JP2018123373A - Selective separation method of metal element and separation unit - Google Patents

Selective separation method of metal element and separation unit Download PDF

Info

Publication number
JP2018123373A
JP2018123373A JP2017016011A JP2017016011A JP2018123373A JP 2018123373 A JP2018123373 A JP 2018123373A JP 2017016011 A JP2017016011 A JP 2017016011A JP 2017016011 A JP2017016011 A JP 2017016011A JP 2018123373 A JP2018123373 A JP 2018123373A
Authority
JP
Japan
Prior art keywords
adsorbent
metal element
eluent
column
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017016011A
Other languages
Japanese (ja)
Other versions
JP6882654B2 (en
Inventor
真平 大野
Shimpei Ono
真平 大野
創 渡部
Hajime Watabe
創 渡部
佐野 雄一
Yuichi Sano
雄一 佐野
博英 小藤
Hirohide Kofuji
博英 小藤
竹内 正行
Masayuki Takeuchi
正行 竹内
新井 剛
Takeshi Arai
剛 新井
治明 松浦
Haruaki Matsuura
治明 松浦
清治 中谷
Seiji Nakatani
清治 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
University of Tsukuba NUC
Original Assignee
Japan Atomic Energy Agency
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency, University of Tsukuba NUC filed Critical Japan Atomic Energy Agency
Priority to JP2017016011A priority Critical patent/JP6882654B2/en
Publication of JP2018123373A publication Critical patent/JP2018123373A/en
Application granted granted Critical
Publication of JP6882654B2 publication Critical patent/JP6882654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently separating a specific metal element from an acidic solution containing various metal elements by using an impregnated adsorbent having an extraction agent impregnated.SOLUTION: Provided is a method for selectively separating a specific metal element from an acidic solution, comprising the steps of: preparing an impregnated adsorbent where there is prepared an impregnated adsorbent by impregnating particles having the surface coated with a polymer with 2 or more kinds of extraction agents; and having the metal element adsorbed by the impregnated adsorbent by contacting the acidic solution containing the specific metal element with the impregnation adsorbent.SELECTED DRAWING: Figure 2

Description

本発明は、抽出クロマトグラフィ法を用いた酸性溶液中に存在する金属元素の分離技術に関する。   The present invention relates to a technique for separating a metal element present in an acidic solution using an extraction chromatography method.

自国での資源が少なく海外輸入に依存している日本では、希少な金属元素を使用済製品から回収している。希少な金属元素としてレアアースは廃電化製品の基板や液晶等の都市鉱山や原子炉からの使用済核燃料に多く含まれている。
これら製品を酸溶解した溶液からレアアースを回収するためには様々な方法がある。中でも抽出剤を含浸した含浸吸着材による回収法は、他の回収法と比較し有機溶媒の使用が少ないため環境負荷が小さいとされている。
Japan, which has few resources in its own country and relies on foreign imports, collects rare metal elements from used products. As a rare metal element, rare earths are abundant in spent nuclear fuel from municipal mines and nuclear reactors such as waste electrical appliance substrates and liquid crystals.
There are various methods for recovering rare earth from a solution obtained by dissolving these products in acid. Among them, the recovery method using an impregnated adsorbent impregnated with an extractant is said to have a low environmental load because it uses less organic solvent than other recovery methods.

例えば含浸吸着材を用いたレアアースの回収として、使用済核燃料からの三価ランタノイド(Ln(III))の回収がある。使用済核燃料を酸溶解し、ウランやプルトニウムを分離回収した後の溶液は高レベル放射性廃液(HLLW)と呼ばれる。この酸性溶液中にはLn(III)、三価マイナーアクチノイド(MA(III):Am(III)及びCm(III))、核分裂生成物(FP)が含まれている。
従来、Ln(III)はMA(III)と化学的挙動が非常に似ているため、Ln(III)とMA(III)を分離回収することは難しいとされてきた。
非特許文献1によれば、これら核種を分離回収する処理方法として、含浸吸着材を用いた抽出クロマトグラフィ法による二段階のカラム処理工程が検討されている。
しかしながら、非特許文献1の方法では、二段階カラムによりLn(III)の分離回収が行われるため処理工程の複雑化、装置の長大化、吸着材の必要量の増大が課題となっている。
For example, rare earth recovery using an impregnated adsorbent includes recovery of trivalent lanthanoid (Ln (III)) from spent nuclear fuel. The solution after dissolving the spent nuclear fuel with acid and separating and recovering uranium and plutonium is called high-level radioactive liquid waste (HLLW). This acidic solution contains Ln (III), trivalent minor actinoids (MA (III): Am (III) and Cm (III)), and fission products (FP).
Conventionally, since Ln (III) is very similar in chemical behavior to MA (III), it has been difficult to separate and recover Ln (III) and MA (III).
According to Non-Patent Document 1, as a processing method for separating and recovering these nuclides, a two-stage column processing process by an extraction chromatography method using an impregnated adsorbent is being studied.
However, in the method of Non-Patent Document 1, since the separation and recovery of Ln (III) is performed by a two-stage column, the processing steps are complicated, the apparatus length is increased, and the amount of adsorbent required is increased.

S. Watanabe, I. Goto, K. Nomura, Y. Sano, Y. Koma, “Extraction chromatography experiments on repeated operation using engineering scale column system”, Energy Procedia, 7, p.449 - 453,(2011)S. Watanabe, I. Goto, K. Nomura, Y. Sano, Y. Koma, “Extraction chromatography experiments on repeated operation using engineering scale column system”, Energy Procedia, 7, p.449-453, (2011) Y. Wei, A. Zhang, M. Kumagai, M. Watanabe, N. Hayashi, “Development of the MAREC Process for HLLW Partitioning Using a Novel Silica-Based CMPO Extraction Resin”, J. Nucl. Sci., 41, 315-322,(2004)Y. Wei, A. Zhang, M. Kumagai, M. Watanabe, N. Hayashi, “Development of the MAREC Process for HLLW Partitioning Using a Novel Silica-Based CMPO Extraction Resin”, J. Nucl. Sci., 41, 315 -322, (2004)

本発明はこれらの事情を鑑みてなされたもので、様々な金属元素を含む酸性溶液から抽出剤を含浸した含浸吸着材を用いて特定の金属元素を分離回収する効率を向上させることを課題とする。また、含浸吸着材を再利用するために、吸着された金属元素を含浸吸着材から分離させることを課題とする。   The present invention has been made in view of these circumstances, and it is an object to improve the efficiency of separating and recovering a specific metal element using an impregnated adsorbent impregnated with an extractant from an acidic solution containing various metal elements. To do. Another object is to separate the adsorbed metal element from the impregnated adsorbent in order to reuse the impregnated adsorbent.

上記課題を解決するため本発明では、通常二段階のカラム処理工程で用いられる2種の抽出剤を混合して含浸させた含浸吸着材を調製し、以下のプロセスにより酸性溶液から特定の金属元素を分離回収する。すなわち、本発明の一実施形態に係る特定の金属元素を選択的に分離する方法は、以下の通りである。
表面をポリマーで被覆された粒子に2種以上の抽出剤を含浸させてなる含浸吸着材を準
備する含浸吸着材の準備工程、特定の金属元素を含む酸性溶液を前記含浸吸着材に接触させ、前記金属元素を前記含浸吸着材に吸着させる吸着工程、を含む、酸性溶液中から特定の金属元素を選択的に分離する方法。
In order to solve the above problems, in the present invention, an impregnated adsorbent prepared by mixing and impregnating two kinds of extractants usually used in a two-stage column processing step is prepared, and a specific metal element is obtained from an acidic solution by the following process. Is separated and recovered. That is, a method for selectively separating a specific metal element according to an embodiment of the present invention is as follows.
A step of preparing an impregnated adsorbent prepared by impregnating two or more kinds of extractants into particles whose surfaces are coated with a polymer, contacting an acidic solution containing a specific metal element with the impregnated adsorbent, A method for selectively separating a specific metal element from an acidic solution, comprising an adsorption step of adsorbing the metal element on the impregnated adsorbent.

