Kida
徹也 木田
松本 勇
Isamu Matsumoto
勇 松本
由成 西浦
Yoshinari Nishiura
由成 西浦
祐一 小崎
Yuichi Ozaki
祐一 小崎
正一 美川
Shoichi Mikawa
正一 美川
庸典 清島
Yasunori Kiyoshima
庸典 清島
明 井尾
Akira Io
明 井尾
玄輝 有馬
Genki Arima
玄輝 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMAKUSA IKEDA DENKI KK
Kumamoto University NUC
Original Assignee
AMAKUSA IKEDA DENKI KK
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMAKUSA IKEDA DENKI KK, Kumamoto University NUC filed Critical AMAKUSA IKEDA DENKI KK
Publication of JP2018129296A publication Critical patent/JP2018129296A/en
Publication of JP2018129296A5 publication Critical patent/JP2018129296A5/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an illumination device which is capable of achieving wavelength conversion with high efficiency in a discharge lamp and an electrodeless discharge lamp and which is effective in difficult-to-maintain applications such as a high roof and a tunnel by utilizing a characteristic of its ultra-long service life.SOLUTION: A discharge lamp having a discharge tube filled with gas or an electrodeless discharge lamp having an electrodeless discharge tube with no discharge electrode filled with gas, an induction coil disposed in proximity to the electrodeless discharge tube and a circuit for supplying high-frequency power to the induction coil, uses a quantum dot as a functional material converting ultraviolet light generated in the discharge tube into visible light.SELECTED DRAWING: Figure 1

Description

本発明は、放電管に於いて生起される紫外光を可視光に変換する機能材料として量子ドットを用いた放電灯及び無電極放電灯に関するものである。   The present invention relates to a discharge lamp and an electrodeless discharge lamp using quantum dots as a functional material that converts ultraviolet light generated in a discharge tube into visible light.

蛍光灯をはじめとする放電灯は非常に成熟した技術であり、各種照明ランプ等に広範に用いられている。特に、無電極放電灯はLEDを凌駕する長寿命を有し、高天井やトンネル内などメンテナンスが困難な用途に於いては非常に有効である。   Discharge lamps such as fluorescent lamps are very mature technologies and are widely used in various illumination lamps. In particular, the electrodeless discharge lamp has a longer life than the LED and is very effective in applications where maintenance is difficult such as in a high ceiling or in a tunnel.

また、量子ドット技術は非常に高効率の波長変換を可能とする技術であり、上記の放電灯及び無電極放電灯に用いることによりさらに高効率の照明装置を得られる可能性があった。量子ドット技術はドットマトリクスを含むLEDへの応用が検討され、一部商品化もされているが、無電極を含む放電ランプに応用された例はない。   In addition, the quantum dot technology is a technology that enables very high-efficiency wavelength conversion, and there is a possibility that a higher-efficiency lighting device can be obtained by using the quantum dot technology in the above-described discharge lamp and electrodeless discharge lamp. Quantum dot technology has been studied for application to LEDs including a dot matrix, and some products have been commercialized, but no examples have been applied to discharge lamps including electrodes.

特開2016ー157555号公報Japanese Unexamined Patent Publication No. 2016-157555 特開2016ー114846号公報JP 2016-1114846 A 特開2013ー183144号公報JP 2013-183144 A

解決しようとする課題は、放電灯及び無電極放電灯に於いて高効率の波長変換を実現し、その超長寿命という特性を活かして高天井やトンネル内などメンテナンスが困難な用途に於いて有効な照明装置を実現することである。   The problem to be solved is to realize high-efficiency wavelength conversion in discharge lamps and electrodeless discharge lamps, and to take advantage of its ultra-long life characteristics to be effective in applications where maintenance is difficult such as in high ceilings and tunnels. Is to realize a simple lighting device.

そのため、放電灯及び無電極放電灯のプラズマ励起による紫外光を可視光に変換する波長変換材料として量子ドット材料を応用するため、放電菅内への量子ドット層の形成、保護層の形成を含む生産技術を確立し、量子ドットを用いた放電灯及び無電極放電灯を実現する。   Therefore, in order to apply quantum dot material as a wavelength conversion material that converts ultraviolet light into visible light by plasma excitation of discharge lamps and electrodeless discharge lamps, production including the formation of quantum dot layers and protective layers in discharge vessels Establish technology to realize discharge lamps and electrodeless discharge lamps using quantum dots.

本発明は、内部にガスを封入した放電管を備えた放電灯、或いは、内部にガスを封入した放電電極を有さない無電極放電管と、該無電極放電管に近接して配置される誘導コイルと、該誘導コイルに高周波電力を供給する回路とを備えた無電極放電灯に於いて、該放電管に於いて生起される紫外光を可視光に変換する機能材料として量子ドットを用いたことを特徴とする、放電灯及び無電極放電灯である。   The present invention is a discharge lamp provided with a discharge tube enclosing gas therein, or an electrodeless discharge tube not having a discharge electrode enclosing gas therein, and is disposed close to the electrodeless discharge tube In an electrodeless discharge lamp having an induction coil and a circuit for supplying high-frequency power to the induction coil, quantum dots are used as a functional material for converting ultraviolet light generated in the discharge tube into visible light. A discharge lamp and an electrodeless discharge lamp.

また本発明は、該量子ドット材料が該放電管の内面に形成されていることを特徴とする。さらに本発明は、量子ドット材料が該放電管の内面に形成され、且つ、該量子ドット材料表面に保護層が形成されていることを特徴とする。   The present invention is also characterized in that the quantum dot material is formed on the inner surface of the discharge tube. Furthermore, the present invention is characterized in that the quantum dot material is formed on the inner surface of the discharge tube, and a protective layer is formed on the surface of the quantum dot material.

また本発明は、該量子ドット材料が該放電管の外面に形成されていることを特徴とする。さらに本発明は、該量子ドット材料が該放電管の内面に形成され、且つ、該量子ドット材料表面に保護層が形成されていることを特徴とする。   The present invention is also characterized in that the quantum dot material is formed on the outer surface of the discharge tube. Furthermore, the present invention is characterized in that the quantum dot material is formed on the inner surface of the discharge tube, and a protective layer is formed on the surface of the quantum dot material.

