JPH07100371A - Adsorbent for removing rare earth element and adsorption separation method using the same - Google Patents

Adsorbent for removing rare earth element and adsorption separation method using the same

Info

Publication number
JPH07100371A
JPH07100371A JP24722493A JP24722493A JPH07100371A JP H07100371 A JPH07100371 A JP H07100371A JP 24722493 A JP24722493 A JP 24722493A JP 24722493 A JP24722493 A JP 24722493A JP H07100371 A JPH07100371 A JP H07100371A
Authority
JP
Japan
Prior art keywords
adsorbent
rare earth
extractant
cmpo
cmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24722493A
Other languages
Japanese (ja)
Other versions
JP3322952B2 (en
Inventor
Shiro Matsumoto
史朗 松本
Kenji Takeshita
健二 竹下
Yoshihiro Endo
芳浩 遠藤
Chisato Takahashi
千里 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANGYO SOUZOU KENKYUSHO
SANGYO SOZO KENKYUSHO
IHI Corp
Original Assignee
SANGYO SOUZOU KENKYUSHO
SANGYO SOZO KENKYUSHO
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANGYO SOUZOU KENKYUSHO, SANGYO SOZO KENKYUSHO, IHI Corp filed Critical SANGYO SOUZOU KENKYUSHO
Priority to JP24722493A priority Critical patent/JP3322952B2/en
Publication of JPH07100371A publication Critical patent/JPH07100371A/en
Application granted granted Critical
Publication of JP3322952B2 publication Critical patent/JP3322952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain an adsorbent for rate earth elements using carbamylmethylenephosphoric acid as an extracting agent and having superior adsorbing performance at ordinary temp., especially an adsorbent effective in removing rare earth elements such as transuranium elements from radioactive waste liquor and to provide an adsorption separation method using the adsorbent. CONSTITUTION:A mixture of carbamylmethylenephosphoric acid with carbamylmethylenephosphoric ester is impregnated into a porous carrier to obtain the objective adsorbent and the objective method for adsorbing and separating rare earth elements with the adsorbent is provided. Since the extracting agent impregnated into the adsorbent has low viscosity even at ordinary temp. and has superior extracting ability to rare earth elements, the rate of adsorption of rare earth elements is high and the elements can selectively and efficiently be adsorbed and separated. Since the adsorbed rare earth elements are easily desorbed, the adsorbent can be used in plural treating processes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類元素の吸着剤、
特に放射性廃棄物再処理工場等で発生する放射性廃液中
から、超ウラン元素等の希土類元素を除去する際に有効
な吸着剤及びそれを用いた吸着分離法に関する。
The present invention relates to a rare earth element adsorbent,
In particular, the present invention relates to an adsorbent that is effective in removing rare earth elements such as transuranium elements from radioactive waste liquid generated in a radioactive waste reprocessing plant, and an adsorption separation method using the same.

【0002】[0002]

【従来の技術】我が国においては、使用済み核燃料に対
しては、再処理によりU、Puを回収し、残りの放射性
廃液をガラス固化する方法が採択されている。この放射
性廃液中には、Cs、Sr、Ruなどの核分裂生成物の
他に、微量のNp、Am、Cmなどの超ウラン元素(T
RUと略記)が含まれている。これらTRUの中には、
例えば243Amや245Cmのように、半減期が5000年
以上にも及ぶα放射体があり、放射性廃液中に含まれる
TRUを分離し、これを効果的に貯蔵管理または適切に
処分することが必要とされている。
2. Description of the Related Art In Japan, a method has been adopted for recovering spent nuclear fuel by reprocessing U and Pu and vitrifying the remaining radioactive waste liquid. In this radioactive liquid waste, in addition to fission products such as Cs, Sr, and Ru, a trace amount of transuranium elements (T, such as Tp, Am, and Cm (T
RU). Among these TRUs are:
There are α-emitters, such as 243 Am and 245 Cm, that have a half-life of 5000 years or more. Therefore, it is possible to separate TRU contained in radioactive waste liquid and effectively store and manage or appropriately dispose of it. is required.

【0003】従来から放射性廃液からのTRUの除去プ
ロセスの開発が行われており、硝酸水溶液中のランタノ
イド元素や、TRUを含むアクチノイド元素等の希土類
元素を効率的に捕捉可能な二座配位有機燐酸抽出剤、特
にカルバミルメチレン燐酸エステル(CMPと略記)や
カルバミルメチレン燐酸(CMPOと略記)等を利用し
た溶媒抽出プロセスが有効であることが知られている。
ところが、このプロセスは液/液接触による溶媒抽出法
であるために、装置が非常に大規模となるばかりでな
く、多量の二次廃液が発生するという問題があった。
A process for removing TRU from radioactive waste liquid has been developed so far, and a bidentate organic compound capable of efficiently trapping a lanthanoid element in a nitric acid aqueous solution and a rare earth element such as an actinide element containing TRU. It is known that a solvent extraction process using a phosphoric acid extractant, particularly carbamylmethylene phosphoric acid ester (abbreviated as CMP), carbamylmethylene phosphoric acid (abbreviated as CMPO), is effective.
However, since this process is a solvent extraction method by liquid / liquid contact, not only the apparatus becomes very large-scaled, but also a large amount of secondary waste liquid is generated.

【0004】このような問題に対処する目的で、CMP
やCMPO等の抽出剤を高分子担体中に含浸させた吸着
剤を用いたプロセスの開発が進められている。本発明者
らは、例えば低架橋度スチレン−ジビニルベンゼン共重
合体等の、膨潤性で、特定の細孔径及び細孔容積を有す
る多孔質高分子担体中に、ジヘキシルジエチルカルバミ
ルメチレン燐酸エステル(DHDECMPと略記)等の
CMPを含浸させた超ウラン元素除去用吸着剤を既に特
許出願している(特開平3−225299号公報及び特
開平3−264899号)。この吸着剤を用いることに
より、放射性廃液からTRUを効率よく吸着分離するこ
とができる。
In order to deal with such a problem, CMP
Development of a process using an adsorbent obtained by impregnating a polymer carrier with an extractant such as CMPO or CMPO is in progress. The present inventors have found that dihexyl diethylcarbamyl methylene phosphate ester (in a swellable porous polymer carrier having a specific pore diameter and pore volume, such as a low-crosslinking degree styrene-divinylbenzene copolymer). Patent applications have already been filed for adsorbents for removing transuranic elements impregnated with CMP (abbreviated as DHDECMP) (JP-A-3-225299 and JP-A-3-264899). By using this adsorbent, TRU can be efficiently adsorbed and separated from the radioactive waste liquid.

