JP2018126726A - Shock wave generator fine wire feeder mechanism set - Google Patents
Shock wave generator fine wire feeder mechanism set Download PDFInfo
- Publication number
- JP2018126726A JP2018126726A JP2017037522A JP2017037522A JP2018126726A JP 2018126726 A JP2018126726 A JP 2018126726A JP 2017037522 A JP2017037522 A JP 2017037522A JP 2017037522 A JP2017037522 A JP 2017037522A JP 2018126726 A JP2018126726 A JP 2018126726A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- fine wire
- fine
- shock
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
本発明は、電気放電による細線爆破を用いた衝撃波発生装置に使用する細線供給装置に関する。 The present invention relates to a fine wire supply device used for a shock wave generator using fine wire blasting by electric discharge.
電気放電を用いた衝撃波の生成技術には主に媒体中での火花放電を用いた手法と本技術で用いる細線爆破を用いた手法がある。細線爆破を用いた衝撃波の生成手法は比較的少ない電気エネルギーにより高強度の衝撃波を生成することが可能である。 The shock wave generation technology using electric discharge mainly includes a method using spark discharge in a medium and a method using thin wire blasting used in this technology. The shock wave generation method using fine wire blasting can generate high-intensity shock waves with relatively little electric energy.
細線爆破を用いた衝撃波の生成技術は伝播媒体中に設置した抵抗値を持つ電気伝導体を電気放電により爆発的に溶融することにより高い爆発圧力を得ることが可能であり、水中に数MPa〜数百MPaの高い圧力波を生み出すことが出来る。 The shock wave generation technology using fine wire blasting can obtain a high explosion pressure by melting an electric conductor having a resistance value installed in a propagation medium explosively by electric discharge. A high pressure wave of several hundred MPa can be generated.
この技術は主に実験室規模で広く実施され、伝播媒体として水を用いた水中衝撃波の伝播解析といった研究用途での利用が主である。この衝撃波による高強度の圧力波は高い圧力値により古くは魚雷等の軍需用途に用いられてきた。 This technique is widely implemented mainly on a laboratory scale, and is mainly used for research purposes such as propagation analysis of underwater shock waves using water as a propagation medium. The high-intensity pressure wave due to this shock wave has long been used for military applications such as torpedoes due to its high pressure value.
また産業利用としては下記特許による食品加工装置として確立されているが、細線爆破を用いた衝撃波の生成には高耐圧の圧力容器中に放電の都度供給する細線の供給技術が確立されておらず、その実用化はこれまでされていない。 In addition, although it has been established as a food processing device according to the following patents for industrial use, for the generation of shock waves using fine wire blasting, there is no established technology for supplying fine wires to supply each time a discharge occurs in a high pressure pressure vessel. The practical use has never been done.
さらに電気放電により爆発的に細線を溶融するには高い放電電圧と一定量の電気エネルギーが必要とされ、細線の送給技術の実現を難しくしている。 Furthermore, high discharge voltage and a certain amount of electrical energy are required to explosively melt the fine wire by electric discharge, making it difficult to realize a fine wire feeding technique.
本発明により解決しようとする課題は、前記技術を実用化する上で不可欠な耐圧力が高く、さらに高耐電圧の細線供給機構の開発にある。 The problem to be solved by the present invention lies in the development of a fine wire supply mechanism that has a high withstand pressure pressure and a high withstand voltage that are indispensable for putting the above technology into practical use.
実施例1では細線を溶融する放電電極内を絶縁し、細線を圧力容器内に導入することで、十分な耐電圧を実現した。 In Example 1, a sufficient withstand voltage was realized by insulating the inside of the discharge electrode for melting the fine wire and introducing the fine wire into the pressure vessel.
また、電極通電部には衝撃波の伝播媒体を高速に流動させることにより、放電溶融時の電極部と細線の溶着を防いでいる。 Further, by causing a shock wave propagation medium to flow at high speed in the electrode energizing portion, welding of the electrode portion and the fine wire during discharge melting is prevented.
さらに放電による衝撃波の発生時における電極内部の伝播媒体中を伝わる衝撃から細線・絶縁材・シール部を保護するため空気ダンパーと逆止弁により衝撃を減衰させる。 Further, the shock is attenuated by an air damper and a check valve in order to protect the fine wire, the insulating material, and the seal portion from the shock transmitted through the propagation medium inside the electrode when a shock wave is generated by the discharge.
