JP2018126755A - Method for pulse mag welding of thin steel plate - Google Patents

Method for pulse mag welding of thin steel plate Download PDF

Info

Publication number
JP2018126755A
JP2018126755A JP2017020872A JP2017020872A JP2018126755A JP 2018126755 A JP2018126755 A JP 2018126755A JP 2017020872 A JP2017020872 A JP 2017020872A JP 2017020872 A JP2017020872 A JP 2017020872A JP 2018126755 A JP2018126755 A JP 2018126755A
Authority
JP
Japan
Prior art keywords
pulse
welding
wire
slag
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017020872A
Other languages
Japanese (ja)
Other versions
JP6800770B2 (en
Inventor
友勝 岩上
Tomokatsu Iwagami
友勝 岩上
木本 勇
Isamu Kimoto
勇 木本
大五郎 古田
Daigoro Furuta
大五郎 古田
藤井 良雄
Yoshio Fujii
良雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2017020872A priority Critical patent/JP6800770B2/en
Publication of JP2018126755A publication Critical patent/JP2018126755A/en
Application granted granted Critical
Publication of JP6800770B2 publication Critical patent/JP6800770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for pulse MAG welding of a thin steel plate which can obtain a weld zone which makes little slag remain on a bead surface, generates little sputter from stable arc, and has little welding defect from a favorable bead shape.SOLUTION: In a method for welding pulse MAG of a thin sheet plate, a solid wire, by mass% to the wire total mass, with 0.03-0.11% of C, 0.50-0.90% of Si, 1.40-1.90% of Mn, 0.15-0.35% of Ti, and an A value represented by the below (1), 0.55-0.85, 0.08-0.45% of Cu, and 0.006-0.020% of S is used for welding by adding pulses the pulse peak current (Ip) and the pulse peak time (Tp) of which satisfy the following formula (2) pulse current (Ip) being 440-600A and pulse base current (Ib) being 30-80A. A=0.33Si+0.15Mn+Ti...(1), 415≤Ip(A)×Tp(msec)≤780...(2).SELECTED DRAWING: Figure 1

Description

本発明は、薄鋼板のパルスMAG溶接方法に関し、特に板厚が1.2〜6mmの薄鋼板の重ね継手部やT継手部を溶接するに際してビード表面に残存するスラグが少なく、アークを安定させてスパッタ発生量が少なく、ビード形状が良好で、溶接欠陥がないなど、高能率で高品質な溶接部を得る上で好適な薄鋼板のパルスMAG溶接方法に関する。   The present invention relates to a pulse MAG welding method for a thin steel plate, and in particular, when welding a lap joint portion or a T joint portion of a thin steel plate having a thickness of 1.2 to 6 mm, there is little slag remaining on the bead surface and the arc is stabilized. In particular, the present invention relates to a pulse MAG welding method for a thin steel sheet suitable for obtaining a high-efficiency and high-quality welded part such as a low spatter generation amount, a good bead shape, and no welding defects.

自動車の足回り部材は、板厚が1.2〜6mmの薄鋼板の場合がほとんどで、通常、溶接後に防錆および美観のために塗料を電着塗装される。
自動車用薄鋼板の足回り部材の溶接は、ガスシールドアーク溶接用ソリッドワイヤを用いて継手部の品質特性の面からスパッタの発生量を低減させて部材への付着を少なくする目的と、高速度での溶接性確保の面からシールドガスとしてArガスを主成分とし、これにCO2ガスを混合、さらにはO2ガスを混合したガスを用いたパルスMAG溶接方法が近年増加している。パルスMAG溶接方法は、平均電流を低くして溶接できることから薄鋼板の溶接では耐溶け落ち性も向上できるとともに、高速度の溶接条件で施工できるので生産性が高く、品質の良好な溶接継手部が得られる。
The undercarriage member of an automobile is mostly a thin steel plate having a thickness of 1.2 to 6 mm, and is usually electrodeposited with a paint for rust prevention and aesthetic appearance after welding.
The purpose of welding undercarriage members of thin steel sheets for automobiles is to reduce the amount of spatter generated by using solid wire for gas shielded arc welding and to reduce the amount of spatter generated from the aspect of quality characteristics of the joints, and at high speed. Ar gas as a main component as the shielding gas from the viewpoint of weldability secure, the mixing CO 2 gas thereto, further the pulse MAG welding method using a mixed gas of O 2 gas is increased in recent years. The pulse MAG welding method can weld with a low average current, so it can improve the melt-off resistance when welding thin steel plates, and it can be applied under high-speed welding conditions, so it is highly productive and has good quality. Is obtained.

パルスMAG溶接とは、溶接電流として平均電流値より高電流となるピーク電流と平均
電流値より低電流としたベース電流を周期的に流す溶接方法である。これによりピーク電流期間では一定に送給されている溶接用ワイヤを電磁ピンチ力などの作用で溶滴状態に溶融させ、ベース電流期間中にこの溶滴を溶融池に安定的に移行させるので、高速溶接時に溶滴が溶融池と短絡することなくスムーズに溶融池へ移行させることができる。
Pulse MAG welding is a welding method in which a peak current that is higher than the average current value as a welding current and a base current that is lower than the average current value are periodically passed. As a result, the welding wire, which is constantly fed during the peak current period, is melted into a droplet state by an action such as an electromagnetic pinch force, and this droplet is stably transferred to the molten pool during the base current period. The droplets can be smoothly transferred to the molten pool without short-circuiting with the molten pool during high-speed welding.