また本発明は、該量子ドット材料が、Stranski-Krastanovモードによる結晶成長により形成されたものを用いることを特徴とする。或いは本発明は、該量子ドット材料が微細マスクを利用した選択成長により形成されたものを用いることを特徴とする。或いは本発明は、該量子ドット材料が界面活性剤を用いた液層成長により形成されたものを用いることを特徴とする。或いは本発明は、該量子ドット材料が酸化錫を主成分とすることを特徴とする。   Further, the present invention is characterized in that the quantum dot material is formed by crystal growth in Stranski-Krastanov mode. Alternatively, the present invention is characterized in that the quantum dot material is formed by selective growth using a fine mask. Alternatively, the present invention is characterized in that the quantum dot material is formed by liquid layer growth using a surfactant. Alternatively, the present invention is characterized in that the quantum dot material contains tin oxide as a main component.

また本発明は、該量子ドット材料が錫化合物を主成分とすることを特徴とする。或いは本発明は、該量子ドット材料が鉛化合物を主成分とすることを特徴とする。或いは本発明は、該量子ドット材料がアンチモン化合物を主成分とすることを特徴とする。或いは本発明は、該量子ドット材料がビスマス化合物を主成分とすることを特徴とする。   Further, the present invention is characterized in that the quantum dot material contains a tin compound as a main component. Alternatively, the present invention is characterized in that the quantum dot material contains a lead compound as a main component. Alternatively, the present invention is characterized in that the quantum dot material contains an antimony compound as a main component. Alternatively, the present invention is characterized in that the quantum dot material contains a bismuth compound as a main component.

また本発明は、該量子ドット材料が複数の波長にピークを有する材料を混合して用いることを特徴とする。   In addition, the present invention is characterized in that the quantum dot material is used by mixing materials having peaks at a plurality of wavelengths.

また本発明は、該量子ドット材料が液相成膜法により成膜されたことを特徴とする。或いは本発明は、該量子ドット材料がスプレー法により成膜されたことを特徴とする。或いは本発明は、該量子ドット材料が印刷法により成膜されたことを特徴とする。或いは本発明は、該量子ドット材料がコロイド溶液の状態で液相成膜に用いられることを特徴とする。   Further, the present invention is characterized in that the quantum dot material is formed by a liquid phase film formation method. Alternatively, the present invention is characterized in that the quantum dot material is formed by a spray method. Alternatively, the present invention is characterized in that the quantum dot material is formed by a printing method. Alternatively, the present invention is characterized in that the quantum dot material is used for liquid phase film formation in the state of a colloidal solution.

また本発明は、該量子ドット材料が液相成膜法により成膜された後に減圧加熱して形成されることを特徴とする。   Further, the present invention is characterized in that the quantum dot material is formed by heating under reduced pressure after being formed by a liquid phase film forming method.

また本発明は、該量子ドット材料の膜形成の前に、成膜対象の表面を親水化処理することを特徴とする。さらに本発明は、該成膜対象の表面を親水化処理は、オゾン、プラズマ、過酸化水素或いはアンモニアの水溶液により行われることを特徴とする。   Further, the present invention is characterized in that the surface of the film formation target is subjected to a hydrophilic treatment before the film formation of the quantum dot material. Furthermore, the present invention is characterized in that the surface of the film formation target is hydrophilized with an aqueous solution of ozone, plasma, hydrogen peroxide or ammonia.

また本発明は、該量子ドット材料のコロイド溶液が正又は負に帯電する高分子材料を含んでなることを特徴とする。   The present invention is also characterized in that the colloidal solution of the quantum dot material comprises a polymer material that is positively or negatively charged.

本発明の放電灯及び無電極放電灯は、放電灯及び無電極放電灯のプラズマ励起による紫外光を可視光に変換する波長変換材料として量子ドット材料を応用するため、放電菅内への量子ドット層の形成、保護層の形成を含む生産技術を確立し、量子ドットを用いた放電灯及び無電極放電灯を実現し、その超長寿命という特性を活かして高天井やトンネル内などメンテナンスが困難な用途に於いて有効な照明装置を実現するという利点がある。   The discharge lamp and the electrodeless discharge lamp of the present invention apply the quantum dot material as a wavelength conversion material that converts ultraviolet light generated by plasma excitation of the discharge lamp and the electrodeless discharge lamp into visible light. Production technology including the formation of a protective layer and the formation of discharge lamps and electrodeless discharge lamps using quantum dots, making it difficult to maintain high ceilings, tunnels, etc. by taking advantage of their ultra-long life characteristics There is an advantage that an illumination device effective in the application is realized.

図1は、本発明にかかる無電極放電灯の一例を示した概念図である。FIG. 1 is a conceptual diagram showing an example of an electrodeless discharge lamp according to the present invention. 図2は、本発明にかかる量子ドットを用いた放電灯及び無電極放電灯の製造工程の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a manufacturing process of a discharge lamp and an electrodeless discharge lamp using the quantum dots according to the present invention. 図3は、本発明にかかる無電極放電灯の他の例を示した概念図である。FIG. 3 is a conceptual diagram showing another example of the electrodeless discharge lamp according to the present invention. 図4は、本発明にかかる無電極放電灯の発光状態の一例を示す図面代用写真である。FIG. 4 is a drawing-substituting photograph showing an example of the light emission state of the electrodeless discharge lamp according to the present invention. 図5は、本発明にかかる無電極放電灯のガスの励起状態における波長分布の一例を示すグラフである。FIG. 5 is a graph showing an example of the wavelength distribution in the excited state of the gas of the electrodeless discharge lamp according to the present invention. 図6は、本発明にかかる無電極放電灯に本発明にかかる量子ドットを用いた場合における波長分布の一例を示すグラフである。FIG. 6 is a graph showing an example of the wavelength distribution when the quantum dots according to the present invention are used in the electrodeless discharge lamp according to the present invention.