【0005】一方、CMPOは、TRUを含む希土類元
素に対する吸着容量が大きいことが知られており、この
CMPOを上記多孔質高分子担体等に含浸させることに
より、さらに優れた吸着性能を有する吸着剤が得られる
ことが期待されていた。しかし、このCMPOは融点が
高く、例えば融点を越える温度で多孔質担体へ含浸させ
たとしても、その吸着剤をカラムに充填し、例えば30
℃程度でカラム法により吸着分離させた場合、CMPO
が高粘度であることから、吸着除去すべき希土類元素の
CMPO中での移動速度が遅く、高い吸着速度が得られ
ないという問題があった。
On the other hand, CMPO is known to have a large adsorption capacity for rare earth elements including TRU. By impregnating the CMPO with the above-mentioned porous polymer carrier or the like, an adsorbent having a further excellent adsorption performance is obtained. Was expected to be obtained. However, this CMPO has a high melting point. For example, even if the porous carrier is impregnated at a temperature exceeding the melting point, the adsorbent is packed in a column, for example, 30
When adsorption separation is performed by the column method at about ℃, CMPO
Has a high viscosity, there is a problem that the moving speed of the rare earth element to be adsorbed and removed in the CMPO is slow and a high adsorption speed cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明におけ
る課題は、CMPOを抽出剤として用いた吸着剤であっ
て、常温でも吸着速度の速い、高性能の吸着剤を提供す
ることにある。本明細書において、抽出剤とは、希土類
元素を選択的に捕捉する能力をもつ物質を指称し、吸着
剤とは、その抽出剤を例えば多孔質担体等に固定した固
体抽出剤を意味するものとする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an adsorbent which uses CMPO as an extractant and has a high adsorption rate even at room temperature. In the present specification, the extractant refers to a substance having the ability to selectively capture rare earth elements, and the adsorbent means a solid extractant in which the extractant is immobilized on, for example, a porous carrier. And

【0007】[0007]

【課題を解決するための手段】かかる課題は、CMPO
とCMPとの混合物を、多孔質担体中に含浸させたこと
を特徴とする希土類元素除去用吸着剤によって解決でき
る。以下に、本発明の希土類元素用吸着剤について詳細
に説明する。本発明の希土類元素用吸着剤(以後、吸着
剤と略記する)は、CMPOとCMPの混合物からなる
抽出剤を、多孔質担体に含浸させて形成されている。
[Means for Solving the Problems]
This can be solved by a rare earth element removing adsorbent characterized by impregnating a mixture of CMP with CMP in a porous carrier. The adsorbent for rare earth elements of the present invention will be described in detail below. The rare earth element adsorbent of the present invention (hereinafter abbreviated as an adsorbent) is formed by impregnating a porous carrier with an extractant composed of a mixture of CMPO and CMP.

【0008】ここで、CMPO及びCMPとは、3価の
希土類元素に優れた抽出性能を有する二座配位有機リン
化合物であるカルバミルメチレン燐酸とその誘導体、及
びカルバミルメチレン燐酸エステルとその誘導体を各々
意味している。CMPOとしては、オクチル(フェニ
ル)−N,N−ジイソブチルカルバミルメチレン燐酸
(oφD(iB)CMPOと略記)、ジヘキシル−N,
N−ジエチルカルバミルメチレン燐酸(DHDECMP
Oと略記)等が好ましく、CMPとしては、ジヘキシル
−N,N−ジエチルカルバミルメチレン燐酸エステル
(DHDECMPと略記)等が好ましい。
Here, CMPO and CMP are carbamylmethylene phosphoric acid and its derivative which are bidentate organophosphorus compounds having excellent extraction performance for trivalent rare earth elements, and carbamylmethylene phosphoric acid ester and its derivative. Means each. Examples of CMPO include octyl (phenyl) -N, N-diisobutylcarbamyl methylene phosphoric acid (abbreviated as oφD (iB) CMPO), dihexyl-N,
N-diethylcarbamyl methylene phosphoric acid (DHDECMP
And the like, and as CMP, dihexyl-N, N-diethylcarbamylmethylene phosphate (abbreviated as DHDECMP) and the like are preferable.

【0009】例えば、CMPOとしてoφD(iB)C
MPOを用い、CMPとしてDHDECMPOを用いた
場合、CMPOの融点は45℃であるので、常温では固
体であり、50℃においてもその粘度は104cpであ
る。それに対して、CMPは、常温(25℃)における
粘度が25cpと低粘度である。本発明の吸着剤にあっ
ては、このCMPOとCMPとを、その混合物が常温で
流動性を有するような割合で混合したものを抽出剤とし
て用いる。その混合割合は、特に限られるものではない
が、CMPOをおよそ10%〜90%程度含むのが好ま
しい。CMPOが90%以上であると抽出剤の低粘度化
が達成されず、10%以下であるとCMPOの優れた抽
出性能が発現しなくなる。
For example, as CMPO, oφD (iB) C
When MPO is used and DHDECMPO is used as CMP, the melting point of CMPO is 45 ° C., so that it is solid at room temperature and its viscosity is 10 4 cp even at 50 ° C. On the other hand, CMP has a low viscosity of 25 cp at room temperature (25 ° C.). In the adsorbent of the present invention, a mixture of CMPO and CMP at a ratio such that the mixture has fluidity at room temperature is used as an extractant. The mixing ratio is not particularly limited, but it is preferable that CMPO is contained at about 10% to 90%. When CMPO is 90% or more, the viscosity of the extractant cannot be lowered, and when it is 10% or less, excellent extraction performance of CMPO cannot be exhibited.