このように、パルス溶接電源を適用することにより、パルスMAG溶接においてピーク
電流、ピーク時間、アーク電圧の積からなる溶融エネルギーに対応したワイヤ送給量毎の溶滴生成量にする。すなわち、1回のパルスピーク電流時に1個の溶滴を生成させ、ベース電流期間に溶滴を溶融池に規則的に移行させる1パルス−1ドロップ移行となるパルス条件とするにより、溶滴はスムーズに溶融池に移行してスパッタ発生量が低減される。このため溶接電源は、溶接用ワイヤの送給速度に対応してパルスの周波数を数十Hz〜300Hz程度まで変化させることが可能となっている。
In this way, by applying the pulse welding power source, the droplet generation amount for each wire feeding amount corresponding to the melting energy consisting of the product of peak current, peak time, and arc voltage in pulse MAG welding is obtained. That is, by forming a single droplet at the time of one pulse peak current and setting a pulse condition of 1 pulse-1 drop transition that regularly transfers the droplet to the molten pool during the base current period, The amount of spatter generated is reduced by smoothly moving to the molten pool. For this reason, the welding power source can change the frequency of the pulse from about several tens of Hz to about 300 Hz corresponding to the feeding speed of the welding wire.

薄鋼板溶接のパルスMAG溶接用ワイヤとして、例えば特開平8−99175号公報(
特許文献1)に、薄板高張力鋼板をワイヤ成分、シールドガス組成およびパルス付与条件を限定して溶接し、溶接金属の機械的性質を良好にすることができるとともにスパッタの発生量が少なく溶接作業性に優れる技術が開示されている。しかし、特許文献1に開示の技術においても、アークが安定して、ビード形状が良好な溶接金属を得ることができない。さらに、スラグ生成量が多くなり塗料を塗装後にスラグとともに塗料が剥がれるという問題があった。
As a wire for pulse MAG welding of thin steel plate welding, for example, JP-A-8-99175 (
Patent Document 1) welds thin high-strength steel sheets with limited wire components, shielding gas composition and pulse application conditions to improve the mechanical properties of the weld metal and reduce the amount of spatter generated. A technique having excellent properties is disclosed. However, even with the technique disclosed in Patent Document 1, it is impossible to obtain a weld metal with a stable arc and a good bead shape. Furthermore, there was a problem that the amount of slag generation increased and the paint was peeled off together with the slag after the paint was applied.

また、特開平9−239583号公報(特許文献2)、特開2001−321985号
公報(特許文献3)および特開2009−166066号公報(特許文献4)には、パルスMAG溶接用ソリッドワイヤの開示がある。しかし、特許文献2〜特許文献4に記載の溶接用ソリッドワイヤを用いたパルスMAG溶接においても、スラグ生成量が多く塗装後にスラグとともに塗料が剥がれるという問題があった。
In addition, Japanese Patent Laid-Open No. 9-239583 (Patent Document 2), Japanese Patent Laid-Open No. 2001-321985 (Patent Document 3) and Japanese Patent Laid-Open No. 2009-166066 (Patent Document 4) describe a solid wire for pulse MAG welding. There is disclosure. However, even in the pulse MAG welding using the welding solid wire described in Patent Documents 2 to 4, there is a problem that the amount of slag generated is large and the paint is peeled off together with the slag after coating.

一方、特開2016−203247号公報(特許文献5)には、ガスシールドアーク溶
接用フラックス入りワイヤにシリコン酸化物、クロム酸化物およびニッケル酸化物の少なくとも1種を含有させて薄鋼板の溶接をし、ビード表面に酸化皮膜層を形成して塗料塗装後の剥離を防止した技術の開示がある。しかし、特許文献5に開示されているビード表面の酸化皮膜層は、自動車の車体構造部材に適用した場合、季節の変化、寒冷地および温暖地など自動車の使用環境の温度差による溶接金属と酸化皮膜層との熱膨張の差によって酸化皮膜層が塗料とともに剥がれるという問題がある。
On the other hand, in JP-A-2006-203247 (Patent Document 5), welding of thin steel sheets is performed by containing at least one of silicon oxide, chromium oxide and nickel oxide in a flux-cored wire for gas shield arc welding. In addition, there is a disclosure of a technique in which an oxide film layer is formed on the bead surface to prevent peeling after coating. However, when the bead surface oxide film layer disclosed in Patent Document 5 is applied to a body structure member of an automobile, it is oxidized with a weld metal due to a temperature difference in an environment in which the automobile is used, such as seasonal changes, cold regions and warm regions. There is a problem that the oxide film layer is peeled off together with the paint due to a difference in thermal expansion from the film layer.

特開平8−99175号公報JP-A-8-99175 特開平9−239583号公報Japanese Patent Laid-Open No. 9-239583 特開2001−321985号公報JP 2001-321985 A 特開2009−166066号公報JP 2009-166066 A 特開2016−203247号公報JP, 2006-203247, A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、板厚が1.2〜6m
mである薄鋼板の重ね継手部やT継手部を溶接するに際してビード表面に残存するスラグが少なく、アークが安定してスパッタ発生量が少なく、ビード形状が良好で溶接欠陥がないなど、高能率に高品質な溶接部が得られる薄鋼板のパルスMAG溶接方法を提供することを目的とする。
Therefore, the present invention has been devised in view of the above-described problems, and has a thickness of 1.2 to 6 m.
High efficiency, such as when there are few slags remaining on the bead surface when welding lap joints and T joints of thin steel plates of m, the arc is stable and the amount of spatter is small, the bead shape is good and there are no welding defects Another object of the present invention is to provide a pulse MAG welding method for a thin steel plate that can obtain a high-quality weld.

本発明の要旨は、板厚1.2〜6mmである薄鋼板のパルスMAG溶接方法において、
ワイヤ全質量に対する質量%で、C:0.04〜0.11%、Si:0.50〜0.90%、Mn:1.40〜1.90%、Ti:0.15〜0.35%、かつ、下記(1)で示すA値:0.55〜0.85、Cu:0.08〜0.45%、S:0.006〜0.020%を含有し、P:0.02%以下であり、残部はFeおよび不可避不純物よりなるソリッドワイヤを用いて、パルスピーク電流(Ip):440〜600A、パルスベース電流(Ib):30〜80Aとし、前記パルスピーク電流(Ip)とパルスピーク時間(Tp)が下記式(2)を満足するパルスを付加して溶接することを特徴とする薄鋼板のパルスMAG溶接方法にある。
A=0.33Si+0.15Mn+Ti・・・・・(1)
(但し、Si、Mn、Tiは、ワイヤ全質量に対する質量%)
415≦Ip(A)×Tp(msec)≦780・・・・・(2)
The gist of the present invention is a pulse MAG welding method of a thin steel plate having a thickness of 1.2 to 6 mm.
% By mass with respect to the total mass of the wire, C: 0.04 to 0.11%, Si: 0.50 to 0.90%, Mn: 1.40 to 1.90%, Ti: 0.15 to 0.35 %, And A value shown in the following (1): 0.55 to 0.85, Cu: 0.08 to 0.45%, S: 0.006 to 0.020%, P: 0.00. 02% or less, the remainder using a solid wire made of Fe and inevitable impurities, pulse peak current (Ip): 440-600A, pulse base current (Ib): 30-80A, the pulse peak current (Ip) And a pulse MAG welding method for a thin steel sheet, characterized in that welding is performed by applying a pulse whose pulse peak time (Tp) satisfies the following formula (2).
A = 0.33Si + 0.15Mn + Ti (1)
(However, Si, Mn, and Ti are mass% with respect to the total mass of the wire)
415 ≦ Ip (A) × Tp (msec) ≦ 780 (2)