本発明は、内部にガスを封入した放電管を備えた放電灯、或いは、内部にガスを封入した放電電極を有さない無電極放電管と、該無電極放電管に近接して配置される誘導コイルと、該誘導コイルに高周波電力を供給する回路とを備えた無電極放電灯に於いて、該放電管に於いて生起される紫外光を可視光に変換する機能材料として量子ドットを用いたことを特徴とする、放電灯及び無電極放電灯である。   The present invention is a discharge lamp provided with a discharge tube enclosing gas therein, or an electrodeless discharge tube not having a discharge electrode enclosing gas therein, and is disposed close to the electrodeless discharge tube In an electrodeless discharge lamp having an induction coil and a circuit for supplying high-frequency power to the induction coil, quantum dots are used as a functional material for converting ultraviolet light generated in the discharge tube into visible light. A discharge lamp and an electrodeless discharge lamp.

また本発明は、該量子ドット材料が該放電管の内面に形成されていることを特徴とする。さらに本発明は、量子ドット材料が該放電管の内面に形成され、且つ、該量子ドット材料表面に保護層が形成されていることを特徴とする。   The present invention is also characterized in that the quantum dot material is formed on the inner surface of the discharge tube. Furthermore, the present invention is characterized in that the quantum dot material is formed on the inner surface of the discharge tube, and a protective layer is formed on the surface of the quantum dot material.

また本発明は、該量子ドット材料が該放電管の外面に形成されていることを特徴とする。さらに本発明は、該量子ドット材料が該放電管の内面に形成され、且つ、該量子ドット材料表面に保護層が形成されていることを特徴とする。   The present invention is also characterized in that the quantum dot material is formed on the outer surface of the discharge tube. Furthermore, the present invention is characterized in that the quantum dot material is formed on the inner surface of the discharge tube, and a protective layer is formed on the surface of the quantum dot material.

また本発明は、該量子ドット材料が、Stranski-Krastanovモードによる結晶成長により形成されたものを用いることを特徴とする。或いは本発明は、該量子ドット材料が微細マスクを利用した選択成長により形成されたものを用いることを特徴とする。或いは本発明は、該量子ドット材料が界面活性剤を用いた液層成長により形成されたものを用いることを特徴とする。或いは本発明は、該量子ドット材料が酸化錫を主成分とすることを特徴とする。   Further, the present invention is characterized in that the quantum dot material is formed by crystal growth in Stranski-Krastanov mode. Alternatively, the present invention is characterized in that the quantum dot material is formed by selective growth using a fine mask. Alternatively, the present invention is characterized in that the quantum dot material is formed by liquid layer growth using a surfactant. Alternatively, the present invention is characterized in that the quantum dot material contains tin oxide as a main component.

また本発明は、該量子ドット材料が錫化合物を主成分とすることを特徴とする。或いは本発明は、該量子ドット材料が鉛化合物を主成分とすることを特徴とする。或いは本発明は、該量子ドット材料がアンチモン化合物を主成分とすることを特徴とする。或いは本発明は、該量子ドット材料がビスマス化合物を主成分とすることを特徴とする。   Further, the present invention is characterized in that the quantum dot material contains a tin compound as a main component. Alternatively, the present invention is characterized in that the quantum dot material contains a lead compound as a main component. Alternatively, the present invention is characterized in that the quantum dot material contains an antimony compound as a main component. Alternatively, the present invention is characterized in that the quantum dot material contains a bismuth compound as a main component.

また本発明は、該量子ドット材料が複数の波長にピークを有する材料を混合して用いることを特徴とする。   In addition, the present invention is characterized in that the quantum dot material is used by mixing materials having peaks at a plurality of wavelengths.

また本発明は、該量子ドット材料が液相成膜法により成膜されたことを特徴とする。或いは本発明は、該量子ドット材料がスプレー法により成膜されたことを特徴とする。或いは本発明は、該量子ドット材料が印刷法により成膜されたことを特徴とする。或いは本発明は、該量子ドット材料がコロイド溶液の状態で液相成膜に用いられることを特徴とする。   Further, the present invention is characterized in that the quantum dot material is formed by a liquid phase film formation method. Alternatively, the present invention is characterized in that the quantum dot material is formed by a spray method. Alternatively, the present invention is characterized in that the quantum dot material is formed by a printing method. Alternatively, the present invention is characterized in that the quantum dot material is used for liquid phase film formation in the state of a colloidal solution.

また本発明は、該量子ドット材料が液相成膜法により成膜された後に減圧加熱して形成されることを特徴とする。   Further, the present invention is characterized in that the quantum dot material is formed by heating under reduced pressure after being formed by a liquid phase film forming method.

また本発明は、該量子ドット材料の膜形成の前に、成膜対象の表面を親水化処理することを特徴とする。さらに本発明は、該成膜対象の表面を親水化処理は、オゾン、プラズマ、過酸化水素或いはアンモニアの水溶液により行われることを特徴とする。   Further, the present invention is characterized in that the surface of the film formation target is subjected to a hydrophilic treatment before the film formation of the quantum dot material. Furthermore, the present invention is characterized in that the surface of the film formation target is hydrophilized with an aqueous solution of ozone, plasma, hydrogen peroxide or ammonia.

また本発明は、該量子ドット材料のコロイド溶液が正又は負に帯電する高分子材料を含んでなることを特徴とする。   The present invention is also characterized in that the colloidal solution of the quantum dot material comprises a polymer material that is positively or negatively charged.

