JP2018127987A - Biaxial-type gas turbine power generation system and control method of biaxial-type gas turbine power generation system - Google Patents

Biaxial-type gas turbine power generation system and control method of biaxial-type gas turbine power generation system Download PDF

Info

Publication number
JP2018127987A
JP2018127987A JP2017022887A JP2017022887A JP2018127987A JP 2018127987 A JP2018127987 A JP 2018127987A JP 2017022887 A JP2017022887 A JP 2017022887A JP 2017022887 A JP2017022887 A JP 2017022887A JP 2018127987 A JP2018127987 A JP 2018127987A
Authority
JP
Japan
Prior art keywords
power generation
pressure turbine
generation system
compressor
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017022887A
Other languages
Japanese (ja)
Inventor
大輔 原田
Daisuke Harada
大輔 原田
憲法 石居
Toshinori Ishii
憲法 石居
高橋 一雄
Kazuo Takahashi
一雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2017022887A priority Critical patent/JP2018127987A/en
Publication of JP2018127987A publication Critical patent/JP2018127987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable biaxial-type gas turbine power generation system capable of safely shifting to a no-load rating state while restricting the over-speed of a low pressure turbine during load breaking and a control method thereof.SOLUTION: A biaxial-type gas turbine power generation system comprises: a compressor for compressing air; a combustion chamber for burning the air compressed by the compressor and fuel; a high pressure turbine driven by the combustion gas produced in the combustion chamber coaxially with the compressor; a low pressure turbine driven by the combustion gas which has driven the high pressure turbine with a separate shaft from the compressor; and means for extracting the compressed air to the compressor, in which by setting the temperature of the mixed gas of extracted gas from the combustion gas which has driven the high pressure turbine and the compressed air extracted from the compressor to the rated exhaust gas temperature or lower, the output of the low pressure turbine is reduced and the over-speed is safely prevented while protecting an exhaust system from the high temperature of the combustion gas.SELECTED DRAWING: Figure 1

Description

本発明は、2軸式ガスタービン発電システムとその制御方法に関わり、特に、負荷遮断時における低圧タービンの過回転防止に有効な技術に関する。   The present invention relates to a two-shaft gas turbine power generation system and a control method thereof, and more particularly to a technique effective for preventing over-rotation of a low-pressure turbine at the time of load interruption.

送電系統に異常が発生した場合、送電系統の保護を目的として発電機を系統から遮断するとともに、発電機を駆動するガスタービンの燃料流量を無負荷定格状態の流量に急速に低下させる負荷遮断運転を実施する。   In the event of an abnormality in the power transmission system, the generator is shut off from the system for the purpose of protecting the power transmission system, and the load interruption operation that rapidly reduces the fuel flow rate of the gas turbine that drives the generator to the flow rate of the no-load rating To implement.

負荷遮断運転では、発電機遮断から燃料流量降下までの時間差、バルブ開閉速度に起因する燃料流量の応答遅れ、燃料流量調整弁から燃焼器までの配管に残留する燃料の燃焼等の影響によってガスタービンおよび発電機の回転数(タービンの回転数)に一時的な上昇がみられる。   In load shedding operation, the gas turbine is affected by the time difference from generator shutoff to fuel flow rate drop, fuel flow response delay due to valve opening and closing speed, and combustion of fuel remaining in the piping from the fuel flow control valve to the combustor. There is also a temporary increase in the generator speed (turbine speed).

タービン回転数の過度な上昇は駆動軸やタービン翼にダメージを与え、寿命低下の原因となることから、負荷遮断時にはタービンの過回転を防止する運転が必要となる。   An excessive increase in the turbine rotational speed damages the drive shaft and the turbine blades and causes a reduction in the service life. Therefore, it is necessary to perform an operation for preventing the turbine from over-rotating when the load is interrupted.

本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には「2軸ガスタービンにおける高圧タービン出口と低圧タービン入口の間から燃焼ガスを排気系統に抽気し、低圧タービンに流入する燃焼ガス流量を減少させることで低圧タービンの過回転を防止する方法」が開示されている。   As a background art in this technical field, for example, there is a technique such as Patent Document 1. Patent Document 1 states that “a combustion gas is extracted from between a high-pressure turbine outlet and a low-pressure turbine inlet in a two-shaft gas turbine to an exhaust system, thereby reducing the flow rate of the combustion gas flowing into the low-pressure turbine to prevent over-rotation of the low-pressure turbine. Is disclosed.

また、特許文献2には「タービンから昇圧用圧縮機駆動タービンに至る導管の途中から分岐し、昇圧用圧縮機駆動タービンの出口側に接続するバイパス流量調整弁を備えたバイパス路を設け、バイパス流量調整弁の弁開閉制御により、起動時や部分負荷時などのガス燃料を比較的多く必要としないとき、昇圧用圧縮機の動力を無駄に消費しないようにするガスタービン発電装置」が開示されている。(特許文献2の図6および段落[0053]参照)   Further, in Patent Document 2, a bypass passage having a bypass flow rate adjusting valve branched from the middle of a conduit from the turbine to the booster compressor drive turbine and connected to the outlet side of the booster compressor drive turbine is provided. Disclosed is a gas turbine power generator that prevents wasteful consumption of the power of a booster compressor when a relatively large amount of gas fuel is not required at the time of start-up or partial load, etc., by controlling the opening / closing of a flow regulating valve. ing. (See FIG. 6 and paragraph [0053] of Patent Document 2)

特開2005−233157号公報JP 2005-233157 A 特開2003−166428号公報JP 2003-166428 A

上述したように、ガスタービン発電システムにおいては負荷遮断時のタービンの過回転防止が必要であり、特に、圧縮機とその駆動用タービン(高圧タービン)を圧縮機軸(高圧駆動軸)で連結し、発電機と出力タービン(低圧タービン)を出力軸で連結する2軸式ガスタービン発電システムでは、出力タービン(低圧タービン)が負荷の大きな圧縮機と連結されていないため、負荷遮断時には出力タービン(低圧タービン)の過回転が生じやすく、その対策が重要な課題である。   As described above, in a gas turbine power generation system, it is necessary to prevent over-rotation of the turbine at the time of load interruption. In particular, a compressor and a driving turbine (high-pressure turbine) are connected by a compressor shaft (high-pressure driving shaft), In a two-shaft gas turbine power generation system in which a generator and an output turbine (low pressure turbine) are connected by an output shaft, the output turbine (low pressure turbine) is not connected to a compressor with a large load. Turbine) is likely to over-rotate, and countermeasures are an important issue.

上記特許文献1に開示された高圧タービン出口に抽気弁を用いる方法は、燃焼ガス流入量を低下させ、低圧タービンの出力を下げることから、低圧タービンの回転数上昇を抑制することができる。   The method of using a bleed valve at the high-pressure turbine outlet disclosed in Patent Document 1 can suppress the increase in the rotational speed of the low-pressure turbine because the combustion gas inflow amount is reduced and the output of the low-pressure turbine is reduced.