本発明により、従来2種の抽出剤の含浸吸着材をそれぞれ別のカラムに充填し二段階で行っていたカラム処理工程に代わり、2種以上の抽出剤を含浸した含浸吸着材を用いて一段階で処理を行うことが可能となる。それに伴い、二段階の場合と比較し処理装置の縮小、カラム充填に必要な吸着材量の削減が可能となる。そのため特定の金属元素の分離回収プロセスを効率的に行うことができる。
また、吸着された金属元素を含浸吸着材から分離させ、含浸吸着材を再利用することができる。
また、本発明を利用することで高レベル放射性廃液(HLLW)からLn(III)の回収と同時にMA(III)の分離回収ができるため、高レベル放射性廃棄物の減容化により放射性廃棄物について安全性、信頼性、効率性等を高める技術を提供することができる。
According to the present invention, an impregnated adsorbent impregnated with two or more kinds of extractants is used in place of the column treatment process in which two kinds of extractants are impregnated in two stages. Processing can be performed in stages. Accordingly, the processing apparatus can be reduced and the amount of adsorbent required for column packing can be reduced as compared with the case of two stages. Therefore, the separation and recovery process for a specific metal element can be performed efficiently.
Moreover, the adsorbed metal element can be separated from the impregnated adsorbent and reused.
Further, by utilizing the present invention, MA (III) can be separated and recovered simultaneously with the recovery of Ln (III) from the high-level radioactive liquid waste (HLLW), so the radioactive waste can be reduced by reducing the volume of the high-level radioactive waste. A technology for improving safety, reliability, efficiency, and the like can be provided.

本発明の一実施形態に係る金属元素の分離方法に用いるCMPO−HDEHPを含浸した吸着材の模式図Schematic diagram of an adsorbent impregnated with CMPO-HDEHP used in a metal element separation method according to an embodiment of the present invention. 本発明の一実施形態に係るLn(III)、MA(III)の分離プロセスを示す模式図Schematic diagram showing the separation process of Ln (III) and MA (III) according to an embodiment of the present invention. 抽出剤モル比を変化させた各吸着材のネオジム(Nd(III))に対する吸着分配係数の硝酸濃度依存性を示すグラフThe graph which shows the nitric acid concentration dependence of the adsorption partition coefficient with respect to neodymium (Nd (III)) of each adsorbent which changed extractant molar ratio. 1mol/L硝酸溶液中における抽出剤モル比を変化させた各吸着材のLn(III)の吸着分配係数を示すグラフThe graph which shows the adsorption distribution coefficient of Ln (III) of each adsorbent which changed the extractant molar ratio in 1 mol / L nitric acid solution 抽出剤モル比を変化させた各吸着材に対するEuと241Amの吸着分配係数を示すグラフThe graph which shows the adsorption distribution coefficient of Eu and 241 Am with respect to each adsorbent which changed extractant molar ratio. DTPA溶液を用いた際の抽出剤モル比を変化させた各吸着材中からのEuと241Amの溶離率を示すグラフThe graph which shows the elution rate of Eu and 241 Am from each adsorbent which changed the extractant molar ratio at the time of using a DTPA solution

本発明に係る金属元素の分離方法のプロセスを、図面を参照して説明する。
(第1の実施形態)
本発明に係る特定の金属元素の分離方法は、表面をポリマーで被覆された粒子に2種以上の抽出剤を含浸させてなる含浸吸着材を準備する含浸吸着材の準備工程、特定の金属元素を含む酸性溶液を前記含浸吸着材に接触させ、前記金属元素を前記含浸吸着材に吸着させる吸着工程、を含む、酸性溶液中から特定の金属元素を選択的に分離する方法である。
The process of the metal element separation method according to the present invention will be described with reference to the drawings.
(First embodiment)
The specific metal element separation method according to the present invention includes an impregnated adsorbent preparation step in which an impregnated adsorbent prepared by impregnating particles coated with a polymer with two or more kinds of extractants, and a specific metal element A method of selectively separating a specific metal element from the acidic solution, comprising an adsorption step of contacting the impregnated adsorbent with an acidic solution containing the metal element and adsorbing the metal element onto the impregnated adsorbent.

分離対象である特定の金属元素としては、抽出剤と金属錯体を形成することができるものであれば、特に限定されるものではない。具体的には、例えば、ウラン(U)、プルトニウム(Pu)及びアメリシウム(Am)、キュリウム(Cm)等の超ウラン元素を含むアクチノイド元素(An)、ランタン(La)、ネオジム(Nd)、ユウロピウム(Eu)、ルテチウム(Lu)等のランタノイド元素(Ln)、ロジウム(Rh)、パラジウム(Pd)、ルテニウム(Ru)等の白金族元素、セシウム(Cs)、ストロンチウム(Sr)、テクネチウム(Tc)、スズ(Sn)、ジルコニウム(Zr)等が挙げられる。含浸吸着材に接触する酸性溶液中には上記金属元素を1種以上含むことができる。   The specific metal element to be separated is not particularly limited as long as it can form a metal complex with the extractant. Specifically, for example, actinide elements (An) including uranium (U), plutonium (Pu) and americium (Am), curium (Cm), and other superuranium elements (An), lanthanum (La), neodymium (Nd), europium. Lanthanoid elements (Ln) such as (Eu), lutetium (Lu), platinum group elements such as rhodium (Rh), palladium (Pd), ruthenium (Ru), cesium (Cs), strontium (Sr), technetium (Tc) , Tin (Sn), zirconium (Zr) and the like. One or more of the above metal elements can be included in the acidic solution that contacts the impregnated adsorbent.

