JP2018127667A - Plating solution and method for producing plated product - Google Patents

Plating solution and method for producing plated product Download PDF

Info

Publication number
JP2018127667A
JP2018127667A JP2017021006A JP2017021006A JP2018127667A JP 2018127667 A JP2018127667 A JP 2018127667A JP 2017021006 A JP2017021006 A JP 2017021006A JP 2017021006 A JP2017021006 A JP 2017021006A JP 2018127667 A JP2018127667 A JP 2018127667A
Authority
JP
Japan
Prior art keywords
plating
mol
plating solution
chromium
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017021006A
Other languages
Japanese (ja)
Other versions
JP2018127667A5 (en
JP6547232B2 (en
Inventor
縄舟 秀美
Hidemi Nawafune
秀美 縄舟
西脇 宏
Hiroshi Nishiwaki
宏 西脇
敏一 村田
Toshiichi Murata
敏一 村田
秀浩 吉岡
Hidehiro Yoshioka
秀浩 吉岡
美幸 亀川
Miyuki Kamekawa
美幸 亀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUSOO KK
Techno Roll Co Ltd
Original Assignee
FUSOO KK
Techno Roll Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017021006A priority Critical patent/JP6547232B2/en
Application filed by FUSOO KK, Techno Roll Co Ltd filed Critical FUSOO KK
Priority to KR1020177033982A priority patent/KR20190115481A/en
Priority to US15/576,892 priority patent/US20200040477A1/en
Priority to EP17800356.2A priority patent/EP3388558A1/en
Priority to PCT/JP2017/030445 priority patent/WO2018146841A1/en
Priority to TW106144032A priority patent/TW201835387A/en
Publication of JP2018127667A publication Critical patent/JP2018127667A/en
Publication of JP2018127667A5 publication Critical patent/JP2018127667A5/ja
Application granted granted Critical
Publication of JP6547232B2 publication Critical patent/JP6547232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plating solution for trivalent chromium plating having excellent throwing power and uniform electropositivity.SOLUTION: The provided plating solution comprising chromium sulfate has a concentration of Cions from 0.1 mol/L or more to 1 mol/L or less.SELECTED DRAWING: Figure 2

Description

本発明は、めっき液ならびにめっき製品の製造方法に関し、より詳しくは、3価クロムめっきに用いられるめっき液と3価クロムめっきが施されてなるめっき製品の製造方法とに関する。   The present invention relates to a plating solution and a method for producing a plated product, and more particularly to a plating solution used for trivalent chromium plating and a method for producing a plated product obtained by performing trivalent chromium plating.

従来、金属製品やプラスチック製品にクロムめっきを施しためっき製品が広く用いられている。この種のめっき製品を製造するのにあたっては6価クロムを含むめっき液に代えて環境に優しい3価クロムを含むめっき液を利用する場面が増えている(下記特許文献1参照)。   Conventionally, plated products obtained by applying chromium plating to metal products and plastic products have been widely used. In manufacturing this type of plating product, an increasing number of scenes use an environment-friendly plating solution containing trivalent chromium instead of a plating solution containing hexavalent chromium (see Patent Document 1 below).

特開2000−249340号公報JP 2000-249340 A

近年の環境意識の高まりにより、6価クロムめっきに置き換えて3価クロムめっきを採用することが強く要望されるようになってきている。しかしながら3価クロムめっきは、めっきを施す対象となる製品に対する付きまわり性において6価クロムめっきより劣ることから現状では採用される場面が限られてしまっている。また、3価クロムめっきでは電流密度とめっきの析出厚さとの関係が直線的なものになりにくく均一電着性を発揮させ難い。そのようなことから、めっき厚さが数μmレベルの装飾めっきなどでは3価クロムめっきの採用事例が見られるものの金型のような複雑な形状のめっき製品を作製する場面や厚めっき製品を作製するような場面では3価クロムめっきの採用が殆ど進んではいない。そこで、本発明は、3価クロムめっき用のめっき液でありながら6価クロムめっきと同等のめっき製品を作製し得るめっき液を提供し、ひいては、環境に優しいめっき製品の適用範囲の拡大を目的としている。   Due to the recent increase in environmental awareness, there is a strong demand to adopt trivalent chromium plating instead of hexavalent chromium plating. However, since the trivalent chromium plating is inferior to the hexavalent chromium plating in the throwing power with respect to the product to be plated, the situation where it is currently employed is limited. Further, in the case of trivalent chromium plating, the relationship between the current density and the deposition thickness of the plating is not easily linear, and it is difficult to exhibit uniform electrodeposition. For this reason, in cases such as decorative plating with a plating thickness of several μm, trivalent chromium plating can be used, but scenes where plating products with complex shapes such as molds are made or thick plating products are made. In such situations, the adoption of trivalent chromium plating has hardly progressed. Therefore, the present invention provides a plating solution capable of producing a plating product equivalent to hexavalent chromium plating while being a plating solution for trivalent chromium plating. As a result, the purpose is to expand the application range of environmentally friendly plating products. It is said.

上記のような目的を達成すべく本発明者が鋭意検討を行ったところ、硫酸クロムを含むめっき液においてCr3+イオンの濃度を特定の範囲内に調整することで当該めっき液が6価クロムを含むめっき液と同等の付きまわり性を示すことを見出して本発明を完成させるに至った。 As a result of extensive studies by the inventor to achieve the above object, the plating solution contains hexavalent chromium by adjusting the Cr 3+ ion concentration within a specific range in the plating solution containing chromium sulfate. The present invention has been completed by finding that it has the same throwing power as the plating solution containing it.

即ち、本発明は、3価クロムめっきに用いられるめっき液であって、硫酸クロムと蟻酸とを含み、Cr3+イオンの濃度が0.1mol/L以上1mol/L以下で、前記蟻酸の濃度が0.05mol/L以上0.2mol/L以下であるめっき液を提供する。 That is, the present invention is a plating solution used for trivalent chromium plating, which contains chromium sulfate and formic acid, the concentration of Cr 3+ ions is 0.1 mol / L or more and 1 mol / L or less, and the concentration of formic acid is A plating solution having a concentration of 0.05 mol / L to 0.2 mol / L is provided.