しかしながら、燃焼ガスをそのまま排気系統に接続すると、高温によって排気系統を損傷させる、または排気温度異常の検知によりガスタービンシステムが停止するという問題がある。   However, if the combustion gas is directly connected to the exhaust system, there is a problem that the exhaust system is damaged due to a high temperature or the gas turbine system is stopped due to detection of an abnormal exhaust temperature.

また、特許文献2のように、タービンの出口と昇圧用圧縮機駆動タービンの出口を接続するバイパス路を設けて、昇圧用圧縮機駆動タービンを介さずに燃焼ガスを流した場合も、同様に高温の燃焼ガスによる排気系統の損傷や排気温度異常の検知が問題となる。   Similarly, as in Patent Document 2, a bypass path that connects the turbine outlet and the booster compressor drive turbine outlet is provided, and the combustion gas flows without going through the booster compressor drive turbine. Damage to the exhaust system due to high-temperature combustion gas and detection of abnormal exhaust temperature are problematic.

そこで、本発明の目的は、負荷遮断時における低圧タービンの過回転を抑えつつ、安全に無負荷定格状態へ移行させることが可能な信頼性の高い2軸式ガスタービン発電システムとその制御方法を提供することにある。   Therefore, an object of the present invention is to provide a highly reliable two-shaft gas turbine power generation system and a control method thereof that can safely shift to a no-load rated state while suppressing over-rotation of a low-pressure turbine at the time of load interruption. It is to provide.

上記目的を達成するために、本発明は、空気を圧縮する圧縮機と、前記圧縮機で圧縮される圧縮空気と燃料を燃焼させる燃焼器と、高圧駆動軸で前記圧縮機と連結され、前記燃焼器で生成される燃焼ガスにより駆動する高圧タービンと、前記高圧タービンを駆動した燃焼ガスにより駆動する低圧タービンと、低圧駆動軸で前記低圧タービンと連結され、前記低圧タービンの駆動により発電する発電機と、前記発電機で得られる電力の送電系統と当該発電機との接続を遮断する遮断機と、前記低圧タービンから排出される排気を外部へ導く排気系統と、前記圧縮機と前記排気系統とを連結し、圧縮空気が内部を通過する圧縮空気抽気系統と、前記圧縮機から前記排気系統へ圧縮空気を抽気する圧縮機抽気弁と、前記高圧タービンの出口と前記排気系統とを連結し、燃焼ガスが内部を通過する燃焼ガス抽気系統と、前記高圧タービンの出口から前記排気系統へ燃焼ガスを抽気する燃焼ガス抽気弁と、前記排気系統に接続し、前記圧縮機からの圧縮空気と前記高圧タービンの出口からの燃焼ガスを混合させた混合ガスが内部を通過する混合ガス排気系統と、を備える2軸式ガスタービン発電システムであって、当該2軸式ガスタービン発電システムの負荷遮断運転時に、前記圧縮空気抽気系統を介して前記圧縮機から前記排気系統へ圧縮空気を抽気し、前記燃焼ガス抽気系統を介して前記高圧タービンの出口から前記排気系統へ燃焼ガスを抽気することで前記低圧タービンに流入する燃焼ガスの流量を減少させることを特徴とする。   In order to achieve the above object, the present invention is connected to the compressor by a compressor that compresses air, a combustor that combusts compressed air and fuel compressed by the compressor, and a high-pressure drive shaft, A high-pressure turbine that is driven by combustion gas generated by a combustor, a low-pressure turbine that is driven by combustion gas that drives the high-pressure turbine, and a power generation that is connected to the low-pressure turbine by a low-pressure drive shaft and generates power by driving the low-pressure turbine Machine, a power transmission system obtained by the generator and a breaker that cuts off the connection between the generator, an exhaust system that guides exhaust discharged from the low-pressure turbine to the outside, the compressor and the exhaust system A compressed air extraction system through which compressed air passes, a compressor extraction valve for extracting compressed air from the compressor to the exhaust system, an outlet of the high-pressure turbine, and the exhaust A compressor connected to the exhaust system, connected to the exhaust system, a combustion gas extraction system through which the combustion gas passes through, a combustion gas extraction valve for extracting combustion gas from an outlet of the high-pressure turbine to the exhaust system, A two-shaft gas turbine power generation system comprising a mixed gas exhaust system through which a mixed gas obtained by mixing compressed air from the high-pressure turbine and a combustion gas from an outlet of the high-pressure turbine passes. During load shutoff operation of the power generation system, compressed air is extracted from the compressor to the exhaust system via the compressed air extraction system, and the combustion gas is discharged from the outlet of the high pressure turbine to the exhaust system via the combustion gas extraction system The flow rate of the combustion gas flowing into the low-pressure turbine is reduced by extracting the gas.

また、本発明は、2軸式ガスタービン発電システムの制御方法であって、当該2軸式ガスタービン発電システムの負荷遮断運転時に、圧縮空気抽気系統を介して圧縮機から排気系統へ圧縮空気を抽気し、燃焼ガス抽気系統を介して高圧タービンの出口から前記排気系統へ燃焼ガスを抽気することで低圧タービンに流入する燃焼ガスの流量を減少させることを特徴とする。   The present invention also relates to a control method for a two-shaft gas turbine power generation system, wherein compressed air is supplied from a compressor to an exhaust system via a compressed air bleed system during a load shut-off operation of the two-shaft gas turbine power generation system. Extracting and extracting the combustion gas from the outlet of the high-pressure turbine to the exhaust system through the combustion gas extraction system reduces the flow rate of the combustion gas flowing into the low-pressure turbine.

本発明によれば、負荷遮断時における高圧タービン出口から排出される燃焼ガスの抽気によって低圧タービンの過回転を防止しつつ、さらに定格排気温度以上の高温から排気系統を保護し、排気温度異常などによるガスタービン発電システムの停止を回避することができ、安全に無負荷定格状態に移行できる。   According to the present invention, the exhaust system is protected from a high temperature above the rated exhaust temperature by preventing the over-rotation of the low-pressure turbine by extracting the combustion gas discharged from the high-pressure turbine outlet at the time of load interruption, and the exhaust temperature abnormality, etc. Therefore, the gas turbine power generation system can be prevented from being stopped, and can be safely shifted to a no-load rated state.

これにより、2軸式ガスタービン発電システムの信頼性向上が図れる。   As a result, the reliability of the two-shaft gas turbine power generation system can be improved.