実施例2では細線を切断保持し、導入管を衝撃波より遮閉することにより導入管中の衝撃を減衰させる。 In Example 2, the thin wire is cut and held, and the introduction pipe is shielded from the shock wave to attenuate the impact in the introduction pipe.
本発明の細線供給機構により圧力容器内への連続的な細線の供給が可能になり、電気放電による細線爆破を用いた衝撃波技術の実用化を実現する。 The thin wire supply mechanism of the present invention enables continuous thin wire supply into the pressure vessel, and realizes the practical application of shock wave technology using fine wire blasting by electric discharge.
高耐圧の容器内に連続的に細線を供給するという目的のための細線供給機構を簡便な機構で実現した。 A thin wire supply mechanism for the purpose of supplying thin wires continuously into a high pressure resistant container was realized with a simple mechanism.
図1は細線爆破を行う圧力容器の模式図と容器内への細線供給機構の断面図である。1は衝撃波を発生させる圧力容器、2は圧力容器内を満たす衝撃波の伝播媒体、3と4は細線に電気エネルギーを供給する放電電極、5は溶融される細線で金属細線・金属プレート、カーボン等電気伝導体があるが、本実施例は金属細線を示す。6は高電圧放電を行う電源装置、7は電極内の絶縁材料、8は空気ダンパー、9は逆止弁、10は電極内に電波媒体を流動させるポンプ、11はシール材、12は細線供給装置である。 FIG. 1 is a schematic view of a pressure vessel that performs fine wire blasting and a cross-sectional view of a mechanism for supplying a thin wire into the vessel. 1 is a pressure vessel that generates a shock wave, 2 is a shock wave propagation medium that fills the pressure vessel, 3 and 4 are discharge electrodes that supply electrical energy to the fine wire, 5 is a thin wire that is melted, a fine metal wire / metal plate, carbon, etc. Although there is an electrical conductor, this embodiment shows a thin metal wire. 6 is a power supply device for performing high voltage discharge, 7 is an insulating material in the electrode, 8 is an air damper, 9 is a check valve, 10 is a pump for flowing a radio wave medium in the electrode, 11 is a sealing material, and 12 is a thin wire supply Device.
圧力容器1には衝撃波の伝播媒体2が充填されている。伝播媒体2としては、衝撃波を伝達することができるものであれば特に限定されず、水や油などの液体、ゴム等の弾性体やジェル状の物体等の固体、大気等の気体、あるいはこれらの混合体が用いられる。ただし、伝達媒体2としては、衝撃波の伝達性の観点から液体または固体が好ましく、さらに低コストであることや入手が容易であることから水が好適に用いられる。 The pressure vessel 1 is filled with a shock wave propagation medium 2. The propagation medium 2 is not particularly limited as long as it can transmit shock waves. The propagation medium 2 is a liquid such as water or oil, an elastic body such as rubber, a solid such as a gel-like object, a gas such as the atmosphere, or the like. A mixture of However, the transmission medium 2 is preferably liquid or solid from the viewpoint of shock wave transmission, and water is preferably used because of its low cost and easy availability.
圧力容器1には細線5に通電するための放電電極3と4が設置される。放電電極3、4間の細線5は放電により溶融されるため、細線への放電は電極3と4の先端に限定される。このため、電極4内を通過する細線部は絶縁材料7により電極と絶縁される。 Discharge electrodes 3 and 4 for energizing the thin wire 5 are installed in the pressure vessel 1. Since the thin wire 5 between the discharge electrodes 3 and 4 is melted by the discharge, the discharge to the thin wire is limited to the tips of the electrodes 3 and 4. For this reason, the fine wire portion passing through the electrode 4 is insulated from the electrode by the insulating material 7.
また細線5は放電による溶融で放電電極4と頻繁に溶着され連続的な細線の供給を妨げるため、これを防ぐ目的で導通部にはポンプ10により伝播媒体を流動させる。 Further, since the thin wire 5 is frequently welded to the discharge electrode 4 by melting by discharge and prevents continuous thin wire supply, the propagation medium is caused to flow through the conduction portion by the pump 10 in order to prevent this.