図1は、本発明にかかる無電極放電灯の一例を示した概念図である。図1に示されているのはリング状の放電管1と放電管外部に配設された電界印加用コイル2を有し、上部に反射板3を備えたものである。ここで、本発明にかかる放電灯としては無電極放電灯に限定されるものではなく、放電管内に電極を有する通常の蛍光灯と同様の構造を持つものでも問題ない。また、反射板の有無は全く問題なく、セード型の反射板や拡散板などを備えた形態でも全く問題ない。或いは、放電管は電球型のものでも問題なく、無電極放電管の場合は電界印加用コイルを内側に備えたものでも良い。   FIG. 1 is a conceptual diagram showing an example of an electrodeless discharge lamp according to the present invention. FIG. 1 shows a ring-shaped discharge tube 1 and an electric field applying coil 2 disposed outside the discharge tube, and a reflection plate 3 provided on the top. Here, the discharge lamp according to the present invention is not limited to the electrodeless discharge lamp, and there is no problem even if it has the same structure as a normal fluorescent lamp having electrodes in the discharge tube. In addition, the presence or absence of a reflector is not a problem at all, and there is no problem even in a form including a shade-type reflector or a diffuser. Alternatively, the discharge tube may be a bulb type, and in the case of an electrodeless discharge tube, an electric field applying coil may be provided inside.

本実施例において、リング形状の放電管を有する無電極放電灯の放電管1は外部に電界印加用コイル2を備えており、これから生ずる電界により放電管内にプラズマを励起する。このプラズマにより内部に封入されたガスが励起されて主として紫外域にピークを持つ励起光が放出され、これが本発明に係る量子ドット層に入射して可視光に波長変換されて発光素子として機能する。   In this embodiment, a discharge tube 1 of an electrodeless discharge lamp having a ring-shaped discharge tube is provided with an electric field applying coil 2 outside, and plasma is excited in the discharge tube by an electric field generated therefrom. The gas enclosed inside is excited by this plasma to emit excitation light having a peak mainly in the ultraviolet region, which is incident on the quantum dot layer according to the present invention and wavelength-converted into visible light to function as a light emitting element. .

図2は、本発明に係る量子ドットを用いた放電灯及び無電極放電灯の製造工程の一例を示すフローチャートである。本実施例に於いては、リング状の放電管を有する無電極放電灯に量子ドットを用いた。放電管に於いて生起される紫外光を可視光に変換する機能材料として量子ドットを用いている。ここで、本発明にかかる放電灯としては無電極放電灯に限定されるものではなく、放電管内に電極を有する通常の蛍光灯と同様の構造を持つものでも問題ない。また、反射板の有無は全く問題なく、セード型の反射板や拡散板などを備えた形態でも全く問題ない。或いは、放電管は電球型のものでも問題なく、無電極放電管の場合は電界印加用コイルを内側に備えたものでも良い。   FIG. 2 is a flowchart showing an example of a manufacturing process of a discharge lamp and an electrodeless discharge lamp using the quantum dots according to the present invention. In this example, quantum dots were used for an electrodeless discharge lamp having a ring-shaped discharge tube. Quantum dots are used as a functional material that converts ultraviolet light generated in a discharge tube into visible light. Here, the discharge lamp according to the present invention is not limited to the electrodeless discharge lamp, and there is no problem even if it has the same structure as a normal fluorescent lamp having electrodes in the discharge tube. In addition, the presence or absence of a reflector is not a problem at all, and there is no problem even in a form including a shade-type reflector or a diffuser. Alternatively, the discharge tube may be a bulb type, and in the case of an electrodeless discharge tube, an electric field applying coil may be provided inside.

本実施例に係る量子ドットを用いた放電灯及び無電極放電灯の製造工程に於いては、まずリングを二つに分割した形状のガラス管を用意した。この管の内面に量子ドット層を形成するため、前処理を行った。本実施例では前処理として親水化処理を行った。本実施例では、親水化処理は過酸化水素により管内面を洗浄することにより行ったが、処理はアンモニアの水溶液により行ってもよい。さらに、オゾン或いはプラズマによる処理によっても問題ない。   In the manufacturing process of the discharge lamp and the electrodeless discharge lamp using the quantum dots according to this example, first, a glass tube having a shape in which a ring is divided into two parts was prepared. In order to form a quantum dot layer on the inner surface of the tube, pretreatment was performed. In this example, a hydrophilic treatment was performed as a pretreatment. In this embodiment, the hydrophilic treatment is performed by washing the inner surface of the tube with hydrogen peroxide, but the treatment may be performed with an aqueous ammonia solution. Furthermore, there is no problem even by treatment with ozone or plasma.

続いて、管内面に量子ドット層を形成した。本実施例では、量子ドット材料が酸化錫を主成分とするものを用いた。量子ドット材料が錫化合物を主成分とするものを用いた。 2乃至5nmの錫酸化物SnO2は酸素欠陥の存在により紫外線照射下では青色発光を示し、また酸化物であるため安定性も高い。また錫を主成分とするペロブスカイト型ナノ結晶CH3NH3SnI3は非常に高い発光強度を示すため、低い励起光強度でも十分な発光を得ることができる。 Subsequently, a quantum dot layer was formed on the inner surface of the tube. In this example, a quantum dot material whose main component is tin oxide was used. A quantum dot material having a tin compound as a main component was used. Tin oxide SnO 2 having a thickness of 2 to 5 nm exhibits blue light emission under ultraviolet irradiation due to the presence of oxygen defects, and is also highly stable because it is an oxide. Since perovskite-type nanocrystalline CH 3 NH 3 SnI 3 composed mainly of tin indicating a very high luminous intensity, it is possible to obtain sufficient light emission even at a low excitation intensity.

なお、量子ドット材料としては錫化合物を主成分とするものだけでなく、鉛化合物、アンチモン化合物或いはビスマス化合物を主成分とするものも好適に用いられる。さらに、カドミウム、セレン、ガリウム、砒素、インジウムなど従来から用いられる材料系も用いることができる。   In addition, as a quantum dot material, not only the thing which has a tin compound as a main component but the thing which has a lead compound, an antimony compound, or a bismuth compound as a main component is used suitably. Furthermore, conventionally used materials such as cadmium, selenium, gallium, arsenic, and indium can also be used.