上記した以外の課題、構成および効果は、以下の実施形態の説明によって明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施形態に係る2軸式ガスタービン発電システムの概略図である。1 is a schematic view of a two-shaft gas turbine power generation system according to an embodiment of the present invention. 本発明の一実施形態に係る低圧タービン過回転防止制御装置の概略図である。1 is a schematic diagram of a low-pressure turbine overspeed prevention control device according to an embodiment of the present invention. 本発明の一実施形態に係る2軸式ガスタービン発電システムの概略図である。1 is a schematic view of a two-shaft gas turbine power generation system according to an embodiment of the present invention. 本発明の一実施形態に係る2軸式ガスタービン発電システムの概略図である。1 is a schematic view of a two-shaft gas turbine power generation system according to an embodiment of the present invention. 本発明の一実施形態に係る2軸式ガスタービン発電システムの概略図である。1 is a schematic view of a two-shaft gas turbine power generation system according to an embodiment of the present invention.

以下、図面を用いて本発明の実施例を説明する。なお、各図面において、同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and detailed description of the overlapping portions is omitted.

図1および図2を参照して、本発明の第1の実施例である2軸式ガスタービン発電システムと負荷遮断時の制御装置について説明する。図1は本実施例の2軸式ガスタービン発電システムおよびその制御装置の概略図である。また、図2は図1における制御装置(低圧タービン過回転防止制御装置)100の概略図である。   With reference to FIG. 1 and FIG. 2, a two-shaft gas turbine power generation system and a control device at the time of load interruption according to a first embodiment of the present invention will be described. FIG. 1 is a schematic diagram of a two-shaft gas turbine power generation system and a control device thereof according to this embodiment. FIG. 2 is a schematic diagram of the control device (low pressure turbine over-rotation prevention control device) 100 in FIG.

本実施例の2軸式ガスタービン発電システムは、図1に示すように、空気20を圧縮する圧縮機2と、圧縮機2で圧縮された燃焼用空気(圧縮空気)22と燃料21を燃焼させる燃焼器7と、燃焼器7で生成された燃焼ガス23により圧縮機2と同軸で駆動する高圧タービン1と、高圧タービン1の駆動力を圧縮機2へ伝達する高圧駆動軸10と、空気20を吸気・加圧して燃焼用空気(圧縮空気)22とする圧縮機2と、高圧タービン1からの燃焼ガス24を用いて駆動する低圧タービン3と、低圧タービン3の駆動力を発電機4へ伝達する低圧駆動軸11と、低圧タービン3の駆動力を用いて発電する発電機4で構成される。   As shown in FIG. 1, the two-shaft gas turbine power generation system of this embodiment combusts a compressor 2 that compresses air 20, combustion air (compressed air) 22 compressed by the compressor 2, and fuel 21. The combustor 7 to be driven, the high-pressure turbine 1 driven coaxially with the compressor 2 by the combustion gas 23 generated by the combustor 7, the high-pressure drive shaft 10 that transmits the driving force of the high-pressure turbine 1 to the compressor 2, and air Compressor 2 that inhales and pressurizes 20 to form combustion air (compressed air) 22, low-pressure turbine 3 that is driven by using combustion gas 24 from high-pressure turbine 1, and driving force of low-pressure turbine 3 that generates power from generator 4 And a generator 4 that generates electric power using the driving force of the low-pressure turbine 3.

発電機4で得られた電力は遮断機5、変圧器6を経て送電系統26から電力系統に送電される。電力系統に何らかのトラブルが生じた場合には、遮断機5を用いて発電機4を送電系統26から遮断する。   The electric power obtained by the generator 4 is transmitted from the power transmission system 26 to the power system via the circuit breaker 5 and the transformer 6. When some trouble occurs in the power system, the generator 4 is disconnected from the power transmission system 26 using the circuit breaker 5.

また、本実施例の2軸式ガスタービン発電システムは、低圧タービンの過回転を抑制するために高圧タービン出口の燃焼ガス24の一部を抽気する燃焼ガス抽気弁30と抽気した燃焼ガス27を通す燃焼ガス抽気系統40を備える。また、抽気した燃焼ガス27を定格排気温度Tex,0以下に減温(冷却)するための圧縮空気28を圧縮機2から抽気する圧縮機抽気弁31と抽気した圧縮空気が通る圧縮空気抽気系統41を備える。 In addition, the two-shaft gas turbine power generation system of the present embodiment includes a combustion gas extraction valve 30 that extracts a part of the combustion gas 24 at the outlet of the high-pressure turbine and a combustion gas 27 that has been extracted in order to suppress excessive rotation of the low-pressure turbine. A combustion gas extraction system 40 is provided. In addition, the compressed air bleed through which the compressed air extracted through the compressor bleed valve 31 for extracting the compressed air 28 from the compressor 2 for reducing (cooling) the extracted combustion gas 27 to the rated exhaust temperature T ex, 0 or lower is passed. A system 41 is provided.

さらに、低圧タービン回転数NLPの変化を計測するための回転数計32と、抽気した燃焼ガス27と圧縮空気28の混合ガス29の温度Tmixを計測するために混合ガスが通る混合ガス排気系統42に温度計33を備える。混合ガス排気系統42は低圧タービン3から排出された排気ガスが通る排気系統43に接続される。さらに、燃焼ガスの抽気弁開度Cと圧縮空気の抽気弁開度Cを計算する低圧タービン過回転防止制御装置100を備える。なお、混合ガス排気系統42は排気ディフューザや排熱回収ボイラなどの排気処理設備44に接続され、排気ガス(混合ガス29)は排気処理設備44で処理された後に大気へ放出される。 Further, a rotational speed meter 32 for measuring a change in the low-pressure turbine rotational speed N LP , and a mixed gas exhaust through which the mixed gas passes to measure the temperature T mix of the mixed gas 29 of the extracted combustion gas 27 and compressed air 28 The system 42 includes a thermometer 33. The mixed gas exhaust system 42 is connected to an exhaust system 43 through which exhaust gas discharged from the low-pressure turbine 3 passes. Further comprising a low pressure turbine overspeed prevention control device 100 for calculating the bleed valve opening C B of the bleed valve opening C A of the combustion gas compressed air. The mixed gas exhaust system 42 is connected to an exhaust treatment facility 44 such as an exhaust diffuser or an exhaust heat recovery boiler, and the exhaust gas (mixed gas 29) is processed by the exhaust treatment facility 44 and then released to the atmosphere.