また、本発明は、硫酸クロムを含むめっき液を収容しためっき浴で電気めっきを行うめっき工程を実施し、該めっき工程によって3価クロムめっきが施されためっき製品を作製するめっき製品の製造方法であって、前記めっき工程では、前記めっき液として、Cr3+イオンの濃度が0.1mol/L以上1mol/L以下であるめっき液を用い、前記めっき浴での浴温を20℃以上40℃未満とし、且つ、前記電気めっきでの電流密度を2A/dm以上20A/dm以下とするめっき製品の製造方法を提供する。 Moreover, this invention implements the plating process which electroplates in the plating bath which accommodated the plating solution containing chromium sulfate, and the manufacturing method of the plating product which produces the plating product in which trivalent chromium plating was given by this plating process In the plating step, a plating solution having a Cr 3+ ion concentration of 0.1 mol / L or more and 1 mol / L or less is used as the plating solution, and the bath temperature in the plating bath is 20 ° C. or more and 40 ° C. And a method for producing a plated product in which the current density in electroplating is 2 A / dm 2 or more and 20 A / dm 2 or less.

本発明によれば付きまわり性に優れた3価クロムめっき用のめっき液が提供されるため、環境に優しいめっき製品が採用される機会を拡大し得る。   According to the present invention, since a plating solution for trivalent chromium plating having excellent throwing power is provided, an opportunity for adopting an environment-friendly plated product can be expanded.

一般文献等において開示がされている6価クロムめっきと3価クロムめっきとにおける電流密度とめっき厚さとの関係図。The relationship diagram of the current density and plating thickness in hexavalent chromium plating and trivalent chromium plating currently disclosed by general literature etc. 本発明のめっき液を用いた3価クロムめっきにおける電流密度とめっき厚さとの関係を示した図。The figure which showed the relationship between the current density and plating thickness in the trivalent chromium plating using the plating solution of this invention. 一実施形態のめっき液を用いたハルセル試験の結果を示した図。The figure which showed the result of the hull cell test using the plating solution of one Embodiment. めっき厚さを蛍光X線型膜厚測定器にて測定した結果を示した図。The figure which showed the result of having measured plating thickness with the fluorescent X-ray-type film thickness measuring device. 他の実施形態のめっき液を用いたハルセル試験の結果を示した図。The figure which showed the result of the hull cell test using the plating solution of other embodiment. めっき厚さを蛍光X線型膜厚測定器にて測定した結果を示した図。The figure which showed the result of having measured plating thickness with the fluorescent X-ray-type film thickness measuring device. 他の実施形態のめっき液を用いたハルセル試験の結果を示した図。The figure which showed the result of the hull cell test using the plating solution of other embodiment. 他の実施形態のめっき液を用いたハルセル試験の結果を示した図。The figure which showed the result of the hull cell test using the plating solution of other embodiment. 他の実施形態のめっき液を用いたハルセル試験の結果を示した図。The figure which showed the result of the hull cell test using the plating solution of other embodiment. 他の実施形態のめっき液を用いたハルセル試験の結果を示した図。The figure which showed the result of the hull cell test using the plating solution of other embodiment. 他の実施形態のめっき液を用いたハルセル試験の結果を示した図。The figure which showed the result of the hull cell test using the plating solution of other embodiment.

以下に、本発明の好ましい実施の形態について説明する。
まず、めっき製品の製造方法について説明する。
本実施形態のめっき製品の製造方法においては、めっきを施す対象となる製品(以下、原製品」ともいう)の表面性状を整えるための前処理工程と、前処理された原製品(以下、「前処理品」ともいう)に対して3価クロムめっきを施すめっき工程を実施する。本実施形態のめっき製品の製造方法においては、必要に応じて、前処理工程とめっき工程との間に前処理品に下地めっきを施す下地めっき工程や、下地めっきされた前処理品(以下、「下地めっき品」ともいう)に対してさらに中間めっきを施す中間めっき工程を実施してもよい。この場合、3価クロムめっきは、中間めっきが施された製品(以下「中間めっき品」ともいう)に対する仕上めっきとして実施される。
The preferred embodiments of the present invention will be described below.
First, a method for manufacturing a plated product will be described.
In the method for producing a plated product according to the present embodiment, a pretreatment step for adjusting the surface properties of a product to be plated (hereinafter also referred to as an original product), and a pretreated original product (hereinafter referred to as “the original product”). A plating process for performing trivalent chromium plating on the pre-treated product) is performed. In the method for manufacturing a plated product according to the present embodiment, if necessary, a base plating step of applying a base plating to the preprocessed product between the pretreatment step and the plating step, or a preprocessed product (hereinafter, An intermediate plating step of further applying intermediate plating to the “underplating product” may be performed. In this case, trivalent chromium plating is performed as finish plating for a product subjected to intermediate plating (hereinafter also referred to as “intermediate plating product”).

本実施形態のめっき製品の製造方法においては、めっき工程で3価クロムめっきが施された製品に対してさらに化学的な表面処理や熱処理などを施してもよい。また、めっき製品には必要に応じてクリアー塗装などの塗装を施してもよい。   In the method for manufacturing a plated product of the present embodiment, a chemical surface treatment or a heat treatment may be further performed on the product that has been subjected to trivalent chromium plating in the plating step. Moreover, you may give coatings, such as clear coating, to a plating product as needed.

前処理工程を実施する前記原製品としては、例えば、樹脂製品、セラミックス製品、金属製品、樹脂部品と金属部品とが組み合わされた複合製品、並びに、金属部品にセラミックスが被覆された複合製品などが挙げられる。原製品を形成する樹脂としては、例えば、一般的な熱可塑性樹脂や熱硬化性樹脂が挙げられる。該樹脂は、繊維強化プラスチック(FRP)などであってもよい。原製品を形成する前記セラミックスとしては、例えば、酸化ケイ素や酸化アルミニウムなどを主成分とした一般的なものが挙げられる。前記セラミックスとしては、琺瑯などのガラス質のものであってもよい。原製品を形成する前記金属としては、例えば、鉄や銅などといった一般的な金属が挙げられる。前記金属は、合金などであってもよい。このような原製品に対する前処理としては、例えば、機械研磨、ホーニング加工、ブラスト加工などによる研磨やアルカリ脱脂などの脱脂が挙げられる。前記下地めっき工程や前記中間めっき工程では、仕上めっき製品の美観や耐食性の向上などの目的で前処理品や下地めっき品に対して数μmの厚さでニッケルめっき、銅めっき、鉄めっきなどの各種めっきを施すことができる。   Examples of the original products for performing the pretreatment process include resin products, ceramic products, metal products, composite products in which resin parts and metal parts are combined, and composite products in which metal parts are coated with ceramics. Can be mentioned. Examples of the resin forming the original product include general thermoplastic resins and thermosetting resins. The resin may be fiber reinforced plastic (FRP) or the like. Examples of the ceramic forming the original product include general ceramics mainly composed of silicon oxide or aluminum oxide. The ceramic may be a glassy material such as a bag. Examples of the metal forming the original product include general metals such as iron and copper. The metal may be an alloy or the like. Examples of the pretreatment for such an original product include degreasing such as polishing by mechanical polishing, honing, blasting, and alkaline degreasing. In the base plating process and the intermediate plating process, nickel plating, copper plating, iron plating, etc. with a thickness of several μm from the pre-processed product or the base plating product for the purpose of improving the aesthetics and corrosion resistance of the finish plating product. Various platings can be applied.