本発明の薄鋼板のパルスMAG溶接方法によれば、板厚が1.2〜6mmの薄鋼板の重ね継手部やT継手部を溶接するに際してビード表面に残存するスラグが少なく、アークが安定してスパッタ発生量が少なく、ビード形状が良好で溶接欠陥がないなど、高能率に高品質な溶接部が得られる。   According to the pulse MAG welding method of a thin steel plate of the present invention, when welding a lap joint portion or a T joint portion of a thin steel plate having a thickness of 1.2 to 6 mm, there is little slag remaining on the bead surface, and the arc is stabilized. As a result, the spatter generation amount is small, the bead shape is good and there are no welding defects, and a high-quality welded portion can be obtained with high efficiency.

A値とビード表面上のスラグ面積率との関係について示すグラフである。It is a graph shown about the relationship between A value and the slag area rate on a bead surface. 本発明の実施例に用いた重ねすみ肉継手溶接のワイヤ狙い位置を示す図である。It is a figure which shows the wire aim position of the lap fillet joint welding used for the Example of this invention.

本発明者らは、上述した問題点を解決するために、薄鋼板を重ねすみ肉継手とし、各種
成分のソリッドワイヤを用いて各種パルス条件で0.8m/min以上の溶接速度で溶接を行い、ビード表面に残存するスラグの量、アークの安定性、スパッタの発生状況、ビード形状および溶接欠陥の有無について詳細に検討した結果、次の知見を得た。
In order to solve the above-mentioned problems, the present inventors made thin steel plates into a fillet joint, and welded at a welding speed of 0.8 m / min or more under various pulse conditions using solid wires of various components. As a result of detailed examination of the amount of slag remaining on the bead surface, the stability of the arc, the occurrence of spatter, the bead shape and the presence or absence of welding defects, the following knowledge was obtained.

(1)ワイヤ組成は、Siの含有量、Mnの含有量およびTiの含有量、Sの含有量を適正とすることでスラグ生成量を減少することができたものの、十分に改善することができなかった。そこで、さらなる検討の結果、Si、Mn、Tiの含有量が適正であり、かつ、Si、Mn、Tiの含有量によって定まるA値を適正な範囲とすることによりスラグ生成量を抑制するための効果が十分得られることを見出した。また、Cの含有量、Tiの含有量、Cuの含有量、を適正とすることでアークが安定してスパッタ発生量の少ない溶接ができた。   (1) Although the wire composition was able to reduce the slag generation amount by making the Si content, the Mn content, the Ti content, and the S content appropriate, it can be sufficiently improved. could not. Therefore, as a result of further studies, the content of Si, Mn, Ti is appropriate, and the A value determined by the content of Si, Mn, Ti is within an appropriate range to suppress the slag generation amount It was found that the effect was sufficiently obtained. Further, by making the C content, Ti content, and Cu content appropriate, the arc was stabilized and welding with less spatter generation was achieved.

(2)上述した組成のワイヤを用いてパルス条件が1パルス−1ドロップの溶滴移行となる領域にすることで、80cm/min以上の高速度の溶接でアークが安定してスパッタ発生量が少なく良好なビード形状が得られる。   (2) By using the wire having the above-described composition and making the region where the pulse condition is 1 pulse-1 drop droplet transfer, the arc is stabilized by high-speed welding at 80 cm / min or more, and the amount of spatter generated is reduced. Less bead shape can be obtained.

以下、本発明の薄鋼板のパルスMAG溶接方法の限定理由について説明する。
まず、ワイヤ成分組成について説明する。なお、各成分の含有率は、ワイヤ全質量に対する質量%で表すものとし、その質量%に関する記載を単に%と記載する。
Hereinafter, the reason for limitation of the pulse MAG welding method of the thin steel plate of this invention is demonstrated.
First, the wire component composition will be described. In addition, the content rate of each component shall be represented by the mass% with respect to the total mass of a wire, and the description regarding the mass% is only described as%.

[C:0.03〜0.11%]
Cは、アークを安定させて溶滴を細粒化する作用がある。Cが0.03%未満では、溶滴の細粒化が困難となってアークが不安定でスパッタ発生量が多くなる。一方、Cが0.11%を超えると、溶融金属の粘性が低くなってビード形状が不良になるばかりでなく、溶接金属を硬化させ耐割れ性が劣化する。したがって、Cは0.03〜0.11%とする。
[C: 0.03-0.11%]
C has the effect of stabilizing the arc and making the droplets fine. If C is less than 0.03%, it is difficult to make the droplets finer, the arc becomes unstable, and the amount of spatter generated increases. On the other hand, if C exceeds 0.11%, the viscosity of the molten metal becomes low and the bead shape becomes poor, and the weld metal is hardened and crack resistance deteriorates. Therefore, C is 0.03 to 0.11%.