次に、図2を参照して、本実施例の2軸式ガスタービン発電システムの負荷遮断時における低圧タービン過回転を防止する制御方法について説明する。低圧タービン過回転防止制御装置100は低圧タービン定格回転数NLP,0と現在の低圧タービン回転数NLPから燃焼ガス抽気弁開度Cを計算する燃焼ガス抽気弁制御装置101と、定格排気温度Tex,0と混合ガス29の温度Tmixから圧縮空気の抽気弁開度Cを計算する圧縮機抽気弁制御装置102と、負荷遮断信号SCBを検出する負荷遮断信号検出器103から構成される。 Next, with reference to FIG. 2, a control method for preventing low-pressure turbine over-rotation at the time of load interruption of the two-shaft gas turbine power generation system of the present embodiment will be described. The low pressure turbine over-rotation prevention control device 100 includes a combustion gas extraction valve control device 101 that calculates the combustion gas extraction valve opening degree C A from the low-pressure turbine rated rotation speed N LP, 0 and the current low-pressure turbine rotation speed N LP , and rated exhaust. From the compressor bleed valve control device 102 that calculates the bleed valve opening degree C B of compressed air from the temperature T ex, 0 and the temperature T mix of the mixed gas 29, and the load cutoff signal detector 103 that detects the load cutoff signal S CB Composed.

ここで、燃焼ガス抽気弁開度Cと圧縮空気抽気弁開度Cの制御方法について説明する。燃焼ガス抽気弁制御装置101は負荷遮断信号SCBを負荷遮断信号検出器103で検出すると、低圧タービン定格回転数NLP,0を設定された低圧タービン定格回転数設定器110と現在の低圧タービン回転数NLPを低圧タービン回転数比較器111で比較してNLP,0とNLPが一致する燃焼ガス抽気弁開度指令Cを抽気弁開度演算器112で計算し、この開度指令値に基づいて燃焼ガス抽気弁30の開度を制御する。 Here, a description will be given of a control method for combustion gas bleed valve opening C A compressed air bleed valve opening C B. When the combustion gas bleed valve control device 101 detects the load cutoff signal SCB by the load cutoff signal detector 103, the low pressure turbine rated rotational speed setter 110 set with the low pressure turbine rated rotational speed N LP, 0 and the current low pressure turbine. the rotational speed N LP and compared with the low-pressure turbine speed comparator 111 N LP, 0 and N LP coincides combustion gas bleed valve opening command C a calculated in bleed valve position calculator 112, the opening The opening degree of the combustion gas bleed valve 30 is controlled based on the command value.

同様に、圧縮機抽気弁制御装置102は負荷遮断信号SCBを負荷遮断信号検出器103で検出すると、定格排気温度Tex,0を設定された定格排気温度設定器120と混合排気ガス温度Texを混合ガス温度比較器121で比較してTexがTex,0以下となる圧縮空気抽気弁開度Cを圧縮機抽気弁開度演算器122で計算し、この開度指令値に基づいて圧縮機抽気弁31の開度を制御する。 Similarly, when the compressor bleed valve control device 102 detects the load cutoff signal SCB with the load cutoff signal detector 103, the rated exhaust temperature setter 120 with the rated exhaust temperature Tex, 0 and the mixed exhaust gas temperature T are set. Ex is compared with the mixed gas temperature comparator 121, and the compressed air bleed valve opening degree C B at which T ex becomes T ex, 0 or less is calculated by the compressor bleed valve opening degree calculator 122. Based on this, the opening degree of the compressor bleed valve 31 is controlled.

このような制御装置を用いれば、負荷遮断信号SCBを負荷遮断信号検出器で検出すると燃焼ガス抽気弁30を制御して、低圧タービンに流入する燃焼ガス24を抽気することで低圧タービン回転数NLPが変化しないように制御できる。 If such a control device is used, when the load cutoff signal SCB is detected by the load cutoff signal detector, the combustion gas extraction valve 30 is controlled, and the combustion gas 24 flowing into the low pressure turbine is extracted to thereby extract the low pressure turbine speed. N LP can be controlled so as not to change.

また、燃焼ガス抽気弁30で抽気した燃焼ガス27に圧縮機抽気弁31で抽気した圧縮空気28を混合し、混合ガス排気系統42で混合ガス29を定格排気温度Tex,0以下に減温(冷却)することで、定格排気温度以上の高温から排気系統43を保護することができる。 Further, the compressed gas 28 extracted by the compressor extraction valve 31 is mixed with the combustion gas 27 extracted by the combustion gas extraction valve 30 and the mixed gas exhaust system 42 reduces the temperature of the mixed gas 29 to the rated exhaust temperature T ex, 0 or less. By (cooling), the exhaust system 43 can be protected from a high temperature equal to or higher than the rated exhaust temperature.

以上説明したように、本実施例の2軸式ガスタービン発電システムとその制御方法によれば、負荷遮断時における燃焼ガスの抽気によって低圧タービンの過回転を防止しながら、定格排気温度以上の高温から排気系統43を保護し、排気温度異常によるガスタービン発電システムの停止を回避することができ、安全に無負荷定格状態に移行することができる。   As described above, according to the two-shaft gas turbine power generation system and the control method thereof according to the present embodiment, a high temperature that is higher than the rated exhaust temperature while preventing over-rotation of the low-pressure turbine due to combustion gas extraction when the load is interrupted. Thus, the exhaust system 43 can be protected, and the stop of the gas turbine power generation system due to the abnormal exhaust temperature can be avoided, and the state can be safely shifted to the no-load rated state.

図3を参照して、本発明の第2の実施例である2軸式ガスタービン発電システムと負荷遮断時の制御装置について説明する。図3は本実施例の2軸式ガスタービン発電システムおよびその制御装置の概略図である。   With reference to FIG. 3, a two-shaft gas turbine power generation system and a control device at the time of load interruption according to a second embodiment of the present invention will be described. FIG. 3 is a schematic diagram of the two-shaft gas turbine power generation system and its control device according to this embodiment.

実施例1では、図1に示すように、高圧タービン1の出口と低圧タービン3の入口とを結ぶ燃焼ガス24の流路から燃焼ガス抽気系統40を分岐して燃焼ガス24の一部を排気系統に抽気し、高圧タービン1から低圧タービン3へ流入する燃焼ガス24を減らすとともに、圧縮機2から圧縮空気の一部(圧縮空気28)を排気系統に抽気し、それぞれ抽気した燃焼ガス24の一部と圧縮空気の一部(圧縮空気28)を混合して混合ガス29とする構成としているが、本実施例では、高圧タービン1の出口と低圧タービン3の入口とを結ぶ燃焼ガス24の流路に低圧タービンガス遮断弁34を設け、低圧タービン過回転防止制御装置100によりその開閉制御を行う点において、実施例1と異なっている。その他の構成については、実施例1の図1の構成と同様である。   In the first embodiment, as shown in FIG. 1, the combustion gas extraction system 40 is branched from the flow path of the combustion gas 24 connecting the outlet of the high pressure turbine 1 and the inlet of the low pressure turbine 3, and a part of the combustion gas 24 is exhausted. While extracting into the system and reducing the combustion gas 24 flowing from the high-pressure turbine 1 to the low-pressure turbine 3, a part of the compressed air (compressed air 28) is extracted from the compressor 2 into the exhaust system, and each of the extracted combustion gases 24 is extracted. Although a part of the compressed air and a part of the compressed air (compressed air 28) are mixed to form a mixed gas 29, in this embodiment, the combustion gas 24 connecting the outlet of the high-pressure turbine 1 and the inlet of the low-pressure turbine 3 is used. The present embodiment is different from the first embodiment in that a low-pressure turbine gas shut-off valve 34 is provided in the flow path and the opening / closing control is performed by the low-pressure turbine over-rotation prevention controller 100. Other configurations are the same as the configuration in FIG. 1 of the first embodiment.