量子ドット材料の形成には、界面活性剤を用いた液層成長により形成されたものを用いた。SnO2ナノ結晶粒子は、高沸点有機溶媒中での金属錯体の熱分解を利用した。具体的には、高沸点有機溶媒、IV価のSnの金属錯体とアミンとアルコールを溶解させ、真空下で加熱した後、不活性気体流中200℃乃至260℃の温度範囲に加熱して金属錯体を熱分解させ、ナノ結晶粒子を形成させる。 得られたナノ結晶はヘキサンとエタノールで遠心分離によって洗浄し、最後にヘキサンに分散させた。有機溶媒としては、例えばジベンジルエーテル、オクタデセン、トリオクチルフォスフィンなどが利用できる。アミンとしては、例えばオレイルアミン、オクタデシルアミンが利用できる。アルコールとしては、オクタンジオール、ヘキサデカンジオールなどが利用できる。 For the formation of the quantum dot material, a material formed by liquid layer growth using a surfactant was used. SnO 2 nanocrystal particles utilized thermal decomposition of a metal complex in a high boiling point organic solvent. Specifically, a high-boiling organic solvent, a metal complex of IV valent Sn, an amine and an alcohol are dissolved, heated under vacuum, and then heated to a temperature range of 200 ° C. to 260 ° C. in an inert gas stream. The complex is thermally decomposed to form nanocrystalline particles. The obtained nanocrystals were washed with hexane and ethanol by centrifugation, and finally dispersed in hexane. As the organic solvent, for example, dibenzyl ether, octadecene, trioctylphosphine and the like can be used. Examples of amines that can be used include oleylamine and octadecylamine. As the alcohol, octanediol, hexadecandiol and the like can be used.

ペロブスカイト型ナノ結晶CH3NH3SnI3はエマルジョン法によって合成した。具体的には、臭化メチルアンモニウムをN,N−ジメチルホルムアミドに溶解させた溶液と臭化錫をN,N−ジメチルホルムアミドに溶解させた溶液を用意し、これをオレイン酸とオクチルアミンを含むヘキサン溶液に一滴ずつ滴下する。この混合溶液に第3級ブタノールを加えることで望みとするナノ結晶を得た。ナノ結晶は遠心分離によってトルエンで洗浄して、最後にトルエンに分散させた。 Perovskite nanocrystals CH 3 NH 3 SnI 3 were synthesized by the emulsion method. Specifically, a solution in which methylammonium bromide is dissolved in N, N-dimethylformamide and a solution in which tin bromide is dissolved in N, N-dimethylformamide are prepared, and this contains oleic acid and octylamine. Add dropwise to the hexane solution. The desired nanocrystal was obtained by adding tertiary butanol to this mixed solution. The nanocrystals were washed with toluene by centrifugation and finally dispersed in toluene.

なお、量子ドット材料の形成方法としては、Stranski-Krastanovモードによる結晶成長により形成されたもの或いは微細マスクを利用した選択成長により形成されたものも好適に用いられる。   As a method for forming the quantum dot material, a method formed by crystal growth in the Stranski-Krastanov mode or a method formed by selective growth using a fine mask is also preferably used.

本実施例に於いては、量子ドット材料が複数の波長にピークを有する材料を混合して用いた。これにより、発光スペクトルがよりブロードになり、演色性や発光効率が向上した。   In this example, the quantum dot material was used by mixing materials having peaks at a plurality of wavelengths. As a result, the emission spectrum becomes broader, and the color rendering properties and luminous efficiency are improved.

本実施例に於いては、量子ドット層の形成には液相成膜法を用いた。具体的には、量子ドット材料を含むコロイド溶液を管内面に接触させることにより薄膜層を形成し、その後減圧加熱して成膜した。ここで、成膜法としてはスプレー法や印刷法を用いてもよい。また、後処理としては減圧加熱のみならず常圧での加熱、窒素や希ガス雰囲気下での加熱、或いは減圧のみによっても良い。さらに、後述する保護層の形成後に同時に後処理を行っても良い。   In this example, a liquid phase film forming method was used to form the quantum dot layer. Specifically, a thin film layer was formed by bringing a colloidal solution containing a quantum dot material into contact with the inner surface of the tube, and then heated under reduced pressure to form a film. Here, a spray method or a printing method may be used as the film forming method. Further, the post-treatment may be performed not only under reduced pressure heating but also under normal pressure, in a nitrogen or rare gas atmosphere, or under reduced pressure alone. Furthermore, you may perform a post-processing simultaneously after formation of the protective layer mentioned later.

本実施例に於いては、量子ドット材料のコロイド溶液が正に帯電する高分子材料を含んだものを用いた。これにより、成膜性が向上し均一な発光層の形成に有効であった。   In this example, a colloidal solution of quantum dot material containing a positively charged polymer material was used. Thereby, the film forming property was improved and it was effective in forming a uniform light emitting layer.

本実施例に於いては、さらに量子ドット層の表面に保護層を形成した。保護層材料としては、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、COP(シクロオレフィンポリマー)といった透明高分子を用いることができる。   In this example, a protective layer was further formed on the surface of the quantum dot layer. As the protective layer material, transparent polymers such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and COP (cycloolefin polymer) can be used.

本実施例に於いては、前記の工程を経て管内面に量子ドット層及び保護層を形成したリングを二つに分割した形状のガラス管を融着してリング状に形成し、内部を減圧したのちプラズマ励起のためのガスを注入して封止し、放電管を形成した。   In the present embodiment, a glass tube having a shape in which a quantum dot layer and a protective layer are formed on the inner surface of the tube through the above-described steps is fused into a ring shape, and the inside is decompressed. After that, a gas for plasma excitation was injected and sealed to form a discharge tube.

ここで、リングを二つに分割した形状のガラス管の接続はセラミックセメント等を用いる等の他の方法によっても問題ない。封入するガスは通常の水銀を含むものでも良いが、硫黄系等の水銀を用いない他の励起ガスであっても問題ない。   Here, the connection of the glass tube having a shape in which the ring is divided into two parts is not problematic even by other methods such as using ceramic cement or the like. The gas to be sealed may contain ordinary mercury, but other excited gases that do not use mercury such as sulfur-based gas may be used.