前記抽出剤は、金属錯体を形成することができ、後述する粒子に含浸できるものである。
金属元素の選択的な分離は、吸着材に含浸する抽出剤を適宜選択することにより行う。
具体的には、例えば、溶液中に含まれる多種金属元素よりLa、Nd、Eu、Lu等のLn元素及びAm、Cmを選択的に分離する際は、抽出剤としてCMPO(n−オクチル(フェニル)−N,N’―ジイソブチルカルバモイルメチルホスフィンオキシド)、TODGA(N,N,N’,N’−テトラオクチルジグリコールアミド)を選択することができる。また、溶液中に含まれるLn元素とAn元素を選択的に分離する際は、抽出剤としてHDEHP(ジ−2−エチルヘキシルリン酸)、R−BTP(2,6−ビス−(5,6−ジアルキル−1,2,4−トリアジン−3−イル)ピリジン)及びTPEN(N,N,N,N−テトラキス(2−ピリジルメチル)エチレンジアミン)を選択することができる。また、4価或いは6価のAn元素であるU及びPuを選択的に分離する際は、抽出剤としてTBP(リン酸トリブチル)を選択することができる。抽出剤は、上記に挙げたものの中から2種以上を選ぶことができる。
本発明者らは、La、Nd、Eu、Lu等のLn元素及びAm、Cmを選択的に分離するために抽出剤としてCMPO及びHDEHPを混合したものを抽出剤として用いることで、協同抽出効果を発現することを見出した。協同抽出効果とは溶媒抽出法において抽出剤を含む有機溶媒中に他の抽出剤を添加し、二種類以上の抽出剤が存在する系で金属イオンを抽出する際、それぞれの分配比を足し合わせた以上の抽出性能を発現する現象である。
The extractant is capable of forming a metal complex and impregnating particles described later.
The selective separation of the metal element is performed by appropriately selecting the extractant impregnated in the adsorbent.
Specifically, for example, when selectively separating Ln elements such as La, Nd, Eu, and Lu and Am and Cm from various metal elements contained in the solution, CMPO (n-octyl (phenyl) is used as an extractant. ) -N, N′-diisobutylcarbamoylmethylphosphine oxide), TODGA (N, N, N ′, N′-tetraoctyl diglycolamide) can be selected. When the Ln element and the An element contained in the solution are selectively separated, HDEHP (di-2-ethylhexyl phosphate), R-BTP (2,6-bis- (5,6-) is used as an extractant. Dialkyl-1,2,4-triazin-3-yl) pyridine) and TPEN (N, N, N, N-tetrakis (2-pyridylmethyl) ethylenediamine) can be selected. Moreover, when selectively separating U and Pu which are tetravalent or hexavalent An elements, TBP (tributyl phosphate) can be selected as an extractant. Two or more kinds of extractants can be selected from those listed above.
In order to selectively separate Ln elements such as La, Nd, Eu, and Lu, and Am and Cm, the present inventors use a mixture of CMPO and HDEHP as an extractant, thereby providing a cooperative extraction effect. Was found to express. What is the cooperative extraction effect? In the solvent extraction method, when other extraction agents are added to an organic solvent containing an extraction agent and metal ions are extracted in a system containing two or more extraction agents, the respective distribution ratios are added together. This is a phenomenon that expresses more extraction performance.

カラムに充填する好ましい含浸吸着材の模式図を図1に示す。含浸吸着材は、ポリマーを被覆した1つの粒子上に2種以上の抽出剤を含浸させたものである。   A schematic diagram of a preferred impregnated adsorbent packed in a column is shown in FIG. The impregnated adsorbent is obtained by impregnating two or more kinds of extractants on one particle coated with a polymer.

前記粒子は、ポリマーが被覆できるものであれば特に限定されない。具体的には、多孔質シリカ粒子、多孔質アルミナ粒子、ポリマービーズ等を用いることができる。この中でも、多孔質シリカ粒子は化学的安定性、耐放射線性が高く機械的強度も優れているため好ましい。
この粒子の粒度分布測定計で測定される数平均粒子径は、通常10〜100μmであり、好ましくは30〜50μmである。粒子の細孔の大きさは、通常50〜800nmであり、好ましくは400〜600nmである。細孔の大きさが上記範囲内であれば、溶液を吸着材内部まで接触させることが容易となるので好ましい。また、その形状は、真球状、楕円球状(卵状)、円柱状、角柱状、偏平状、等が挙げられる。これらの物性を満たす粒子としては、旭化成社製シリカ粒子や富士シリシア化学製シリカ粒子、等がある。
The particles are not particularly limited as long as they can be coated with a polymer. Specifically, porous silica particles, porous alumina particles, polymer beads and the like can be used. Among these, porous silica particles are preferable because of their high chemical stability and radiation resistance and excellent mechanical strength.
The number average particle size measured with a particle size distribution meter of these particles is usually 10 to 100 μm, preferably 30 to 50 μm. The size of the pores of the particles is usually 50 to 800 nm, preferably 400 to 600 nm. If the size of the pores is within the above range, it is preferable because the solution can be easily brought into contact with the inside of the adsorbent. Moreover, the shape includes a true sphere, an elliptical sphere (egg), a columnar shape, a prismatic shape, a flat shape, and the like. As particles satisfying these physical properties, there are silica particles manufactured by Asahi Kasei Corporation, silica particles manufactured by Fuji Silysia Chemical, and the like.

前記ポリマーの例としては、スチレン−ジビニルベンゼン共重合体が挙げられる。
ポリマーを粒子に被覆する方法は、特に限定されず常法に従って行えばよいが、例えば粒子上での架橋反応による重合を用いることができる。ポリマーの粒子表面における添着率は、熱重量測定法で測定される熱分解量より求められ、通常10〜25%であり、好ましくは15〜20%である。ポリマーの粒子における添着率が上記範囲内であれば、抽出剤が効率よく含浸できるので好ましい。
Examples of the polymer include styrene-divinylbenzene copolymer.
The method for coating the particles with the polymer is not particularly limited, and may be performed according to a conventional method. For example, polymerization by a crosslinking reaction on the particles can be used. The adhesion rate on the particle surface of the polymer is determined from the amount of thermal decomposition measured by thermogravimetry, and is usually 10 to 25%, preferably 15 to 20%. It is preferable that the adhesion rate of the polymer particles is within the above range because the extractant can be impregnated efficiently.

このような粒子に2種以上の抽出剤を有機溶媒で混合希釈した溶液を含浸した後、有機溶媒を除去することで本発明の含浸吸着材を調製する。この含浸吸着材は、同一の粒子に2種以上の抽出剤が含浸されているものである。
前記有機溶媒の例としては、アセトン、ジクロロメタン、メタノール、エタノールが用いられ、混合希釈する抽出剤の種類によって適宜選択する。
抽出剤としてCMPO及びHDEHPを用いる場合、様々な混合比のものを用いることができ、通常CMPO:HDEHPがモル比で1:1〜8:1であり、好ましくは2:1〜4:1である。
CMPO及びHDEHPの混合比が上記範囲内であれば、粒子に含浸させた含浸吸着材の吸着効率、後述する溶離工程での溶離効率を向上させることができる。
After impregnating such particles with a solution obtained by mixing and diluting two or more kinds of extractants with an organic solvent, the impregnated adsorbent of the present invention is prepared by removing the organic solvent. In this impregnated adsorbent, the same particles are impregnated with two or more kinds of extractants.
Examples of the organic solvent include acetone, dichloromethane, methanol, and ethanol, which are appropriately selected depending on the type of extractant to be mixed and diluted.
When CMPO and HDEHP are used as the extractant, those having various mixing ratios can be used. Usually, CMPO: HDEHP is in a molar ratio of 1: 1 to 8: 1, preferably 2: 1 to 4: 1. is there.
When the mixing ratio of CMPO and HDEHP is within the above range, the adsorption efficiency of the impregnated adsorbent impregnated in the particles and the elution efficiency in the elution step described later can be improved.

本実施形態の吸着工程では、上述のように調製された含浸吸着材に特定の金属元素を含む酸性溶液を接触させ、前記金属元素を前記含浸吸着材に吸着させる。   In the adsorption step of the present embodiment, an acidic solution containing a specific metal element is brought into contact with the impregnated adsorbent prepared as described above, and the metal element is adsorbed on the impregnated adsorbent.