高圧タービン1の出口と低圧タービン3の入口とを結ぶ燃焼ガス24の流路に低圧タービンガス遮断弁34を設けることで、低圧タービン3への燃焼ガス24の流入を遮断することができ、負荷遮断時における低圧タービン3の過回転をより確実に防止することができる。   By providing the low-pressure turbine gas shut-off valve 34 in the flow path of the combustion gas 24 that connects the outlet of the high-pressure turbine 1 and the inlet of the low-pressure turbine 3, the inflow of the combustion gas 24 to the low-pressure turbine 3 can be shut off. The over-rotation of the low-pressure turbine 3 at the time of interruption can be prevented more reliably.

なお、低圧タービンガス遮断弁34の閉止動作は、低圧タービン過回転防止制御装置100の負荷遮断信号検出器103への負荷遮断信号の入力と同時、あるいは入力後直ぐに行ってもよいが、高圧タービン1の圧力上昇などの影響を考慮して、燃焼ガス抽気系統40および圧縮空気抽気系統41からそれぞれ燃焼ガスおよび圧縮空気を排気系統へ抽気した後に低圧タービンガス遮断弁34を閉止するように制御してもよい。   The closing operation of the low-pressure turbine gas cutoff valve 34 may be performed simultaneously with or immediately after the input of the load cutoff signal to the load cutoff signal detector 103 of the low-pressure turbine over-rotation prevention control device 100. In consideration of the influence of the pressure rise of 1 and the like, control is performed so that the low-pressure turbine gas shut-off valve 34 is closed after the combustion gas and the compressed air extraction system 41 are extracted from the combustion gas extraction system 40 and the compressed air extraction system 41 to the exhaust system, respectively. May be.

図4を参照して、本発明の第3の実施例である2軸式ガスタービン発電システムと負荷遮断時の制御装置について説明する。図4は本実施例の2軸式ガスタービン発電システムおよびその制御装置の概略図である。   With reference to FIG. 4, a two-shaft gas turbine power generation system according to a third embodiment of the present invention and a control device during load interruption will be described. FIG. 4 is a schematic diagram of a two-shaft gas turbine power generation system and a control device thereof according to this embodiment.

本実施例では、圧縮空気抽気系統41から圧縮空気28の一部を高圧タービン1へ抽気する抽気系統を設け、さらにその抽気系統に圧縮機抽気弁35を設けて、低圧タービン過回転防止制御装置100によりその開閉制御を行う点において、実施例1と異なっている。その他の構成については、実施例1の図1の構成と同様である。   In the present embodiment, an extraction system for extracting a part of the compressed air 28 from the compressed air extraction system 41 to the high-pressure turbine 1 is provided, and further, a compressor extraction valve 35 is provided in the extraction system, so that the low-pressure turbine overspeed prevention control device is provided. 100 is different from the first embodiment in that the opening / closing control is performed by 100. Other configurations are the same as the configuration in FIG. 1 of the first embodiment.

なお、本実施例では、圧縮機2の中間段(中圧段)に圧縮空気抽気系統41の一端を接続して圧縮機2の中間段(中圧段)から圧縮空気28を抽気し、圧縮空気抽気系統41から分岐した分岐系統を高圧タービン1の中間段に接続して高圧タービン1の中間段へ圧縮空気28を流入させる構成としている。圧縮機2の中間段(中圧段)から圧縮空気28を抽気するのは、圧縮機2の中間段(中圧段)では空気の圧縮度合が中程度(中圧)であるが、圧縮空気28の温度は低めであり、排気系統で燃焼ガスと混合した際に燃焼ガスの温度をより効果的に減温(冷却)することができるためである。   In this embodiment, one end of the compressed air extraction system 41 is connected to the intermediate stage (intermediate pressure stage) of the compressor 2 to extract the compressed air 28 from the intermediate stage (intermediate pressure stage) of the compressor 2 and compress it. A branch system branched from the air extraction system 41 is connected to an intermediate stage of the high-pressure turbine 1 so that the compressed air 28 flows into the intermediate stage of the high-pressure turbine 1. The compressed air 28 is extracted from the intermediate stage (intermediate pressure stage) of the compressor 2 in the intermediate stage (intermediate pressure stage) of the compressor 2 although the degree of air compression is medium (intermediate pressure). This is because the temperature of 28 is lower, and the temperature of the combustion gas can be more effectively reduced (cooled) when mixed with the combustion gas in the exhaust system.

本実施例のように、実施例1の構成に加え、さらに圧縮機2の中間段(中圧段)から高圧タービン1の中間段へ圧縮空気28を流入させる抽気系統を設けることで、負荷遮断時に高圧タービン1内の温度を減温(冷却)することができ、燃焼ガス抽気系統40から排気系統へ抽気される燃焼ガスの温度を下げることができる。また、低圧タービン3へ流入する燃焼ガス24の温度を減温(冷却)することができ、低圧タービン3の過回転を抑制することができる。   As in the present embodiment, in addition to the configuration of the first embodiment, by providing a bleed system that allows the compressed air 28 to flow from the intermediate stage (intermediate pressure stage) of the compressor 2 to the intermediate stage of the high-pressure turbine 1, Sometimes the temperature in the high-pressure turbine 1 can be reduced (cooled), and the temperature of the combustion gas extracted from the combustion gas extraction system 40 to the exhaust system can be lowered. Further, the temperature of the combustion gas 24 flowing into the low-pressure turbine 3 can be reduced (cooled), and the over-rotation of the low-pressure turbine 3 can be suppressed.

図5を参照して、本発明の第4の実施例である2軸式ガスタービン発電システムと負荷遮断時の制御装置について説明する。図5は本実施例の2軸式ガスタービン発電システムおよびその制御装置の概略図である。   With reference to FIG. 5, a description will be given of a two-shaft gas turbine power generation system and a control device at the time of load interruption according to a fourth embodiment of the present invention. FIG. 5 is a schematic diagram of the two-shaft gas turbine power generation system and its control device according to this embodiment.