【0010】また、本発明で使用されるCMPは、上記
DHDECMPOに限定されるものではなく、他のCM
P誘導体も好適に用いられる。さらに、CMPの代わり
に、常温で液体であり、CMPOを希釈して低粘度化で
きる物質を用いてもよい。そのような物質としては、T
RU等の希土類元素を捕捉する能力があり、CMPOと
共同して希土類金属の抽出効果を高めるものが好まし
い。そのような物質としては、例えば、CMP異性体の
他、トリブチルホスフェート(TBP)、トリアクリル
ホスフィンオキシド(TOPO)、トリ−n−オクチル
アンモニウムニトレート(TOAHNOS)、ビス
(2,6−ジメチル−4−ヘプチル)ホスホリックアシ
ッド(HD(DIBM)P)、ジ−2−エチルヘキシル
ジチオイックアシッド(D2EHDTP)、ジブチル−
N,N−ジエチルカルバミルホスホネート(DBDEC
P)、メチレンビスジヘキシルホスフィンオキシド(M
HDPO)などが挙げられる。
The CMP used in the present invention is not limited to the above-mentioned DHDECMPO, but other CMs.
P derivatives are also preferably used. Further, instead of CMP, a substance that is liquid at room temperature and that can dilute CMPO to reduce its viscosity may be used. As such a substance, T
Those having an ability to capture a rare earth element such as RU and enhancing the extraction effect of a rare earth metal in cooperation with CMPO are preferable. Examples of such substances include, in addition to CMP isomers, tributyl phosphate (TBP), triacrylphosphine oxide (TOPO), tri-n-octyl ammonium nitrate (TOAHNOS), bis (2,6-dimethyl-4). -Heptyl) phosphoric acid (HD (DIBM) P), di-2-ethylhexyl dithioic acid (D2EHDTP), dibutyl-
N, N-diethylcarbamylphosphonate (DBDEC
P), methylenebisdihexylphosphine oxide (M
HDPO) and the like.

【0011】このようなCMPOとCMPの混合物から
なる抽出剤を含浸させる多孔質担体としては、多孔質高
分子担体等が好適に用いられる。この多孔質高分子担体
は、疎水性、親水性いずれの性質を有する高分子樹脂か
らなってもよいが、例えば、その細孔径や粒子径の調整
が容易な低架橋度のスチレン−ジビニルベンゼン共重合
体(SDBと略記)やアクリル酸エステル樹脂等が好ま
しい。この多孔質高分子担体の形状は特に限定されるも
のではないが、カラムへの充填効率を考慮すると粒状が
好ましい。特に粒子径が小さいほど、被処理液との接触
面積が増大し、短時間でTRU等の希土類元素を吸着分
離することができるので好ましい。
A porous polymer carrier or the like is preferably used as the porous carrier to be impregnated with the extractant composed of such a mixture of CMPO and CMP. The porous polymer carrier may be composed of a polymer resin having either hydrophobic or hydrophilic property. For example, a styrene-divinylbenzene copolymer having a low degree of cross-linking, whose pore size and particle size are easily adjusted, is used. Polymers (abbreviated as SDB), acrylic ester resins, and the like are preferable. The shape of the porous polymer carrier is not particularly limited, but a granular shape is preferable in consideration of the packing efficiency in the column. In particular, the smaller the particle size, the larger the contact area with the liquid to be treated, and the more preferable it is because the rare earth element such as TRU can be adsorbed and separated in a short time.

【0012】多孔質高分子担体は、抽出剤を多量かつ均
一に含浸可能なように、低架橋度であり適宜の細孔径と
細孔容積とを有するものが好ましい。例えばSDB粒子
を使用した場合には、架橋度を3%〜30%、平均細孔
径を700オングストローム〜3000オングストロー
ム、平均細孔容積を0.7ml/g〜2.2ml/g程
度とすることが好ましい。架橋度が3%未満であるとS
DB粒子の強度が低下し、架橋度が30%より大きいと
膨潤性が低下するために抽出剤を均一に含浸しにくくな
る。また、平均細孔径が3000オングストローム以上
であるとSDB粒子中の細孔容積が大きくなりすぎるた
めに強度が低下し、700オングストローム未満である
と抽出剤の含浸量が低下してしまう。さらに、平均細孔
容積が2.2ml/g以上であると強度が低下し、0.
7ml/g未満であると、抽出剤が含浸されて吸着剤粒
子が膨潤した際に、被処理液の通路となる空隙が存在し
なくなるので、吸着速度が低下する。
[0012] The porous polymer carrier is preferably one having a low degree of cross-linking and an appropriate pore diameter and pore volume so that the extractant can be impregnated in a large amount and uniformly. For example, when SDB particles are used, the degree of crosslinking is 3% to 30%, the average pore diameter is 700 angstroms to 3000 angstroms, and the average pore volume is 0.7 ml / g to 2.2 ml / g. preferable. If the degree of crosslinking is less than 3%, S
If the strength of the DB particles decreases and the degree of crosslinking exceeds 30%, the swelling property decreases, and it becomes difficult to uniformly impregnate the extractant. On the other hand, if the average pore diameter is 3000 angstroms or more, the pore volume in the SDB particles becomes too large and the strength decreases, and if it is less than 700 angstroms, the impregnated amount of the extractant decreases. Further, when the average pore volume is 2.2 ml / g or more, the strength is lowered and
When it is less than 7 ml / g, when the extractant is impregnated and the adsorbent particles are swollen, there are no voids that serve as passages for the liquid to be treated, and the adsorption rate is reduced.

【0013】上述したような、本発明の吸着剤を製造す
るには、まず適宜の架橋度、粒子径、細孔径及び細孔容
積を有する高分子樹脂からなる多孔質高分子担体を、例
えば懸濁重合法等により製造する。この多孔質高分子担
体の製造方法は、懸濁重合法以外にも、多孔質高分子粒
子を作製するのに従来から使用されている方法が用いら
れ、特に限定されるものではない。例えば、多孔質高分
子担体が粒状のものである場合には、特開昭61−25
2202号公報、あるいは、特開平3−225299及
び特開平3−264899公報に記載されたような、二
重ノズル振動法等が好適に使用される。
In order to produce the adsorbent of the present invention as described above, first, a porous polymer carrier made of a polymer resin having an appropriate degree of crosslinking, particle size, pore size and pore volume is suspended, for example. It is produced by the turbid polymerization method or the like. As the method for producing the porous polymer carrier, a method conventionally used for producing porous polymer particles is used in addition to the suspension polymerization method, and the method is not particularly limited. For example, when the porous polymer carrier is granular, it is disclosed in JP-A-61-25.
The double nozzle vibration method and the like as described in JP-A-2202, JP-A-3-225299 and JP-A-3-264899 are preferably used.