[Si:0.50〜0.90%]
Siは、アーク溶接時における溶融金属の脱酸を促進する元素(脱酸元素)であって、ブローホールの発生の抑制に効果があるが、Siが過剰に含有されれば、スラグの発生を顕著にする元素でもある。Siが0.50%未満では、脱酸不足となって、ブローホールが発生しやすくなる。一方、Siが0.90%を超えると、スラグ生成量が多くなる。したがって、Siは0.50〜0.90%とする。
[Si: 0.50-0.90%]
Si is an element (deoxidation element) that promotes deoxidation of molten metal during arc welding, and is effective in suppressing the generation of blowholes. However, if Si is contained excessively, the generation of slag is suppressed. It is also a remarkable element. When Si is less than 0.50%, deoxidation is insufficient, and blow holes are likely to occur. On the other hand, when Si exceeds 0.90%, the amount of slag generation increases. Therefore, Si is 0.50 to 0.90%.

[Mn:1.40〜1.90%]
Mnは、脱酸元素として重要な元素である。Mnが1.40%未満では、特に高速度の溶接条件でピットが発生しやすくなる。一方、Mnが1.90%を超えると、スパッタ発生量およびスラグ生成量が多くなる。したがって、Mnは1.40〜1.90%とする。
[Mn: 1.40 to 1.90%]
Mn is an important element as a deoxidizing element. If Mn is less than 1.40%, pits are likely to be generated particularly under high-speed welding conditions. On the other hand, when Mn exceeds 1.90%, spatter generation amount and slag generation amount increase. Therefore, Mn is 1.40 to 1.90%.

[Ti:0.15〜0.35%]
Tiは、アークを安定される作用があり、また脱酸元素でもあるため、ブローホールの抑制にも効果がある。Tiが0.15%未満では、これらの効果が得られず、アークが不安定となり、ブローホールが発生しやすくなる。一方、Tiが0.35%を超えると、スラグ生成反応が促進された、スラグ生成量が多くなる。したがって、Tiは0.15〜0.35%とする。
[Ti: 0.15-0.35%]
Ti has the effect of stabilizing the arc, and is also a deoxidizing element, so it is effective in suppressing blowholes. If Ti is less than 0.15%, these effects cannot be obtained, the arc becomes unstable, and blow holes are likely to occur. On the other hand, when Ti exceeds 0.35%, the amount of slag generation in which the slag generation reaction is promoted increases. Therefore, Ti is set to 0.15 to 0.35%.

[A値:0.55〜0.85]
前記、脱酸元素であるSi、Mn、Tiの含有量が下記(1)式で求められるA値がスラグの発生状況に大きな影響を及ぼすことを見出した。特にソリッドワイヤに含まれる成分として、各元素の個別の含有量を規定するだけではなく、A値が0.55〜0.85の範囲内の場合には、スラグ生成量を抑制する効果が十分得られる。このことは、後述する実験を参照して説明する。
A=0.33Si+0.15Mn+Ti・・・・・(1)
(但し、Si、Mn、Tiは、ワイヤ全質量に対する質量%)
[A value: 0.55 to 0.85]
It has been found that the A value obtained by the content of Si, Mn, and Ti as deoxidizing elements by the following formula (1) has a great influence on the state of slag generation. In particular, as a component contained in the solid wire, not only the individual content of each element is specified, but also when the A value is in the range of 0.55 to 0.85, the effect of suppressing the amount of slag generation is sufficient can get. This will be described with reference to experiments described later.
A = 0.33Si + 0.15Mn + Ti (1)
(However, Si, Mn, and Ti are mass% with respect to the total mass of the wire)

[実験]
実験の結果の一部を図1に示す。この実験では、種々の鋼組成のインゴットを溶製し、熱間圧延、伸線、焼鈍、銅めっきした後、さらに伸線して、1.2mmのソリッドワイヤを作製した。なおめっき層を含むソリッドワイヤの成分組成は、C:0.03〜0.11%、Si:0.50〜0.90%、Mn:1.40〜1.90%、Ti:0.15〜0.35%、S:0.006〜0.020%、である。前記ソリッドワイヤを用い、シールドガスとしてAr−20%CO2ガスを用いて、板厚3.2mmの薄鋼板について、パルス溶接条件が、パルスピーク電流(Ip):480A、パルスベース電流(Ib):50A、パルスピーク時間(Tp):1.4msecでビードオンプレート溶接を400mmの長さについて実施した。そして、下記(3)式に示すスラグ面積率を算出した。
[Experiment]
A part of the result of the experiment is shown in FIG. In this experiment, ingots having various steel compositions were melted, hot-rolled, drawn, annealed, copper-plated, and further drawn to produce a 1.2 mm solid wire. The composition of the solid wire including the plating layer is as follows: C: 0.03 to 0.11%, Si: 0.50 to 0.90%, Mn: 1.40 to 1.90%, Ti: 0.15 -0.35%, S: 0.006-0.020%. Using a solid wire, Ar-20% CO 2 gas as a shielding gas, and a thin steel plate having a thickness of 3.2 mm, pulse welding conditions are as follows: pulse peak current (Ip): 480 A, pulse base current (Ib) : 50 A, pulse peak time (Tp): Bead-on-plate welding was carried out for a length of 400 mm at 1.4 msec. And the slag area rate shown to following (3) Formula was computed.

縦軸をスラグ面積率とし、横軸に各ソリッドワイヤのA値をとり、上記の実験結果をプ
ロットしたのが図1である。図1から明らかなように、Aの値が0.55〜0.85の範囲内では、スラグ面積率が10%以下と低い値に抑えられたことが判明した。ここで、スラグ率が10%以下であれば、ソリッドワイヤを用いた溶接金属表面に塗装を施した場合に塗装欠陥が実質的に生じない。一方、A値が0.55未満であれば、スラグ面積率が20%以上と急激に大きくなり、またAが0.85を超える場合にも、スラグ面積率が20%以上大きくなることが判明した。したがって、A値は0.55〜0.85とする。
スラグ面積率(%)=スラグ部位面積の総和÷全画像面積×100(%)・・・(3)
FIG. 1 is a plot of the above experimental results with the vertical axis representing the slag area ratio and the horizontal axis representing the A value of each solid wire. As apparent from FIG. 1, it was found that the slag area ratio was suppressed to a low value of 10% or less when the value of A was in the range of 0.55 to 0.85. Here, when the slag rate is 10% or less, a coating defect does not substantially occur when the surface of the weld metal using the solid wire is coated. On the other hand, when the A value is less than 0.55, the slag area ratio increases rapidly to 20% or more, and when the A value exceeds 0.85, the slag area ratio increases to 20% or more. did. Therefore, the A value is set to 0.55 to 0.85.
Slag area ratio (%) = total of slag area ÷ total image area × 100 (%) (3)