3価クロムめっきを施す前記めっき工程では、前処理品、下地めっき品、及び、中間めっき品などをワークとした電気めっきが実施される。該電気めっきでは、硫酸クロムを含むめっき液を収容しためっき浴を使って前記ワークに3価クロムめっきが施される。以下においては、該めっき工程で用いるめっき液について詳細に説明する。   In the plating step in which trivalent chromium plating is performed, electroplating is performed using a pretreated product, a base plated product, an intermediate plated product, and the like as a workpiece. In the electroplating, trivalent chromium plating is performed on the workpiece using a plating bath containing a plating solution containing chromium sulfate. Hereinafter, the plating solution used in the plating step will be described in detail.

前記めっき工程では、ワークに対して付きまわり性の良好なめっきを行う上において前記めっき液としてCr3+イオンの濃度が0.1mol/L以上1mol/L以下であるめっき液を用いることが重要である。該めっき液には、主成分となる硫酸クロムに加え、錯化剤、pH緩衝剤、導電剤、及び、界面活性剤などを含有させることができる。なお、該めっき液の溶媒となる水としては、例えば、工業用水、水道水、イオン交換水、蒸留水、純水等が挙げられる。 In the plating step, it is important to use a plating solution having a Cr 3+ ion concentration of 0.1 mol / L or more and 1 mol / L or less as the plating solution for plating with good throwing power on a workpiece. is there. In addition to chromium sulfate as a main component, the plating solution may contain a complexing agent, a pH buffering agent, a conductive agent, a surfactant, and the like. Examples of water that serves as a solvent for the plating solution include industrial water, tap water, ion-exchange water, distilled water, and pure water.

前記硫酸クロムは、上記のようにめっき浴におけるCr3+イオンの濃度が0.1mol/L以上1mol/L以下となるようにめっき液に含有される。該硫酸クロムは、めっき浴におけるCr3+イオンの濃度が0.1mol/L以上0.3mol/L以下となるようにめっき液に含有されることが好ましい。このような好ましいめっき液を用いることでめっき工程でのワークに対する3価クロムめっきの付きまわり性をより良好なものにすることができる。 The chromium sulfate is contained in the plating solution so that the concentration of Cr 3+ ions in the plating bath is 0.1 mol / L or more and 1 mol / L or less as described above. The chromium sulfate is preferably contained in the plating solution so that the concentration of Cr 3+ ions in the plating bath is 0.1 mol / L or more and 0.3 mol / L or less. By using such a preferable plating solution, the throwing power of the trivalent chromium plating with respect to the workpiece in the plating process can be improved.

本実施形態のめっき液では、Cr3+イオンの供給源として含有させる硫酸クロムの一部を塩酸クロム、塩基性硫酸クロム、クロム明礬、及び、硝酸クロムからなる群から選ばれる1種以上に置き換えることも可能であるが、塩酸クロムを多く含有させるとめっき時にアノードにおいて塩素ガスを発生させるおそれがあり、硝酸クロムを多く含有させるとめっき時に電流密度の低下を招くおそれがある。従って、めっき液におけるCr3+イオンの供給源に占める硫酸クロムの割合は、90mol%以上であることが好ましい。硫酸クロムの割合は、95mol%以上であることがより好ましく、99mol%以上であることがさらに好ましい。めっき液におけるCr3+イオンの供給源は、実質的に硫酸クロムのみであることがとりわけ好ましい。 In the plating solution of the present embodiment, a part of chromium sulfate contained as a supply source of Cr 3+ ions is replaced with one or more selected from the group consisting of chromium hydrochloride, basic chromium sulfate, chromium alum, and chromium nitrate. However, if a large amount of chromium hydrochloride is contained, chlorine gas may be generated at the anode during plating. If a large amount of chromium nitrate is contained, current density may be reduced during plating. Therefore, the proportion of chromium sulfate in the Cr 3+ ion supply source in the plating solution is preferably 90 mol% or more. The proportion of chromium sulfate is more preferably 95 mol% or more, and further preferably 99 mol% or more. It is particularly preferable that the source of Cr 3+ ions in the plating solution is substantially only chromium sulfate.

本実施形態のめっき液に含有させる前記錯化剤としては、有機酸やその塩を用いることができる。該有機酸としては、例えば、シュウ酸、クエン酸、蟻酸、マレイン酸、マロン酸、酒石酸、リンゴ酸、酢酸、フタル酸、プロピオン酸、エチレンジアミン4酢酸などが挙げられる。これらの塩としては、例えば、リチウム塩、カリウム塩、ナトリウム塩などのアルカリ金属塩、マグネシウム塩、カルシウム塩といったアルカリ土類金属塩が挙げられる。なかでも前記蟻酸は錯化剤として特に有効な成分であり、濃度が0.05mol/L以上0.2mol/L以下となるようにめっき液に含有されることが重要である。めっき液における前記蟻酸の濃度は、0.08mol/L以上0.12mol/L以下であることがより好ましい。   As the complexing agent contained in the plating solution of the present embodiment, an organic acid or a salt thereof can be used. Examples of the organic acid include oxalic acid, citric acid, formic acid, maleic acid, malonic acid, tartaric acid, malic acid, acetic acid, phthalic acid, propionic acid, ethylenediaminetetraacetic acid, and the like. Examples of these salts include alkali metal salts such as lithium salt, potassium salt and sodium salt, and alkaline earth metal salts such as magnesium salt and calcium salt. In particular, the formic acid is a particularly effective component as a complexing agent, and it is important that the formic acid is contained in the plating solution so that the concentration is 0.05 mol / L or more and 0.2 mol / L or less. The concentration of the formic acid in the plating solution is more preferably 0.08 mol / L or more and 0.12 mol / L or less.