本実施例では、圧縮機2の後段側、すなわち車室38から圧縮空気28の一部を排気系統と高圧タービン1へ抽気する抽気系統を設け、さらにそれらの抽気系統にそれぞれ圧縮機抽気弁36,37を設けて、低圧タービン過回転防止制御装置100によりその開閉制御を行う点において、実施例1と異なっている。その他の構成については、実施例1の図1の構成と同様である。   In the present embodiment, an extraction system for extracting a part of the compressed air 28 from the rear side of the compressor 2, that is, from the passenger compartment 38 to the exhaust system and the high-pressure turbine 1 is provided, and the compressor extraction valve 36 is provided in each of these extraction systems. , 37 is provided, and the low-pressure turbine over-rotation prevention control device 100 performs opening / closing control thereof, which is different from the first embodiment. Other configurations are the same as the configuration in FIG. 1 of the first embodiment.

なお、本実施例では、圧縮機2の後段側(車室38)に圧縮空気28の一部を抽気する抽気系統を設け、その抽気系統を分岐して、排気系統および高圧タービン1の前段へ圧縮空気28を流入させる構成としている。圧縮機2の後段側(車室38)から圧縮空気28を抽気するため、圧縮空気28の温度は高めとなるが、圧縮空気28の圧力が高いため、圧縮機2から抽気した圧縮空気を排気系統と高圧タービン1へより効率的に供給することができる。   In this embodiment, an extraction system for extracting a part of the compressed air 28 is provided on the rear stage side (chamber compartment 38) of the compressor 2, and the extraction system is branched to the upstream stage of the exhaust system and the high-pressure turbine 1. The compressed air 28 is introduced. Since the compressed air 28 is extracted from the rear stage side (vehicle compartment 38) of the compressor 2, the temperature of the compressed air 28 is increased. However, since the pressure of the compressed air 28 is high, the compressed air extracted from the compressor 2 is exhausted. It is possible to supply the system and the high-pressure turbine 1 more efficiently.

本実施例のように、実施例1の構成に加え、さらに圧縮機2の車室38から圧縮空気28の一部を排気系統と高圧タービン1へ抽気することで、負荷遮断時に高圧タービン1内の温度を減温(冷却)することができ、燃焼ガス抽気系統40から排気系統へ抽気される燃焼ガスの温度を下げることができる。また、低圧タービン3へ流入する燃焼ガス24の温度を減温(冷却)することができ、低圧タービン3の過回転を抑制することができる。   As in the present embodiment, in addition to the configuration of the first embodiment, a part of the compressed air 28 is extracted from the casing 38 of the compressor 2 to the exhaust system and the high-pressure turbine 1, so The temperature of the combustion gas can be reduced (cooled), and the temperature of the combustion gas extracted from the combustion gas extraction system 40 to the exhaust system can be lowered. Further, the temperature of the combustion gas 24 flowing into the low-pressure turbine 3 can be reduced (cooled), and the over-rotation of the low-pressure turbine 3 can be suppressed.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…高圧タービン
2…圧縮機
3…低圧タービン
4…発電機
5…遮断機
6…変圧器
7…燃焼器
10…高圧駆動軸
11…低圧駆動軸
20…空気
21…燃料
22…燃焼用空気(圧縮空気)
23,24…燃焼ガス
25…排気ガス
26…送電系統
27…抽気した燃焼ガス
28…圧縮空気
29…混合ガス
30…燃焼ガス抽気弁
31,35,36,37…圧縮機抽気弁
32…回転数計
33…温度計
34…低圧タービンガス遮断弁
38…車室
40…燃焼ガス抽気系統
41…圧縮空気抽気系統
42…混合ガス排気系統
43…排気系統
44…排気処理設備
100…制御装置(低圧タービン過回転防止制御装置)
101…燃焼ガス抽気弁制御装置
102…圧縮機抽気弁制御装置
103…負荷遮断信号検出器
110…低圧タービン定格回転数設定器
111…低圧タービン回転数比較器
112…抽気弁開度演算器
120…定格排気温度設定器
121…混合ガス温度比較器
122…圧縮機抽気弁開度演算器。
DESCRIPTION OF SYMBOLS 1 ... High pressure turbine 2 ... Compressor 3 ... Low pressure turbine 4 ... Generator 5 ... Circuit breaker 6 ... Transformer 7 ... Combustor 10 ... High pressure drive shaft 11 ... Low pressure drive shaft 20 ... Air 21 ... Fuel 22 ... Combustion air ( Compressed air)
23, 24 ... Combustion gas 25 ... Exhaust gas 26 ... Power transmission system 27 ... Extracted combustion gas 28 ... Compressed air 29 ... Mixed gas 30 ... Combustion gas bleed valve 31, 35, 36, 37 ... Compressor bleed valve 32 ... Number of revolutions Total 33 ... Thermometer 34 ... Low pressure turbine gas shut-off valve 38 ... Cabin 40 ... Combustion gas extraction system 41 ... Compressed air extraction system 42 ... Mixed gas exhaust system 43 ... Exhaust system 44 ... Exhaust treatment equipment 100 ... Control device (low pressure turbine) Over-rotation prevention control device)
DESCRIPTION OF SYMBOLS 101 ... Combustion gas bleed valve control apparatus 102 ... Compressor bleed valve control apparatus 103 ... Load interruption | blocking signal detector 110 ... Low pressure turbine rated speed setting device 111 ... Low pressure turbine speed comparator 112 ... Extraction valve opening calculator 120 ... Rated exhaust gas temperature setting device 121 ... Mixed gas temperature comparator 122 ... Compressor bleed valve opening calculator.

Claims (14)