ポンプ10による流動は絶縁材料7内を通じ電極先端より圧力容器内に噴出される。 The flow by the pump 10 is jetted into the pressure vessel from the tip of the electrode through the insulating material 7.
衝撃波の生成時にはこの流動を伝い衝撃波が放電電極4内を伝播し細線5と絶縁材料7を破壊するため、衝撃の減衰の目的で流動経路内には空気ダンパー8と逆止弁9が設置される。 When the shock wave is generated, this flow is transmitted and the shock wave propagates in the discharge electrode 4 and destroys the thin wire 5 and the insulating material 7. Therefore, an air damper 8 and a check valve 9 are installed in the flow path for the purpose of shock attenuation. The
細線は放電の都度溶融し消費されるため、細線供給装置12により放電の都度、供給される。細線の通過部はシール部11により密閉される。 Since the fine wire is melted and consumed at every discharge, it is supplied by the fine wire supply device 12 at every discharge. The passage portion of the thin wire is sealed by the seal portion 11.
図2は細線爆破を行う圧力容器の模式図と容器内への細線供給機構の断面図である。図2も実施例1と同様に、細線として金属細線、電波媒体として水を用い説明する。1は衝撃波を発生させる圧力容器、2は圧力容器内を満たす衝撃波の伝播媒体、3は溶融される細線、4は細線を導入する導入管、5は細線の導入時のストッパー、6、7は放電時に細線を保持する保持電極、8は細線を切断するカッター、9、10は細線に電気エネルギーを供給する放電電極、11はシール材、12は細線供給装置、13は高電圧放電を行う電源装置である。 FIG. 2 is a schematic view of a pressure vessel for performing fine wire blasting and a cross-sectional view of a mechanism for supplying a fine wire into the vessel. 2 will be described using metal thin wires as thin wires and water as a radio wave medium, as in the first embodiment. 1 is a pressure vessel for generating a shock wave, 2 is a shock wave propagation medium filling the inside of the pressure vessel, 3 is a thin wire to be melted, 4 is an introduction tube for introducing the thin wire, 5 is a stopper when the thin wire is introduced, 6 and 7 are Holding electrode for holding a thin line during discharge, 8 is a cutter for cutting the thin line, 9 and 10 are discharge electrodes for supplying electric energy to the thin line, 11 is a sealing material, 12 is a thin line supply device, and 13 is a power source for performing high voltage discharge. Device.
圧力容器1には衝撃波の伝播媒体2が充填されている。伝播媒体2には主に水が用いられるが実施例1同様に限定されるものではない。 The pressure vessel 1 is filled with a shock wave propagation medium 2. Although water is mainly used for the propagation medium 2, it is not limited to the same as in the first embodiment.
圧力容器1に導入された金属細線3は電極6、7と9、10により挟み込み保持される。ここで細線として、金属細線を用いた例を示すが実施例1同様に限定されるものではない。 The fine metal wire 3 introduced into the pressure vessel 1 is sandwiched and held by the electrodes 6, 7 and 9, 10. Here, an example using a metal thin wire as the thin wire is shown, but it is not limited to the same as in the first embodiment.
電極6、7及び9、10により保持された細線3はカッター8により切断される。 The fine wire 3 held by the electrodes 6, 7 and 9, 10 is cut by a cutter 8.
カッター8は細線の切断後に導入管を遮閉し導入管内への衝撃波の伝播を防止する。 The cutter 8 closes the introduction pipe after cutting the thin wire to prevent the propagation of the shock wave into the introduction pipe.
細線は放電電源13の放電により、その都度溶融し消費されるため、細線供給装置12により放電の都度、供給される。細線の通過部はシール部11により密閉される。 Since the thin wire is melted and consumed each time due to the discharge of the discharge power supply 13, it is supplied by the thin wire supply device 12 every time it is discharged. The passage portion of the thin wire is sealed by the seal portion 11.
本発明は電気放電を用いた衝撃波発生装置全般に用いることが出来る。これにより、衝撃波による食品加工装置のほか、高圧力を利用した塑性変形による金属等の加工装置、衝撃波を利用した殺菌装置などこれまで、爆薬を利用し生成していた衝撃波と近い規模での衝撃波生成が連続的に可能となり、衝撃波を利用した産業技術の急速な発展が見込まれる。 The present invention can be used for all shock wave generators using electric discharge. As a result, in addition to food processing equipment using shock waves, metal processing equipment using plastic deformation using high pressure, sterilization equipment using shock waves, and so on, shock waves on a scale close to shock waves generated using explosives so far Production is possible continuously, and rapid development of industrial technology using shock waves is expected.