【0014】次いで、その多孔質高分子担体を前記抽出
剤中に浸漬し、抽出剤を多孔質高分子担体中に含浸させ
る。含浸条件は、多孔質高分子担体の種類、物性及び抽
出剤の種類等によって適宜選択される。例えば、多孔質
高分子担体としてSDB粒子を用い、抽出剤としてoφ
D(iB)CMPOとDHDECMPとの1:1混合物
を用いた場合には、SDB粒子をその抽出剤中に浸漬し
て、70℃で24時間程度攪拌した後、SDB粒子を濾
別し、数回水洗してSDB粒子の細孔内の余剰の抽出剤
を除去する。そして、例えば真空乾燥炉内において60
℃で3時間程度乾燥させることにより、本発明の吸着剤
を得る。
Next, the porous polymer carrier is immersed in the above-mentioned extractant to impregnate the porous polymer carrier with the extractant. The impregnation conditions are appropriately selected depending on the type of porous polymer carrier, the physical properties, the type of extractant, and the like. For example, SDB particles are used as the porous polymer carrier and oφ is used as the extraction agent.
When a 1: 1 mixture of D (iB) CMPO and DHDECMP was used, the SDB particles were immersed in the extractant and stirred at 70 ° C. for about 24 hours, then the SDB particles were filtered off and The excess extractant in the pores of the SDB particles is removed by washing with water twice. Then, for example, in a vacuum drying furnace, 60
The adsorbent of the present invention is obtained by drying at 0 ° C. for about 3 hours.

【0015】次に、この吸着剤を用いた希土類元素の吸
着分離法について説明する。図5は、本発明の吸着分離
法の一実施例を示す図であり、図中1は本発明の吸着剤
である。まず、その吸着剤1を、カラムクロマトグラフ
ィー用のカラム2に充填する。次に、カラム2のコック
3を閉鎖した状態で、希土類元素を含む被処理液10を
カラム入口4から流入する。すると、吸着剤1と接触し
た被処理液10中から、希土類元素が抽出剤によって抽
出され捕捉される。次に、前記コック3を開放すると、
カラム出口5からは、TRU等の希土類金属が吸着分離
された被処理液が流出する。例えば、この被処理液10
がTRUを含む放射性廃液である場合、上記本発明の吸
着分離法によってTRUは除去され、TRUが吸着され
た吸着剤は、乾留等によって減容し、所定の方法に従っ
て処分される。
Next, the adsorption separation method for rare earth elements using this adsorbent will be described. FIG. 5 is a diagram showing an embodiment of the adsorption separation method of the present invention, in which 1 is the adsorbent of the present invention. First, the adsorbent 1 is packed in a column 2 for column chromatography. Next, with the cock 3 of the column 2 closed, the liquid to be treated 10 containing a rare earth element is flown in from the column inlet 4. Then, the rare earth element is extracted and captured by the extractant from the liquid to be treated 10 that is in contact with the adsorbent 1. Next, when the cock 3 is opened,
From the column outlet 5, the liquid to be treated in which the rare earth metal such as TRU is adsorbed and separated flows out. For example, the liquid to be treated 10
Is a radioactive waste liquid containing TRU, TRU is removed by the adsorptive separation method of the present invention, and the adsorbent on which TRU is adsorbed is reduced in volume by dry distillation or the like and disposed of according to a predetermined method.

【0016】また、本発明にあっては、1回の吸着分離
操作が終了し、TRU等の希土類元素が吸着された吸着
剤が充填されているカラムに、蒸留水を流すことによ
り、吸着剤に吸着された希土類元素を脱着し、蒸留水と
共に流出させるのが好ましい。例えば、カラム容量の約
30倍量の蒸留水を、30℃で流すことにより、吸着剤
に吸着していた希土類元素をほぼ完全に脱着することが
できる。本発明の吸着剤にあっては、そのような脱着操
作を経ても、多孔質高分子担体中に含浸された抽出剤は
殆ど失われることがないので、その吸着剤を用いて2回
目の吸着分離操作を行っても、吸着分離性能の低下はみ
られない。従って、吸着分離及び脱着の操作を複数回繰
り返した後、本発明の吸着剤を上記したように乾留等に
よって減容し処理するのが好ましい。
Further, in the present invention, one adsorption / separation operation is completed, and distilled water is caused to flow through a column filled with an adsorbent in which a rare earth element such as TRU is adsorbed, thereby adsorbing the adsorbent. It is preferable to desorb the rare earth element adsorbed on the column and let it flow out together with distilled water. For example, by flowing distilled water in an amount of about 30 times the column volume at 30 ° C., the rare earth element adsorbed on the adsorbent can be almost completely desorbed. In the adsorbent of the present invention, the extractant impregnated in the porous polymer carrier is hardly lost even after such desorption operation, and therefore the adsorbent is used for the second adsorption. Even if the separation operation is performed, the adsorption separation performance is not deteriorated. Therefore, it is preferable to repeat the operations of adsorption separation and desorption a plurality of times and then reduce the volume of the adsorbent of the present invention by dry distillation or the like as described above.

【0017】上記説明では、カラムクロマトグラフィー
法を用いた吸着分離法について述べたが、本発明の希土
類元素の吸着分離法は、それに限られるものではなく、
本発明の吸着剤と、希土類元素を含む被処理液とが、固
/液接触することが可能な手段であれば如何なる方法を
用いてもよい。なお本発明の吸着剤は、多孔質高分子担
体中に抽出剤を含浸させたものであるから、TRUのみ
ならず抽出剤と配位可能な希土類元素、例えばランタノ
イド元素及びアクチノイド元素等の分離に利用すること
ができるのは言うまでもない。
In the above description, the adsorption separation method using the column chromatography method has been described, but the adsorption separation method of the rare earth element of the present invention is not limited thereto.
Any method may be used as long as the adsorbent of the present invention and the liquid to be treated containing the rare earth element can be brought into solid / liquid contact. Since the adsorbent of the present invention is obtained by impregnating an extracting agent in a porous polymer carrier, it can be used for separating not only TRU but also rare earth elements that can coordinate with the extracting agent, such as lanthanoid element and actinoid element. Needless to say, it can be used.

【0018】以上述べたように、本発明の吸着剤は、C
MPOとCMPとの混合物を抽出剤としているため、そ
の抽出剤は常温付近でも低粘度であり、TRU等の希土
類元素に対して優れた抽出能を持つ。従って、その抽出
剤を多孔質担体に含浸させてなる本発明の吸着剤は、希
土類元素の吸着速度が速く、例えばTRUを含む放射性
廃液から、TRUを効率よく吸着分離することができ
る。また、本発明の吸着剤は、例えば蒸留水を流すだけ
で吸着した希土類元素を脱着することができ、しかも、
その脱着処理によっても抽出剤が失われ難いため、複数
回の処理に使用することができる。
As described above, the adsorbent of the present invention contains C
Since the mixture of MPO and CMP is used as the extractant, the extractant has a low viscosity even at around room temperature and has an excellent extractability for rare earth elements such as TRU. Therefore, the adsorbent of the present invention obtained by impregnating the extractant into a porous carrier has a high adsorption rate of rare earth elements and can efficiently adsorb and separate TRU from a radioactive waste liquid containing TRU, for example. Further, the adsorbent of the present invention can desorb the adsorbed rare earth element simply by flowing distilled water, and
Since the extractant is not easily lost even by the desorption treatment, it can be used for a plurality of treatments.