本実施例に於いては、無電極放電管に近接して配置される誘導コイルとして2個のリングコイルを配設した。かかる構成により、本発明の放電灯及び無電極放電灯は、放電灯及び無電極放電灯のプラズマ励起による紫外光を可視光に変換する波長変換材料として量子ドット材料を応用し、高効率の波長変換を可能として、高天井やトンネル内などメンテナンスが困難な用途に於いて有効な照明装置を実現することができた。   In the present embodiment, two ring coils are arranged as induction coils arranged close to the electrodeless discharge tube. With such a configuration, the discharge lamp and the electrodeless discharge lamp of the present invention apply a quantum dot material as a wavelength conversion material that converts ultraviolet light generated by plasma excitation of the discharge lamp and the electrodeless discharge lamp into visible light, and provide a highly efficient wavelength. Conversion was possible, and an effective lighting device could be realized in applications where maintenance is difficult, such as in high ceilings and tunnels.

図3は、本発明にかかる無電極放電灯の他の例を示した概念図である。本実施例では、電球形状の無電極放電管を使用し、誘導コイルは管球の内部に設置されている。   FIG. 3 is a conceptual diagram showing another example of the electrodeless discharge lamp according to the present invention. In this embodiment, a light bulb-shaped electrodeless discharge tube is used, and the induction coil is installed inside the tube.

本実施例に於いては、量子ドット材料を放電管の外面に形成した。さらにその表面に保護層を形成している。なお、管球を形成する材料は紫外線の吸収が少ないものが求められ、本実施例に於いては石英ガラスを用いたが、高耐久性の樹脂等の他の材料を用いても問題ない。   In this example, the quantum dot material was formed on the outer surface of the discharge tube. Further, a protective layer is formed on the surface. It should be noted that the material for forming the tube is required to have a low absorption of ultraviolet rays. In this embodiment, quartz glass is used, but other materials such as a highly durable resin may be used.

量子ドット材料、成膜方法、保護層材料、成膜方法及び減圧加熱による後処理方法は実施例1に記載の方法と同様のものを用いた。かかる構成により、管内面に量子ドット層を形成したものに較べて製造工程が簡易化され、より低コストで高効率な照明装置を実現することができた。   The quantum dot material, film formation method, protective layer material, film formation method, and post-treatment method using reduced pressure heating were the same as those described in Example 1. With this configuration, the manufacturing process is simplified as compared with the case where the quantum dot layer is formed on the inner surface of the tube, and a lighting device that is more inexpensive and highly efficient can be realized.

図4は、本発明にかかる無電極放電灯の発光状態の一例を示す図面代用写真である。本実施例では、量子ドットによる波長変換効果を検討するため、二重U字型構造のガラス管中にガスを充填し、これを外部から励起して発光させている。   FIG. 4 is a drawing-substituting photograph showing an example of the light emission state of the electrodeless discharge lamp according to the present invention. In this embodiment, in order to examine the wavelength conversion effect by the quantum dots, a double U-shaped glass tube is filled with a gas, which is excited from the outside to emit light.

図5は、本発明にかかる無電極放電灯のガスの励起状態における波長分布の一例を示すグラフである。このように、本発明に於いては放電灯及び無電極放電灯のプラズマ励起による紫外光を可視光に変換する波長変換材料として量子ドット材料を応用する。本実施例に於いてはかかる波長分布を有する励起光を緑色発光の量子ドットを使用して波長変換し、その効果を確認した。   FIG. 5 is a graph showing an example of the wavelength distribution in the excited state of the gas of the electrodeless discharge lamp according to the present invention. Thus, in the present invention, the quantum dot material is applied as a wavelength conversion material that converts ultraviolet light generated by plasma excitation of discharge lamps and electrodeless discharge lamps into visible light. In this example, the wavelength of excitation light having such a wavelength distribution was converted using a green light emitting quantum dot, and the effect was confirmed.

図6は、本発明にかかる無電極放電灯に本発明にかかる量子ドットを用いた場合における波長分布の一例(緑色発光の量子ドットを使用した場合)を示すグラフである。ここで、図5には生じていなかった500乃至550nmの範囲にブロードなピークが生成していることが確認できる。   FIG. 6 is a graph showing an example of the wavelength distribution when the quantum dots according to the present invention are used in the electrodeless discharge lamp according to the present invention (when green light emitting quantum dots are used). Here, it can be confirmed that a broad peak is generated in the range of 500 to 550 nm, which did not occur in FIG.

本実施例の結果から、量子ドット材料により放電灯及び無電極放電灯のプラズマ励起による紫外光を可視光に変換する波長変換材料として量子ドット材料が有効であることが実証された。   From the results of this example, it was demonstrated that the quantum dot material is effective as a wavelength conversion material that converts ultraviolet light generated by plasma excitation of a discharge lamp and an electrodeless discharge lamp into visible light.

以上述べてきたように放電灯及び無電極放電灯は、放電灯及び無電極放電灯のプラズマ励起による紫外光を可視光に変換する波長変換材料として量子ドット材料を応用するため、放電菅内への量子ドット層の形成、保護層の形成を含む生産技術を確立し、量子ドットを用いた放電灯及び無電極放電灯を実現し、その超長寿命という特性を活かして高天井やトンネル内などメンテナンスが困難な用途に於いて有効な照明装置を実現するという利点があり、産業状の利用可能性は大であると言える。   As described above, discharge lamps and electrodeless discharge lamps apply quantum dot materials as wavelength conversion materials that convert ultraviolet light generated by plasma excitation of discharge lamps and electrodeless discharge lamps into visible light. Established production technologies including the formation of quantum dot layers and protective layers to realize discharge lamps and electrodeless discharge lamps using quantum dots, and maintain them in high ceilings and tunnels by taking advantage of their ultra-long life characteristics Therefore, it can be said that there is an advantage of realizing an effective lighting device in a difficult application, and the industrial applicability is great.