図1
1 圧力容器
2 伝播媒体
3 放電電極(陽極)
4 放電電極(陰極)
5 細線
6 放電電源装置
7 電気絶縁材
8 空気ダンパー
9 逆止弁
10 ポンプ
11 シール材
12 細線供給装置FIG.
1 Pressure vessel 2 Propagation medium 3 Discharge electrode (anode)
4 Discharge electrode (cathode)
DESCRIPTION OF SYMBOLS 5 Fine wire 6 Discharge power supply device 7 Electrical insulation material 8 Air damper 9 Check valve 10 Pump 11 Sealing material 12 Fine wire supply device
図2
1 圧力容器
2 伝播媒体
3 細線
4 細線導入管
5 ストッパー
6 摺動電極(陰極)
7 摺動電極(陽極)
8 カッター
9 放電電極(陰極)
10 放電電極(陽極)
11 シール材
12 細線供給装置
13 放電電源装置FIG.
DESCRIPTION OF SYMBOLS 1 Pressure vessel 2 Propagation medium 3 Fine wire 4 Fine wire introduction tube 5 Stopper 6 Sliding electrode (cathode)
7 Sliding electrode (anode)
8 Cutter 9 Discharge electrode (cathode)
10 Discharge electrode (anode)
DESCRIPTION OF SYMBOLS 11 Seal material 12 Fine wire supply apparatus 13 Discharge power supply device
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017037522A JP2018126726A (en) | 2017-02-10 | 2017-02-10 | Shock wave generator fine wire feeder mechanism set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017037522A JP2018126726A (en) | 2017-02-10 | 2017-02-10 | Shock wave generator fine wire feeder mechanism set |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018126726A true JP2018126726A (en) | 2018-08-16 |
Family
ID=63172646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017037522A Pending JP2018126726A (en) | 2017-02-10 | 2017-02-10 | Shock wave generator fine wire feeder mechanism set |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018126726A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021147805A1 (en) * | 2020-01-21 | 2021-07-29 | 成都奇点无限科技有限公司 | Double-tube connection structure for detonation synthesis, detonation synthesis device and application thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3970820A (en) * | 1975-02-03 | 1976-07-20 | Cha Industries | Wire fed flash evaporation source |
JPH08219699A (en) * | 1995-02-17 | 1996-08-30 | Hitachi Zosen Corp | Method of mounting metallic thin wire in demolishing apparatus |
JPH11226568A (en) * | 1998-02-12 | 1999-08-24 | Hitachi Zosen Corp | Water treatment method |
JP2002206389A (en) * | 2001-01-10 | 2002-07-26 | Sumitomo Electric Ind Ltd | Probe for plasma crushing device |
JP2004079312A (en) * | 2002-08-15 | 2004-03-11 | Ebara Corp | Discharge device equipped with shock absorbing mechanism |
JP2004292940A (en) * | 2003-03-28 | 2004-10-21 | Japan Science & Technology Agency | Electrical discharge type metal dot spraying device and method |
JP2006097038A (en) * | 2004-09-28 | 2006-04-13 | I Esu Star:Kk | Method and device for producing sphere |
WO2008099618A1 (en) * | 2007-02-15 | 2008-08-21 | National University Corporation Hokkaido University | Method for producing conductor fine particles |
JP2009506205A (en) * | 2005-08-26 | 2009-02-12 | コリア エレクトロテクノロジー リサーチ インスティテュート | Manufacturing method of nanostructured powder by wire explosion in liquid and manufacturing apparatus thereof |
WO2009110371A1 (en) * | 2008-03-04 | 2009-09-11 | 独立行政法人産業技術総合研究所 | Method for the manufacture of inorganic nanoparticles in air and device therefor |
-
2017
- 2017-02-10 JP JP2017037522A patent/JP2018126726A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3970820A (en) * | 1975-02-03 | 1976-07-20 | Cha Industries | Wire fed flash evaporation source |
JPH08219699A (en) * | 1995-02-17 | 1996-08-30 | Hitachi Zosen Corp | Method of mounting metallic thin wire in demolishing apparatus |
JPH11226568A (en) * | 1998-02-12 | 1999-08-24 | Hitachi Zosen Corp | Water treatment method |
JP2002206389A (en) * | 2001-01-10 | 2002-07-26 | Sumitomo Electric Ind Ltd | Probe for plasma crushing device |
JP2004079312A (en) * | 2002-08-15 | 2004-03-11 | Ebara Corp | Discharge device equipped with shock absorbing mechanism |