[Cu:0.08〜0.45%]
Cuは、鋼中に不可避的不純物として0.02%程度含有されるが、本発明のCuは主としてワイヤ表面に施した銅めっきをいう。通常、銅めっきはワイヤ送給性と通電性を安定化するのに極めて重要な表面処理方法である。銅めっき厚が薄いと溶接中のチップ磨耗が激しくなり、溶接中にワイヤ送給性と通電性が劣化し、その結果、アークが不安定になる。Cuが0.08%未満であると、必要なワイヤ送給性と通電性が得られずアークが不安定となる。一方、Cuが0.45%を超えると、溶接金属の耐割れ性が劣化する。したがって、Cuは0.08〜0.45%とする。なお、ワイヤ表面の銅めっき厚さは0.2〜1.0μmであることが耐チップ磨耗性および通電性から好ましい。
[Cu: 0.08 to 0.45%]
Cu is contained in steel in an amount of about 0.02% as an inevitable impurity, but Cu of the present invention mainly refers to copper plating applied to the wire surface. In general, copper plating is a surface treatment method that is extremely important for stabilizing the wire feeding property and the current carrying property. If the copper plating thickness is thin, tip wear during welding becomes severe, and wire feedability and electrical conductivity deteriorate during welding, resulting in an unstable arc. If the Cu content is less than 0.08%, the required wire feedability and electrical conductivity cannot be obtained and the arc becomes unstable. On the other hand, if Cu exceeds 0.45%, the crack resistance of the weld metal deteriorates. Therefore, Cu is made 0.08 to 0.45%. In addition, it is preferable that the copper plating thickness of the wire surface is 0.2-1.0 micrometer from chip | tip wear resistance and electrical conductivity.

[S:0.006〜0.020%]
Sは、溶接時に生成した少量のスラグを溶融プール表面に浮上させてクレータ部まで運ぶことによってビード表面に残存するスラグを少なくする効果がある。Sが0.006%未満であると、生成したスラグを溶融プール表面に浮上させてクレータ部まで運ぶ効果が少なくなりスラグがビード表面に残存する。一方、Sが0.020%を超えると、溶接金属の耐割れ性が劣化する。したがって、Sは0.006〜0.020%とする。
[S: 0.006 to 0.020%]
S has the effect of reducing the amount of slag remaining on the bead surface by floating a small amount of slag generated during welding to the surface of the molten pool and carrying it to the crater portion. When S is less than 0.006%, the effect of floating the generated slag on the surface of the molten pool and transporting it to the crater portion is reduced, and the slag remains on the bead surface. On the other hand, when S exceeds 0.020%, the crack resistance of the weld metal deteriorates. Therefore, S is made 0.006 to 0.020%.

[P:0.02%以下]
Pは不純物であり、Pの増加により溶接金属の割れを引き起こすので0.02%以下とする。好ましくは0.015%以下である。
さらに、80cm/min以上の高速度の溶接条件でアークが安定してスパッタ発生量が少なく、ビード形状が良好となる最適パルスMAG条件範囲を検討した結果、1パルス−1ドロップ領域であるパルスピーク電流Ipとパルスピーク時間Tpの領域において、短絡がし難くアークが安定してスパッタ発生量の少ない溶接となり、良好なビード形状が得られる最適のパルスMAG条件範囲を見出した。
[P: 0.02% or less]
P is an impurity, and an increase in P causes cracks in the weld metal. Preferably it is 0.015% or less.
Furthermore, as a result of examining the optimum pulse MAG condition range in which the arc is stable under the high-speed welding conditions of 80 cm / min or more, the amount of spatter generation is small, and the bead shape is good, the pulse peak which is one pulse-1 drop region In the region of the current Ip and the pulse peak time Tp, the optimum pulse MAG condition range in which a short-circuit is difficult to occur, the arc is stable, the amount of spatter generation is small, and a good bead shape is obtained was found.

[パルスピーク電流(Ip):440〜600A]
パルスピーク電流(Ip)が440A未満では、電磁ピンチ効果による溶滴の生成と離脱がスムーズに行われなくなり、不均一な凸ビードとなる。また、アークが不安定でスパッタ発生量が多くなる。一方、パルスピーク電流(Ip)が600Aを超えると、アーク力によりスパッタ発生量が多くなる。したがって、パルスピーク電流(Ip)は440〜600Aとする。
[Pulse peak current (Ip): 440 to 600 A]
When the pulse peak current (Ip) is less than 440 A, the generation and separation of droplets due to the electromagnetic pinch effect are not smoothly performed, resulting in uneven convex beads. Also, the arc is unstable and the amount of spatter generated increases. On the other hand, when the pulse peak current (Ip) exceeds 600 A, the amount of spatter generated increases due to the arc force. Therefore, the pulse peak current (Ip) is set to 440 to 600A.

[パルスベース電流(Ib):30〜80A]
パルスベース電流(Ib)は、ベース期間でアークを保持できる電流値が必要となる。パルスベース電流(Ib)が30A未満では、アークが不安定となりスパッタ発生量が多く、ビード形状が劣化する。一方、パルスベース電流(Ib)が80Aを超えると、溶滴の離脱が速やかに行われず、アークが不安定でスパッタ発生量が多くなる。したがって、パルスベース電流(Ib)は30〜80Aとする。
[Pulse base current (Ib): 30-80A]
The pulse base current (Ib) requires a current value that can hold the arc in the base period. If the pulse base current (Ib) is less than 30 A, the arc becomes unstable, the amount of spatter generated is large, and the bead shape deteriorates. On the other hand, when the pulse base current (Ib) exceeds 80 A, the droplets are not released quickly, the arc is unstable, and the amount of spatter generated increases. Therefore, the pulse base current (Ib) is 30 to 80A.