1 無電極放電灯の放電管
2 電界印加用コイル
3 反射板
DESCRIPTION OF SYMBOLS 1 Discharge tube of an electrodeless discharge lamp 2 Coil for electric field application 3 Reflecting plate

Claims (26)

内部にガスを封入した放電管を備えた放電灯に於いて、
該放電管に於いて生起される紫外光を可視光に変換する機能材料として量子ドットを用いたことを特徴とする、
放電灯。
In a discharge lamp having a discharge tube filled with gas inside,
Quantum dots are used as a functional material for converting ultraviolet light generated in the discharge tube into visible light,
Discharge lamp.
該量子ドット材料は、
該放電管の内面に形成されていることを特徴とする、
請求項1記載の、放電灯。
The quantum dot material is
It is formed on the inner surface of the discharge tube,
The discharge lamp according to claim 1.
該量子ドット材料は、
該放電管の内面に形成され、
且つ、該量子ドット材料表面に保護層が形成されていることを特徴とする、
請求項2記載の、放電灯。
The quantum dot material is
Formed on the inner surface of the discharge tube;
And, a protective layer is formed on the surface of the quantum dot material,
The discharge lamp according to claim 2.
該量子ドット材料は、
該放電管の外面に形成されていることを特徴とする、
請求項1記載の、放電灯。
The quantum dot material is
It is formed on the outer surface of the discharge tube,
The discharge lamp according to claim 1.
該量子ドット材料は、
該放電管の内面に形成され、
且つ、該量子ドット材料表面に保護層が形成されていることを特徴とする、
請求項4記載の、放電灯。
The quantum dot material is
Formed on the inner surface of the discharge tube;
And, a protective layer is formed on the surface of the quantum dot material,
The discharge lamp according to claim 4.
内部にガスを封入した放電電極を有さない無電極放電管と、
該無電極放電管に近接して配置される誘導コイルと、
該誘導コイルに高周波電力を供給する回路とを備えた無電極放電灯に於いて、
該無電極放電管に於いて生起される紫外光を可視光に変換する機能材料として量子ドットを用いたことを特徴とする、
無電極放電灯。
An electrodeless discharge tube that does not have a discharge electrode filled with gas;
An induction coil disposed proximate to the electrodeless discharge tube;
In an electrodeless discharge lamp comprising a circuit for supplying high frequency power to the induction coil,
Quantum dots are used as a functional material for converting ultraviolet light generated in the electrodeless discharge tube into visible light,
Electrodeless discharge lamp.
該量子ドット材料は、
該無電極放電管の内面に形成されていることを特徴とする、
請求項6記載の、無電極放電灯。
The quantum dot material is
It is formed on the inner surface of the electrodeless discharge tube,
The electrodeless discharge lamp according to claim 6.
該量子ドット材料は、
該無電極放電管の内面に形成され、
且つ、該量子ドット材料表面に保護層が形成されていることを特徴とする、
請求項7記載の、無電極放電灯。
The quantum dot material is
Formed on the inner surface of the electrodeless discharge tube,
And, a protective layer is formed on the surface of the quantum dot material,
The electrodeless discharge lamp according to claim 7.
該量子ドット材料は、
該無電極放電管の外面に形成されていることを特徴とする、
請求項6記載の、無電極放電灯。
The quantum dot material is
It is formed on the outer surface of the electrodeless discharge tube,
The electrodeless discharge lamp according to claim 6.
該量子ドット材料は、
該無電極放電管の内面に形成され、
且つ、該量子ドット材料表面に保護層が形成されていることを特徴とする、
請求項9記載の、無電極放電灯。
The quantum dot material is
Formed on the inner surface of the electrodeless discharge tube,
And, a protective layer is formed on the surface of the quantum dot material,
The electrodeless discharge lamp according to claim 9.
該量子ドット材料は、
Stranski-Krastanovモードによる結晶成長により形成されたものを用いることを特徴とする、
請求項1乃至10の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
Using one formed by crystal growth in Stranski-Krastanov mode,
A discharge lamp and an electrodeless discharge lamp according to any one of claims 1 to 10.
該量子ドット材料は、
微細マスクを利用した選択成長により形成されたものを用いることを特徴とする、
請求項1乃至10の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
Using one formed by selective growth using a fine mask,
A discharge lamp and an electrodeless discharge lamp according to any one of claims 1 to 10.
該量子ドット材料は、
界面活性剤を用いた液層成長により形成されたものを用いることを特徴とする、
請求項1乃至10の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
It is characterized by using one formed by liquid layer growth using a surfactant.
A discharge lamp and an electrodeless discharge lamp according to any one of claims 1 to 10.
該量子ドット材料は、
錫化合物を主成分とすることを特徴とする、
請求項1乃至13の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
The main component is a tin compound,
A discharge lamp and an electrodeless discharge lamp according to any one of claims 1 to 13.
該量子ドット材料は、
鉛化合物を主成分とすることを特徴とする、
請求項1乃至13の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
The main component is a lead compound.
A discharge lamp and an electrodeless discharge lamp according to any one of claims 1 to 13.
該量子ドット材料は、
アンチモン化合物を主成分とすることを特徴とする、
請求項1乃至13の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
The main component is an antimony compound.
A discharge lamp and an electrodeless discharge lamp according to any one of claims 1 to 13.
該量子ドット材料は、
ビスマス化合物を主成分とすることを特徴とする、
請求項1乃至13の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
The main component is a bismuth compound.
A discharge lamp and an electrodeless discharge lamp according to any one of claims 1 to 13.
該量子ドット材料は、
複数の波長にピークを有する材料を混合して用いることを特徴とする、
請求項1乃至17の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
A mixture of materials having peaks at a plurality of wavelengths is used.
A discharge lamp and an electrodeless discharge lamp according to any one of claims 1 to 17.
該量子ドット材料は、
液相成膜法により成膜されたことを特徴とする、
請求項1乃至18の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
It is formed by a liquid phase film formation method,
The discharge lamp and the electrodeless discharge lamp according to any one of claims 1 to 18.
該量子ドット材料は、
スプレー法により成膜されたことを特徴とする、
請求項19記載の、放電灯及び無電極放電灯。
The quantum dot material is
It is characterized by being formed by spraying,
20. A discharge lamp and an electrodeless discharge lamp according to claim 19.
該量子ドット材料は、
印刷法により成膜されたことを特徴とする、
請求項19記載の、放電灯及び無電極放電灯。
The quantum dot material is
The film is formed by a printing method,
20. A discharge lamp and an electrodeless discharge lamp according to claim 19.
該量子ドット材料は、
コロイド溶液の状態で液相成膜に用いられることを特徴とする、
請求項19乃至21の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
It is used for liquid phase film formation in the state of a colloidal solution,
A discharge lamp and an electrodeless discharge lamp according to any one of claims 19 to 21.
該量子ドット材料は、
液相成膜法により成膜された後に減圧加熱して形成されることを特徴とする、
請求項19乃至22の何れか一に記載の、放電灯及び無電極放電灯。
The quantum dot material is
It is characterized by being formed by heating under reduced pressure after being formed by a liquid phase film formation method,
The discharge lamp and electrodeless discharge lamp according to any one of claims 19 to 22.
該量子ドット材料の膜形成の前に、
成膜対象の表面を親水化処理することを特徴とする、
請求項19乃至23の何れか一に記載の、放電灯及び無電極放電灯。
Prior to film formation of the quantum dot material,
It is characterized by hydrophilizing the surface of the film formation target,
24. A discharge lamp and an electrodeless discharge lamp according to any one of claims 19 to 23.
該成膜対象の表面を親水化処理は、
オゾン、プラズマ、過酸化水素或いはアンモニアの水溶液により行われることを特徴とする、
請求項24記載の、放電灯及び無電極放電灯。
The surface of the film formation target is hydrophilized,
It is performed with an aqueous solution of ozone, plasma, hydrogen peroxide or ammonia,
A discharge lamp and an electrodeless discharge lamp according to claim 24.
該量子ドット材料のコロイド溶液は、
正又は負に帯電する高分子材料を含んでなることを特徴とする、
請求項22記載の、放電灯及び無電極放電灯。
The colloidal solution of the quantum dot material is
Comprising a polymer material that is positively or negatively charged,
23. A discharge lamp and an electrodeless discharge lamp according to claim 22.
JP2018017954A 2017-02-06 2018-02-05 Discharge lamp and electrodeless discharge lamp Pending JP2018129296A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019457 2017-02-06
JP2017019457 2017-02-06