JP2004292940A (en) * | 2003-03-28 | 2004-10-21 | Japan Science & Technology Agency | Electrical discharge type metal dot spraying device and method |
JP2006097038A (en) * | 2004-09-28 | 2006-04-13 | I Esu Star:Kk | Method and device for producing sphere |
JP2009506205A (en) * | 2005-08-26 | 2009-02-12 | コリア エレクトロテクノロジー リサーチ インスティテュート | Manufacturing method of nanostructured powder by wire explosion in liquid and manufacturing apparatus thereof |
WO2008099618A1 (en) * | 2007-02-15 | 2008-08-21 | National University Corporation Hokkaido University | Method for producing conductor fine particles |
WO2009110371A1 (en) * | 2008-03-04 | 2009-09-11 | 独立行政法人産業技術総合研究所 | Method for the manufacture of inorganic nanoparticles in air and device therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021147805A1 (en) * | 2020-01-21 | 2021-07-29 | 成都奇点无限科技有限公司 | Double-tube connection structure for detonation synthesis, detonation synthesis device and application thereof |
GB2607777A (en) * | 2020-01-21 | 2022-12-14 | Chengdu Infinite Singularity Tech Co Ltd | Double-tube connection structure for detonation synthesis, detonation synthesis device and application thereof |
GB2607777B (en) * | 2020-01-21 | 2024-05-22 | Chengdu Infinite Singularity Tech Co Ltd | Double-tube connection structure for detonation synthesis, detonation synthesis device and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190017362A1 (en) | Pipeline descaling and rock stratum fracturing device based on electro-hydraulic pulse shock waves | |
Higa et al. | Mechanism of the shock wave generation and energy efficiency by underwater discharge | |
CN108278106B (en) | A kind of transmission increasing cumulative stick and preparation method thereof for generating controllable shock wave | |
CA2890401C (en) | Electrodischarge apparatus for generating low-frequency powerful pulsed and cavitating waterjets | |
CN105149747B (en) | Wet gas protects welder and method to a kind of ultrasonic wave added under water | |
JP2018126726A (en) | Shock wave generator fine wire feeder mechanism set | |
US4123646A (en) | Arc welding system | |
CN105071225B (en) | Spark-gap switch with adjustable gas tightness gap | |
Yingbo et al. | Improvement of circuit oscillation generated by underwater high voltage pulse discharges based on pulse power thyristor | |
US3469069A (en) | Electric welding torch | |
CN113725733B (en) | Arc extinguishing lightning protection method based on hydro-electric effect and Pascal principle | |
CN101876065A (en) | Method for modifying inner surface of slender insulating tube by utilizing plasma discharge under normal pressure | |
MX2023002448A (en) | Orbital confinement fusion device. | |
Abe et al. | An efficient non-thermal food processing system by underwater shockwaves using two pairs of restoration electrodes | |
Ma et al. | Simulating underwater plasma sound sources to evaluate focusing performance and analyze errors | |
Martin et al. | Influence of hydrostatic pressure and temperature on the water dielectric strength and on the dynamic pressure wave | |
CN205154127U (en) | Anti -reflection ware of CO2 coal seam presplitting | |
CN110940233A (en) | Cohesion spherical wave generator | |
RU2347312C1 (en) | Pulse power system | |
KR100546884B1 (en) | Metal foil type power impact cell for plasma blasting | |
Chen et al. | Acoustic effects of underwater plasma pulsed sound source under different electrical parameters | |
KR20000026953A (en) | Apparatus for electric explosion using aluminum foil | |
RU2577532C1 (en) | Multichannel rail discharger | |
RU82438U1 (en) | METAL WELDING DEVICE | |
KR20110103095A (en) | Expanding method of metal pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210112 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210727 |