空気を圧縮する圧縮機と、
前記圧縮機で圧縮される圧縮空気と燃料を燃焼させる燃焼器と、
高圧駆動軸で前記圧縮機と連結され、前記燃焼器で生成される燃焼ガスにより駆動する高圧タービンと、
前記高圧タービンを駆動した燃焼ガスにより駆動する低圧タービンと、
低圧駆動軸で前記低圧タービンと連結され、前記低圧タービンの駆動により発電する発電機と、
前記発電機で得られる電力の送電系統と当該発電機との接続を遮断する遮断機と、
前記低圧タービンから排出される排気を外部へ導く排気系統と、
前記圧縮機と前記排気系統とを連結し、圧縮空気が内部を通過する圧縮空気抽気系統と、
前記圧縮機から前記排気系統へ圧縮空気を抽気する圧縮機抽気弁と、
前記高圧タービンの出口と前記排気系統とを連結し、燃焼ガスが内部を通過する燃焼ガス抽気系統と、
前記高圧タービンの出口から前記排気系統へ燃焼ガスを抽気する燃焼ガス抽気弁と、
前記排気系統に接続し、前記圧縮機からの圧縮空気と前記高圧タービンの出口からの燃焼ガスを混合させた混合ガスが内部を通過する混合ガス排気系統と、を備える2軸式ガスタービン発電システムであって、
当該2軸式ガスタービン発電システムの負荷遮断運転時に、前記圧縮空気抽気系統を介して前記圧縮機から前記排気系統へ圧縮空気を抽気し、前記燃焼ガス抽気系統を介して前記高圧タービンの出口から前記排気系統へ燃焼ガスを抽気することで前記低圧タービンに流入する燃焼ガスの流量を減少させることを特徴とする2軸式ガスタービン発電システム。
A compressor for compressing air;
A combustor that burns compressed air and fuel compressed by the compressor;
A high-pressure turbine connected to the compressor by a high-pressure drive shaft and driven by combustion gas generated in the combustor;
A low pressure turbine driven by the combustion gas driving the high pressure turbine;
A generator connected to the low-pressure turbine by a low-pressure drive shaft and generating electric power by driving the low-pressure turbine;
A circuit breaker for cutting off the connection between the power transmission system of the electric power obtained by the generator and the generator;
An exhaust system for guiding the exhaust discharged from the low-pressure turbine to the outside;
Connecting the compressor and the exhaust system, and a compressed air extraction system through which compressed air passes;
A compressor bleed valve for extracting compressed air from the compressor to the exhaust system;
A combustion gas extraction system that connects the outlet of the high-pressure turbine and the exhaust system, and the combustion gas passes through the interior;
A combustion gas extraction valve for extracting combustion gas from an outlet of the high pressure turbine to the exhaust system;
A twin-shaft gas turbine power generation system that includes a mixed gas exhaust system that is connected to the exhaust system and through which a mixed gas obtained by mixing compressed air from the compressor and combustion gas from an outlet of the high-pressure turbine passes. Because
During the load shutoff operation of the two-shaft gas turbine power generation system, compressed air is extracted from the compressor to the exhaust system via the compressed air extraction system, and from the outlet of the high-pressure turbine via the combustion gas extraction system A two-shaft gas turbine power generation system characterized in that the flow rate of the combustion gas flowing into the low-pressure turbine is reduced by extracting the combustion gas into the exhaust system.
請求項1に記載の2軸式ガスタービン発電システムであって、
圧縮機抽気弁制御装置および燃焼ガス抽気弁制御装置を有する低圧タービン過回転防止制御システムを備え、
前記2軸式ガスタービン発電システムの負荷遮断運転時に、前記混合ガスの温度が定格排気温度以下となるように前記圧縮機抽気弁および前記燃焼ガス抽気弁の開度を制御することを特徴とする2軸式ガスタービン発電システム。
A two-shaft gas turbine power generation system according to claim 1,
A low pressure turbine overspeed prevention control system having a compressor bleed valve control device and a combustion gas bleed valve control device;
The opening degree of the compressor bleed valve and the combustion gas bleed valve is controlled so that the temperature of the mixed gas is equal to or lower than a rated exhaust temperature during the load shutoff operation of the two-shaft gas turbine power generation system. Two-shaft gas turbine power generation system.
請求項2に記載の2軸式ガスタービン発電システムであって、
前記圧縮機抽気弁制御装置は、定格排気温度設定器、混合ガス温度比較器、圧縮機抽気弁開度演算器を備えることを特徴とする2軸式ガスタービン発電システム。
A two-shaft gas turbine power generation system according to claim 2,
The compressor bleed valve control device includes a rated exhaust temperature setter, a mixed gas temperature comparator, and a compressor bleed valve opening calculator, a two-shaft gas turbine power generation system.
請求項2または3に記載の2軸式ガスタービン発電システムであって、
前記燃焼ガス抽気弁制御装置は、低圧タービン定格回転数設定器、低圧タービン回転数比較器、抽気弁開度演算器を備えることを特徴とする2軸式ガスタービン発電システム。
A two-shaft gas turbine power generation system according to claim 2 or 3,
The combustion gas extraction valve control device includes a low-pressure turbine rated rotation speed setter, a low-pressure turbine rotation speed comparator, and an extraction valve opening calculator.
請求項1から4のいずれか1項に記載の2軸式ガスタービン発電システムであって、
前記高圧タービンの出口と前記低圧タービンの入口とを連結する燃焼ガス流路に低圧タービンガス遮断弁を備えることを特徴とする2軸式ガスタービン発電システム。
A two-shaft gas turbine power generation system according to any one of claims 1 to 4,
A two-shaft gas turbine power generation system comprising a low-pressure turbine gas shut-off valve in a combustion gas flow path connecting an outlet of the high-pressure turbine and an inlet of the low-pressure turbine.
請求項1から5のいずれか1項に記載の2軸式ガスタービン発電システムであって、
前記圧縮空気抽気系統は、前記圧縮機の中圧段に連結されていることを特徴とする2軸式ガスタービン発電システム。
A two-shaft gas turbine power generation system according to any one of claims 1 to 5,
The two-shaft gas turbine power generation system, wherein the compressed air bleed system is connected to an intermediate pressure stage of the compressor.
請求項6に記載の2軸式ガスタービン発電システムであって、
前記圧縮空気抽気系統は、前記高圧タービンの中間段へ圧縮空気を抽気する分岐系統を有し、
当該分岐系統に前記圧縮機抽気弁と異なる圧縮機抽気弁が設けられていることを特徴とする2軸式ガスタービン発電システム。
The two-shaft gas turbine power generation system according to claim 6,
The compressed air extraction system has a branch system for extracting compressed air to an intermediate stage of the high-pressure turbine,
A two-shaft gas turbine power generation system, wherein the branch system is provided with a compressor bleed valve different from the compressor bleed valve.
請求項6に記載の2軸式ガスタービン発電システムであって、
前記圧縮機の車室に連結され、前記圧縮空気抽気系統と異なる圧縮空気抽気系統を有し、
当該異なる圧縮空気抽気系統は、前記混合ガス排気系統に連結される第1の分岐系統と、前記高圧タービンの前段に連結される第2の分岐系統からなり、
前記第1の分岐系統および前記第2の分岐系統に、それぞれ第1の圧縮機抽気弁および第2の圧縮機抽気弁が設けられていることを特徴とする2軸式ガスタービン発電システム。
The two-shaft gas turbine power generation system according to claim 6,
Connected to the compressor cabin, and having a compressed air extraction system different from the compressed air extraction system,
The different compressed air bleed systems comprise a first branch system connected to the mixed gas exhaust system and a second branch system connected to the front stage of the high-pressure turbine,
A two-shaft gas turbine power generation system, wherein a first compressor bleed valve and a second compressor bleed valve are provided in the first branch system and the second branch system, respectively.
2軸式ガスタービン発電システムの制御方法であって、
当該2軸式ガスタービン発電システムの負荷遮断運転時に、圧縮空気抽気系統を介して圧縮機から排気系統へ圧縮空気を抽気し、
燃焼ガス抽気系統を介して高圧タービンの出口から前記排気系統へ燃焼ガスを抽気することで低圧タービンに流入する燃焼ガスの流量を減少させることを特徴とする2軸式ガスタービン発電システムの制御方法。
A control method for a two-shaft gas turbine power generation system, comprising:
During the load shutoff operation of the two-shaft gas turbine power generation system, compressed air is extracted from the compressor to the exhaust system via the compressed air extraction system,
A control method for a two-shaft gas turbine power generation system, wherein the flow rate of the combustion gas flowing into the low-pressure turbine is reduced by extracting the combustion gas from the outlet of the high-pressure turbine to the exhaust system via the combustion gas extraction system. .
請求項9に記載の2軸式ガスタービン発電システムの制御方法であって、
当該2軸式ガスタービン発電システムの負荷遮断運転時に、前記排気系統内の圧縮空気と燃焼ガスの混合ガスの温度が定格排気温度以下となるように、前記圧縮空気の抽気量および前記燃焼ガスの抽気量を制御することを特徴とする2軸式ガスタービン発電システムの制御方法。
A control method for a two-shaft gas turbine power generation system according to claim 9,
During the load shut-off operation of the two-shaft gas turbine power generation system, the amount of compressed air and the amount of combustion gas are adjusted so that the temperature of the mixed gas of compressed air and combustion gas in the exhaust system is equal to or lower than the rated exhaust temperature. A control method for a two-shaft gas turbine power generation system, characterized by controlling an extraction amount.
請求項9または10に記載の2軸式ガスタービン発電システムの制御方法であって、
前記高圧タービンの出口と前記低圧タービンの入口とを連結する燃焼ガス流路に設けられた低圧タービンガス遮断弁を閉止することにより、前記低圧タービンに流入する燃焼ガスの流量を減少させることを特徴とする2軸式ガスタービン発電システムの制御方法。
A control method for a two-shaft gas turbine power generation system according to claim 9 or 10,
The flow rate of the combustion gas flowing into the low-pressure turbine is reduced by closing a low-pressure turbine gas shut-off valve provided in a combustion gas flow path connecting the outlet of the high-pressure turbine and the inlet of the low-pressure turbine. A control method for a two-shaft gas turbine power generation system.
請求項9から11のいずれか1項に記載の2軸式ガスタービン発電システムの制御方法であって、
前記圧縮機の中圧段から前記排気系統へ圧縮空気を抽気することを特徴とする2軸式ガスタービン発電システムの制御方法。
A control method for a two-shaft gas turbine power generation system according to any one of claims 9 to 11,
A control method for a two-shaft gas turbine power generation system, wherein compressed air is extracted from an intermediate pressure stage of the compressor to the exhaust system.
請求項12に記載の2軸式ガスタービン発電システムの制御方法であって、
前記圧縮機の中圧段から前記高圧タービンの中間段へ圧縮空気を抽気することを特徴とする2軸式ガスタービン発電システムの制御方法。
A control method for a two-shaft gas turbine power generation system according to claim 12,
A control method for a two-shaft gas turbine power generation system, wherein compressed air is extracted from an intermediate pressure stage of the compressor to an intermediate stage of the high-pressure turbine.
請求項12に記載の2軸式ガスタービン発電システムの制御方法であって、
前記圧縮機の車室から前記排気系統および前記高圧タービンの前段へ圧縮空気を抽気することを特徴とする2軸式ガスタービン発電システムの制御方法。
A control method for a two-shaft gas turbine power generation system according to claim 12,
A control method for a two-shaft gas turbine power generation system, wherein compressed air is extracted from a casing of the compressor to a front stage of the exhaust system and the high-pressure turbine.
JP2017022887A 2017-02-10 2017-02-10 Biaxial-type gas turbine power generation system and control method of biaxial-type gas turbine power generation system Pending JP2018127987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017022887A JP2018127987A (en) 2017-02-10 2017-02-10 Biaxial-type gas turbine power generation system and control method of biaxial-type gas turbine power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017022887A JP2018127987A (en) 2017-02-10 2017-02-10 Biaxial-type gas turbine power generation system and control method of biaxial-type gas turbine power generation system