Publications (2)

Publication Number Publication Date
JP2018129296A true JP2018129296A (en) 2018-08-16
JP2018129296A5 JP2018129296A5 (en) 2021-03-25

Family

ID=63174335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017954A Pending JP2018129296A (en) 2017-02-06 2018-02-05 Discharge lamp and electrodeless discharge lamp

Country Status (1)

Country Link
JP (1) JP2018129296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182037A1 (en) 2018-03-20 2019-09-26 国立大学法人東京工業大学 Antisense oligonucleotide having reduced toxicity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046000A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Quantum dot array material and photoelectric conversion element and wavelength conversion element using the same
KR20140109327A (en) * 2013-03-04 2014-09-15 오스람 실바니아 인코포레이티드 Led lamp with quantum dots layer
JP2016194986A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Backlight device and display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046000A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Quantum dot array material and photoelectric conversion element and wavelength conversion element using the same
KR20140109327A (en) * 2013-03-04 2014-09-15 오스람 실바니아 인코포레이티드 Led lamp with quantum dots layer
JP2016194986A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Backlight device and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182037A1 (en) 2018-03-20 2019-09-26 国立大学法人東京工業大学 Antisense oligonucleotide having reduced toxicity

Similar Documents

Publication Publication Date Title
US7132692B2 (en) Nanosilicon light-emitting element and manufacturing method thereof
JP4961526B2 (en) Visible light emitting material using surface modification of silica fine particles and method for producing the same
Do et al. N, S‐Induced Electronic States of Carbon Nanodots Toward White Electroluminescence
US20110297846A1 (en) Electron injection nanostructured semiconductor material anode electroluminescence method and device
Khademalrasool et al. The improvement of photocatalytic processes: Design of a photoreactor using high-power LEDs
Wang et al. A bright and stable violet carbon dot light‐emitting diode
CN104087296B (en) The method of fluorescent carbon quantum dot is prepared in a kind of laser irradiation
WO2008134056A1 (en) Photon energy coversion structure
GB2458443A (en) Electroluminescent device
KR20170097825A (en) Quantum dot structure capped metal or semiconductor oxide nanoparticle and manufacturing method at the same
Shao et al. Bright emission and high photoluminescence CsPb 2 Br 5 NCs encapsulated in mesoporous silica with ultrahigh stability and excellent optical properties for white light-emitting diodes
Ye et al. CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes
JP2018129296A (en) Discharge lamp and electrodeless discharge lamp
US20100044697A2 (en) Bright visible wavelength luminescent nanostructures and methods of making and devices for using the same
Yin et al. CdTe quantum dots and YAG hybrid phosphors for white light‐emitting diodes
JP2019176055A (en) Quantum dot thin film, method of forming the same, led element using quantum dot thin film, el element using quantum dot thin film, discharge lamp using quantum dot thin film, and electrodeless discharge lamp using quantum dot thin film
JP2019215516A (en) Quantum dot thin film, method of forming quantum dot thin film, led element using quantum dot thin film, el element using quantum dot thin film, discharge lamp using quantum dot thin film and electrodeless discharge lamp using quantum dot thin film
JP2022129793A (en) Ozone generating lighting device
JP2007063378A (en) Nanosilicon-containing and white color-emitting silicon oxide film and method for producing the same
Mousavi et al. Light-Emitting Devices–Luminescence from Low-Dimensional Nanostructures
CN108194844B (en) Deep ultraviolet light source for exciting fluorescent powder by electron beam
KR20120064866A (en) Ultra violet light emitter by using electric field emitter and fabrication method thereby
CN111161999A (en) Three-tube type excimer lamp
US20190237320A1 (en) Sulfur Plasma Lamp
JP4203651B2 (en) Electrodeless discharge lamp and electrodeless discharge lamp light source device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220704

A917 Reason for reinstatement of right to file examination request

Free format text: JAPANESE INTERMEDIATE CODE: A917

Effective date: 20231231