[415≦Ip(A)×Tp(msec)≦780]
下記式(1)で示すパルス電流(Ip)とパルスピーク時間(Tp)の積(Ip×Tp)で得られる値を限定することによって、ピーク時間の短い領域でアーク電圧が高い場合においても、溶滴の短絡がピーク時及びベース時に適度に生じて良好なビード形状が得られる。パルスピーク電流(Ip)とパルスピーク時間(Tp)の積(Ip×Tp)が415未満では、ピーク電流期間で溶滴を形成するためのエネルギーが不足し十分な溶滴の形成ができず、凸ビードとなる。一方、パルスピーク電流(Ip)とパルスピーク時間(Tp)の積が780を超えると、過度に成長した溶滴が短絡しやすくなり再点弧時のアーク力で溶融地が吹き飛ばされることからアークが不安定でスパッタ発生量が多くなる。したがって、Ip×Tpは、下記式(1)で示される範囲とする。
415≦Ip(A)×Tp(msec)≦780 ・・・・(1)
[415 ≦ Ip (A) × Tp (msec) ≦ 780]
Even when the arc voltage is high in the region where the peak time is short, by limiting the value obtained by the product (Ip × Tp) of the pulse current (Ip) and the pulse peak time (Tp) represented by the following formula (1), A short circuit of the droplets occurs moderately at the peak and at the base, and a good bead shape is obtained. If the product (Ip × Tp) of the pulse peak current (Ip) and the pulse peak time (Tp) is less than 415, the energy for forming the droplet is insufficient during the peak current period, and sufficient droplet formation is not possible. It becomes a convex bead. On the other hand, if the product of the pulse peak current (Ip) and the pulse peak time (Tp) exceeds 780, the excessively grown droplets are likely to be short-circuited, and the molten ground is blown away by the arc force at the time of re-ignition. Is unstable and the amount of spatter is increased. Therefore, Ip × Tp is set to a range represented by the following formula (1).
415 ≦ Ip (A) × Tp (msec) ≦ 780 (1)

以下、実施例により本発明の効果をさらに具体的に説明する。
まず、原料鋼を真空溶解し、鍛造、圧延、伸線、焼鈍そして銅めっきした後、1.2mmのワイヤ径まで伸線してスプールに巻き取った試作ワイヤの化学成分を表1に示す。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
First, Table 1 shows the chemical composition of the prototype wire in which the raw steel was vacuum melted, forged, rolled, drawn, annealed and copper plated, drawn to a wire diameter of 1.2 mm and wound on a spool.

表1に示すワイヤW1〜W9は本発明例であり、ワイヤW10〜W18は比較例である。 Wires W1 to W9 shown in Table 1 are examples of the present invention, and wires W10 to W18 are comparative examples.

表1に示す試作ワイヤを用いて、表2に示す板厚3.2mmの鋼板を図2に示す上板1
の端部と下板2の表面との間を、表3および表4に示すパルスMAG溶接条件で溶接長400mmを溶接した。ワイヤの狙い位置は重ね継手のコーナー部とし、溶接トーチ2の角度θは60°とした。溶接試験は、ビード表面のスラグ発生状況、アークの安定性、スパッタ発生量、ビード形状および溶接欠陥の有無を評価した。
Using the prototype wire shown in Table 1, a steel plate having a thickness of 3.2 mm shown in Table 2 is converted into an upper plate 1 shown in FIG.
A weld length of 400 mm was welded between the end of the plate and the surface of the lower plate 2 under the pulse MAG welding conditions shown in Tables 3 and 4. The target position of the wire was the corner portion of the lap joint, and the angle θ of the welding torch 2 was 60 °. In the welding test, slag generation on the bead surface, arc stability, spatter generation amount, bead shape, and presence / absence of welding defects were evaluated.

なお、ビード表面のスラグ発生状況は、スラグ面積率により評価した。すなわち溶接ビ
ード400mmのうち終始端50mmの部分を除いた中央の300mmの長さの部分のビードについて、ビード表面の写真撮影を行って画像を採取し、当該画像における部位をマーキングし、スラグ面積率を計算した。
スラグ面積率(%)=スラグ部位面積の総和÷全画像面積×100(%)・・・(3)
In addition, the slag generation | occurrence | production condition of the bead surface was evaluated by the slag area rate. That is, with respect to a bead having a length of 300 mm at the center excluding a portion having a length of 50 mm from the beginning of the weld bead 400 mm, an image is taken by taking a photograph of the bead surface, marking a portion in the image, and a slag area ratio Was calculated.
Slag area ratio (%) = total of slag area ÷ total image area × 100 (%) (3)

スラグ発生状況については、スラグ面積率の基準値を10%とし、スラグ面積率が10%以下を合格と判定し、10%を超えたものを不合格と判定した。また、アークの安定性、スパッタ発生量、ビード形状および溶接欠陥の有無は、目視で評価した。それらの結果を表4にまとめて示す。   About the slag generation | occurrence | production situation, the reference value of slag area rate was set to 10%, the slag area rate determined with 10% or less as the pass, and the thing exceeding 10% was determined with the failure. In addition, the stability of the arc, the amount of spatter, the bead shape, and the presence or absence of welding defects were evaluated visually. The results are summarized in Table 4.

表4中の試験No.1〜No.10は本発明例、試験No.11〜No.20は比較例
である。
Test No. in Table 4 1-No. 10 is an example of the present invention, test no. 11-No. 20 is a comparative example.

本発明例である試験No.1〜No.10は、ワイヤ記号W1〜W9が本発明で規定した各成分範囲内で、パルスMAG溶接条件が適正であるので、ビード表面へスラグ生成量が少なく、アークが安定してスパッタ発生量が少なく、ビード形状が良好で溶接欠陥が無く、極めて満足な結果であった。   Test No. which is an example of the present invention. 1-No. No. 10, the wire symbols W1 to W9 are within the respective component ranges defined in the present invention, and the pulse MAG welding conditions are appropriate, so the amount of slag generated on the bead surface is small, the arc is stable, and the amount of spatter generated is small. The bead shape was good, there were no weld defects, and the results were extremely satisfactory.