上記の有機酸やその塩については、前記pH緩衝剤としても一定以上の効果を発揮する。また、前記錯化剤としては、尿素やカルバミン酸などのアミノカルボニル化合物を採用しても良い。なかでも尿素はpH緩衝剤としての機能を有するとともにめっき被膜に対する窒素の供給源として機能し、被膜の硬質化に有効である。さらに尿素にはめっき液中に水酸化クロムなどの沈殿物が発生することを抑制する効果が期待できる。このような点において、前記尿素は、濃度が0.1mol/L以上1mol/L以下となるようにめっき液に含有されることが好ましい。めっき液における前記尿素の濃度は、0.2mol/L以上0.8mol/L以下であることがより好ましく、0.4mol/L以上0.6mol/L以下であることが特に好ましい。   About said organic acid and its salt, the above-mentioned effect is exhibited also as said pH buffer. As the complexing agent, aminocarbonyl compounds such as urea and carbamic acid may be employed. Among these, urea has a function as a pH buffer and functions as a nitrogen supply source for the plating film, and is effective for hardening the film. Further, urea can be expected to have an effect of suppressing the generation of precipitates such as chromium hydroxide in the plating solution. In this respect, the urea is preferably contained in the plating solution so that the concentration is 0.1 mol / L or more and 1 mol / L or less. The urea concentration in the plating solution is more preferably 0.2 mol / L or more and 0.8 mol / L or less, and particularly preferably 0.4 mol / L or more and 0.6 mol / L or less.

上記のようなもの以外に前記pH緩衝剤として利用可能なものを挙げると、例えば、ホウ酸やホウ酸塩などが挙げられる。該ホウ酸をめっき液に含有させる場合、前記pH緩衝剤として含有される有機酸や尿素などの量などにもよるが、通常、0.5mol/L以上1mol/L以下の濃度となるようにめっき液に含有される。前記めっき液は、pH緩衝剤などによってpHが1以上2以下に調整されることが好ましく、1.3以上1.7以下のpHとなるように調整されることがより好ましい。   In addition to the above, examples that can be used as the pH buffer include boric acid and borate. When the boric acid is contained in the plating solution, the concentration is usually 0.5 mol / L or more and 1 mol / L or less depending on the amount of organic acid or urea contained as the pH buffering agent. Contained in the plating solution. The plating solution is preferably adjusted to have a pH of 1 or more and 2 or less, and more preferably adjusted to a pH of 1.3 or more and 1.7 or less with a pH buffering agent or the like.

前記導電剤としては、例えば、塩化アンモニウム、塩化ナトリウム、塩化カリウム、硫酸アンモニウム、硫酸ナトリウム、硫酸カリウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウムなどが挙げられる。また、前記界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ドデシル硫酸ナトリウム、ポリエチレングリコール、スルホコハク酸ジイソヘキシル、硫酸2−エチルヘキシル、スルホコハク酸ジイソブチル、スルホコハク酸ジイソアミル、スルホコハク酸イソデシルなどが挙げられる。   Examples of the conductive agent include ammonium chloride, sodium chloride, potassium chloride, ammonium sulfate, sodium sulfate, potassium sulfate, ammonium nitrate, sodium nitrate, and potassium nitrate. Examples of the surfactant include sodium lauryl sulfate, sodium dodecyl sulfate, polyethylene glycol, diisohexyl sulfosuccinate, 2-ethylhexyl sulfate, diisobutyl sulfosuccinate, diisoamyl sulfosuccinate, isodecyl sulfosuccinate, and the like.

前記めっき液には、その他の添加剤として、ポリエチレングリコール、ポリビニルアルコール、ゼラチンなどの被膜形成剤、消泡剤など各種のものを含有させることができる。   The plating solution may contain various additives such as film forming agents such as polyethylene glycol, polyvinyl alcohol, and gelatin, and antifoaming agents as other additives.

このような成分を含むめっき液を用いためっき工程では、前記めっき浴での浴温を20℃以上40℃未満とすることが重要である。前記めっき工程でのめっき浴の浴温は、低温である方がワークに対する3価クロムめっきの付きまわり性をより良好なものにすることができる。その一方でめっき浴の浴温は、一定以上の温度を有する方がめっき液に含まれる成分の析出を抑制することができ、めっき表面にざらつきが生じることを抑制することができる。そのような点において前記めっき工程でのめっき浴の浴温は、23℃以上29℃以下であることがより好ましく、24℃以上28℃以下であることが特に好ましい。このような好ましい温度条件でめっき工程を実施することで仕上めっき製品に対して厚さが均一で表面光沢に優れためっき被膜を備えさせることができる。   In a plating process using a plating solution containing such components, it is important that the bath temperature in the plating bath is 20 ° C. or higher and lower than 40 ° C. When the bath temperature of the plating bath in the plating process is lower, the throwing power of the trivalent chromium plating on the workpiece can be improved. On the other hand, when the bath temperature of the plating bath is higher than a certain level, precipitation of components contained in the plating solution can be suppressed, and roughness of the plating surface can be suppressed. In such a point, the bath temperature of the plating bath in the plating step is more preferably 23 ° C. or higher and 29 ° C. or lower, and particularly preferably 24 ° C. or higher and 28 ° C. or lower. By carrying out the plating step under such a preferable temperature condition, it is possible to provide a plating film having a uniform thickness and excellent surface gloss with respect to the finished plated product.

前記めっき工程での電気めっきにおいては、電流密度を2A/dm以上20A/dm以下とすることが重要である。前記電流密度は、2A/dm以上15A/dm以下であることがより好ましく、2A/dm以上13A/dm以下とすることが特に好ましい。このような好ましい電流密度でめっきを実施することでワークに対する3価クロムめっきの付きまわり性をより良好なものにすることができる。 In electroplating in the plating step, it is important that the current density is 2 A / dm 2 or more and 20 A / dm 2 or less. The current density is more preferably 2A / dm 2 or more 15A / dm 2 or less, and particularly preferably 2A / dm 2 or more 13A / dm 2 or less. By performing plating at such a preferable current density, the throwing power of the trivalent chromium plating on the workpiece can be improved.