さらに、本発明に係る特定の金属元素の分離方法は、前記吸着工程の後に溶離液を含浸吸着材に接触させる場合、さらなる金属元素の選択的な分離を行うことができる。
Am、Cm等のAn元素を選択的に溶離する際は、溶離液としてDTPAを選択することができる。このDTPAの濃度は通常10〜100mmol/L、好ましくは25〜50mmol/Lであり、また、pHは通常1〜4であり、好ましくは2〜3で用いられる。各物性が上記の範囲内であれば、溶離効率が高くなるので好ましい。
また、La、Nd、Eu、Lu等のLn元素を選択的に溶離する際は、溶離液として乳酸、しゅう酸、酢酸アンモニウム及びクエン酸を選択することができる。この中でもクエン酸は溶離率が高いので好ましい。Ln元素の溶離液は、濃度は通常0.01〜1mol/L、好ましくは0.5〜1mol/Lであり、また、pHは通常3〜7であり、好ましくは5〜7で用いられる。各物性が上記の範囲内であれば、溶離効率が高くなるので好ましい。
これらの溶離液は、第1溶離液としてAn溶離液、第2溶離液としてLn溶離液等、2種以上を順次用いてもよい。また、溶離液を用いて含浸吸着材から吸着された金属元素を溶離することで、含浸吸着材の再利用が可能となる。含浸吸着材を再利用する観点から、含浸吸着材における吸着された金属元素の溶離率が、98%以上であることが好ましい。
Furthermore, in the method for separating a specific metal element according to the present invention, when the eluent is brought into contact with the impregnated adsorbent after the adsorption step, further metal element can be selectively separated.
When selectively eluting An elements such as Am and Cm, DTPA can be selected as the eluent. The concentration of the DTPA is usually 10 to 100 mmol / L, preferably 25 to 50 mmol / L, and the pH is usually 1 to 4, preferably 2 to 3. It is preferable that each physical property is within the above range since elution efficiency is increased.
Further, when selectively eluting Ln elements such as La, Nd, Eu, and Lu, lactic acid, oxalic acid, ammonium acetate, and citric acid can be selected as an eluent. Among these, citric acid is preferable because of its high elution rate. The eluent of Ln element has a concentration of usually 0.01 to 1 mol / L, preferably 0.5 to 1 mol / L, and a pH of usually 3 to 7, preferably 5 to 7. It is preferable that each physical property is within the above range since elution efficiency is increased.
Two or more of these eluents may be sequentially used, such as an An eluent as the first eluent and an Ln eluent as the second eluent. In addition, the impregnated adsorbent can be reused by eluting the metal element adsorbed from the impregnated adsorbent using the eluent. From the viewpoint of reusing the impregnated adsorbent, the elution rate of the adsorbed metal element in the impregnated adsorbent is preferably 98% or more.

前記酸性溶液としては、吸着工程において特定の金属元素を吸着させることができるものであれば、特に限定されるものではない。例えば、硫酸(HSO)、硝酸(HNO)、塩酸(HCl)等が挙げられる。
前記酸性溶液の酸濃度は、通常0.1〜6Nであり、好ましくは1〜3Nで用いられる。抽出剤としてCMPO及びHDEHPを用いる場合、酸性溶液の酸濃度は1〜3Nが好ましい。
The acidic solution is not particularly limited as long as a specific metal element can be adsorbed in the adsorption step. For example, sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), hydrochloric acid (HCl), and the like can be given.
The acid concentration of the acidic solution is usually 0.1 to 6N, preferably 1 to 3N. When CMPO and HDEHP are used as the extractant, the acid concentration of the acidic solution is preferably 1 to 3N.

(第2の実施の形態)
本発明の第2の実施の形態は、表面をポリマーで被覆された粒子に2種以上の抽出剤を含浸させてなる含浸吸着材を充填したカラムと、前記カラムに接続され、該カラムに特定の金属元素を含む酸性溶液を供給する試料供給部と、前記カラムに接続され、該カラムに溶離液を供給する溶離液供給部とを備える、分離装置である。
(Second Embodiment)
In the second embodiment of the present invention, a column filled with an impregnated adsorbent obtained by impregnating particles coated with a polymer with two or more kinds of extractants, and connected to the column, the column is specified. And a sample supply unit that supplies an acidic solution containing the metal element, and an eluent supply unit that is connected to the column and supplies an eluent to the column.

この分離装置を用いることで、様々な金属元素を含む酸性溶液(試料)から特定の金属元素を分離することが可能となる。
前記含浸吸着材は、第1の実施形態で詳細に説明したものと同じ含浸吸着材であり、カラムに充填されて分離装置に設置される。前記試料供給部は前記カラムに接続され、試料をカラムに通液することで試料に含まれる特定の金属元素が含浸吸着材に吸着される。吸着されない金属元素はカラムより流出する。前記溶離液供給部は前記カラムに接続され、特定の金属元素に特異的な溶離液をカラムに通液することで、含浸吸着材に吸着された特定の金属元素を含浸吸着材から溶離して流出液に含ませることができる。前記溶離液供給部は溶離したい特定の金属元素の種類数に応じて第1溶離液供給部、第2溶離液供給部等、複数の溶離液供給部をカラムに接続することも可能である。
By using this separation device, it is possible to separate a specific metal element from an acidic solution (sample) containing various metal elements.
The impregnated adsorbent is the same impregnated adsorbent as described in detail in the first embodiment. The impregnated adsorbent is packed in a column and installed in a separation device. The sample supply unit is connected to the column, and a specific metal element contained in the sample is adsorbed to the impregnated adsorbent by passing the sample through the column. Metal elements that are not adsorbed flow out of the column. The eluent supply unit is connected to the column, and elutes the specific metal element adsorbed on the impregnated adsorbent from the impregnated adsorbent by passing an eluent specific to the specific metal element through the column. It can be included in the effluent. The eluent supply section can connect a plurality of eluent supply sections such as a first eluent supply section and a second eluent supply section to the column according to the number of types of specific metal elements to be eluted.

この分離装置は含浸吸着材を充填したカラムに試料または溶離液供給部を接続することができる程度の簡素な構成でよい。この試料または溶離液供給部は、チューブ等で構成されていてもよい。分離装置は、試料供給部、及び複数の溶離液供給部を切り替える、導入液切替部を備えていてもよい。
分離装置は、試料または溶離液を収容可能に構成された導入液容器を備えていてもよく
、試料または溶離液をカラム内に導入するための吸引ポンプ、及び試料または溶離液の流速を制御する導入液流速制御部を含んでいてもよい。また、分離装置はカラムからの流出液を受容する容器を備えていてもよい。
This separation device may have a simple configuration capable of connecting a sample or eluent supply unit to a column packed with an impregnated adsorbent. The sample or eluent supply unit may be constituted by a tube or the like. The separation apparatus may include an introduction liquid switching unit that switches between the sample supply unit and the plurality of eluent supply units.
The separation device may include an introduction liquid container configured to accommodate a sample or an eluent, and controls a suction pump for introducing the sample or the eluent into the column and a flow rate of the sample or the eluent. An introduction liquid flow rate control unit may be included. Further, the separation device may include a container for receiving the effluent from the column.

表面をスチレン−ジビニルベンゼンポリマーで被覆された粒子に抽出剤としてCMPO及びHDEHPを含浸させた吸着材を充填したカラム、並びにカラムに供給する酸性溶液として、使用済核燃料を硝酸に溶解し、ウランやプルトニウムを分離回収した後の高レベル放射性廃液(HLLW)を用いてLn(III)、三価マイナーアクチノイド(MA(III))、核分裂生成物(FP)を分離するプロセスの模式図を図2に示す。硝酸溶液である高レベル放射性廃液中にはLn(III)、三価マイナーアクチノイド(MA(III))、核分裂生成物(FP)が含まれている。   A column in which particles coated with styrene-divinylbenzene polymer on the surface are filled with an adsorbent impregnated with CMPO and HDEHP as an extractant, and as an acidic solution supplied to the column, spent nuclear fuel is dissolved in nitric acid, and uranium and Fig. 2 shows a schematic diagram of the process for separating Ln (III), trivalent minor actinoids (MA (III)), and fission products (FP) using high-level radioactive liquid waste (HLLW) after separating and recovering plutonium. Show. The high-level radioactive liquid waste that is a nitric acid solution contains Ln (III), trivalent minor actinoids (MA (III)), and fission products (FP).