比較例中の試験No.11は、ワイヤ記号W10のCが少ないので、アークが不安定で
スパッタ発生量が多かった。また、A値が低いのでスラグ面積率が高かった。試験No.12は、ワイヤ記号W11のCが多いので、ビード形状が不良で、クレータ割れが発生した。また、Siが多いのでスラグ面積率が高かった。試験No.13は、ワイヤ記号W12のSiが少ないので、ブローホールが発生した。また、パルスピーク電流(Ip)が低いので、アークが不安定で、スパッタ発生量が多く、凸ビードとなった。
Test No. in the comparative example. In No. 11, since the C of the wire symbol W10 was small, the arc was unstable and the amount of spatter generated was large. Moreover, since the A value was low, the slag area ratio was high. Test No. No. 12 had a lot of C in the wire symbol W11, so the bead shape was poor and crater cracking occurred. Moreover, since there was much Si, the slag area rate was high. Test No. In No. 13, blow hole was generated because the Si of the wire symbol W12 was small. Further, since the pulse peak current (Ip) was low, the arc was unstable, the amount of spatter was large, and a convex bead was formed.

試験No.14は、ワイヤ記号W13のMnが少ないので、ピットが発生した。また、
パルスベース電流(Ib)が低いので、アークが不安定で、スパッタ発生量が多く、ビード形状も不良であった。試験No.15は、ワイヤ記号W14のMnが多いので、スラグ面積率が高く、スパッタ発生量も多かった。また、Sが多いので、クレータ割れも発生した。試験No.16は、ワイヤ記号W15のTiが少ないので、アークが不安定で、ブロ
ーホールも発生した。また、パルスピーク電流Ipとピーク時間Tpの積Ip×Tpが
低いので、凸ビードとなった。
Test No. No. 14 had pits because the Mn of the wire symbol W13 was small. Also,
Since the pulse base current (Ib) was low, the arc was unstable, the amount of spatter generated was large, and the bead shape was poor. Test No. No. 15 had a high Mn of the wire symbol W14, so the slag area ratio was high and the amount of spatter generated was also large. Moreover, since there is much S, the crater crack also generate | occur | produced. Test No. In No. 16, since the Ti of the wire symbol W15 is small, the arc is unstable and blow holes are also generated. Further, since the product Ip × Tp of the pulse peak current Ip and the peak time Tp was low, a convex bead was formed.

試験No.17は、ワイヤ記号W16のTiが多いので、スラグ面積率が高かった。ま
た、Cuが多いので、クレータ割れが発生した。さらに、パルスピーク電流(Ip)が高いので、スパッタ発生量が多かった。試験No.18は、ワイヤ記号W17のA値が高いので、スラグ面積率が高かった。また、パルスベース電流(Ib)が高いので、アークが不安定となり、スパッタ発生量も多かった。
Test No. No. 17 had a high slag area ratio because there was much Ti of the wire symbol W16. Moreover, since there was much Cu, the crater crack generate | occur | produced. Furthermore, since the pulse peak current (Ip) was high, the amount of spatter generated was large. Test No. No. 18 had a high slag area ratio because the A value of the wire symbol W17 was high. Further, since the pulse base current (Ib) is high, the arc becomes unstable and the amount of spatter generated is large.

試験No.19は、ワイヤ記号W18のCuが少ないので、アークが不安定であった。
また、Sが少ないので、スラグ面積率が高かった。試験No.20は、ワイヤ記号W8が本発明で規定した各成分範囲内であるが、パルスピーク電流Ipとピーク時間Tpの積Ip×Tpが高いので、アークが不安定となり、スパッタ発生量が多かった。
Test No. No. 19 had an unstable arc because there was less Cu in the wire symbol W18.
Moreover, since there was little S, the slag area rate was high. Test No. No. 20 is within the component ranges defined by the wire symbol W8 in the present invention, but the product Ip × Tp of the pulse peak current Ip and the peak time Tp is high, so the arc becomes unstable and the amount of spatter generated is large.

1 上板
2 下板
3 溶接トーチ
θ トーチ角度


特許出願人 日鐵住金溶接工業株式会社
代理人 弁理士 椎 名 彊 他1
1 Upper plate 2 Lower plate 3 Welding torch θ Torch angle


Patent Applicant Nippon Steel & Sumikin Welding Industry Co., Ltd.
Attorney Attorney Shiina and others 1

Claims (1)

板厚1.2〜6mmである薄鋼板のパルスMAG溶接方法において、
ワイヤ全質量に対する質量%で、
C:0.03〜0.11%、
Si:0.50〜0.90%、
Mn:1.40〜1.90%、
Ti:0.15〜0.35%、
かつ、下記(1)式で示すA値:0.55〜0.85、
Cu:0.08〜0.45%
S:0.006〜0.020%を含有し、
P:0.02%以下であり、
残部はFeおよび不可避不純物よりなるソリッドワイヤを用いて、
パルスピーク電流(Ip):440〜600A、
パルスベース電流(Ib):30〜80Aとし、
前記パルスピーク電流(Ip)とパルスピーク時間(Tp)が下記式(2)を満足するパルスを付加して溶接することを特徴とする薄鋼板のパルスMAG溶接方法。
A=0.33Si+0.15Mn+Ti・・・・・(1)
(但し、Si、Mn、Tiは、ワイヤ全質量に対する質量%)
415≦Ip(A)×Tp(msec)≦780・・・・・(2)
In the pulse MAG welding method of a thin steel plate having a plate thickness of 1.2 to 6 mm,
% By mass relative to the total mass of the wire
C: 0.03-0.11%,
Si: 0.50-0.90%,
Mn: 1.40 to 1.90%,
Ti: 0.15-0.35%,
And A value shown by following (1) formula: 0.55-0.85,
Cu: 0.08 to 0.45%
S: 0.006 to 0.020% is contained,
P: 0.02% or less,
The remainder uses a solid wire made of Fe and inevitable impurities,
Pulse peak current (Ip): 440 to 600 A,
Pulse base current (Ib): 30-80A,
A pulse MAG welding method for a thin steel sheet, wherein the pulse peak current (Ip) and the pulse peak time (Tp) are welded by applying a pulse satisfying the following formula (2).
A = 0.33Si + 0.15Mn + Ti (1)
(However, Si, Mn, and Ti are mass% with respect to the total mass of the wire)
415 ≦ Ip (A) × Tp (msec) ≦ 780 (2)
JP2017020872A 2017-02-08 2017-02-08 Pulse MAG welding method for thin steel sheets Active JP6800770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017020872A JP6800770B2 (en) 2017-02-08 2017-02-08 Pulse MAG welding method for thin steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017020872A JP6800770B2 (en) 2017-02-08 2017-02-08 Pulse MAG welding method for thin steel sheets