前記めっき工程においては、めっき液中に水素ガスによる気泡が発生するためワークへの気泡の付着を抑制すべくめっき中のワークに振動を与えたり、ワークの下方から不活性ガスなどによる気泡を発生させるバブリング処理を施すなどしてもよい。   In the plating process, bubbles due to hydrogen gas are generated in the plating solution, so that the workpiece being plated is vibrated to suppress adhesion of bubbles to the workpiece, or bubbles are generated from below the workpiece due to inert gas. A bubbling process may be performed.

上記のようなめっき液の成分濃度、めっき液の浴温、ワークに与える電流密度などといっためっき工程における各種条件については、必ずしも、めっき工程の開始直後からめっき工程を完了するまでの間、常に上記のような範囲内に保たれていなければその効果が発揮されないわけではないが、全期間においてめっき開始時とほぼ同一の条件下にあることが好ましい。   Regarding the various conditions in the plating process such as the component concentration of the plating solution, the bath temperature of the plating solution, the current density applied to the workpiece, etc., it is not always the case from immediately after the start of the plating step until the completion of the plating step. If it is not kept within such a range, the effect will not be exhibited, but it is preferable that the conditions are almost the same as those at the start of plating throughout the entire period.

本実施形態の前記めっき工程においては、ワークのコーナー部や微細な凹凸部といった従来であればめっき厚さが平坦部とは異なり易い部分においても平坦部と同等の厚さでクロムめっきが施され、3価クロムめっきでありながら6価クロムめっきと同様の付きまわり性と均一電着性とが発揮される。本実施形態において作製されるめっき製品におけるめっき厚さは、当該めっき製品の用途などに応じて適宜設定されうるが、本発明の効果をより顕著に発揮させる上において下地めっきなどを除いた3価クロムめっき部分だけのめっき厚さを5μm以上600μm以下とすることが好ましい。前記めっき厚さは、50μm以上であることがより好ましく、100μm以上であることが特に好ましい。該めっき厚さの測定が必要な場合、例えば、蛍光X線式膜厚計などによって測定すればよい。但し、めっき厚さが50μm以上となると蛍光X線式膜厚計での測定は、困難になるので、そのような場合は、走査型電子顕微鏡(SEM)でめっき製品の断面観察を実施すればよい。そして、前記めっき厚さは、無作為に選択した数箇所においてめっき製品のめっき厚さを測定し、異常値を除いた測定結果を算術平均することで求めることができる。   In the plating process of the present embodiment, chromium plating is applied at a thickness equivalent to that of the flat portion even in a portion where the plating thickness is easily different from the flat portion in the conventional case, such as a corner portion of the workpiece or a fine uneven portion. Although it is a trivalent chromium plating, the throwing power and the throwing power similar to those of the hexavalent chromium plating are exhibited. Although the plating thickness in the plated product produced in the present embodiment can be appropriately set according to the use of the plated product, etc., the trivalent value excluding the base plating and the like is more effective in achieving the effects of the present invention more remarkably. It is preferable that the plating thickness of only the chromium plating portion is 5 μm or more and 600 μm or less. The plating thickness is more preferably 50 μm or more, and particularly preferably 100 μm or more. When it is necessary to measure the plating thickness, for example, it may be measured by a fluorescent X-ray film thickness meter. However, when the plating thickness is 50 μm or more, measurement with a fluorescent X-ray film thickness meter becomes difficult. In such a case, if the cross-sectional observation of the plated product is carried out with a scanning electron microscope (SEM) Good. And the said plating thickness can be calculated | required by measuring the plating thickness of a plating product in several places selected at random, and arithmetically averaging the measurement result except an abnormal value.

なお、ここではこれ以上の詳細な説明を繰り返さないが、本実施形態におけるめっき製品の製造方法やめっきに用いるめっき液には、これらについて上記に具体的な例示が無い事項であっても従来公知の技術事項を本発明の効果が著しく損なわれない範囲において適宜採用が可能である。
即ち、本発明は上記例示の範囲内のものに限定されるものではない。
In addition, although detailed description beyond this is not repeated here, even if it is a matter which does not have a specific illustration above about the manufacturing method of the plating product in this embodiment, and the plating solution used for plating, they are conventionally well-known. These technical matters can be appropriately adopted within a range in which the effects of the present invention are not significantly impaired.
That is, the present invention is not limited to those within the above-described examples.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.

(本発明の概要:従来の3価クロムめっきとの違い)
一般文献等において開示がされている6価クロムめっきと3価クロムめっきとにおける電流密度とめっき厚さとの関係を図1に示す。
この図からは、従来の3価クロムめっきでは電流密度とめっき厚さとの関係を示す直線の傾きが電流密度が5A/dm付近で急激に大きくなり均一電着性が発揮され難いことがわかる。
また、この図からは、従来の3価クロムめっきにおいては5A/dm以下の電流密度でめっきを行うことが難しく付きまわり性に優れためっきを行うことが困難であることがわかる。
(Outline of the present invention: Difference from conventional trivalent chromium plating)
FIG. 1 shows the relationship between current density and plating thickness in hexavalent chromium plating and trivalent chromium plating disclosed in general literatures.
From this figure, it can be seen that in the conventional trivalent chromium plating, the slope of the straight line indicating the relationship between the current density and the plating thickness increases rapidly when the current density is around 5 A / dm 2 , and it is difficult to achieve uniform electrodeposition. .
From this figure, it can be seen that it is difficult to perform plating with a current density of 5 A / dm 2 or less in conventional trivalent chromium plating, and it is difficult to perform plating with excellent throwing power.

