JPH07318691A - Method for separating radioactive isotope from high level wastes - Google Patents

Method for separating radioactive isotope from high level wastes

Info

Publication number
JPH07318691A
JPH07318691A JP6111039A JP11103994A JPH07318691A JP H07318691 A JPH07318691 A JP H07318691A JP 6111039 A JP6111039 A JP 6111039A JP 11103994 A JP11103994 A JP 11103994A JP H07318691 A JPH07318691 A JP H07318691A
Authority
JP
Japan
Prior art keywords
high level
solution
waste
radioactive isotope
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6111039A
Other languages
Japanese (ja)
Inventor
Raisu Jiei
ジェイ・ライス
Katsuichi Tatemori
勝一 館盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP6111039A priority Critical patent/JPH07318691A/en
Publication of JPH07318691A publication Critical patent/JPH07318691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain a method for separating a trivalent ion of a radioactive isotope, e.g. a transuranic element, contained in an acid solution of high level wastes with high partition ratio. CONSTITUTION:A mixture of a bidentate ligand organic phosphonate, hydrophobic strong acid anions, and an organic solvent is brought into contact, as an extraction agent or an adsorbent, with an acid solution of high level wastes in order to separate trivalent ions of radioactive isotope contained therein. Preferably, the biclentate ligand organic phosphonate includes dibutyl diethylcarbamoyl methylphosphonate and the hydrophobic strong acid anion includes dicarbollide, molybdenum phosphate, and tungsten silicate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核燃料サイクルの様々
な部分から発生する高レベル廃棄物、特に放射性水溶液
から放射性同位元素を分離する方法に関する。そのよう
な放射性水溶液には、核燃料再処理工程やプルトニウム
取扱い施設から発生する各種廃液や研究機関における研
究活動に伴って発生する同様の廃液が含まれる。
FIELD OF THE INVENTION The present invention relates to a method for separating radioisotopes from high-level waste generated from various parts of a nuclear fuel cycle, in particular radioactive aqueous solutions. Such radioactive aqueous solutions include various waste liquids generated from nuclear fuel reprocessing processes and plutonium handling facilities, and similar waste liquids generated by research activities at research institutions.

【0002】[0002]

【従来の技術】核燃料サイクルから発生する超ウラン元
素を含有する排出液は、できるだけ超ウラン元素を分離
・回収した後に安定した状態に固化され、アルファ廃棄
物として分離保管されている。そのような廃棄物は将来
的には深地層処分される予定である。このような高コス
トの処分対象となるアルファ廃棄物の量をできるだけ少
なくするため、廃棄物中の超ウラン元素の含有量が規定
量以下ならば非アルファ廃棄物として分類し、浅地層処
分することが考えられている。従って、超ウラン元素を
選択的かつ高い回収率で分離する方法を開発する必要が
あり、現在、世界的に模索されている。特に、再処理工
程から発生する高レベル廃液について、中に含まれる超
ウラン元素の分離・回収法が群分離プロセスの中心的課
題となっている。
2. Description of the Related Art An effluent containing a transuranic element generated from a nuclear fuel cycle is solidified in a stable state after separating and recovering the transuranic element as much as possible, and is separately stored as alpha waste. Such waste will be deeply disposed in the future. In order to reduce the amount of alpha waste that is subject to such high-cost disposal as much as possible, if the content of transuranium elements in the waste is less than the specified amount, classify it as non-alpha waste and dispose it in a shallow layer. Is being considered. Therefore, it is necessary to develop a method for separating transuranium elements selectively and with high recovery rate, and it is currently being sought globally. In particular, for the high-level liquid waste generated from the reprocessing step, the method of separating and recovering the transuranium elements contained therein has become a central issue in the group separation process.

【0003】従来良く知られている超ウラン元素の分離
法には、ジ-2-エチルヘキシル燐酸(DEHPA)や強
酸性陽イオン交換体を用いる方法がある。それらはアル
カリ性、中性、あるいは弱酸性の水溶液から超ウラン元
素を分離するのに適しているが、酸濃度0.1mol/l 以
上の水溶液からAm3+、Cm3+ を分離することは困難で
ある。使用済み核燃料をPurex法等によって再処理して
U、Pu 等を回収した後の廃液は濃度の高い硝酸溶液で
ある場合が多く、従って、このような廃液について上記
方法を適用するのは実際的ではない。
A well-known method for separating transuranic elements is a method using di-2-ethylhexyl phosphoric acid (DEHPA) or a strongly acidic cation exchanger. They are suitable for separating transuranium elements from alkaline, neutral or weakly acidic aqueous solutions, but it is difficult to separate Am 3+ and Cm 3+ from aqueous solutions with an acid concentration of 0.1 mol / l or more. Is. The waste liquid after reprocessing the spent nuclear fuel by the Purex method or the like to recover U, Pu, etc. is often a nitric acid solution having a high concentration. Therefore, it is practical to apply the above method to such waste liquid. is not.

【0004】これに対して、近年、配位能を有するC=
O、P=Oのような官能基を2個有する二座配位系有機
化合物が、酸を高濃度に含む水溶液からでも超ウラン元
素を分離できる抽出剤として報告されている。例えば、
酸濃度が約1〜5mol/lの高レベル放射性廃液からラン
タニド元素の三価の陽イオンとAm3+、Cm3+ を抽出す
ることが報告されている。それらの報告によれば、その
ような二座配位系有機化合物としては、ジブチルジエチ
ルカルバモイルメチルホスホネート(DBDECMP)
やジヘキシルジエチルカルバモイルメチルホスホネート
(DHDECMP)やオクチル(フェニル)-N,N-ジ
イソブチルカルバモイルメチルホスフィンオキシド(C
MPO)(E.P.Horwitz and W.W.Schulz,in Ne
w Separation Chemistry Techniques for Radioact
ive Waste and Other Specific Applications(L.
Cecille et al,Eds)Elsevier,London,1991,p
21)、あるいはN,N-テトラアルキルアルキルプロパン
ジアミド(C.Musikas,in Solvent Extraction
(T.Sekine and S.Kusakabe,Eds)Elsevier,L
ondon,1992,p297)等がある。これらの化合物に共通
の特性は、三価の陽イオンとその陽イオンの原子価を変
えることなく結合することであり、その結果、正に帯電
した配位化合物となる。実際の系では、硝酸等の酸のイ
オン(負に荷電)と結び付いた形で抽出される。
On the other hand, in recent years, C = having coordination ability
A bidentate organic compound having two functional groups such as O and P = O has been reported as an extractant capable of separating transuranic elements even from an aqueous solution containing a high concentration of acid. For example,
It has been reported that the trivalent cation of the lanthanide element, Am 3+ and Cm 3+ are extracted from a high level radioactive liquid waste having an acid concentration of about 1 to 5 mol / l. According to these reports, such a bidentate organic compound is dibutyldiethylcarbamoylmethylphosphonate (DBDECMP).
And dihexyl diethylcarbamoylmethylphosphonate (DHDECMP) and octyl (phenyl) -N, N-diisobutylcarbamoylmethylphosphine oxide (C
MPO) (EP Horwitz and WW Schulz, in Ne
w Separation Chemistry Techniques for Radioact
ive Waste and Other Special Applications (L.
Cecille et al, Eds) Elsevier, London, 1991, p.
21) or N, N-tetraalkylalkylpropanediamide (C. Musikas, in Solvent Extraction
(T. Sekine and S. Kusakabe, Eds) Elsevier, L
ondon, 1992, p297). A common property of these compounds is the binding of trivalent cations without changing the valency of the cations, resulting in a positively charged coordination compound. In an actual system, it is extracted in a form associated with ions of an acid such as nitric acid (negatively charged).

【0005】しかし、このような二座配位系有機化合物
を廃液に対する抽出剤あるいはクロマトグラフ吸着剤と
して用いても、三価金属イオンに対する分配比(または
分配係数)は十分には大きくなく、三価金属を効果的に
除去することはできない。特にアルファ廃棄物を非アル
ファ廃棄物にするのに要求されるような高い除染係数は
得られない。また、二座配位系有機化合物が廃液中の水
相に溶解し損失する量が多く、絶えず補充しなければな
らないことと、水相中に含まれてくる同化合物を除去処
理しなければならないという問題がある。
However, even if such a bidentate organic compound is used as an extractant or a chromatographic adsorbent for a waste liquid, the distribution ratio (or distribution coefficient) for trivalent metal ions is not sufficiently large, and the tridentate metal compound is not sufficiently large. Valent metals cannot be removed effectively. In particular, the high decontamination factor required for converting alpha waste to non-alpha waste cannot be obtained. In addition, the amount of bidentate organic compounds dissolved and lost in the water phase in the waste liquid is large and must be constantly replenished, and the compound contained in the water phase must be removed. There is a problem.

【0006】上記二座配位系有機化合物は親水性の陰イ
オンと結びついて作用するが、一方、疎水性の強い陰イ
オンの方が三価金属の抽出度を増大することが従来の研
究から予想されている。例えば、ジカルボリド陰イオン
によってEu3+ が抽出される(チェコスロバキア特許N
o.216101、発明者J.RaisおよびH.Petrzilova、現在
消滅)。この方法の長所は、陰イオンが廃液中の水相に
溶解し損失する量が少ないことである。
Although the above-mentioned bidentate organic compound acts in association with a hydrophilic anion, on the other hand, it has been shown from the conventional studies that a strongly hydrophobic anion increases the extraction degree of trivalent metal. Is expected. For example, Eu 3+ is extracted by the dicarbolide anion (Czechoslovak patent N
o.216101, inventors J Rais and H. Petrzilova, now extinct). The advantage of this method is that the amount of anion dissolved and lost in the aqueous phase in the waste liquid is small.

【0007】しかし、この方法の特徴は三価の金属の抽
出分配比が硝酸濃度の低い領域で増幅されることであ
り、例えば廃液を予め0.3〜0.5M HNO3 の範囲
まで脱硝しなければならない。従って、この方法で酸性
度の高い廃液から三価の金属を抽出することは困難であ
る。
However, the feature of this method is that the extraction distribution ratio of trivalent metal is amplified in the region where the concentration of nitric acid is low. For example, the waste liquid is denitrified in advance to a range of 0.3 to 0.5M HNO 3. There must be. Therefore, it is difficult to extract a trivalent metal from a highly acidic waste liquid by this method.

【0008】[0008]

【発明の目的】本発明の目的は、酸性の高レベル廃棄物
溶液中に含まれる超ウラン元素等の放射性同位元素の三
価イオンを高い分配比で分離する方法を提供することで
ある。
OBJECT OF THE INVENTION It is an object of the present invention to provide a method for separating trivalent ions of radioactive isotopes such as transuranium contained in an acidic high level waste solution with a high partition ratio.

【0009】[0009]

【発明の構成】本発明によれば、二座配位有機ホスホネ
ートと疎水性強酸陰イオンと有機溶媒との混合物を抽出
剤または吸着剤として酸性の高レベル廃棄物溶液と接触
させることによって、前記高レベル廃棄物溶液中に含ま
れる放射性同位元素の三価イオンを分離する方法が提供
される。
According to the present invention, a mixture of a bidentate organic phosphonate, a hydrophobic strong acid anion and an organic solvent is contacted with an acidic high level waste solution as an extractant or adsorbent, A method for separating trivalent ions of a radioisotope contained in a high level waste solution is provided.

【0010】すなわち発明者は鋭意研究した結果、上記
方法によれば二座配位有機ホスホネートと疎水性強酸陰
イオンが協同効果を発揮して、三価金属イオンに対する
分配比が著しく増大することを見いだした。
That is, as a result of earnest studies by the inventor, the above-mentioned method shows that the bidentate organic phosphonate and the hydrophobic strong acid anion exert a synergistic effect, and the distribution ratio to the trivalent metal ion is remarkably increased. I found it.

【0011】本発明における二座配位有機ホスホネート
は下記の一般式で表される◎。
The bidentate organic phosphonate in the present invention is represented by the following general formula.

【0012】 好ましい二座配位有機ホスホネートはジブチルジエチル
カルバモイルメチルホスホネートであり、下記の一般式
で表される◎。
[0012] A preferred bidentate organic phosphonate is dibutyldiethylcarbamoylmethylphosphonate, which is represented by the following general formula.

【0013】 [0013]

【0014】本発明における好ましい疎水性強酸陰イオ
ンは、ジカルボリド(H+[(C298Cl3)2C
o]-)、燐モリブデン酸(H3PO4・12MoO3・12H
2O)、およびケイタングステン酸(H4[SiO412
36])である。
The preferred strong hydrophobic acid anion according to the present invention is dicarbolide (H + [(C 2 B 9 H 8 Cl 3 ) 2C).
o] - ), phosphomolybdic acid (H 3 PO 4 · 12MoO 3 · 12H
2 O), and silicotungstic acid (H 4 [SiO 4 W 12 O
36 ]).

【0015】二座配位有機ホスホネートと疎水性強酸陰
イオンと有機溶媒との混合物を抽出剤として用いる場
合、例えば、この抽出剤溶液と酸性の高レベル廃棄物溶
液とを混合し、撹拌する。次いで、遠心分離法によって
両溶液を2相に分離させれば、廃棄物溶液中の三価金属
イオンが抽出剤溶液へ移行し、抽出分離される。
When a mixture of a bidentate organic phosphonate, a hydrophobic strong acid anion and an organic solvent is used as an extractant, for example, this extractant solution and an acidic high level waste solution are mixed and stirred. Next, if both solutions are separated into two phases by a centrifugal separation method, the trivalent metal ion in the waste solution is transferred to the extractant solution and is extracted and separated.

【0016】二座配位有機ホスホネートと疎水性強酸陰
イオンと有機溶媒との混合物を吸着剤として用いる場
合、例えば、混合物の有機溶液をスチレンジビニルベン
ゼン重合体(樹脂)に含浸させれば、この樹脂は三価金
属イオンに対する強力な吸着体となる。あるいは、二座
配位有機ホスホネートと燐モリブデン酸、ケイタングス
テン酸は沈殿を形成するので、この沈殿そのものを吸着
体として利用できる。
When a mixture of a bidentate organic phosphonate, a hydrophobic strong acid anion and an organic solvent is used as an adsorbent, for example, when an organic solution of the mixture is impregnated with a styrenedivinylbenzene polymer (resin), The resin becomes a strong adsorbent for trivalent metal ions. Alternatively, since the bidentate organic phosphonate, phosphomolybdic acid and silicotungstic acid form a precipitate, this precipitate itself can be used as an adsorbent.

【0017】高レベル廃棄物溶液中の抽出対象として重
要な放射性同位元素イオンは、主としてAm3+、Cm3+
のアクチニド特に超ウラン元素の三価イオンである。し
かし、これら超ウラン元素は放射性が強く、扱う上で危
険を伴う。Eu3+ 等のランタニドの三価イオンはアクチ
ニドの三価イオンと同様の抽出挙動もしくは吸着挙動を
示すことがわかっているので、ランタニドの三価イオン
について分配比を確認する実験を行えば、その結果をア
クチニドの三価イオンについても適用できる。
The radioactive isotope ions important as extraction targets in the high-level waste solution are mainly actinides such as Am 3+ and Cm 3+ , especially trivalent ions of transuranium elements. However, these transuranium elements are highly radioactive and are dangerous to handle. It is known that trivalent ions of lanthanide such as Eu 3+ show the same extraction behavior or adsorption behavior as the trivalent ion of actinide. Therefore, if an experiment for confirming the distribution ratio of the trivalent ion of lanthanide is performed, The results can be applied to the trivalent ion of actinide.

【0018】[0018]

【実施例】実施例 1 極微量のAm3+とEu3+を含有する3.2 mol/l(以下、
Mと表記する)硝酸溶液からAm3+とEu3+を抽出する実
験を行った。
EXAMPLES Example 1 3.2 mol / l (hereinafter, referred to as “the following, containing a very small amount of Am 3+ and Eu 3+”)
An experiment was conducted to extract Am 3+ and Eu 3+ from a nitric acid solution (denoted as M).

【0019】ニトロベンゼン60vol%+四塩化炭素4
0vol%溶液にジカルボリド(0.045M)とジブチル
ジエチルカルバモイルメチルホスホネート(以下、DB
DECMPと表記する。0.065M)を添加、混合
し、抽出溶媒とした。この抽出溶媒5mlと上記硝酸溶
液5mlを栓付ガラス容器に採取し、室温(23±1
℃)で約10分間撹拌した後、遠心分離機で2相に分離
した。各々の相から1mlを分取し、ポリエチレン製棒
状ビンに入れてγ線測定器を用いて各試料のγ線を測定
した。Am3+の濃度は241Am の60keV・γ線により、
またEu3+の濃度は155Eu の105keV・γ線によりそ
れぞれ求めた。その結果、平衡時の分配比はDAm3=3
9、DEu3=33であった。
Nitrobenzene 60 vol% + carbon tetrachloride 4
Dicarbollide (0.045M) and dibutyldiethylcarbamoylmethylphosphonate (hereinafter referred to as DB in 0vol% solution)
Notated as DECMP. 0.065M) was added and mixed to serve as an extraction solvent. 5 ml of this extraction solvent and 5 ml of the above nitric acid solution were collected in a glass container with a stopper and kept at room temperature (23 ± 1
After stirring for about 10 minutes at (° C.), the mixture was separated into two phases by a centrifuge. 1 ml was taken from each phase, placed in a polyethylene rod bottle, and the γ ray of each sample was measured using a γ ray measuring device. The concentration of Am 3+ is 241 Am of 60 keV γ-ray,
Further, the concentration of Eu 3+ was obtained by 105 keV · γ ray of 155 Eu. As a result, the distribution ratio at equilibrium is D Am3 = 3.
9, D Eu3 = 33.

【0020】比較として、ニトロベンゼン+四塩化炭素
+DBDECMP系の抽出溶媒を用いて同様の条件で実
験を行ったところ、DEu3=0.15であった。また、ニ
トロベンゼン+四塩化炭素+ジカルボリド系の抽出溶媒
を用いて同様の条件で実験を行ったところ、DEu3=0.
0006であった。
As a comparison, when an experiment was conducted under the same conditions using an extraction solvent of nitrobenzene + carbon tetrachloride + DBDECMP system, it was D Eu3 = 0.15. Further, when an experiment was conducted under the same conditions using an extraction solvent of nitrobenzene + carbon tetrachloride + dicarbollide system, D Eu3 = 0.
It was 0006.

【0021】同様に比較として、Cs+イオンについて同
様の実験を同様の条件で行ったところ、ニトロベンゼン
+四塩化炭素+ジカルボリド+DBDECMP系の抽出
溶媒を用いた場合DCs=0.05となり、ニトロベンゼ
ン+四塩化炭素+ジカルボリド系の抽出溶媒を用いた場
合DCs=6.5となり、従来方法である後者の方が抽出
効果が高かった。
Similarly, as a comparison, when a similar experiment was conducted for Cs + ions under the same conditions, D Cs = 0.05 was obtained when an extraction solvent of nitrobenzene + carbon tetrachloride + dicarbollide + DBDECMP was used, and nitrobenzene + When a carbon tetrachloride + dicarbollide type extraction solvent was used, D Cs = 6.5, and the latter, which is a conventional method, had a higher extraction effect.

【0022】実施例 2 極微量のEu3+を含有する3.2M 硝酸溶液からEu3+
抽出する実験を行った。
Example 2 An experiment was conducted to extract Eu 3+ from a 3.2M nitric acid solution containing a trace amount of Eu 3+ .

【0023】1,2-ジクロロエタン溶液にジカルボリド
(0.045M)とDBDECMP(0.065M)を添
加、混合し、抽出溶媒とした。この抽出溶媒を用い上記
硝酸溶液から実施例1と同様の方法、条件でEu3+を抽
出した。その結果、平衡時の分配比はDEu3=25であ
った。
Dicarbolide (0.045M) and DBDECMP (0.065M) were added to the 1,2-dichloroethane solution and mixed to obtain an extraction solvent. Eu 3+ was extracted from this nitric acid solution using this extraction solvent by the same method and conditions as in Example 1. As a result, the distribution ratio at equilibrium was D Eu3 = 25.

【0024】またクロロフォルム溶液にジカルボリド
(0.045M)とDBDECMP(0.065M)を添
加、混合して調製した抽出溶媒を用い、上記と同様にし
て硝酸溶液からEu3+を抽出した。その結果、平衡時の
分配比はDEu3=9.3であった。
Further, Eu 3+ was extracted from the nitric acid solution in the same manner as above using an extraction solvent prepared by adding dicarbolide (0.045M) and DBDECMP (0.065M) to the chloroform solution and mixing them. As a result, the distribution ratio at equilibrium was D Eu3 = 9.3.

【0025】実施例 3 極微量のEu3+を含有する3.2M 硝酸溶液からEu3+
抽出する実験を行った。
Example 3 An experiment was conducted to extract Eu 3+ from a 3.2M nitric acid solution containing a trace amount of Eu 3+ .

【0026】o-ニトロトルエン溶液にケイタングステ
ン酸(40g/l)とDBDECMP(0.1M)を添加、
混合し、抽出溶媒とした。この抽出溶媒を用い上記硝酸
溶液から実施例1と同様の方法、条件でEu3+を抽出し
た。その結果、平衡時の分配比はDEu3=90であっ
た。
To the o-nitrotoluene solution, silicotungstic acid (40 g / l) and DBDECMP (0.1 M) were added,
Mixed and used as an extraction solvent. Eu 3+ was extracted from this nitric acid solution using this extraction solvent by the same method and conditions as in Example 1. As a result, the distribution ratio at equilibrium was D Eu3 = 90.

【0027】次に、Eu3+を抽出した有機相からEu3+
逆抽出するため、この有機相と等容積の9M硝酸溶液と
を撹拌し平衡にさせた。その結果、平衡時の分配比はD
Eu3=2.8となり、逆抽出には不適当であった。そこで
同様の逆抽出操作を9M硝酸に代わって0.18M DT
PA Na塩−0.85M乳酸水溶液および1M炭酸ナト
リウム水溶液で行ったところ、前者のDEu3=0.07、
後者ではDEu3=0.005となり、逆抽出ができること
がわかった。
Next, in order to back-extracted Eu 3+ from the organic phase was extracted Eu 3+, it was a 9M nitric acid solution of the organic phase and equal volume to the stirred equilibrium. As a result, the distribution ratio at equilibrium is D
Eu3 = 2.8, which is not suitable for back extraction. Therefore, the same back extraction operation was performed using 0.18M DT instead of 9M nitric acid.
When PA Na salt-0.85 M lactic acid aqueous solution and 1 M sodium carbonate aqueous solution were used, the former D Eu3 = 0.07,
In the latter case, D Eu3 = 0.005, indicating that back extraction is possible.

【0028】実施例 4 等モルの燐モリブデン酸とDBDECMPを1M硝酸溶
液に添加し、撹拌混合することにより沈殿を生成させ、
その沈澱を洗浄し、乾燥させた。これを吸着体として、
バッチ法によりこの吸着体に対するEu3+の吸着分配係
数を測定した。0.1M、4M、8M硝酸系における結
果は、それぞれ1960、270、220であった。
Example 4 Equimolar phosphomolybdic acid and DBDECMP were added to a 1M nitric acid solution and mixed by stirring to form a precipitate,
The precipitate was washed and dried. As an adsorbent,
The adsorption partition coefficient of Eu 3+ for this adsorbent was measured by the batch method. The results in the 0.1M, 4M and 8M nitric acid systems were 1960, 270 and 220, respectively.

【0029】[0029]

【発明の効果】以上説明した通り、本発明の方法によれ
ば、分子内にC=OおよびP=O官能基を有する二座配
位有機ホスホネートと疎水性強酸陰イオンが協同効果を
発揮して、酸性の高レベル廃棄物溶液中の三価金属イオ
ンに対する分配比が著しく増大する。従って二座配位有
機ホスホネートと疎水性強酸陰イオンと有機溶媒との混
合物を用い、溶媒抽出法、抽出クロマトグラフ法、吸着
法等の手法により、廃液から超ウラン元素を選択的に高
分配比で分離することができる。これにより、廃棄物処
理・処分の経費削減と回収元素の再利用(群分離法では
消滅処理)に資するところが大きい。
As described above, according to the method of the present invention, the bidentate organic phosphonate having C = O and P = O functional groups in the molecule and the hydrophobic strong acid anion exert a synergistic effect. Thus, the distribution ratio for trivalent metal ions in the acidic high level waste solution is significantly increased. Therefore, by using a mixture of a bidentate organic phosphonate, a hydrophobic strong acid anion and an organic solvent, a solvent extraction method, an extraction chromatographic method, an adsorption method, or the like is used to selectively select a transuranium element from a waste liquid with a high partition ratio. Can be separated with. This greatly contributes to cost reduction of waste treatment / disposal and reuse of recovered elements (disappearance treatment by group separation method).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07F 9/40 D 9155−4H 11/00 B 9155−4H C 9155−4H 15/06 9155−4H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C07F 9/40 D 9155-4H 11/00 B 9155-4H C 9155-4H 15/06 9155-4H

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 二座配位有機ホスホネートと疎水性強酸
陰イオンと有機溶媒との混合物を抽出剤または吸着剤と
して酸性の高レベル廃棄物溶液と接触させることによっ
て、前記高レベル廃棄物溶液中に含まれる放射性同位元
素の三価イオンを分離する方法。
1. A solution of a bidentate organic phosphonate, a hydrophobic strong acid anion, and an organic solvent is contacted with an acidic high-level waste solution as an extractant or an adsorbent to obtain a high-level waste solution in the high-level waste solution. Method for separating trivalent ions of radioisotopes contained in.
【請求項2】 前記二座配位有機ホスホネートはジブチ
ルジエチルカルバモイルメチルホスホネートである、請
求項1に記載の方法。
2. The method of claim 1, wherein the bidentate organic phosphonate is dibutyldiethylcarbamoylmethylphosphonate.
【請求項3】 前記疎水性強酸陰イオンは、ジカルボリ
ド、燐モリブデン酸、およびケイタングステン酸のうち
のいずれか1種である、請求項1または2に記載の方
法。
3. The method according to claim 1, wherein the hydrophobic strong acid anion is any one of dicarbolide, phosphomolybdic acid, and silicotungstic acid.
【請求項4】 前記放射性同位元素はランタニドおよび
/またはアクチニドである、請求項1から3のいずれか
に記載の方法。
4. The method according to claim 1, wherein the radioisotope is a lanthanide and / or an actinide.
JP6111039A 1994-05-25 1994-05-25 Method for separating radioactive isotope from high level wastes Pending JPH07318691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6111039A JPH07318691A (en) 1994-05-25 1994-05-25 Method for separating radioactive isotope from high level wastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6111039A JPH07318691A (en) 1994-05-25 1994-05-25 Method for separating radioactive isotope from high level wastes

Publications (1)

Publication Number Publication Date
JPH07318691A true JPH07318691A (en) 1995-12-08

Family

ID=14550864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6111039A Pending JPH07318691A (en) 1994-05-25 1994-05-25 Method for separating radioactive isotope from high level wastes

Country Status (1)

Country Link
JP (1) JPH07318691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123373A (en) * 2017-01-31 2018-08-09 国立研究開発法人日本原子力研究開発機構 Selective separation method of metal element and separation unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123373A (en) * 2017-01-31 2018-08-09 国立研究開発法人日本原子力研究開発機構 Selective separation method of metal element and separation unit

Similar Documents

Publication Publication Date Title
Vajda et al. Determination of transuranium isotopes (Pu, Np, Am) by radiometric techniques: a review of analytical methodology
Vajda et al. Determination of 241 Am isotope: a review of analytical methodology
Vajda et al. Determination of radiostrontium isotopes: a review of analytical methodology
Choppin et al. Actinide separation science
US5368736A (en) Process for the separation and purification of yttrium-90 for medical applications
Law et al. Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste
JP2977744B2 (en) Separation method of trivalent actinides and rare earth elements
RU2560603C2 (en) Increasing separation factor between americium and curium and/or lanthanides in liquid-liquid extraction process using diglycolamide and another extractant
EP0830190B1 (en) Method for the chromatographic separation of cations from aqueous samples
Blasius et al. The Removal of Cesium from Medium-Active Waste Solutions: I. Evaluation of Crown Ethers and Special Crown-Ether Adducts in the Solvent Extraction of Cesium
Vajda et al. Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology
Liljenzin et al. The CTH-Process for HLLW Treatment: Part I. General Description and Process Design
RU2180868C2 (en) Method of extraction separation of cesium, strontium, technetium, rare-earth and actinide elements from liquid radioactive residues
US6258333B1 (en) Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent
JPH0470370B2 (en)
US8507284B2 (en) Method and apparatus for extraction of strontium from urine
Hasan et al. Tri-iso-amyl phosphate (TAP): an alternative extractant to tri-butyl phosphate (TBP) for reactor fuel reprocessing
US20110277592A1 (en) Separation method for carrier-free radiolanthanides
Andris et al. The development of 126Sn separation procedure by means of TBP resin
Horwitz et al. Liquid extraction, the TRUEX process—experimental studies
JPH07318691A (en) Method for separating radioactive isotope from high level wastes
Persson et al. The CTH-process for HLLW treatment: Part II–hot test
Van Hecke et al. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study
Myasoedov et al. Protactinium
Rychkov et al. Radiochemical characterization and decontamination of rare-earth-element concentrate recovered from uranium leach liquors