Publications (1)

Publication Number Publication Date
JP2018127987A true JP2018127987A (en) 2018-08-16

Family

ID=63172309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017022887A Pending JP2018127987A (en) 2017-02-10 2017-02-10 Biaxial-type gas turbine power generation system and control method of biaxial-type gas turbine power generation system

Country Status (1)

Country Link
JP (1) JP2018127987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034366A1 (en) * 2022-08-10 2024-02-15 三菱重工業株式会社 Intake air heating system, operation method for intake air heating system, and gas turbine system
WO2024034367A1 (en) * 2022-08-10 2024-02-15 三菱重工業株式会社 Suction heating system, operation method for suction heating system, and gas turbine system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034366A1 (en) * 2022-08-10 2024-02-15 三菱重工業株式会社 Intake air heating system, operation method for intake air heating system, and gas turbine system
WO2024034367A1 (en) * 2022-08-10 2024-02-15 三菱重工業株式会社 Suction heating system, operation method for suction heating system, and gas turbine system

Similar Documents

Publication Publication Date Title
US10161317B2 (en) Gas-turbine control device, gas turbine, and gas-turbine control method
JP3658415B2 (en) Gas turbine equipment
RU2623336C2 (en) Gas turbine with adjustable air cooling system
US20170030268A1 (en) Method and arrangement for gas turbine engine surge control
US7784288B2 (en) Methods and systems of variable extraction for compressor protection
US7617687B2 (en) Methods and systems of variable extraction for gas turbine control
JP6900175B2 (en) Inlet bleed air heating control system
JP2010025069A (en) Control device of two-shaft type gas turbine system
US10526923B2 (en) Combined cycle plant, control method of same, and control device of same
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JP2017101619A (en) Two-shaft gas turbine with steam injection mechanism
JP5694112B2 (en) Uniaxial combined cycle power plant and operation method thereof
EP2840238B1 (en) Operation of a gas turbine power plant with carbon dioxide separation
JP2018127987A (en) Biaxial-type gas turbine power generation system and control method of biaxial-type gas turbine power generation system
JP2007309194A (en) Steam turbine plant
EP3171005B1 (en) Fuel supply system for use in a gas turbine engine and method of controlling an overspeed event therein
JP4163131B2 (en) Two-shaft gas turbine power generation system and its stopping method
JP2019124127A (en) Gas-turbine combination system and operation switching method therefor
JP5147766B2 (en) Gas turbine rotation control device
US20170089268A1 (en) Gas turbine combustion control device and combustion control method and program therefor
JP2019124134A (en) Fuel supply system, gas turbine, power plant, control method, and program
JP3842653B2 (en) Gas turbine and operation method thereof
CN217499056U (en) System capable of realizing air pressure control
JPS62189304A (en) Method for controlling combined plant
JP2004169584A (en) Cooling method of gas turbine plant and turbine high temperature section