これに対し本発明のめっき液を用いた場合、電流密度とめっき厚さとの関係は、図2に示したようになり、6価クロムめっきと同様の5A/dm以下の低い電流密度で3価クロムめっきが可能となる。
また、本発明のめっき液を用いた場合、5A/dm以下の低い電流密度の領域から30A/dm付近の高い電流密度の領域に至るまで電流密度とめっき厚さとの関係が直線的なものになり均一電着性に優れためっきが実施可能となる。
従って、この図からも本発明によれば付きまわり性と均一電着性とに優れた3価クロムめっき用のめっき液が提供されることがわかる。
この点について、以下に検討結果を詳述する。
On the other hand, when the plating solution of the present invention is used, the relationship between the current density and the plating thickness is as shown in FIG. 2 and is 3 at a low current density of 5 A / dm 2 or less as in the case of hexavalent chromium plating. Valuable chromium plating is possible.
When the plating solution of the present invention is used, the relationship between the current density and the plating thickness is linear from the low current density region of 5 A / dm 2 or less to the high current density region near 30 A / dm 2. Therefore, plating with excellent uniform electrodeposition can be performed.
Therefore, also from this figure, it can be seen that according to the present invention, a plating solution for trivalent chromium plating excellent in throwing power and throwing power is provided.
The examination results will be described in detail below.

(評価1:浴温1)
表1に示した配合内容となるようにめっき液を調製した。
即ち、硫酸クロムを含み、Cr3+イオンの濃度が1mol/Lのめっき液を調製した。
該めっき液には、それぞれ0.5mol/Lの濃度となるように蟻酸と尿素とを添加した。
また、めっき液はpHが1.5となるように調製した。
(Evaluation 1: Bath temperature 1)
A plating solution was prepared so as to have the composition shown in Table 1.
That is, a plating solution containing chromium sulfate and having a Cr 3+ ion concentration of 1 mol / L was prepared.
Formic acid and urea were added to the plating solution to a concentration of 0.5 mol / L.
Moreover, the plating solution was prepared so that pH might be set to 1.5.

上記のめっき液を用いて5Aの電流値でハルセル試験を実施した。
なお、試験は浴温を30℃、35℃、40℃の3通りで実施し、試験時間は10分間とした。
結果を図3、表1に併せて示す。
A hull cell test was carried out at a current value of 5 A using the above plating solution.
The test was performed at three bath temperatures of 30 ° C., 35 ° C., and 40 ° C., and the test time was 10 minutes.
The results are shown in FIG.

また、試験後の試料のめっき厚さを蛍光X線型膜厚測定器にて測定した。
その結果を図4に示す。
この表1や図4に示した結果からは、Cr3+イオンの濃度が1mol/L以下であることで電流密度が低い状態でも一定以上のめっき厚さを確保できることがわかった。
また、表1、図4に示した結果からは、浴温を40℃未満とすることが付きまわり性に優れた3価クロムめっきを行う上で有利であることが判明した。
Moreover, the plating thickness of the sample after the test was measured with a fluorescent X-ray film thickness measuring instrument.
The result is shown in FIG.
From the results shown in Table 1 and FIG. 4, it was found that when the Cr 3+ ion concentration is 1 mol / L or less, a plating thickness of a certain level or more can be ensured even when the current density is low.
Further, from the results shown in Table 1 and FIG. 4, it was found that setting the bath temperature to less than 40 ° C. is advantageous in performing trivalent chromium plating with excellent throwing power.

(評価2:浴温2)
「評価1」の結果を受けて浴温をさらに細分化して24℃、26℃、28℃、30℃、32℃の5通りの浴温でハルセル試験を実施し、「評価1」と同様に試験結果を評価した。
結果を表2、図5、6に示す。
(Evaluation 2: Bath temperature 2)
Based on the result of “Evaluation 1”, the bath temperature was further subdivided and the Hull Cell test was conducted at 5 different bath temperatures of 24 ° C., 26 ° C., 28 ° C., 30 ° C. and 32 ° C. Test results were evaluated.
The results are shown in Table 2 and FIGS.

この表や図からも、浴温が24℃から28℃の範囲では、各電流密度でのめっき被膜の析出をほぼ一定の速度にできることがわかる。
そして、浴温が24℃で最も付きまわり性の向上が認められ、低い浴温でめっきを行う方が好ましい結果が得られることがわかった。
そこで、さらに浴の温度を下げることも検討したが浴温を下げ過ぎると浴組成の一部が結晶化してめっき表面にざらつきが発生したり、浴粘度が高くなってカソードにおいて水素が除去しにくくなると認められたことから浴温は24℃〜28℃の範囲内が最適であると判断した。
なお、24℃〜28℃の浴温を採用することで電流密度が低い場合でも良好なめっきが可能となる傾向は、別途実施したベントカソード試験においても確認できた。
From this table and figure, it can be seen that when the bath temperature is in the range of 24 ° C. to 28 ° C., the deposition of the plating film at each current density can be performed at a substantially constant rate.
And, it was found that the improvement in throwing power was recognized most at a bath temperature of 24 ° C., and that it was more preferable to perform plating at a lower bath temperature.
Therefore, we also considered lowering the bath temperature, but if the bath temperature was lowered too much, part of the bath composition crystallized and the surface of the plating became rough, or the bath viscosity increased and it was difficult to remove hydrogen at the cathode. Therefore, the bath temperature was determined to be optimal within the range of 24 ° C to 28 ° C.
In addition, the tendency that favorable plating was possible even when the current density was low by adopting a bath temperature of 24 ° C. to 28 ° C. was confirmed in a separately performed vent cathode test.

(評価3:浴濃度)
浴粘度の低下や浴液結晶化を抑制して付きまわり性の向上を図るべく、浴組成自体の濃度を下げてハルセル試験を実施した。
具体的には、浴組成を4/5(Cr3+イオンの濃度0.8mol/L、蟻酸及び尿素各々0.4mol/L)、3/5(Cr3+イオンの濃度0.6mol/L、蟻酸及び尿素各々0.3mol/L)、1/2(Cr3+イオンの濃度0.5mol/L、蟻酸及び尿素各々0.25mol/L)とし浴温度25℃でハルセル試験を実施した。
結果を表3、及び、図7に示す。
この表3や図7からも明らかなように、この「評価3」では浴濃度が低い方が良好なめっき被膜が得られることがわかった。
なお、成分を0.5倍としためっき液で最も良い結果が得られることは、別途実施したベントカソード試験においても確認できた。
(Evaluation 3: Bath concentration)
In order to suppress the decrease in the bath viscosity and the crystallization of the bath liquid and improve the throwing power, the concentration of the bath composition itself was lowered and the hull cell test was performed.
Specifically, the bath composition was 4/5 (Cr 3+ ion concentration 0.8 mol / L, formic acid and urea 0.4 mol / L each), and 3/5 (Cr 3+ ion concentration 0.6 mol / L, formic acid. And urea (0.3 mol / L each) and 1/2 (Cr 3+ ion concentration 0.5 mol / L, formic acid and urea 0.25 mol / L each), and a hull cell test at a bath temperature of 25 ° C.
The results are shown in Table 3 and FIG.
As is apparent from Table 3 and FIG. 7, it was found that in “Evaluation 3”, a better plating film can be obtained when the bath concentration is lower.
Note that the best results were obtained with a plating solution containing 0.5 times the component, even in a separately conducted vent cathode test.