含浸吸着材を充填したカラムに1〜3mol/L硝酸に濃度調整した高レベル放射性廃液(HLLW)を通液すると、Ln(III)及びMA(III)は含浸吸着材に吸着される。一方、核分裂生成物(FP)は吸着されずに排出され、さらに1〜3mol/L硝酸を通液することで核分裂生成物(FP)が洗い流される。MA(III)溶離液としてDTPAをカラムに供給することで、MA(III)を含浸吸着材から溶離し排出させる。続いてLn(III)溶離液としてクエン酸をカラムに供給することで、ランタノイド(Ln(III):La、Nd、Eu、Lu等)を含浸吸着材から溶離し排出させる。以上で、MA(III)、Ln(III)、FPの分離回収が完了する。   When a high-level radioactive waste liquid (HLLW) whose concentration is adjusted to 1 to 3 mol / L nitric acid is passed through a column packed with the impregnated adsorbent, Ln (III) and MA (III) are adsorbed by the impregnated adsorbent. On the other hand, the fission product (FP) is discharged without being adsorbed, and the fission product (FP) is washed away by passing 1 to 3 mol / L nitric acid. By supplying DTPA as a MA (III) eluent to the column, MA (III) is eluted from the impregnated adsorbent and discharged. Subsequently, citric acid is supplied to the column as an Ln (III) eluent, so that lanthanoids (Ln (III): La, Nd, Eu, Lu, etc.) are eluted from the impregnated adsorbent and discharged. This completes the separation and recovery of MA (III), Ln (III), and FP.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

以下、実施例を参照して本発明をより具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
<抽出剤を含浸する粒子の調製>
直径40−60μmで細孔径600nmの球形シリカ粒子(SiO)をガラスフラスコに入れてロータリーエバポレーターにセットし、フラスコを減圧ポンプにて減圧した。モノマー(m/p−ホルミルスチレン及びm/p−ジビニルベンゼン)、重合開始剤(α,α−アゾビスイソブチロニトリル及び1,1‘−アゾビスシクロヘキサン−1−カルボニトリル)、並びに希釈剤(1,2,3−トリクロロプロパン及びm−キシレン)の混合物を前記フラスコにゴムチューブを通して吸引させた。混合物がシリカ粒子の細孔に完全に染み渡るようにフラスコを継続的に回転させた後、フラスコを窒素ガスで満たした。フラスコはシリコーンオイルバスに、90℃に昇温して20時間保持した。グラフト化した材料(SiO−P)はアセトン及び熱湯で洗った後、50℃で一晩乾燥させた。熱重量分析で測定される共重合体(ホルミルスチレン−ジビニルベンゼン)のSiO−P粒子における添着率は、17.6wt%であった。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely with reference to an Example, this invention is not limited only to these Examples.
<Preparation of particles impregnated with extractant>
Spherical silica particles (SiO 2 ) having a diameter of 40-60 μm and a pore diameter of 600 nm were placed in a glass flask and set on a rotary evaporator, and the flask was decompressed with a vacuum pump. Monomer (m / p-formylstyrene and m / p-divinylbenzene), polymerization initiator (α, α-azobisisobutyronitrile and 1,1′-azobiscyclohexane-1-carbonitrile), and diluent A mixture of (1,2,3-trichloropropane and m-xylene) was sucked through the rubber tube into the flask. The flask was continuously rotated so that the mixture completely penetrated the pores of the silica particles, and then the flask was filled with nitrogen gas. The flask was heated to 90 ° C. in a silicone oil bath and held for 20 hours. The grafted material (SiO 2 —P) was washed with acetone and hot water and then dried at 50 ° C. overnight. The adhesion rate of the copolymer (formylstyrene-divinylbenzene) to the SiO 2 -P particles measured by thermogravimetric analysis was 17.6 wt%.

<抽出剤を含浸させてなる含浸吸着材の調製及びそのカラムへの充填>
まずスチレン−ジビニルベンゼンを被覆したシリカ粒子(SiO−P)をメタノールで3回洗い、60℃で一晩乾燥させた。5gの純度98.3%のCMPO及び2gの純度95.0%のHDEHPをコニカルフラスコに入れて60cmのジクロロメタンに溶解して希釈し、続いて10gの乾燥した粒子(SiO−P)を加え混合物を25℃で2時間勢いよく回転させた。その後ロータリーエバポレーターを用いて50℃で減圧すること
で希釈剤を除去した。残りを50℃真空にて一晩乾燥させることで、シリカをベースとした含浸吸着材であるCMPO−HDEHP/SiO−Pが得られた。含浸の工程においてCMPO及びHDEHPのロスはないので、含浸吸着材は0.5gのCMPO、0.2gのHDEHP及び1.0gのSiO−Pを含んでいた。
このようにして得られた含浸吸着材を必要に応じてカラムに充填して吸着工程の準備を行った。
<Preparation of impregnated adsorbent impregnated with extractant and packing in column>
First, silica particles (SiO 2 —P) coated with styrene-divinylbenzene were washed three times with methanol and dried at 60 ° C. overnight. 5 g of 98.3% pure CMPO and 2 g of 95.0% HDEHP in a conical flask were dissolved in 60 cm 3 of dichloromethane and diluted, followed by 10 g of dry particles (SiO 2 —P). The addition mixture was spun vigorously at 25 ° C. for 2 hours. Thereafter, the diluent was removed by reducing the pressure at 50 ° C. using a rotary evaporator. The residue was dried overnight at 50 ° C. to obtain CMPO-HDEHP / SiO 2 —P, which is an impregnated adsorbent based on silica. Since there was no loss of CMPO and HDEHP in the impregnation step, the impregnated adsorbent contained 0.5 g CMPO, 0.2 g HDEHP and 1.0 g SiO 2 —P.
The impregnated adsorbent thus obtained was packed in a column as necessary to prepare for the adsorption step.