Publications (2)

Publication Number Publication Date
JP2018126755A true JP2018126755A (en) 2018-08-16
JP6800770B2 JP6800770B2 (en) 2020-12-16

Family

ID=63172620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017020872A Active JP6800770B2 (en) 2017-02-08 2017-02-08 Pulse MAG welding method for thin steel sheets

Country Status (1)

Country Link
JP (1) JP6800770B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109352129A (en) * 2018-10-30 2019-02-19 唐山松下产业机器有限公司 The control method and control device of arc-welding equipment
JP2020142287A (en) * 2019-03-07 2020-09-10 日鉄溶接工業株式会社 Pulse MAG multi-layer welding method
JPWO2020196875A1 (en) * 2019-03-27 2020-10-01
JPWO2020196869A1 (en) * 2019-03-27 2020-10-01
CN114340837A (en) * 2019-09-17 2022-04-12 株式会社神户制钢所 Wire for gas shielded arc welding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100687A (en) * 1993-09-30 1995-04-18 Kobe Steel Ltd Wire for arc welding
JP2001321985A (en) * 2000-05-19 2001-11-20 Nippon Steel Corp Gas shielded arc welding wire for thin steel sheet and pulse mag welding method using the same
JP2007144512A (en) * 2005-11-23 2007-06-14 Kiswell Ltd Solid wire for gas sealed arc welding
JP2007301623A (en) * 2006-05-15 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP2009248121A (en) * 2008-04-04 2009-10-29 Nippon Steel & Sumikin Welding Co Ltd Solid wire for pulse mag welding of thin steel sheet
JP2015182094A (en) * 2014-03-24 2015-10-22 日鐵住金溶接工業株式会社 Gas shielded arc welding method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100687A (en) * 1993-09-30 1995-04-18 Kobe Steel Ltd Wire for arc welding
JP2001321985A (en) * 2000-05-19 2001-11-20 Nippon Steel Corp Gas shielded arc welding wire for thin steel sheet and pulse mag welding method using the same
JP2007144512A (en) * 2005-11-23 2007-06-14 Kiswell Ltd Solid wire for gas sealed arc welding
JP2007301623A (en) * 2006-05-15 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP2009248121A (en) * 2008-04-04 2009-10-29 Nippon Steel & Sumikin Welding Co Ltd Solid wire for pulse mag welding of thin steel sheet
JP2015182094A (en) * 2014-03-24 2015-10-22 日鐵住金溶接工業株式会社 Gas shielded arc welding method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109352129A (en) * 2018-10-30 2019-02-19 唐山松下产业机器有限公司 The control method and control device of arc-welding equipment
JP2020142287A (en) * 2019-03-07 2020-09-10 日鉄溶接工業株式会社 Pulse MAG multi-layer welding method
JP7221742B2 (en) 2019-03-07 2023-02-14 日鉄溶接工業株式会社 Pulse MAG multi-layer welding method
CN113614270A (en) * 2019-03-27 2021-11-05 日本制铁株式会社 Automobile traveling part
WO2020196869A1 (en) * 2019-03-27 2020-10-01 日本製鉄株式会社 Automobile undercarriage component
WO2020196875A1 (en) * 2019-03-27 2020-10-01 日本製鉄株式会社 Automobile undercarriage component
JPWO2020196869A1 (en) * 2019-03-27 2020-10-01
CN113677817A (en) * 2019-03-27 2021-11-19 日本制铁株式会社 Automobile traveling part
JP7143938B2 (en) 2019-03-27 2022-09-29 日本製鉄株式会社 Undercarriage parts for automobiles
JP7143937B2 (en) 2019-03-27 2022-09-29 日本製鉄株式会社 Undercarriage parts for automobiles
CN113614270B (en) * 2019-03-27 2022-10-04 日本制铁株式会社 Automobile traveling part
JPWO2020196875A1 (en) * 2019-03-27 2020-10-01
CN114340837A (en) * 2019-09-17 2022-04-12 株式会社神户制钢所 Wire for gas shielded arc welding
EP4011543A4 (en) * 2019-09-17 2022-12-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wire for gas-shielded arc welding

Also Published As

Publication number Publication date
JP6800770B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
US20040140303A1 (en) Steel wire for carbon dioxide shielded arc welding and welding process using the same
JP2007289965A (en) Flux-cored wire for gas shielded arc welding and welding method
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
CN110753597A (en) Arc welding method and solid wire
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP2008161899A (en) Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JP6709177B2 (en) Pulse MAG welding method for thin steel sheet
JP2003225792A (en) Wire for carbon dioxide gas shielded arc welding
JP7311473B2 (en) arc welding method
JP3945396B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP2005169414A (en) Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2007118069A (en) Gas-shielded arc welding method
JP6892305B2 (en) Arc welding method
JP5280060B2 (en) Gas shield arc welding method
JP3861979B2 (en) Steel wire for carbon dioxide shielded arc welding
JP6676553B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
JP5037369B2 (en) Solid wire for pulse MAG welding
WO2018159844A1 (en) Arc welding method
JP5051966B2 (en) Sideways carbon dioxide shielded arc welding method
JP6676552B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
WO2022230904A1 (en) Arc-welded joint and arc-welding method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R150 Certificate of patent or registration of utility model

Ref document number: 6800770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250