(評価4:蟻酸及び尿素の添加量1)
「評価3」の結果を受け、浴濃度の更なる低下を試みた。
具体的には、浴組成を1/4、並びに、1/10としてハルセル試験を実施した。
その結果、付きまわり性はさらに改善されたがめっきの異常析出が見られる結果となった。
そのため、クロムイオン濃度は1/4(0.25mol/L)、1/10(0.1mol/L)としながら、蟻酸や尿素は当初の濃度(0.5mol/L)に戻した。
その結果、表4や図8に示すように異常析出は無くなったが、付きまわり性が低下する結果となった。
(Evaluation 4: Addition amount of formic acid and urea 1)
In response to the result of “Evaluation 3”, further reduction of the bath concentration was attempted.
Specifically, the hull cell test was performed with the bath composition set to 1/4 and 1/10.
As a result, throwing power was further improved, but abnormal deposition of plating was observed.
Therefore, formic acid and urea were returned to the original concentration (0.5 mol / L) while the chromium ion concentration was 1/4 (0.25 mol / L) and 1/10 (0.1 mol / L).
As a result, as shown in Table 4 and FIG. 8, the abnormal precipitation disappeared, but the throwing power decreased.

(評価5:蟻酸及び尿素の添加量2)
「評価4」の結果を受け、蟻酸、尿素の変量により異常析出の改善を試みた。
ハルセル試験の結果(表5、図9参照)、蟻酸の濃度を0.1mol/Lと低く、尿素を当初の濃度(0.5mol/L)とすることで付きまわり性が良好で異常析出が抑制されることがわかった。
(Evaluation 5: Amount of addition of formic acid and urea 2)
Based on the result of “Evaluation 4”, an attempt was made to improve abnormal precipitation by changing the amount of formic acid and urea.
As a result of the Hull cell test (see Table 5 and FIG. 9), the concentration of formic acid is as low as 0.1 mol / L and the initial concentration (0.5 mol / L) of urea provides good throwing power and abnormal precipitation. It was found to be suppressed.

次いで、尿素の濃度を0.5mol/Lに固定とし、蟻酸の濃度を0.1mol/Lから0.22mol/Lへと変化させて付きまわり性が改善するか確認した。
結果を表6、図10に示す。
Next, the urea concentration was fixed at 0.5 mol / L, and the formic acid concentration was changed from 0.1 mol / L to 0.22 mol / L to confirm whether the throwing power improved.
The results are shown in Table 6 and FIG.

この表や図からは、蟻酸の濃度が0.2mol/L以下で良好な結果が得られることがわかった。   From this table and figure, it was found that good results were obtained when the concentration of formic acid was 0.2 mol / L or less.

また、さらに蟻酸を低濃度にして付きまわり性について評価を行った。
その結果を表7、図11に示す。
Further, the throwing power was evaluated at a low concentration of formic acid.
The results are shown in Table 7 and FIG.

この表や図からは、蟻酸の濃度が0.05mol/L以上で良好な結果が得られることがわかった。
短冊状の金属板を折り曲げて側面視“コの字状”となる凹入部を備えたカソードを用い、表6、7に示した条件と同じ条件でベントカソード試験を実施したところ、蟻酸の濃度が0.05mol/L以上0.1mol/L以下の範囲では凹入部においても6割以上の範囲にめっきが施されていることが確認できた。
From this table and figure, it was found that good results were obtained when the concentration of formic acid was 0.05 mol / L or more.
A bent cathode test was conducted under the same conditions as those shown in Tables 6 and 7 using a cathode with a concave portion that was bent in a strip shape and turned into a “U” shape when viewed from the side. In the range of 0.05 mol / L or more and 0.1 mol / L or less, it was confirmed that the plating was applied to the recessed portion at a range of 60% or more.

以上のように硫酸クロムを含む3価クロムめっき用のめっき液では、Cr3+イオンの濃度が0.1mol/L以上1mol/L以下の範囲とし、蟻酸の濃度を0.05mol/L以上0.2mol/L以下とすることで良好な付きまわり性を示すことが確認できた。
また、同めっき液は、Cr3+イオンの濃度が0.1mol/L〜0.3mol/Lの範囲で特に良好な付きまわり性を示すことが確認できた。
さらに、上記の評価からは、めっき浴での浴温を20℃以上40℃未満とすることが有効であることが確認できた。
このようなことからも本発明によれば付きまわり性に優れた3価クロムめっき用のめっき液が提供され、環境に優しいめっき製品の適用範囲が拡大され得ることがわかる。
As described above, in the plating solution for trivalent chromium plating containing chromium sulfate, the concentration of Cr 3+ ions is in the range of 0.1 mol / L or more and 1 mol / L or less, and the concentration of formic acid is 0.05 mol / L or more and 0.0. It was confirmed that good throwing power was exhibited by setting it to 2 mol / L or less.
Further, it was confirmed that the plating solution showed particularly good throwing power when the Cr 3+ ion concentration was in the range of 0.1 mol / L to 0.3 mol / L.
Furthermore, from the above evaluation, it was confirmed that it is effective to set the bath temperature in the plating bath to 20 ° C. or higher and lower than 40 ° C.
From these facts, it can be seen that according to the present invention, a plating solution for trivalent chromium plating having excellent throwing power is provided, and the application range of environmentally friendly plated products can be expanded.