<金属元素の分離>
[実施例1]
カラム充填材であるCMPO−HDEHP含浸吸着材の吸着挙動の検討はバッチ式吸着試験法により実施した。0.2gの吸着材と1mol/Lの硝酸溶液にNd(III)を溶解した4cmの金属溶液をガラスバイアル瓶に入れ3時間振とう後、前後の溶液中の金属イオン濃度を測定し、吸着分配係数を算出した。なお、本試験ではCMPOの質量を一定にしてHDEHPの質量を変化させ吸着材を作製し、下記のCMPO:HDEHPモル比が異なる吸着材を用いて吸着分配係数を比較した。吸着材の種類はCMPO吸着材、HDEHP吸着材、CMPO:HDEHPのモル比が1.5:1の吸着材、2:1の吸着材、4:1の吸着材、8:1の吸着材、15:1の吸着材を用いた。各吸着材に対するNd(III)の吸着分配係数を図3に示す。次式に吸着分配係数Kdの算出式を示す。
Kd=(C−C)/C×V/W
ここで、Cは試験前水相中の金属濃度[mmol/L]、Cは試験後の水相中の金属濃度[mmol/L]、Vは金属溶液の体積[cm]、Wは樹脂の乾燥重量[g]を示す。
<Separation of metal elements>
[Example 1]
Examination of the adsorption behavior of the column packing material CMPO-HDEHP impregnated adsorbent was carried out by a batch type adsorption test method. After putting a 4 cm 3 metal solution in which Nd (III) is dissolved in 0.2 g adsorbent and 1 mol / L nitric acid solution into a glass vial and shaking for 3 hours, the concentration of metal ions in the solution before and after is measured, The adsorption partition coefficient was calculated. In this test, the adsorbent was prepared by changing the mass of HDEHP while keeping the mass of CMPO constant, and the adsorption distribution coefficients were compared using adsorbents having different CMPO: HDEHP molar ratios as described below. The types of adsorbents are CMPO adsorbent, HDEHP adsorbent, adsorbent with a CMPO: HDEHP molar ratio of 1.5: 1, 2: 1 adsorbent, 4: 1 adsorbent, 8: 1 adsorbent, A 15: 1 adsorbent was used. The adsorption distribution coefficient of Nd (III) for each adsorbent is shown in FIG. The following formula shows the calculation formula for the adsorption distribution coefficient Kd.
Kd = (C 0 −C S ) / C S × V / W
Here, C 0 metal density before the test aqueous phase [mmol / L], C S is the metal concentration in the aqueous phase after the test [mmol / L], V the volume of the metal solution [cm 3], W Indicates the dry weight [g] of the resin.

図3より、各CMPO−HDEHP吸着材はCMPO吸着材と比較し、何れの硝酸濃度においても吸着分配係数の増加が確認され、特に低濃度硝酸域においてHDEHP添加量の増加に伴う吸着分配係数の増加が顕著であった。一方で、HDEHPがNd(III)に対して非吸着を示す1mol/L硝酸溶液中であっても吸着分配係数の増加が確認された。つまり硝酸濃度1mol/Lでは、協同抽出効果により吸着分配係数が増加している。硝酸濃度1mol/Lにおいては、各CMPO−HDEHP吸着材の中で2:1吸着材のNd(III)の吸着分配係数の増加が顕著である。   From FIG. 3, it is confirmed that each CMPO-HDEHP adsorbent has an increase in the adsorption distribution coefficient at any nitric acid concentration compared to the CMPO adsorbent, and particularly in the low concentration nitric acid region, the adsorption distribution coefficient increases with the increase in HDEHP addition amount. The increase was significant. On the other hand, an increase in the adsorption partition coefficient was confirmed even in a 1 mol / L nitric acid solution in which HDEHP is non-adsorbed with respect to Nd (III). That is, at a nitric acid concentration of 1 mol / L, the adsorption partition coefficient increases due to the cooperative extraction effect. At a nitric acid concentration of 1 mol / L, an increase in the Nd (III) adsorption distribution coefficient of the 2: 1 adsorbent is remarkable among the CMPO-HDEHP adsorbents.

[実施例2]
本発明におけるカラム充填材であるCMPO−HDEHP吸着材の吸着挙動の検討はバッチ式吸着試験法により実施した。0.2gの吸着材と1mol/Lの硝酸溶液にLn(III)を溶解した4cmの金属溶液をガラスバイアル瓶に入れ3時間振とう後、前後の溶液中の金属イオン濃度を測定し、吸着分配係数を算出した。なお、本試験では実施例1のCMPO吸着材、2:1吸着材を用いた。
図4より、両吸着材は何れの元素においても硝酸濃度の増大に伴い吸着分配係数の増加が確認され、原子番号の増加に伴い吸着分配係数は増加し中希土類元素を境に減少することが確認された。つまり、何れの吸着材も中希土類元素、軽希土類元素、重希土類元素の順で吸着しやすい傾向であることが示唆された。またCMPO吸着材と比較すると2:1吸着材の方が吸着分配係数は高く、特に重希土類元素において顕著であった。したがって、協同抽出効果の発現によりLn(III)の選択性は向上し、特に重希土類元素の選択性を向上させることが確認された。
[Example 2]
The adsorption behavior of the CMPO-HDEHP adsorbent which is the column packing material in the present invention was examined by a batch type adsorption test method. After putting a 4 cm 3 metal solution having Ln (III) dissolved in a 0.2 g adsorbent and a 1 mol / L nitric acid solution into a glass vial and shaking for 3 hours, the concentration of metal ions in the solution before and after was measured. The adsorption partition coefficient was calculated. In this test, the CMPO adsorbent of Example 1 and a 2: 1 adsorbent were used.
As can be seen from FIG. 4, both adsorbents showed an increase in the adsorption partition coefficient as the nitric acid concentration increased for both elements, and the adsorption partition coefficient increased as the atomic number increased and decreased at the middle rare earth element. confirmed. That is, it was suggested that any adsorbent tends to be adsorbed in the order of medium rare earth elements, light rare earth elements, and heavy rare earth elements. Compared with the CMPO adsorbent, the adsorbent distribution coefficient was higher in the 2: 1 adsorbent, particularly in heavy rare earth elements. Accordingly, it was confirmed that the selectivity of Ln (III) was improved by the expression of the cooperative extraction effect, and in particular, the selectivity of heavy rare earth elements was improved.

[実施例3]
本発明におけるカラム充填材であるCMPO−HDEHP吸着材の飽和吸着量の検討は、カラム試験法により実施した。各7.85cmの吸着材を充填した直径1cmのカラムに、1mol/L硝酸溶液にLn(III)を溶解した金属溶液を通液し、流出液を分画採取した。その後、各溶液中の金属イオン濃度を測定し得られた破過曲線からLn(I
II)の飽和吸着量を算出した。表1に各吸着材のLn(III)の飽和吸着量を示す。なお、本試験では実施例1のCMPO吸着材、及び2:1吸着材を用いた。
表1より、2:1吸着材はCMPO吸着材と比較すると、各元素の飽和吸着量は協同抽出効果により増大し、全体の飽和吸着量も増大していることが確認された。
[Example 3]
The saturation adsorption amount of the CMPO-HDEHP adsorbent which is the column filler in the present invention was examined by a column test method. A metal solution in which Ln (III) was dissolved in a 1 mol / L nitric acid solution was passed through a 1 cm diameter column packed with each 7.85 cm 3 adsorbent, and the effluent was fractionated. Thereafter, Ln (I) is obtained from the breakthrough curve obtained by measuring the metal ion concentration in each solution.
The saturated adsorption amount of II) was calculated. Table 1 shows the saturated adsorption amount of Ln (III) of each adsorbent. In this test, the CMPO adsorbent of Example 1 and 2: 1 adsorbent were used.
From Table 1, it was confirmed that the 2: 1 adsorbent increased in the saturated adsorption amount of each element due to the cooperative extraction effect and the overall saturated adsorption amount as compared with the CMPO adsorbent.

[実施例4]
本発明におけるカラム充填材であるCMPO−HDEHP吸着材の吸着挙動の検討はバッチ式吸着試験法により実施した。0.2gの吸着材と1mol/Lの硝酸溶液にEuと241Amをそれぞれ溶解した各4cmの金属溶液をガラスバイアル瓶に入れ3時間振とう後、前後の溶液中の金属イオン濃度を測定し、吸着分配係数を算出した。なお、本試験では実施例1のCMPO吸着材、2:1吸着材、及び1:1吸着材を用いた。図5に各吸着材に対するEuと241Amの吸着分配係数を示す。
図5より、いずれの吸着材においてもEuと241Amは共に高い吸着分配係数を示した。このことよりCMPO−HDEHP吸着材はLn(III)とMA(III)に対し高い吸着性能を有していることが確認された。
[Example 4]
The adsorption behavior of the CMPO-HDEHP adsorbent which is the column packing material in the present invention was examined by a batch type adsorption test method. 4 cm 3 each of Eu and 241 Am dissolved in 0.2 g adsorbent and 1 mol / L nitric acid solution were placed in a glass vial and shaken for 3 hours, and then the metal ion concentration in the solution before and after was measured. The adsorption partition coefficient was calculated. In this test, the CMPO adsorbent of Example 1, 2: 1 adsorbent, and 1: 1 adsorbent were used. FIG. 5 shows the adsorption distribution coefficients of Eu and 241 Am for each adsorbent.
From FIG. 5, Eu and 241 Am both showed high adsorption distribution coefficients in any adsorbent. From this, it was confirmed that the CMPO-HDEHP adsorbent has a high adsorption performance for Ln (III) and MA (III).

[実施例5]
本発明におけるカラム充填材であるCMPO−HDEHP吸着材の溶離挙動の検討はバッチ式溶離試験法により実施した。0.2gの吸着材にEuと241Amをそれぞれ吸着させ第1溶離液として0.1mol/Lの硝酸溶液で希釈しpHを2.3に調整した50mmol/LのDTPA溶液4cmと共にガラスバイアル瓶に入れ1時間振とう後、前後の溶液中の金属イオン濃度を測定し、溶離率を算出した。なお、本試験では実施例1のCMPO吸着材、2:1吸着材、及び1:1吸着材を用いた。図6に溶離液としてDTPA溶液を用いた時の各CMPO−HDEHP吸着材中からのEuと241Amの溶離率を示す。
図6より、CMPO吸着材の場合、吸着された両元素共にDTPA溶液により溶離が確認された。一方、CMPO−HDEHP吸着材の場合、吸着されたEuはDTPA溶液による溶離が確認されなかったが、241Amは溶離が確認された。このことから、DTPA溶液を用いることによりMA(III)を選択的に溶離することが可能であることが確認された。
[Example 5]
The elution behavior of the CMPO-HDEHP adsorbent which is a column packing material in the present invention was examined by a batch type elution test method. Glass vials together with 4 cm 3 of 50 mmol / L DTPA solution with Eu and 241 Am adsorbed on 0.2 g adsorbent, diluted with 0.1 mol / L nitric acid solution as the first eluent and pH adjusted to 2.3 After putting in a bottle and shaking for 1 hour, the metal ion concentration in the solution before and after was measured, and the elution rate was calculated. In this test, the CMPO adsorbent of Example 1, 2: 1 adsorbent, and 1: 1 adsorbent were used. FIG. 6 shows the elution rates of Eu and 241 Am from each CMPO-HDEHP adsorbent when a DTPA solution is used as the eluent.
From FIG. 6, in the case of the CMPO adsorbent, elution of both adsorbed elements was confirmed by the DTPA solution. On the other hand, in the case of the CMPO-HDEHP adsorbent, elution of adsorbed Eu was not confirmed by the DTPA solution, but elution of 241 Am was confirmed. From this, it was confirmed that MA (III) can be selectively eluted by using a DTPA solution.

[実施例6]
Nd(III)が吸着された0.2gの吸着材と共に4cmの第2溶離液をガラスバイアル瓶に入れ1時間振とう後、前後の溶液中の金属イオン濃度を測定し、溶離率を算出した。第2溶離液として純水で希釈した1mol/Lの酢酸アンモニウム溶液を用いた場合は溶離率が20%であった。また、第2溶離液として純水で希釈した0.5mol/Lのクエン酸を用いた場合は溶離率が98.5%であった。
[Example 6]
Put a 4cm 3 second eluent with 0.2g adsorbent adsorbing Nd (III) into a glass vial and shake for 1 hour, then measure the metal ion concentration in the solution before and after, and calculate the elution rate did. When a 1 mol / L ammonium acetate solution diluted with pure water was used as the second eluent, the elution rate was 20%. When 0.5 mol / L citric acid diluted with pure water was used as the second eluent, the elution rate was 98.5%.

Claims (11)

表面がポリマーで被覆された粒子に2種以上の抽出剤を含浸させてなる含浸吸着材を準備する含浸吸着材の準備工程、
特定の金属元素を含む酸性溶液を前記含浸吸着材に接触させ、前記金属元素を前記含浸吸着材に吸着させる吸着工程、
を含む、酸性溶液中から特定の金属元素を選択的に分離する方法。
A step of preparing an impregnated adsorbent for preparing an impregnated adsorbent obtained by impregnating two or more kinds of extractants into particles whose surfaces are coated with a polymer;
An adsorption step in which an acidic solution containing a specific metal element is brought into contact with the impregnated adsorbent, and the metal element is adsorbed on the impregnated adsorbent;
A method for selectively separating a specific metal element from an acidic solution.
前記抽出剤が、CMPO及びHDEHPである、請求項1に記載の方法。   The method of claim 1, wherein the extractant is CMPO and HDEHP. 前記粒子が、多孔質シリカ粒子であり、
前記ポリマーが、スチレン−ジビニルベンゼン共重合体である、請求項1または2に記載の方法。
The particles are porous silica particles;
The method according to claim 1 or 2, wherein the polymer is a styrene-divinylbenzene copolymer.
前記特定の金属元素が、アクチノイド元素、ランタノイド元素及び白金族元素からなる群から選択される1種以上である、請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the specific metal element is one or more selected from the group consisting of an actinoid element, a lanthanoid element, and a platinum group element. 前記吸着工程の後に、前記特定の金属元素を吸着した前記含浸吸着材から溶離液を用いて前記金属元素を溶離する溶離工程、
をさらに含む、請求項1〜4のいずれか1項に記載の方法。
An elution step of eluting the metal element using an eluent from the impregnated adsorbent adsorbing the specific metal element after the adsorption step;
The method according to claim 1, further comprising:
前記溶離液が、DTPA、しゅう酸、乳酸、酢酸アンモニウム及びクエン酸からなる群から選択される1種以上である、請求項5に記載の方法。   The method according to claim 5, wherein the eluent is one or more selected from the group consisting of DTPA, oxalic acid, lactic acid, ammonium acetate and citric acid. 前記溶離工程が、第1溶離液、第2溶離液を用いて前記金属元素を選択的に溶離する第1溶離工程、及び、第2溶離工程を含む、請求項5または6に記載の方法。   The method according to claim 5 or 6, wherein the elution step includes a first elution step, a first elution step of selectively eluting the metal element using a second eluent, and a second elution step. 前記溶離工程が、DTPAを用いてアクチノイド元素を溶離する第1溶離工程、及び、酢酸アンモニウムまたはクエン酸を用いてランタノイド元素を溶離する第2溶離工程を含む、請求項7に記載の方法。   8. The method of claim 7, wherein the elution step includes a first elution step of eluting the actinide element using DTPA and a second elution step of eluting the lanthanoid element using ammonium acetate or citric acid. 表面がポリマーで被覆された粒子に2種以上の抽出剤を含浸させてなる含浸吸着材を充填したカラムと、
前記カラムに接続され、該カラムに特定の金属元素を含む酸性溶液を供給する試料供給部と、
前記カラムに接続され、該カラムに溶離液を供給する溶離液供給部とを備える、分離装置。
A column packed with an impregnated adsorbent formed by impregnating two or more kinds of extractants into particles whose surfaces are coated with a polymer;
A sample supply unit connected to the column and supplying an acidic solution containing a specific metal element to the column;
A separation apparatus comprising: an eluent supply unit connected to the column and supplying an eluent to the column.
前記溶離液が、DTPA、しゅう酸、乳酸、酢酸アンモニウム及びクエン酸からなる群から選ばれる1種以上である、請求項9に記載の分離装置。   The separation device according to claim 9, wherein the eluent is at least one selected from the group consisting of DTPA, oxalic acid, lactic acid, ammonium acetate, and citric acid. 前記溶離液供給部が、該カラムにDTPAを供給してアクチノイド元素を溶離する第1溶離液供給部及び、該カラムに酢酸アンモニウムまたはクエン酸を供給してランタノイド元素を溶離する第2溶離液供給部を含む、請求項9または10に記載の分離装置。   The eluent supply unit supplies DTPA to the column to elute actinoid elements, and the second eluent supply to supply ammonium acetate or citric acid to the column to elute lanthanoid elements. The separation device according to claim 9 or 10, comprising a section.
JP2017016011A 2017-01-31 2017-01-31 Selective separation method and separation device for metal elements Active JP6882654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016011A JP6882654B2 (en) 2017-01-31 2017-01-31 Selective separation method and separation device for metal elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016011A JP6882654B2 (en) 2017-01-31 2017-01-31 Selective separation method and separation device for metal elements

Publications (2)

Publication Number Publication Date
JP2018123373A true JP2018123373A (en) 2018-08-09
JP6882654B2 JP6882654B2 (en) 2021-06-02

Family

ID=63109558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016011A Active JP6882654B2 (en) 2017-01-31 2017-01-31 Selective separation method and separation device for metal elements

Country Status (1)

Country Link
JP (1) JP6882654B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169358A (en) * 2019-04-03 2020-10-15 Jfeエンジニアリング株式会社 Zirconium purification method and zirconium purification apparatus
CN114471474A (en) * 2022-02-13 2022-05-13 兰州大学 Resin material capable of selectively adsorbing am (III) in high-acid environment and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100371A (en) * 1993-10-01 1995-04-18 Shiro Matsumoto Adsorbent for removing rare earth element and adsorption separation method using the same
JPH07318691A (en) * 1994-05-25 1995-12-08 Japan Atom Energy Res Inst Method for separating radioactive isotope from high level wastes
JP2003215292A (en) * 2002-01-22 2003-07-30 Inst Of Research & Innovation Method for separating and recovering americium, curium, and rare-earth element
JP2004028633A (en) * 2002-06-21 2004-01-29 Inst Of Research & Innovation Separation method of americium and curium, and heavy rare earth element
JP2005061971A (en) * 2003-08-11 2005-03-10 Inst Of Research & Innovation Method for treating high-level radioactive liquid waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100371A (en) * 1993-10-01 1995-04-18 Shiro Matsumoto Adsorbent for removing rare earth element and adsorption separation method using the same
JPH07318691A (en) * 1994-05-25 1995-12-08 Japan Atom Energy Res Inst Method for separating radioactive isotope from high level wastes
JP2003215292A (en) * 2002-01-22 2003-07-30 Inst Of Research & Innovation Method for separating and recovering americium, curium, and rare-earth element
JP2004028633A (en) * 2002-06-21 2004-01-29 Inst Of Research & Innovation Separation method of americium and curium, and heavy rare earth element
JP2005061971A (en) * 2003-08-11 2005-03-10 Inst Of Research & Innovation Method for treating high-level radioactive liquid waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169358A (en) * 2019-04-03 2020-10-15 Jfeエンジニアリング株式会社 Zirconium purification method and zirconium purification apparatus
JP7172807B2 (en) 2019-04-03 2022-11-16 Jfeエンジニアリング株式会社 Zirconium refining method and zirconium refining apparatus
CN114471474A (en) * 2022-02-13 2022-05-13 兰州大学 Resin material capable of selectively adsorbing am (III) in high-acid environment and preparation method thereof
CN114471474B (en) * 2022-02-13 2023-09-08 兰州大学 Resin material capable of selectively adsorbing Am (III) in high acid environment and preparation method thereof

Also Published As

Publication number Publication date
JP6882654B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
De Decker et al. Carbamoylmethylphosphine oxide-functionalized MIL-101 (Cr) as highly selective uranium adsorbent
Zhang et al. Synthesis of functional silica composite resin for the selective separation of zirconium from scandium
JP3677013B2 (en) Method for separating and recovering elements from radioactive liquid waste
CN107365909B (en) Extraction separation method
Wei et al. Development of the MAREC process for HLLW partitioning using a novel silica-based CMPO extraction resin
JP5922193B2 (en) NOVEL ADSORBENT, METHOD FOR PRODUCING THE SAME AND USE THEREOF
CN110923480B (en) Application of aminoimidazole type ionic liquid loaded resin in adsorption separation of rhenium or technetium
Wei et al. An advanced partitioning process for key elements separation from high level liquid waste
JP6882654B2 (en) Selective separation method and separation device for metal elements
Hafizi et al. Strontium adsorption from sulfuric acid solution by Dowex 50W-X resins
Su et al. High-efficiency separation of palladium from nitric acid solution using a silica-polymer-based adsorbent isoPentyl-BTBP/SiO2-P
Husain et al. Extraction chromatography of lanthanides using N, N, N′, N′-tetraoctyl diglycolamide (TODGA) as the stationary phase
WO2013095108A1 (en) A column material and a method for adsorbing mo-99 in a 99mo/99mtc generator
Zhang et al. Synthesis of a macroporous silica‐based derivative of pyridine material and its application in separation of palladium
Zhang et al. Molecular modification of a novel macroporous silica-based impregnated polymeric composite by tri-n-butyl phosphate and its application in the adsorption for some metals contained in a typical simulated HLLW
Wu et al. Adsorption and separation behavior of palladium (II) from simulated high-level liquid waste using a novel silica-based adsorbents
Zhang et al. Preparation of a novel macroporous silica-based 2, 6-bis (5, 6-diisobutyl-1, 2, 4-triazine-3-yl) pyridine impregnated polymeric composite and its application in the adsorption for trivalent rare earths
Ansari et al. Evaluation of an extraction chromatographic resin containing CMPO and ionic liquid for actinide ion uptake from acidic feeds: Part II. Batch actinide sorption, radiolytic degradation and column studies
Zhang et al. Development of palladium separation process from nitric acid medium utilizing a new hybrid multi-nitrogen adsorbent
JP2019019400A (en) Rare earth element and/or actinoid adsorbent, rare earth element and/or actinoid recovery method using the same, and scandium or actinoid separation method using the same
Zhang et al. Bleeding evaluation of the stationary phase from a few novel macroporous silica-substrate polymeric materials used for radionuclide partitioning from HLLW in MAREC process
Modolo et al. Recovery of actinides and lanthanides from high-level liquid waste by extraction chromatography using TODGA+ TBP impregnated resins
JP3889322B2 (en) Separation of americium and curium from heavy rare earth elements
Kudo et al. Adsorption behavior of Sr (II) from high-level liquid waste using crown ether with ionic liquid impregnated silica adsorbent
JP2005061971A (en) Method for treating high-level radioactive liquid waste

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210416

R150 Certificate of patent or registration of utility model

Ref document number: 6882654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250