【0019】以下に、実施例により本発明をさらに詳細
に説明する。 (実施例1)CMPOとしてoφD(iB)CMPOを
用い、CMPとしてDHDECMPOを用いて、それら
を重量比1:1の割合で混合したものを抽出剤とした。
その抽出剤は、常温で液体であった。次に、多孔質高分
子担体として、SDB粒子を懸濁重合法により作製し
た。その多孔質高分子担体の架橋度は5%であり、粒径
は100〜200μm、平均細孔容積は1.5ml/g
であった。このSDB粒子を上記抽出剤中に浸漬し、7
0℃で24時間攪拌して抽出剤をSDB粒子中に含浸さ
せた。この抽出剤を含浸させたSDB粒子を濾別した
後、70℃の温水で数回洗浄して余剰の抽出剤を除去
し、真空乾燥炉内で60℃、3時間乾燥させて本実施例
の吸着剤を得た。得られた吸着剤中の抽出剤含有量は、
SDB粒子1gにつき1.9〜2.0gであった。
The present invention will be described in more detail below with reference to examples. (Example 1) oφD (iB) CMPO was used as CMPO, DHDECMPO was used as CMP, and these were mixed at a weight ratio of 1: 1 to obtain an extractant.
The extractant was liquid at room temperature. Next, SDB particles were prepared by a suspension polymerization method as a porous polymer carrier. The degree of crosslinking of the porous polymer carrier is 5%, the particle size is 100 to 200 μm, and the average pore volume is 1.5 ml / g.
Met. The SDB particles are dipped in the above extractant,
The extractant was impregnated into the SDB particles by stirring at 0 ° C. for 24 hours. After the SDB particles impregnated with this extractant were filtered off, the excess extractant was removed by washing several times with hot water at 70 ° C. and dried in a vacuum drying oven at 60 ° C. for 3 hours to obtain the product of this example. An adsorbent was obtained. The content of the extractant in the obtained adsorbent is
It was 1.9 to 2.0 g per 1 g of SDB particles.

【0020】(実施例2)実施例1で作製した吸着剤
を、図5に示すような、内径15mm、長さ1mの円筒
状のカラムクロマトグラフィー用カラムに充填した。吸
着分離すべき希土類元素としてセリウムを用いた。即
ち、Ce(NO33を240ppmの濃度で含む1mo
l/lのAl(NO33水溶液を被処理液とした。上記
のカラムに、30℃で被処理液を流入して、被処理液中
のセリウムを吸着分離させた。カラム出口から流出した
液中のセリウム濃度を発光分析により測定した。図1は
破過曲線と呼ばれ、流した被処理液の液量に対して、流
出液中のセリウム濃度をプロットしたものである。本実
施例で得られた破過曲線を図1(a)に示す。
Example 2 The adsorbent prepared in Example 1 was packed in a cylindrical column chromatography column having an inner diameter of 15 mm and a length of 1 m as shown in FIG. Cerium was used as the rare earth element to be adsorbed and separated. That is, 1 mo containing Ce (NO 3 ) 3 at a concentration of 240 ppm
A 1 / l Al (NO 3 ) 3 aqueous solution was used as the liquid to be treated. The liquid to be treated was flown into the above column at 30 ° C. to adsorb and separate cerium in the liquid to be treated. The cerium concentration in the liquid flowing out from the column outlet was measured by optical emission analysis. FIG. 1 is called a breakthrough curve, and is a plot of the cerium concentration in the effluent with respect to the flow rate of the liquid to be treated. The breakthrough curve obtained in this example is shown in FIG.

【0021】(実施例3)実施例1の吸着剤を用い、吸
着分離時の温度を50℃とした以外は実施例2と同様に
してセリウムを吸着分離した。その破過曲線を図2
(a)に示す。
Example 3 Cerium was adsorbed and separated in the same manner as in Example 2 except that the adsorbent of Example 1 was used and the temperature at the time of adsorption separation was 50 ° C. Figure 2 shows the breakthrough curve.
It shows in (a).

【0022】(比較例1)CMPOを抽出剤とし、それ
を実施例1と同様のSDB粒子に含浸させた吸着剤を作
製した。その吸着剤を用いて、実施例2及び3と同様に
30℃及び50℃でセリウムを吸着分離した。得られた
破過曲線を図1(b)及び図2(b)に各々示す。
Comparative Example 1 An adsorbent was prepared by impregnating CMPO as an extractant with SDB particles as in Example 1. Using the adsorbent, cerium was adsorbed and separated at 30 ° C. and 50 ° C. in the same manner as in Examples 2 and 3. The breakthrough curves obtained are shown in FIG. 1 (b) and FIG. 2 (b), respectively.

【0023】(比較例2)CMPを抽出剤とし、それを
実施例1と同様のSDB粒子に含浸させた吸着剤を作製
した。その吸着剤を用いて、実施例2及び3と同様に3
0℃及び50℃でセリウムを吸着分離した。得られた破
過曲線を図1(c)及び図2(c)に各々示す。
Comparative Example 2 An adsorbent was prepared by impregnating SMP particles with CMP as an extractant and impregnating it with SDB particles. Using the adsorbent, 3 as in Examples 2 and 3
Cerium was separated by adsorption at 0 ° C and 50 ° C. The breakthrough curves obtained are shown in FIG. 1 (c) and FIG. 2 (c), respectively.

【0024】CMPOのみを抽出剤として含浸した吸着
剤を用いた比較例1の結果から、この吸着剤の30℃に
おける吸着速度は遅く、流出開始時から吸着されないセ
リウムが流出してしまうことがわかる。しかし、50℃
においては、カラム容量の約50倍量まではセリウムは
流出せず、それを越えると流出液中のセリウム濃度が急
激に増加した。これは、温度を上げることによりCMP
Oが低粘度化され、セリウムの移動速度が増加すること
により吸着速度が向上したためと考えられる。
From the results of Comparative Example 1 in which the adsorbent impregnated with CMPO alone as the extractant was used, it was found that the adsorption rate of this adsorbent at 30 ° C. was slow, and cerium that was not adsorbed would flow out from the start of outflow. . However, 50 ℃
In Example 1, cerium did not flow out up to about 50 times the column volume, and beyond that, the concentration of cerium in the effluent increased sharply. This is because CMP
It is considered that the adsorption rate was improved by lowering the viscosity of O and increasing the moving rate of cerium.

【0025】CMPのみを抽出剤とした吸着剤を用いた
比較例2では、カラム容量の約40倍量までは、完全に
セリウムを吸着分離されており、流出液にはセリウムが
含まれていないが、それを越えると、流出液中のセリウ
ム濃度は急激に増加し、約100倍量付近で、被処理液
と同じセリウム濃度となった。即ち、約100倍量で、
吸着剤に含浸されたCMPのセリウム抽出能が飽和され
たものと考えられる。また、この挙動は30℃でも50
℃でも同様であった。CMPは、この温度範囲では液体
であり、粘度の変化が殆どないためと考えられる。
In Comparative Example 2 using an adsorbent containing only CMP as an extractant, cerium was completely adsorbed and separated up to about 40 times the column volume, and the effluent did not contain cerium. However, beyond that, the cerium concentration in the effluent rapidly increased, and the cerium concentration was about the same as that of the liquid to be treated at about 100 times. That is, about 100 times
It is considered that the cerium extraction ability of CMP impregnated with the adsorbent was saturated. Also, this behavior is 50 even at 30 ° C.
The same was true at ° C. It is considered that CMP is a liquid in this temperature range and the viscosity hardly changes.

【0026】一方、CMPOとCMPの1:1混合物を
抽出剤として含浸した吸着剤を用いた実施例2では、1
00倍量以上の被処理液が通過するまでセリウムは流出
せず、その後急激に立ち上がる破過曲線が得られ、50
℃での破過曲線(実施例3)でもほぼ同様であった。こ
のことから、CMPと混合することによってCMPOが
低粘度化され、セリウムの移動速度が増加して吸着速度
が向上したことがわかる。さらに、図2を見ると、実施
例3の破過曲線は、低粘度化されたCMPOを用いた比
較例2の破過曲線より高液量側にある。即ち、CMPO
とCMPとを混合することにより、それらが共同効果を
発揮して、CMPO単独の場合より高い抽吸着性能を発
現するようになったと考えられる。
On the other hand, in Example 2 using an adsorbent impregnated with a 1: 1 mixture of CMPO and CMP as an extractant, 1
Cerium does not flow out until more than 00 times the amount of liquid to be treated passes, and a breakthrough curve that rises sharply thereafter is obtained.
The breakthrough curve at C (Example 3) was almost the same. From this, it can be understood that the viscosity of CMPO was lowered by mixing with CMP, the moving speed of cerium was increased, and the adsorption speed was improved. Further, referring to FIG. 2, the breakthrough curve of Example 3 is on the higher liquid volume side than the breakthrough curve of Comparative Example 2 using CMPO having a reduced viscosity. That is, CMPO
It is considered that, by mixing CMP with CMP, they exert a synergistic effect and exhibit higher extraction performance than that of CMPO alone.

【0027】(実施例4)実施例2においてセリウムの
吸着分離に使用し、セリウムが吸着された吸着剤が充填
されているカラムに、30℃で蒸留水を流入し、セリウ
ムの脱着を行った。流出液中のセリウム濃度を測定し、
流した蒸留水の液量に対してプロットした。結果を図3
(a)に示す。
Example 4 Distilled water was introduced at 30 ° C. into a column used for adsorption separation of cerium in Example 2 and filled with an adsorbent having cerium adsorbed to desorb cerium. . Measure the cerium concentration in the effluent,
It plotted with respect to the liquid volume of the flowing distilled water. The result is shown in Figure 3.
It shows in (a).

【0028】(実施例5)実施例3においてセリウムの
吸着分離に使用したカラムを用い、蒸留水温度を50℃
として、実施例4と同様にセリウムを脱着した。結果を
図4(a)に示す。
Example 5 The column used for the adsorption separation of cerium in Example 3 was used, and the temperature of distilled water was 50 ° C.
Then, cerium was desorbed in the same manner as in Example 4. The results are shown in Fig. 4 (a).

【0029】(比較例3)比較例1の、CMPOのみを
抽出剤とした吸着剤につき、実施例4及び5と同様にセ
リウムの脱着を行った。30℃での結果を図3(b)
に、50℃での結果を図4(b)に各々示す。
(Comparative Example 3) With respect to the adsorbent of Comparative Example 1 in which only CMPO was used as an extractant, cerium was desorbed in the same manner as in Examples 4 and 5. The results at 30 ° C are shown in Fig. 3 (b).
The results at 50 ° C. are shown in FIG.

【0030】(比較例4)比較例2の、CMPのみを抽
出剤とした吸着剤につき、実施例4及び5と同様にセリ
ウムの脱着を行った。30℃での結果を図3(c)に、
50℃での結果を図4(c)に各々示す。
(Comparative Example 4) With respect to the adsorbent of Comparative Example 2 using only CMP as an extractant, cerium was desorbed in the same manner as in Examples 4 and 5. The results at 30 ° C. are shown in FIG.
The results at 50 ° C. are shown in FIG.

【0031】これらの結果から、CMPOのみの抽出剤
を含浸させた吸着剤を用いた場合、その脱着速度も遅
く、カラム容量の約50倍量の蒸留水を通過させないと
完全に脱着できない。しかし、CMP単独の場合は、蒸
留水を通過させると即座に脱着が起こり、約10倍量の
蒸留水の通過で脱着することができる。一方、本発明の
吸着剤を用いた場合では、CMPを混合して低粘度化す
ることによりCMPOに比較して脱着速度を改善するこ
とができ、30℃では約30倍量、50℃では約20倍
量の蒸留水を通過させることにより、吸着したセリウム
を脱着することができた。
From these results, when the adsorbent impregnated with the CMPO-only extractant was used, the desorption rate was slow and the desorption could not be completed without passing about 50 times the column volume of distilled water. However, in the case of CMP alone, desorption occurs immediately when passing distilled water, and desorption can be performed by passing about 10 times the amount of distilled water. On the other hand, in the case of using the adsorbent of the present invention, the desorption rate can be improved as compared with CMPO by mixing CMP and lowering the viscosity, and at 30 ° C., the desorption rate is about 30 times, and at 50 ° C. The adsorbed cerium could be desorbed by passing 20 times the amount of distilled water.

【発明の効果】本発明の吸着剤は、CMPOとCMPと
の混合物を抽出剤としているため、その抽出剤は常温で
も低粘度であり、TRU等の希土類元素に対して優れた
抽出能を持つ。従って、その抽出剤を多孔質担体に含浸
させてなる本発明の吸着剤は、希土類元素の吸着速度が
速く、例えばTRU等を含む放射性廃液から、TRUを
選択的に効率よく除去することができる。また、本発明
の吸着剤は、例えば蒸留水を流すだけで吸着した希土類
元素を脱着することができ、しかも、その処理によって
も抽出剤が失われ難いため、複数回の廃液処理に使用す
ることができる。さらに本発明の吸着剤は、多孔質高分
子担体と抽出剤とのいずれもが有機化合物であるため
に、乾留等の操作により容易に減容することもでき、二
次廃液が発生することがない。
Since the adsorbent of the present invention uses a mixture of CMPO and CMP as an extractant, the extractant has a low viscosity even at room temperature and has an excellent extractability for rare earth elements such as TRU. . Therefore, the adsorbent of the present invention obtained by impregnating the extractant into a porous carrier has a high adsorption rate of rare earth elements, and can selectively and efficiently remove TRU from a radioactive waste liquid containing, for example, TRU. . In addition, the adsorbent of the present invention can desorb the adsorbed rare earth element simply by flowing distilled water, and since the extractant is not easily lost by the treatment, it should be used for a plurality of waste liquid treatments. You can Further, the adsorbent of the present invention, since both the porous polymer carrier and the extractant are organic compounds, the volume can be easily reduced by an operation such as carbonization, and a secondary waste liquid may be generated. Absent.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)CMPOとCMPとの1:1混合物、
(b)CMPO、及び(c)CMPを抽出剤とした吸着
剤を用いて、30℃で被処理液中のセリウムを吸着分離
したときの破過曲線を示す図である。
FIG. 1 (a) 1: 1 mixture of CMPO and CMP,
It is a figure which shows the breakthrough curve at the time of carrying out the adsorption separation of the cerium in a to-be-processed liquid at 30 degreeC using the adsorbent which used (b) CMPO and (c) CMP as an extractant.

【図2】(a)CMPOとCMPとの1:1混合物、
(b)CMPO、及び(c)CMPを抽出剤とした吸着
剤を用いて、50℃で被処理液中のセリウムを吸着分離
したときの破過曲線を示す図である。
FIG. 2 (a) 1: 1 mixture of CMPO and CMP,
It is a figure which shows the breakthrough curve at the time of carrying out the adsorption separation of the cerium in a to-be-processed liquid at 50 degreeC using the adsorbent which used (b) CMPO and (c) CMP as an extractant.

【図3】(a)CMPOとCMPとの1:1混合物、
(b)CMPO、及び(c)CMPを抽出剤とした吸着
剤から、30℃の蒸留水で吸着したセリウムを脱着させ
たときの、流出液のセリウム濃度変化を示すグラフであ
る。
Figure 3: (a) 1: 1 mixture of CMPO and CMP,
It is a graph which shows the cerium density | concentration change of the effluent at the time of desorbing the cerium adsorbed by the distilled water of 30 degreeC from the adsorbent which used (b) CMPO and (c) CMP as an extractant.

【図4】(a)CMPOとCMPとの1:1混合物、
(b)CMPO、及び(c)CMPを抽出剤とした吸着
剤から、50℃の蒸留水で吸着したセリウムを脱着させ
たときの、流出液のセリウム濃度変化を示すグラフであ
る。
FIG. 4 (a) 1: 1 mixture of CMPO and CMP,
It is a graph which shows the cerium density | concentration change of the effluent at the time of desorbing the cerium adsorbed by the distilled water of 50 degreeC from the adsorbent which used (b) CMPO and (c) CMP as an extractant.

【図5】本発明の希土類元素吸着分離法の一実施例を示
す図である。
FIG. 5 is a diagram showing an example of the rare earth element adsorption separation method of the present invention.

【符号の説明】[Explanation of symbols]

1 吸着剤 2 カラム 3 コック 4 カラム入口 5 カラム出口 10 被処理液 1 adsorbent 2 column 3 cock 4 column inlet 5 column outlet 10 liquid to be treated

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹下 健二 千葉県柏市高田1201 財団法人 産業創造 研究所 柏研究所内 (72)発明者 遠藤 芳浩 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 (72)発明者 高橋 千里 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Takeshita Kenji Takeshita 1201 Takada, Kashiwa-shi, Chiba Institute of Industrial Creation, Kashiwa Laboratory In Toyosu General Office Co., Ltd. (72) Inventor Chisato Takahashi 3-2-16 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. In Toyosu General Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カルバミルメチレン燐酸と、カルバミル
メチレン燐酸エステルとの混合物を、多孔質担体中に含
浸させてなることを特徴とする希土類元素除去用吸着
剤。
1. An adsorbent for removing a rare earth element, which is obtained by impregnating a mixture of carbamyl methylene phosphoric acid and carbamyl methylene phosphoric acid ester into a porous carrier.
【請求項2】 請求項1記載の吸着剤をカラムに充填
し、そのカラム中に希土類元素を含む被処理液を流し
て、当該希土類元素を前記吸着剤に吸着させて分離する
ことを特徴とする希土類元素吸着分離法。
2. A column is filled with the adsorbent according to claim 1, and a liquid to be treated containing a rare earth element is flown into the column to adsorb the rare earth element to the adsorbent for separation. Rare earth element adsorption separation method.
JP24722493A 1993-10-01 1993-10-01 Adsorbent for removing rare earth elements and adsorption separation method using the same Expired - Lifetime JP3322952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24722493A JP3322952B2 (en) 1993-10-01 1993-10-01 Adsorbent for removing rare earth elements and adsorption separation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24722493A JP3322952B2 (en) 1993-10-01 1993-10-01 Adsorbent for removing rare earth elements and adsorption separation method using the same

Publications (2)

Publication Number Publication Date
JPH07100371A true JPH07100371A (en) 1995-04-18
JP3322952B2 JP3322952B2 (en) 2002-09-09

Family

ID=17160306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24722493A Expired - Lifetime JP3322952B2 (en) 1993-10-01 1993-10-01 Adsorbent for removing rare earth elements and adsorption separation method using the same

Country Status (1)

Country Link
JP (1) JP3322952B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115273A1 (en) * 2011-02-22 2012-08-30 National Institute For Materials Science Method for extraction and separation of lanthanoid elements and actinoid elements, and means for extraction and separation of lanthanoid elements and actinoid elements
JP2012219347A (en) * 2011-04-11 2012-11-12 National Institute For Materials Science Method for extracting rare earth element
JP5619238B1 (en) * 2013-08-22 2014-11-05 住友金属鉱山株式会社 Scandium recovery method
WO2015199224A1 (en) * 2014-06-26 2015-12-30 国立大学法人九州大学 Ion exchange resin and method for adsorbing and separating metal
US9731981B2 (en) 2015-01-16 2017-08-15 Kabushiki Kaisha Toshiba Rare earth adsorbent and rare earth adsorption method using the same
JP2018123373A (en) * 2017-01-31 2018-08-09 国立研究開発法人日本原子力研究開発機構 Selective separation method of metal element and separation unit
CN110306045A (en) * 2019-08-13 2019-10-08 包头稀土研究院 The minimizing technology of organic impurities in middle heavy rare earth chloride solution
CN115558798A (en) * 2021-07-02 2023-01-03 浙江新化化工股份有限公司 Method for producing lithium compound

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267188B2 (en) 2011-02-22 2016-02-23 National Institute For Materials Science Method for extraction and separation of lanthanoid elements and actinoid elements, and means for extraction and separation of lanthanoid elements and actinoid elements
CN103392018A (en) * 2011-02-22 2013-11-13 独立行政法人物质·材料研究机构 Method for extraction and separation of lanthanoid elements and actinoid elements, and means for extraction and separation of lanthanoid elements and actinoid elements
JP2014514433A (en) * 2011-02-22 2014-06-19 独立行政法人物質・材料研究機構 Extraction and separation method and extraction and separation means for lanthanoid element or actinoid element
WO2012115273A1 (en) * 2011-02-22 2012-08-30 National Institute For Materials Science Method for extraction and separation of lanthanoid elements and actinoid elements, and means for extraction and separation of lanthanoid elements and actinoid elements
JP2016035109A (en) * 2011-02-22 2016-03-17 国立研究開発法人物質・材料研究機構 Extraction method of lanthanoid element or actinoid element, and nanostructure
JP2012219347A (en) * 2011-04-11 2012-11-12 National Institute For Materials Science Method for extracting rare earth element
US9404169B2 (en) 2013-08-22 2016-08-02 Sumitomo Metal Mining Co., Ltd. Method for recovering scandium
CN104995320A (en) * 2013-08-22 2015-10-21 住友金属矿山株式会社 Method for collecting scandium
AU2014310164B2 (en) * 2013-08-22 2015-07-02 Kyushu University, National University Corporation Method for collecting scandium
WO2015025558A1 (en) * 2013-08-22 2015-02-26 住友金属鉱山株式会社 Method for collecting scandium
JP5619238B1 (en) * 2013-08-22 2014-11-05 住友金属鉱山株式会社 Scandium recovery method
WO2015199224A1 (en) * 2014-06-26 2015-12-30 国立大学法人九州大学 Ion exchange resin and method for adsorbing and separating metal
JP2016007601A (en) * 2014-06-26 2016-01-18 国立大学法人九州大学 Ion exchange resin and method of adsorption separation of metal
US9863018B2 (en) 2014-06-26 2018-01-09 Kyushu University, National University Corporation Ion exchange resin and method for adsorbing and separating metal
US9731981B2 (en) 2015-01-16 2017-08-15 Kabushiki Kaisha Toshiba Rare earth adsorbent and rare earth adsorption method using the same
JP2018123373A (en) * 2017-01-31 2018-08-09 国立研究開発法人日本原子力研究開発機構 Selective separation method of metal element and separation unit
CN110306045A (en) * 2019-08-13 2019-10-08 包头稀土研究院 The minimizing technology of organic impurities in middle heavy rare earth chloride solution
CN115558798A (en) * 2021-07-02 2023-01-03 浙江新化化工股份有限公司 Method for producing lithium compound
CN115558798B (en) * 2021-07-02 2023-12-01 浙江新化化工股份有限公司 Method for producing lithium compound

Also Published As

Publication number Publication date
JP3322952B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
Wei et al. Stoichiometry, isotherms and kinetics of adsorption of In (III) on Cyanex 923 impregnated HZ830 resin from hydrochloric acid solutions
Zhang et al. Kinetics of the adsorption of strontium (II) by a novel silica-based 4, 4′,(5′)-di (tert-butylcyclohexano)-18-crown-6 extraction resin in nitric acid medium
JP3322952B2 (en) Adsorbent for removing rare earth elements and adsorption separation method using the same
US5534153A (en) Continuous fluidized-bed contactor with recycle of sorbent
US8721893B2 (en) Rare earth elements separation using phosphorus based adsorbent
CN112076725A (en) Modified mesoporous molecular sieve, and preparation method and application thereof
US3979287A (en) Adsorption process
Zhang et al. Bleeding evaluation of the stationary phase from a few novel macroporous silica-substrate polymeric materials used for radionuclide partitioning from HLLW in MAREC process
KR101919150B1 (en) double functional adsorption material for removing contaminants including heavy metals and preventing membrane fouling
RU2104955C1 (en) Method of adsorbing and isolating heavy metal element from aqueous solution and method of regenerating tannin adsorbent
Mimura et al. Uptake and recovery of ruthenium by alginate gel polymers
Ansari et al. Evaluation of an extraction chromatographic resin containing CMPO and ionic liquid for actinide ion uptake from acidic feeds: Part II. Batch actinide sorption, radiolytic degradation and column studies
JP2005061971A (en) Method for treating high-level radioactive liquid waste
JP6882654B2 (en) Selective separation method and separation device for metal elements
JP3031681B2 (en) Adsorbent for removing transuranium element and its production method
JPH01246328A (en) Method for capturing scandium
Zhang et al. Impregnation synthesis of a novel macroporous silica-based TODGA polymeric composite and its application in the adsorption of rare earths in nitric acid solution containing diethylenetriaminepentaacetic acid
JP3068234B2 (en) Adsorbent for removal of transuranium elements
JPS62502179A (en) immobilized extractant
EP0437763A1 (en) Method for treating aqueous solutions
JPS6159177B2 (en)
JPH0253087B2 (en)
JPH03264899A (en) Adsorbent for removal of trans-uranium elements and its manufacturing method
Zhang et al. Leakage of octyl (phenyl)-N, N-di-isobutylcarbamoylmethylphosphine oxide from a macroporous silica-based chelating polymeric adsorption material and its recovery by some selected porous adsorbents
JPH08844B2 (en) Styrene-based three-dimensional copolymer and nitrate ion adsorbent

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020611

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140628

Year of fee payment: 12

EXPY Cancellation because of completion of term