Claims (3)

3価クロムめっきに用いられるめっき液であって、
硫酸クロムと蟻酸とを含み、Cr3+イオンの濃度が0.1mol/L以上1mol/L以下で、前記蟻酸の濃度が0.05mol/L以上0.2mol/L以下であるめっき液。
A plating solution used for trivalent chromium plating,
A plating solution containing chromium sulfate and formic acid, having a Cr 3+ ion concentration of 0.1 mol / L to 1 mol / L and a formic acid concentration of 0.05 mol / L to 0.2 mol / L.
めっき厚さが5μm以上の3価クロムめっきに用いられる請求項1記載のめっき液。   The plating solution according to claim 1, which is used for trivalent chromium plating having a plating thickness of 5 μm or more. 硫酸クロムを含むめっき液を収容しためっき浴で電気めっきを行うめっき工程を実施し、該めっき工程によって3価クロムめっきが施されためっき製品を作製するめっき製品の製造方法であって、
前記めっき工程では、
前記めっき液として、Cr3+イオンの濃度が0.1mol/L以上1mol/L以下であるめっき液を用い、
前記めっき浴での浴温を20℃以上40℃未満とし、且つ、
前記電気めっきでの電流密度を2A/dm以上20A/dm以下とするめっき製品の製造方法。
A method for producing a plated product, which performs a plating step of performing electroplating in a plating bath containing a plating solution containing chromium sulfate, and produces a plated product on which trivalent chromium plating has been performed by the plating step,
In the plating step,
As the plating solution, a plating solution having a Cr 3+ ion concentration of 0.1 mol / L or more and 1 mol / L or less,
The bath temperature in the plating bath is 20 ° C. or higher and lower than 40 ° C., and
A method for producing a plated product, wherein the current density in the electroplating is 2 A / dm 2 or more and 20 A / dm 2 or less.
JP2017021006A 2017-02-08 2017-02-08 Plating solution and method of producing plated product Expired - Fee Related JP6547232B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017021006A JP6547232B2 (en) 2017-02-08 2017-02-08 Plating solution and method of producing plated product
US15/576,892 US20200040477A1 (en) 2017-02-08 2017-08-25 Plating solution and method for producing plated product
EP17800356.2A EP3388558A1 (en) 2017-02-08 2017-08-25 Metal plating solution and method for producing metal plated product
PCT/JP2017/030445 WO2018146841A1 (en) 2017-02-08 2017-08-25 Metal plating solution and method for producing metal plated product
KR1020177033982A KR20190115481A (en) 2017-02-08 2017-08-25 Plating solution and manufacturing method of plated product
TW106144032A TW201835387A (en) 2017-02-08 2017-12-14 Plating solution and method for producing plated product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021006A JP6547232B2 (en) 2017-02-08 2017-02-08 Plating solution and method of producing plated product

Publications (3)

Publication Number Publication Date
JP2018127667A true JP2018127667A (en) 2018-08-16
JP2018127667A5 JP2018127667A5 (en) 2019-02-28
JP6547232B2 JP6547232B2 (en) 2019-07-24

Family

ID=63107327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021006A Expired - Fee Related JP6547232B2 (en) 2017-02-08 2017-02-08 Plating solution and method of producing plated product

Country Status (6)

Country Link
US (1) US20200040477A1 (en)
EP (1) EP3388558A1 (en)
JP (1) JP6547232B2 (en)
KR (1) KR20190115481A (en)
TW (1) TW201835387A (en)
WO (1) WO2018146841A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005754A (en) * 2018-07-04 2020-01-16 株式会社大都技研 Game board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156245A1 (en) * 2018-02-09 2019-08-15 日本製鉄株式会社 Steel sheet for containers and method for producing steel sheet for containers
CN117488300B (en) * 2024-01-02 2024-03-29 仪征亚新科双环活塞环有限公司 Piston ring with hard coating and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099126A (en) * 2008-01-24 2011-05-19 Okuno Chemical Industries Co Ltd Trivalent chromium plating bath
JP2016113662A (en) * 2014-12-15 2016-06-23 株式会社Jcu Trivalent chromium plating liquid and trivalent chromium plating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249340A (en) 1999-02-25 2000-09-12 Ngk Spark Plug Co Ltd Glow plug and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099126A (en) * 2008-01-24 2011-05-19 Okuno Chemical Industries Co Ltd Trivalent chromium plating bath
JP2016113662A (en) * 2014-12-15 2016-06-23 株式会社Jcu Trivalent chromium plating liquid and trivalent chromium plating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005754A (en) * 2018-07-04 2020-01-16 株式会社大都技研 Game board

Also Published As

Publication number Publication date
EP3388558A1 (en) 2018-10-17
US20200040477A1 (en) 2020-02-06
WO2018146841A1 (en) 2018-08-16
KR20190115481A (en) 2019-10-14
JP6547232B2 (en) 2019-07-24
TW201835387A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
JP4857340B2 (en) Pretreatment of magnesium substrate for electroplating
US20070108060A1 (en) Method of preparing copper plating layer having high adhesion to magnesium alloy using electroplating
US20080169199A1 (en) Trivalent chromium electroplating solution and an electroplating process with the solution
US3925170A (en) Method and composition for producing bright palladium electrodepositions
WO2018146841A1 (en) Metal plating solution and method for producing metal plated product
US20090211914A1 (en) Trivalent Chromium Electroplating Solution and an Operational Method Thereof
KR20190112080A (en) Surface treatment steel plate
JP2009035806A (en) Trivalent chromium plating bath and method of preparing the same
WO2012114737A1 (en) Method for producing trivalent chromium-plated molded article and trivalent chromium-plated molded article
US20060257683A1 (en) Stainless steel electrolytic coating
JP5336762B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
CN105887152A (en) Aluminum alloy anodic oxidation process
CN110760906A (en) Nano zinc-cobalt alloy coating based on double-pulse electrodeposition and preparation method thereof
Ni et al. The influence of sodium citrate and potassium sodium tartrate compound additives on copper electrodeposition
KR101126530B1 (en) Chemical etching method for magnesium alloy
KR20180074149A (en) ELECTROPLATED Zn-Ni BASED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND WORKABILITY AND METHOD OF MANUFACTURING THE SAME
KR20090075362A (en) Method for metal material coating and parts coated by same method
JP5086290B2 (en) Black plating film and method for forming the film
JP2013185199A (en) Zinc-based electroplated steel sheet and method for manufacturing the same
KR101110887B1 (en) An alternative electrochemical method to chromate treatment of Mg alloy substrate
US3880730A (en) Electro-galvanic gold plating process
US2519858A (en) Electrodeposition of nickel and nickel alloys
US2312517A (en) Method of nickel plating
TW201350594A (en) Metal material
Arslan et al. Comparison of structural properties of copper deposits from sulfate and pyrophosphate electrolytes

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6547232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees