JPH0253087B2 - - Google Patents

Info

Publication number
JPH0253087B2
JPH0253087B2 JP56145662A JP14566281A JPH0253087B2 JP H0253087 B2 JPH0253087 B2 JP H0253087B2 JP 56145662 A JP56145662 A JP 56145662A JP 14566281 A JP14566281 A JP 14566281A JP H0253087 B2 JPH0253087 B2 JP H0253087B2
Authority
JP
Japan
Prior art keywords
phase
concentration
isotope
uranium
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56145662A
Other languages
Japanese (ja)
Other versions
JPS5855030A (en
Inventor
Kabikaru Yosefu
Sutanberugu Karueru
Katsutsuaa Yosefu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHESUKE UISOOKE UCHEENI TEKUNIIKE UI PURAATSUE
Original Assignee
CHESUKE UISOOKE UCHEENI TEKUNIIKE UI PURAATSUE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU74699/81A priority Critical patent/AU547079B2/en
Priority to GB08126409A priority patent/GB2104797B/en
Priority to IT23812/81A priority patent/IT1138580B/en
Priority to DE19813135540 priority patent/DE3135540A1/en
Priority to FR8117190A priority patent/FR2512354B1/en
Application filed by CHESUKE UISOOKE UCHEENI TEKUNIIKE UI PURAATSUE filed Critical CHESUKE UISOOKE UCHEENI TEKUNIIKE UI PURAATSUE
Priority to JP56145662A priority patent/JPS5855030A/en
Priority to CA000386288A priority patent/CA1185074A/en
Priority to DD81234551A priority patent/DD210517A3/en
Publication of JPS5855030A publication Critical patent/JPS5855030A/en
Publication of JPH0253087B2 publication Critical patent/JPH0253087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/28Separation by chemical exchange
    • B01D59/30Separation by chemical exchange by ion exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/22Separation by extracting
    • B01D59/26Separation by extracting by sorption, i.e. absorption, adsorption, persorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/28Separation by chemical exchange
    • B01D59/32Separation by chemical exchange by exchange between fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/36Separation by biological methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明の対象は、二相系、例えば固相−液相、
液相−液相、固相−気相の形で同位体を分離する
方法であつて、同位体の各組への分配が、相の組
成即ちその構造的及び物質的性質の選択によつて
コントロール可能であり、さらに、同位体及び配
位子の濃度の選択によつて、温度、光照射、流体
力学的パラメータの選択によつて、そして相を接
触させる時間の長さの選択によつてコントロール
可能であるとの知見に基づく方法である。例え
ば、ウラン、リチウム及び窒素の同位体を、水性
溶液及び非水性溶液から(必要であればその気体
混合物から)、本発明による方法によつて、固体
吸着剤又は液体抽出剤と接触させて、高い効率で
分離することが可能である。原理的に化学的分離
法の問題である。 従来公開及び使用されている同位体分離の化学
的方法は(例えばLaskorin B.N.and cow.、
Uspechi Khimii、band XLIV.No.5、761−780、
1975年;Carman de J.and cow.、Report
AAEC/LIB/BIB−273、1970年を参照)、同位
体交換反応に基づいており、その平衡定数(即
ち、通例は要素分離係数)は関係する同位体の質
量に依存して約1.0001〜1.01の範囲で変わり、そ
の下限の値は重い元素(例えばウラン)の同位体
に関係する。最近年では、ウランの同位体を固体
吸着剤及び液体抽出剤で分離することに多くの注
意が払われている。すなわち、西独国の特許及び
特許出願(例えば、DOS 2235603、1973年;
DOS 2349595、1973年;DOS 2623891、1977
年)、仏国特許(例えば、第1600437号、1968年)、
及びルーマニア国の公表雑誌(例えば、Ponta
A.、Calusaru A.、Isotopenpraxis 13、No.6、
214−216、1977年;ibid 11、No.12、422−426、
1975年)を引用することが可能である。 式: 238U〓+ 235U〓 238U〓+ 235U〓 〔式中、ローマ数字(、)は相を表わす。〕 の形の同位体交換の過程のための条件を確保する
努力が、すべての公開された方法に共通の特徴で
ある。 それにもかかわらず、イオン交換法及びクロマ
トグラフ法を使用した場合には約1.00009より高
い分離係数を再現可能に達成することは成功しな
かつたという事実のために、ウラン()同位体
の分離に向かう初期の仕事は成功しなかつた。こ
れが、ウランがいろいろな原子価状態〔即ちU
()〜U()及びU()〜U()〕で存在す
る系に注意が払われるようになつた理由である。
これらの系では電子交換反応が同時に起こり、そ
の反応では常にウランのより高い原子価状態によ
り軽い同位体が濃縮する。さらに、錯化反応及び
ウランの原子価状態の一つに選択的な、適当な種
類の吸着剤(必要であれば抽出剤)を用いること
による同位体効果に関連して、実質的に高められ
た分離の効率が実際に達成された。公表されたデ
ータ(例えば、M.Seko、T.Miyake、K.Inada、
Nucl.Technology 50、178−186、1980年;
Report INFEC/DEP/WG.2/31、On the
Thechnical、Economical and Safeguard
Informations of the Different Enrichment
Thechniques、1979年3月15日)から、要素分離
係数の値をこの処理の経済的利用の下限といわれ
ている約1.001に移行させるのに成功したことは
明らかである。例えば、ウラン同位体の分離の操
作基準に用いられる、気体拡散処理の要素分離係
数は約1.0027である。従つて、得られた結果は既
に経済的にそして技術的に利益のあるものである
といえる。にもかかわらず操業的利用は明白であ
るわけではなく、それは主として要素分離係数の
限られた値のためであり、その限られた値が多数
の段、多量の濃縮ウランのホールドアツプ、及び
処理の安定状態に到達するのに必要な比較的に長
い時間を持つ装置を製作することを余儀なくさせ
ることと関連している。ウランの酸化還元処理を
多数回繰り返す必要性は、関係している酸化還元
剤(必要であれば同様にその反応のエネルギー)
の実質的な要件と関連している。 これらの欠陥は、本発明による同位体の新しい
分離方法であつて、二相系における濃度の同位体
効果を利用するコントロールせる分配の手法に基
づく方法によつて除去される。本発明による方法
は、第一相が10-6Mから飽和濃度までの濃度の同
位体及び配位子の水溶液若しくは非水溶液である
か、又は同位体成分の気体混合物若しくは同位体
と不活性ガスとの気体混合物であり、かつ分離さ
れる同位体間のモル比が出発混合物(又は必要で
あれば溶液)中に1:105〜1:10-5であり;第
二相が、スチレンジビニルベンゼンイオン交換剤
のような固体吸着剤若しくは低級菌類の菌糸体に
基づく生物吸着剤であるか、又は(必要であれば
テフロン(ポリテトラフルオロエチレンに基づく
物質の商品名)、シリカゲル及びセルロースのよ
うなキヤリヤで保持した)トリブチルホルフエー
ト及びトリオクチルアミンのような抽出剤であ
り;前記の二相系が収着及び(又は)脱着におけ
る(必要であれば抽出及び(又は)再抽出におけ
る)非線形の等温平衡(equilibrium isotherm)
を示すことが有利であり;そして、炭酸イオン、
硫酸イオン、チタン酸イオン、塩化物イオン及び
エチレンジアミン四酢酸イオンのような配位子で
の同位体の錯化によつて、又はカルボキシル基及
び水酸基並びに亜燐酸、窒素及び硫黄に基づく基
のようなキレート化官能基を持つ吸着剤及び抽出
剤を用いることによつて、及び(又は)、暗所に
て若しくは2.5×102〜109nmの波長を持つ光の下
で、さらには、両相の接触時間を10-2〜106秒に、
温度を102〜103Kに、撹拌の回転数を10-2〜104
転毎秒に、カラム装置における流速を10-6〜10-1
m/sに、そして吸収剤の粒子径を10-6〜10-2
に選択して、そしてさらには、同位体成分の脱着
若しくは再抽出のために、炭酸ナトリウム、硝酸
アンモニウム、塩化ナトリウム、硫酸ナトリウ
ム、硫酸、硝酸及び塩酸のような化合物、さらに
チタン酸イオン、エチレンジアミン四酢酸イオン
及びイソブチレートイオンのような錯体形成配位
子を含んでいる化合物の溶液を、単独で若しくは
10-3Mから飽和溶液までの総濃度の混合物として
用いて、前記二相を接触せしめると、一相から他
の一相への同位体の移動速度が等しくはなく、そ
して同位体交換の抑制(retardation)が起き
る;ことで成り立つている。本発明による方法に
おいては、 235U()及び 238U()のような同
位体成分と硝酸イオン、硫酸イオン及び炭酸イオ
ンのような配位子との水溶液であつて、その総濃
度が10-2〜10-1Mであり、かつ出発混合物におけ
る溶解同位体 235U及び 238Uは1:500〜1:100
のモル比であるものを、例えば使用することが可
能である。スチレン−ジビニルベンゼン共重合体
に基づくイオン交換剤又はP.Chrysogenumの低
級菌類の菌糸体に基づく吸着剤を固体吸着剤とし
て使用することが可能である。暗所において又は
250〜650nmの波長の光の下で操作し、さらに撹
拌の回転速度を0.800〜12.00回転毎秒とし、また
カラムでの流速を10-4〜10-1m/sとし、10-4
10-3mの粒子径の固体吸着剤を用い、温度を273
〜373Kとし、そして相の接触時間の長さを102
104秒に選択することができる。10-1〜1.5Mの濃
度を有する、塩化ナトリウム+炭酸ナトリウム、
若しくは炭酸ナトリウム、又は塩酸の溶液を脱着
に使用することが可能である。 本発明による方法は同位体交換反応において従
来達成されたものより実質的に高い分離係数で特
徴付けられる。要素分離係数の最大値はウラン同
位体の収着(所望ならば同様に脱着)の過程にお
いて1.02〜1.10間で変わる。ウラン()溶液並
びに収着過程(次は必要であれば脱着過程)の高
い選択性を持つが速すぎない反応速度を持つ固体
吸着剤を用いると特に有利である。本発明に依る
同位体分離方法の経済的及び技術的重要性は相当
なものである。実質的に高められた要素分離係数
値を示す、即ち、ウラン同位体の分離において、
1〜1.5のオーダーで分離総段数の減少、ほぼ同
じオーダーでの装置内濃縮ウランのホールドアツ
プ抑制及び安定状態の達成に必要な時間の短縮化
を示す。6価のウランのエマルジヨンで操作する
ことが可能であり、その原子価を変える必要はな
くまた従来操業的に採用された濃縮段階でのよう
に濃縮前にウランをUF6に変える必要はない。も
う一つの重要な点は本方法で発生する涸渇せるウ
ランは投入U材料として使用することが可能であ
り、実際にこの廃棄物における 235U同位体の含
有量は半分に減少する。 同位体分離の(即ち収着の例における)新しい
方法はさらに下記のように説明することが可能で
ある: (a) 同位体の水性溶液、例えば 235U()+ 238U
()であつて一つの同位体の濃度が他の一つ
の濃度よりも少なくとも0.5〜1のオーダー高
い溶液に、固体吸着剤又は液体抽出剤を接触せ
しめると、両者の同位体の収着が同時に起こ
り、にもかかわらず、各同位体の収着速度はこ
の過程の推進力、即ち平衡からの相対的なズレ
及び物質移動係数の値に比例する。同位体成分
収着のこの一般的に異なる速度は、同位体交換
の抑制で条件付けられるが(下記(g)参照)、濃
度の同位体効果と呼ばれる効果の性質である。
収着速度は例えば関係式: R=Kq・Δq=Kc・Δc 〔式中、 Rは、一つの相から他の相への同位体移動の
それぞれの収着(必要であれば脱着)の速度を
表わし、 Kq、Kcは、物質移動係数であり、そして Δq、Δcは、過程の推進力、相“q”及び
“c”におけるそれぞれの濃度勾配を表わす。〕 で表現することが可能である。 (b) 一つの相(ここでは水性の相)から他の相へ
の同位体移動の推進力は、一方では両相におけ
る同位体の初期濃度の関数であり、他方では同
位体濃度が変化する(この変化は収着の過程で
起きる)領域における平衡曲線(収着剤中の同
位体濃度を溶液中の同位体濃度に関してグラフ
に表わした曲線。以下同じ)の形に依存する。 (c) 溶液における同位体濃度及び収着処理の限定
の仕方に関連して、濃度変化の領域において、
可能なら単一の同位体に対応する、平衡曲線の
可能な限り異なる傾斜を示すような収着剤を選
択することが有利である。収着の平衡曲線にお
ける低い濃度の同位体に対応する部分が約102
〜103の傾斜を有し、そして高い濃度の同位体
に対応する部分が約10の傾斜を有することが有
利であるようである。 (d) 吸着剤の選択は吸着剤単独の特性には限界が
あるので、溶液の組成を溶剤の特性に調節する
ことが同様に可能である。この意味で、同位体
比を初期の値に保持して、例えば希釈すること
による、さらには錯化剤を含む別の成分を添加
して溶液組成を調整することによる、同位体の
絶対濃度の変化を考慮に入れる。 (e) 物質移動係数は、一方では溶液組成(同位体
濃度)及び吸着剤(必要であれば抽出剤)の種
類の関数であり、他方では温度及び流体力学的
パラメータ、撹拌速度、流速、吸着剤の粒子寸
法など、の関数であり;濃度依存が最重要なも
のの一つであるために、これらの物質移動係数
は一般的に各同位体について異なる値を持つけ
れども、その絶対値は主として吸着剤の種類で
決まる。発明者らは物質移動係数が10-5〜10-3
毎秒にあるような吸着剤で操作することが有利
であることを見い出した。 (f) 例えば、所謂生物吸着剤(チエコ国発明者証
第155833号及びチエコ国発明者証第184471号及
び第189198号(PV1867−75及びPV588−76)
参照)、さらにスチレン−ジビニルベンゼン共
重合体に基づくイオン交換剤、単独又はテフロ
ン、セルロース、シリカゲルなどのキヤリヤで
支持された抽出剤を、上述の平衡及び速度特性
の吸着剤として使用することが可能である。 (g) 同位体の収着(必要であれば抽出)と同時
に、実際的に直ぐに同位体交換が起こり始め、
この同位体交換がいろいろな収着速度から結果
する単一同位体の収着量の相違を抑制する。同
位体交換の過程(その速度はより高い濃度の同
位体の収着速度とほぼ等しい)の否定的効果
は、抑制しようと欲するならば、一方では収着
剤の種類及び溶液組成の選択及び適当な選択に
よつて、他方では低い温度及び限られた光照射
の下で操作することによつて、補償することが
できる。同位体交換の妨害は一方の相における
同位体成分の錯化によつても同様に達成するこ
とが可能であり、それは溶液に適当な配位子を
添加することによるか、又は錯形成官能基を持
つ収着剤(必要であれば抽出剤)を用いること
によるかのいずれかを意味する。 (h) 同位体の収着速度について例として述べた上
述のことと同じことは、脱着(所望であれば再
抽出)の速度及び同位体交換に伴う速度につい
ても原理的に真実である。 例 1 水和酸化チタン()で活性化し、膨潤しそし
て遠心分離した、Na形の商標Ostsorb MV6/5
なる吸着剤(ピー・クリソゼナム(P.
chrysogenum)の菌類(fungus)に基づく吸着
剤)2gを、光を当てないようにして293Kの温
度にて撹拌速度5回転毎秒で混合しながら、PH
3.5に調整した0.01Mの硝酸ウラニル溶液60mlと
接触させた。初期溶液における 235U: 238U同位
体比は0.725×10-2であつた(天然のウランから
調製した化合物を取扱つた)。収着反応の過程に
おいて液相の試料を取り出し、その試料において
ウランの全濃度を試剤arsenazo を用いる分
光分析法で測定し、 235U: 238U同位体比を
Aldermaston−Micromass社model30の質量分析
器で測定した。得られた結果に基づいて分離係数
の値を時間の関数として計算した:
The subject of the invention is a two-phase system, for example a solid-liquid phase,
A method of separating isotopes in liquid-liquid or solid-gas phase, in which the distribution of isotopes into each set is determined by the selection of the composition of the phases, that is, their structural and material properties. controllable and further by the choice of isotope and ligand concentrations, by the choice of temperature, light irradiation, hydrodynamic parameters, and by the choice of the length of time the phases are in contact. This method is based on the knowledge that it can be controlled. For example, isotopes of uranium, lithium and nitrogen are brought into contact with solid adsorbents or liquid extractants from aqueous and non-aqueous solutions (if necessary from gaseous mixtures thereof) by the method according to the invention, It is possible to separate with high efficiency. In principle, this is a problem with chemical separation methods. The chemical methods of isotope separation that have been published and used so far (e.g. Laskorin BNand cow.
Uspechi Khimii, band XLIV.No.5, 761-780,
1975; Carman de J. and cow., Report
AAEC/LIB/BIB-273, 1970), which is based on isotope exchange reactions, whose equilibrium constant (i.e., typically the elemental separation factor) is approximately 1.0001 to 1.01, depending on the masses of the isotopes involved. The lower value is related to the isotope of the heavier element (e.g. uranium). In recent years, much attention has been paid to separating isotopes of uranium with solid adsorbents and liquid extractants. i.e. West German patents and patent applications (e.g. DOS 2235603, 1973;
DOS 2349595, 1973; DOS 2623891, 1977
), French patents (e.g. no. 1600437, 1968),
and Romanian national publications (e.g. Ponta
A., Calusaru A., Isotopenpraxis 13, No.6,
214-216, 1977; ibid 11, No. 12, 422-426,
1975). Formula: 238 U〓 + 235 U〓 238 U〓 + 235 U〓 [In the formula, the Roman numerals (,) represent the phase. ] The effort to ensure conditions for the process of isotope exchange in the form of is a common feature of all published methods. Nevertheless, due to the fact that it has not been possible to reproducibly achieve separation factors higher than about 1.00009 using ion-exchange and chromatographic methods, the separation of uranium () isotopes has Early efforts toward this goal were unsuccessful. This is because uranium has various valence states [i.e. U
This is why attention has been paid to the systems existing in ( ) to U() and U() to U()].
In these systems, electron-exchange reactions occur simultaneously, always enriching lighter isotopes with higher valence states of uranium. Moreover, in connection with complexation reactions and isotopic effects by using a suitable type of adsorbent (and, if necessary, extractant) selective for one of the valence states of uranium, substantially enhanced The efficiency of separation was actually achieved. Published data (e.g. M. Seko, T. Miyake, K. Inada,
Nucl.Technology 50, 178−186, 1980;
Report INFEC/DEP/WG.2/31, On the
Thechnical, Economical and Safeguard
Information of the Different Enrichment
Thechniques, March 15, 1979), it is clear that we have succeeded in moving the value of the element separation factor to about 1.001, which is said to be the lower limit for the economical use of this process. For example, the elemental separation factor for gas diffusion processing, which is used as an operating standard for the separation of uranium isotopes, is approximately 1.0027. Therefore, the obtained results can already be said to be economically and technically advantageous. Nevertheless, operational applications are not obvious, mainly due to the limited value of the element separation factor, which requires a large number of stages, large amounts of enriched uranium hold-up, and processing. This is associated with necessitating the fabrication of devices with a relatively long time required to reach a stable state. The need to repeat the redox treatment of uranium many times is due to the redox agent involved (as well as the energy of the reaction, if necessary).
related to the substantive requirements of These defects are eliminated by a new method of separating isotopes according to the invention, which is based on a controlled distribution approach that takes advantage of isotope effects on concentration in a two-phase system. The method according to the invention is characterized in that the first phase is an aqueous or non-aqueous solution of the isotope and the ligand at a concentration from 10 -6 M up to a saturation concentration, or a gaseous mixture of the isotopic components or the isotope and an inert gas. and the molar ratio between the isotopes to be separated is from 1: 105 to 1: 10-5 in the starting mixture (or solution if necessary); Solid adsorbents such as benzene ion exchangers or biosorbents based on mycelium of lower fungi (if necessary, such as Teflon (a trade name for materials based on polytetrafluoroethylene), silica gel and cellulose) an extractant such as tributyl phosphate and trioctylamine (retained on a carrier); said two-phase system is used in the sorption and/or desorption (if necessary in the extraction and/or re-extraction); nonlinear isotherm
It is advantageous to indicate; and the carbonate ion,
by isotopic complexation with ligands such as sulfate, titanate, chloride and ethylenediaminetetraacetate or with carboxyl and hydroxyl groups and phosphorous, nitrogen and sulfur based groups. By using adsorbents and extractants with chelating functional groups and/or even in the dark or under light with a wavelength between 2.5 x 10 2 and 10 9 nm, both phases can be isolated. contact time from 10 -2 to 10 6 seconds,
The temperature was 10 2 to 10 3 K, the stirring speed was 10 -2 to 10 4 revolutions per second, and the flow rate in the column device was 10 -6 to 10 -1.
m/s and the particle size of the absorbent from 10 -6 to 10 -2 m.
and even for the desorption or re-extraction of isotopic components, compounds such as sodium carbonate, ammonium nitrate, sodium chloride, sodium sulfate, sulfuric acid, nitric acid and hydrochloric acid, as well as titanate ion, ethylenediaminetetraacetic acid. ions and solutions of compounds containing complexing ligands such as isobutyrate ions, alone or
When the two phases are brought into contact using a mixture with a total concentration from 10 -3 M to a saturated solution, the rates of isotope transfer from one phase to the other are unequal and the suppression of isotope exchange (retardation) occurs; In the method according to the invention, an aqueous solution of isotopic components such as 235 U () and 238 U () and ligands such as nitrate ions, sulfate ions and carbonate ions, the total concentration of which is 10 - 2 to 10 -1 M and the dissolved isotopes 235 U and 238 U in the starting mixture are 1:500 to 1:100.
It is possible to use, for example, a molar ratio of . It is possible to use ion exchangers based on styrene-divinylbenzene copolymers or adsorbents based on the mycelium of the lower fungus P. Chrysogenum as solid adsorbents. in the dark or
The operation was carried out under light with a wavelength of 250 to 650 nm, and the stirring rotational speed was 0.800 to 12.00 revolutions per second, and the flow rate in the column was 10 -4 to 10 -1 m/s, and the rotation speed was 10 -4 to 10 -4 m/s.
A solid adsorbent with a particle size of 10 -3 m was used at a temperature of 273 m.
~373K, and the phase contact time length is 102 ~
10 to 4 seconds can be selected. Sodium chloride + sodium carbonate, with a concentration of 10 -1 to 1.5M,
Alternatively, solutions of sodium carbonate or hydrochloric acid can be used for desorption. The process according to the invention is characterized by a substantially higher separation factor than previously achieved in isotope exchange reactions. The maximum value of the element separation factor varies between 1.02 and 1.10 in the process of sorption (and also desorption, if desired) of uranium isotopes. It is particularly advantageous to use solid adsorbents with uranium () solutions as well as with high selectivity of the sorption process (followed by the desorption process if necessary) but with not too fast reaction rates. The economic and technical importance of the isotope separation method according to the invention is considerable. exhibiting substantially increased elemental separation factor values, i.e. in the separation of uranium isotopes;
This shows a reduction in the total number of separation stages by an order of 1 to 1.5, a reduction in the hold-up of enriched uranium in the device by almost the same order, and a reduction in the time required to achieve a stable state. It is possible to operate with an emulsion of hexavalent uranium, without having to change its valence and without converting the uranium to UF 6 before enrichment, as in conventionally employed enrichment steps. Another important point is that the depleted uranium generated in this process can be used as input U material, and the content of 235 U isotope in this waste is actually reduced by half. The new method of isotope separation (i.e. in the example of sorption) can be further explained as follows: (a) an aqueous solution of the isotope, e.g. 235 U() + 238 U
When a solid adsorbent or a liquid extractant is brought into contact with a solution in which the concentration of one isotope is at least 0.5 to 1 order of magnitude higher than that of the other, the sorption of both isotopes occurs simultaneously. However, the rate of sorption of each isotope is proportional to the driving force of this process, ie, the relative deviation from equilibrium and the value of the mass transfer coefficient. This generally different rate of isotope component sorption, conditioned by the suppression of isotope exchange (see (g) below), is the property of an effect called the isotope effect of concentration.
The sorption rate can be determined, for example, by the relation: R = K q Δ q = K c Δ c [where R is the respective sorption of isotope transfer from one phase to the other (if necessary K q , K c are the mass transfer coefficients, and Δ q , Δ c represent the driving forces of the process, the respective concentration gradients in phases “q” and “c”. ] It is possible to express it as follows. (b) The driving force for isotope transfer from one phase (here the aqueous phase) to the other is a function of the initial concentration of the isotope in both phases, on the one hand, and as the isotope concentration changes on the other hand. It depends on the shape of the equilibrium curve (a curve that graphs the isotope concentration in the sorbent with respect to the isotope concentration in the solution; the same applies hereafter) in the region (this change occurs during the sorption process). (c) in the region of concentration changes, in relation to the isotope concentration in solution and how the sorption process is limited;
It is advantageous to select sorbents which exhibit as different slopes of the equilibrium curve as possible, corresponding to a single isotope if possible. The portion of the sorption equilibrium curve corresponding to lower concentration isotopes is approximately 10 2
It appears advantageous to have a slope of ˜10 3 and the portions corresponding to high concentrations of isotopes have a slope of about 10. (d) The choice of adsorbent is limited by the properties of the adsorbent alone, so it is likewise possible to adjust the composition of the solution to the properties of the solvent. In this sense, the isotope ratios are kept at their initial values and the absolute concentration of the isotopes can be adjusted, for example by dilution or even by adjusting the solution composition by adding further components, including complexing agents. Take changes into account. (e) The mass transfer coefficient is a function of the solution composition (isotope concentration) and the type of adsorbent (extractant if necessary) on the one hand, and the temperature and hydrodynamic parameters, stirring rate, flow rate, adsorption on the other hand. the particle size of the agent; although these mass transfer coefficients generally have different values for each isotope, with concentration dependence being one of the most important, their absolute values are primarily a function of adsorption. Depends on the type of agent. The inventors found that the mass transfer coefficient was between 10 -5 and 10 -3
We have found it advantageous to operate with such adsorbents per second. (f) For example, so-called biosorbents (Chieco Inventor Certificate No. 155833 and Chieco Inventor Certificate No. 184471 and 189198 (PV1867-75 and PV588-76)
), as well as ion exchangers based on styrene-divinylbenzene copolymers, alone or supported on carriers such as Teflon, cellulose, silica gel, etc., can be used as adsorbents with the above-mentioned equilibrium and kinetic properties. It is. (g) Simultaneously with isotope sorption (and if necessary extraction), isotope exchange begins to occur practically immediately;
This isotope exchange suppresses differences in the sorption amount of a single isotope that result from different sorption rates. The negative effects of the isotope exchange process (the rate of which is approximately equal to the sorption rate of isotopes at higher concentrations) can be suppressed on the one hand by the selection of the type of sorbent and the solution composition and by the appropriate Compensation can be made by suitable selection, on the one hand, and by operating at low temperatures and limited light irradiation. Interference with isotopic exchange can be achieved as well by complexing the isotopic components in one phase, either by adding suitable ligands to the solution or by complexing functional groups. Either by using a sorbent (and if necessary an extractant) with a (h) The same statements made above by way of example regarding the rate of isotope sorption are also true in principle regarding the rate of desorption (and re-extraction if desired) and the rates associated with isotope exchange. Example 1 Ostsorb trademark MV6/5 in Na form activated with hydrated titanium oxide (), swollen and centrifuged
Adsorbent (P. chrysozenum)
2 g of an adsorbent based on a fungus (chrysogenum) was mixed at a temperature of 293 K without exposure to light, with a stirring speed of 5 revolutions per second, while the PH
It was brought into contact with 60 ml of 0.01 M uranyl nitrate solution adjusted to 3.5. The 235 U: 238 U isotope ratio in the initial solution was 0.725×10 -2 (we were dealing with a compound prepared from natural uranium). During the process of the sorption reaction, a sample of the liquid phase was taken out, and the total concentration of uranium in the sample was measured by spectroscopic analysis using the reagent arsenazo, and the 235 U: 238 U isotope ratio was determined.
Measurement was performed using an Aldermaston-Micromass model 30 mass spectrometer. Based on the results obtained, the value of the separation factor was calculated as a function of time:

【表】 分離係数は吸着剤における 235U: 238U同位体
比の液相における同じ同位体比に対する比率とし
て定義される。 例 2 昼光の下で実験を行なつたことを除いて例1に
おけると同じ処理を実施し、液相における総ウラ
ン濃度及び同位体比の時間変化を測定した。得ら
れた結果に基づいて分離係数の時間依存を計算し
た:
[Table] Separation factor is defined as the ratio of the 235 U: 238 U isotope ratio in the adsorbent to the same isotope ratio in the liquid phase. Example 2 The same procedure as in Example 1 was carried out, except that the experiment was carried out in daylight, and the time evolution of the total uranium concentration and isotopic ratio in the liquid phase was measured. The time dependence of the separation factor was calculated based on the obtained results:

【表】 例 3 H+形の商標Amberlite IR−120なる強酸性陽
イオン交換剤を用いたことを除いて、例1におけ
ると同じ処理を実施し、液相における全ウラン濃
度及び同位体比の時間変化を測定した。得られた
結果から分離係数の時間依存を計算した:
[Table] Example 3 The same treatment as in Example 1 was carried out, except that a strongly acidic cation exchanger with the trademark Amberlite IR-120 in the H + form was used, and the total uranium concentration and isotope ratio in the liquid phase were determined. Changes over time were measured. The time dependence of the separation factor was calculated from the obtained results:

【表】 例 4 ウラン4×10-5M/gの容量までウランで飽和
させ、膨潤及び遠心処理した、商標Ostsorb
MV6/5なる吸着剤5gを、光照射の下、温度
293Kにて、撹拌速度5回転毎秒で撹拌しながら、
1M−NaCl+0.1M−Na2CO3の溶液20mlと接触せ
しめた。実験当初における吸着剤のウラン同位体
比は0.725×10-2であつた。収着操作の過程で液
相試料を取り出し、そこにおける総ウラン濃度及
235U: 238U同位体比を測定した。分離係数の
時間依存をその結果から計算した:
[Table] Example 4 Trademark Ostsorb saturated with uranium to a capacity of 4×10 -5 M/g of uranium, swollen and centrifuged.
5g of adsorbent MV6/5 was heated under light irradiation to
At 293K, while stirring at a stirring speed of 5 revolutions per second,
It was brought into contact with 20 ml of a solution of 1M NaCl + 0.1M Na 2 CO 3 . The uranium isotope ratio of the adsorbent at the beginning of the experiment was 0.725×10 -2 . During the sorption process, a liquid phase sample was taken and the total uranium concentration and 235 U: 238 U isotope ratio were measured. The time dependence of the separation factor was calculated from the results:

【表】 例 5 光照射なしで実験を行なつたことを除いて例4
におけると同じ処理を実施し、液相における総ウ
ラン濃度及び同位体比の時間変化を測定した。分
離係数の時間依存を得られた結果から計算した。
[Table] Example 5 Example 4 except that the experiment was conducted without light irradiation
The same treatment as in was carried out, and the temporal changes in the total uranium concentration and isotope ratio in the liquid phase were measured. The time dependence of the separation factor was calculated from the obtained results.

【表】 例 6 H+形で、膨潤しそして遠心処理した、商標
Ostsorb MV6/5なる吸着剤(P.chrysogenum
の菌類の菌糸体に基づく吸着剤)2gを、昼光照
射の下、温度293Kにて、回転速度5回転毎秒で
撹拌しながら、0.01Mの硝酸ウラニル溶液50mlと
接触せしめた。出発溶液における 235U: 238U同
位体比は0.725×10-2であつた。3時間後2つの
相を分離し、第2段階で溶液を新鮮な前記と同じ
吸着剤2gと再び3時間にわたり接触せしめた。
全体として4回のこうした収着段階を遂行した。
arsenazo 試剤を用いる分光分析法で液相に
おける総ウラン濃度を各段の後に測定し、そして
Aldermaston−Micromass社model30の質量分析
器を用いて吸着剤相における 235U: 238U同位体
比を最終段の後に測定した。その結果から一つの
段の要素分離係数を計算した。結果は1.020であ
つた。 分離係数は吸着剤における 235U: 238U同位体
比の液相−本明細書の例では相の接触の3時間後
の−における同じ同位体比に対する比率として定
義される。 例 7 酸化チタン()で活性化した商標Ostsord
MV6/5なる吸着剤を用いたことを除いて例1
におけると同じ処理を行なつて、4回の収着段階
を遂行した。1段の要素分離係数を結果から計算
した。 1.025が得られた。 例 8 ウラン4×10-5M/gの容量までウランで飽和
した、膨潤及び遠心処理した、H+形の商標名
Ostsord MV6/5なる吸着剤5gを、昼光照射
の下、温度293Kにて、回転速度5回転毎秒で撹
拌しながら、1M−NaCl+0.1M−Na2CO3の溶液
20mlと接触せしめた。実験当初の吸着剤における
同位体比 235U: 238Uは0.725×10-2であつた。
1時間後2つの相を分離し、吸着剤に上記の組成
物の新しい溶液を添加した。全部で4回のこうし
た脱着段階を遂行した。各段階の後で溶液の総ウ
ラン濃度を測定し、吸着剤相における同位体比
235U: 238Uは最終段の後で測定した。一段の要
素分離係数を結果から計算した。 1.150が得られた。 例 9 0.1M−炭酸ナトリウム溶液を脱着に使用した
ことを除いて例3におけると同じ処理を行なつ
て、4回の脱着段階を遂行した。一段の要素分離
係数を結果から計算した。 1.120が得られた。 例 10 0.1M−塩酸溶液を脱着用に使用したことを除
いて例3におけると同じ処理を行ない、4回の脱
着段階を遂行した。一段の要素分離係数を結果か
ら計算した。 0.980が得られた。 例 11 塩基の形の0.1Mのトリ−n−オクチルアミン
溶液20.0mlを、温度293Kにて実験室用振盪機で
撹拌しながら、0.01M−UO2SO4+0.1M−
Na2SO4の溶液100.0mlと接触せしめた。出発溶液
の同位体比 235U: 238Uは0.725×10-2であつた
(天然のウランから調製した化合物を取扱つた)。
抽出の過程で水性相の試料を取り出し、その相に
おいて、試剤arsenazo を用いる分光分析法
でウランの総濃度を測定し、そして
Aldermaston−Micromass社製model30なる質量
分析器を用いて同位体比を測定した。その結果か
ら時間の関係としての分離係数の値を計算した。
[Table] Example 6 Trademark in H + form, swollen and centrifuged
Ostsorb MV6/5 adsorbent (P. chrysogenum
2 g of an adsorbent based on fungal mycelia) were brought into contact with 50 ml of a 0.01 M uranyl nitrate solution at a temperature of 293 K under daylight irradiation and with stirring at a rotational speed of 5 revolutions per second. The 235 U: 238 U isotope ratio in the starting solution was 0.725×10 −2 . After 3 hours the two phases were separated and in a second step the solution was again contacted with 2 g of fresh same adsorbent for 3 hours.
In total, four such sorption steps were performed.
The total uranium concentration in the liquid phase is determined after each step by spectrometry using the arsenazo reagent, and
The 235 U: 238 U isotope ratio in the adsorbent phase was measured after the final stage using an Aldermaston-Micromass model 30 mass spectrometer. From the results, the element separation coefficient of one stage was calculated. The result was 1.020. The separation factor is defined as the ratio of the 235 U: 238 U isotope ratio in the adsorbent to the same isotope ratio in the liquid phase - in our example after 3 hours of phase contact. Example 7 Trademark Ostsord activated with titanium oxide ()
Example 1 except that an adsorbent called MV6/5 was used.
Four sorption steps were carried out using the same treatment as in . A one-stage element separation factor was calculated from the results. 1.025 was obtained. Example 8 Trade name for swollen and centrifuged H + form saturated with uranium to a capacity of 4×10 -5 M/g of uranium
5 g of Ostsord MV6/5 adsorbent was added to a solution of 1 M NaCl + 0.1 M Na 2 CO 3 at a temperature of 293 K under daylight irradiation and with stirring at a rotational speed of 5 revolutions per second.
It was brought into contact with 20 ml. The isotope ratio 235 U: 238 U in the adsorbent at the beginning of the experiment was 0.725×10 -2 .
After 1 hour the two phases were separated and a fresh solution of the above composition was added to the adsorbent. A total of four such desorption steps were performed. Measure the total uranium concentration of the solution after each step and determine the isotope ratio in the adsorbent phase.
235 U: 238 U was measured after the last stage. A single-stage element separation factor was calculated from the results. 1.150 was obtained. Example 9 Four desorption steps were carried out using the same procedure as in Example 3, except that a 0.1M sodium carbonate solution was used for the desorption. A single-stage element separation factor was calculated from the results. 1.120 was obtained. Example 10 The same procedure as in Example 3 was carried out, except that a 0.1M hydrochloric acid solution was used for desorption, and four desorption steps were carried out. A single-stage element separation factor was calculated from the results. 0.980 was obtained. Example 11 20.0 ml of a 0.1 M tri-n-octylamine solution in the base form is mixed with 0.01 M−UO 2 SO 4 +0.1 M− while stirring on a laboratory shaker at a temperature of 293 K.
It was contacted with 100.0 ml of a solution of Na 2 SO 4 . The isotope ratio of the starting solution 235 U: 238 U was 0.725×10 -2 (we were dealing with a compound prepared from natural uranium).
During the extraction process, a sample of the aqueous phase is taken, in which the total concentration of uranium is determined by spectrometry using the reagent arsenazo, and
Isotope ratios were measured using a mass spectrometer model 30 manufactured by Aldermaston-Micromass. From the results, the value of the separation coefficient as a function of time was calculated.

【表】 コントロールせる分配法の原理は、さらに一般
的に、複数相間で濃度が異なるか又は移動速度が
異なるかいずれかの成分の分離に、すなわち収着
の(必要ならば脱着の)速度が一つの成分につい
て異なる場合の成分分離に利用することが可能で
ある。同位体の混合物のほか、貴土類、さらには
Zr〜Hf、 226Ra〜Baその他同様なものなど類似
の特性を有する物質の分離がこれに関係する。半
導体、原子核反応及び分析的純度の純物質の調製
が、同様に、本方法によつて有利に実現可能であ
る。
[Table] The principle of controlled partitioning is applied more generally to the separation of components that either have different concentrations or different migration rates between phases, i.e. the rate of sorption (and desorption if necessary). It can be used for component separation when one component is different. In addition to mixtures of isotopes, rare earths and even
This involves the separation of substances with similar properties such as Zr~Hf, 226 Ra~Ba and the like. The preparation of semiconductors, nuclear reactions and pure substances of analytical purity can likewise be advantageously realized with the present method.

Claims (1)

【特許請求の範囲】 1 10-2〜104回転毎秒の速度で攪拌しながら
10-2〜106秒の間102〜103Kの温度で第一相と第二
相を接触させた後、これらの相を分離し、所望の
ウラン同位体を回収する工程からなり、かつ第一
相が硝酸イオン、硫酸イオン、塩酸イオンおよび
炭酸イオンから選ばれた配位子と2以上のウラン
同位体との10-6Mから飽和濃度までの濃度を有す
る溶液からなり、第二相が、 スチレン−ジビニルベンゼンイオン交換剤若し
くは低級菌類の菌糸体に基づく生体吸着剤からな
る固体吸着剤、又は 単体若しくは担体に支持されたトリブチルホス
フエート若しくはトリオクチルアミンからなる抽
出剤 からなることを特徴とする二相系におけるウラン
同位体の分離方法。 2 前記第一相がU235()とU238()と配位子
の0.01〜2.0Mの濃度の溶液からなり、配位子が
硝酸塩又は硫酸塩からなる特許請求の範囲第1項
記載の方法。 3 前記第二相がピー・クリソゼナム(P.
chrysogenum)の低級菌類の菌糸体に基づく固
体吸着剤からなる特許請求の範囲第1項記載の方
法。 4 前記第二相がスチレン−ジビニルベンゼン共
重合体に基づく強酸性固体吸着剤陽イオン交換剤
からなる特許請求の範囲第1項記載の方法。 5 第一相と第二相との前記接触を暗所で行なう
特許請求の範囲第1項記載の方法。 6 第一相と第二相との前記接触を250〜650nm
の波長の光の存在において行なう特許請求の範囲
第1項記載の方法。 7 前記第二相が10-4〜10-3mの粒径を有する固
体吸着剤からなり、前記攪拌速度が0.80〜12.0回
転毎秒であり、カラム中の相の流速が10-4〜10-1
m/秒である特許請求の範囲第1項記載の方法。 8 前記接触温度が273〓〜373〓である特許請求
の範囲第1項記載の方法。 9 炭酸ナトリウム、硫酸ナトリウム、硫酸、硝
酸若しくは塩酸からなる化合物の単独、又はチタ
ン酸イオン、エチレンジアミン四酢酸イオン若し
くはイソブチレートイオンからなる配位子との混
合物としてて10-3Mから飽和濃度までの濃度の溶
液によつて、ウラン同位体の脱着又は再抽出を行
なう特許請求の範囲第1項記載の方法。 10 炭酸ナトリウム;塩化ナトリウムと炭酸ナ
トリウムの混合物;又は塩酸からなる10-1
1.5Mの濃度の溶液で吸着剤の溶離を行なう特許
請求の範囲第1項記載の方法。 11 前記第二相が抽出剤である特許請求の範囲
第1項記載の方法。 12 同位体U235およびU238が出発混合物中に
1:500〜1:100のモル比で存在する特許請求の
範囲第2項記載の方法。 13 前記抽出剤がトリブチルホスフエートであ
る特許請求の範囲第11項記載の方法。 14 前記抽出剤がトリオクチルアミンである特
許請求の範囲第11項記載の方法。
[Claims] While stirring at a speed of 1 10 -2 to 10 4 revolutions per second.
contacting the first and second phases at a temperature of 10 2 to 10 3 K for 10 -2 to 10 6 seconds, followed by separating these phases and recovering the desired uranium isotope; and the first phase consists of a solution of a ligand selected from nitrate ions, sulfate ions, hydrochloride ions, and carbonate ions and two or more uranium isotopes at a concentration from 10 -6 M to a saturation concentration; The phase may consist of a solid adsorbent consisting of a styrene-divinylbenzene ion exchanger or a bioadsorbent based on mycelium of lower fungi, or an extractant consisting of tributyl phosphate or trioctylamine alone or supported on a carrier. A method for separating uranium isotopes in a characterized two-phase system. 2. The method according to claim 1, wherein the first phase consists of a solution of U 235 (), U 238 () and a ligand at a concentration of 0.01 to 2.0 M, and the ligand is a nitrate or a sulfate. Method. 3 The second phase is P. chrysozenum (P.
2. A method according to claim 1, comprising a solid adsorbent based on the mycelium of a lower fungus, A. chrysogenum. 4. The method of claim 1, wherein said second phase comprises a strongly acidic solid adsorbent cation exchanger based on a styrene-divinylbenzene copolymer. 5. The method according to claim 1, wherein the contact between the first phase and the second phase is performed in a dark place. 6 The contact between the first phase and the second phase is 250 to 650 nm.
2. The method according to claim 1, which is carried out in the presence of light having a wavelength of . 7. The second phase consists of a solid adsorbent having a particle size of 10 -4 to 10 -3 m, the stirring speed is 0.80 to 12.0 revolutions per second, and the flow rate of the phase in the column is 10 -4 to 10 -3 m . 1
2. A method according to claim 1, wherein the speed is m/sec. 8. The method according to claim 1, wherein the contact temperature is between 273 and 373. 9 Compounds consisting of sodium carbonate, sodium sulfate, sulfuric acid, nitric acid or hydrochloric acid alone or as a mixture with a ligand consisting of titanate ion, ethylenediaminetetraacetate ion or isobutyrate ion from 10 -3 M to saturation concentration 2. The method according to claim 1, wherein the uranium isotope is desorbed or re-extracted with a solution having a concentration of . 10 Sodium carbonate; a mixture of sodium chloride and sodium carbonate; or 10 -1 consisting of hydrochloric acid
2. The method according to claim 1, wherein the adsorbent is eluted with a solution having a concentration of 1.5M. 11. The method of claim 1, wherein the second phase is an extractant. 12. Process according to claim 2, wherein the isotopes U 235 and U 238 are present in the starting mixture in a molar ratio of 1:500 to 1:100. 13. The method of claim 11, wherein the extractant is tributyl phosphate. 14. The method of claim 11, wherein the extractant is trioctylamine.
JP56145662A 1981-08-28 1981-09-17 Separation of isotope Granted JPS5855030A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU74699/81A AU547079B2 (en) 1981-08-28 1981-08-28 Isotope separation process
GB08126409A GB2104797B (en) 1981-08-28 1981-08-29 A process for the separation of isotopes
IT23812/81A IT1138580B (en) 1981-08-28 1981-09-04 PROCESS FOR THE SEPARATION OF ISOTOPES WITH THE METHOD OF REGULATED DISTRIBUTION USING IN PARTICULAR THE ISOTOPIC CONCENTRATION EFFECT
DE19813135540 DE3135540A1 (en) 1981-08-28 1981-09-08 Isotope separation by the controlled distribution method utilising in particular the isotope concentration effect
FR8117190A FR2512354B1 (en) 1981-08-28 1981-09-10 PROCESS FOR THE SEPARATION OF ISOTOPES BY A CONTROLLED DISTRIBUTION, ESPECIALLY USING AN ISOTOPIC CONCENTRATION EFFECT
JP56145662A JPS5855030A (en) 1981-08-28 1981-09-17 Separation of isotope
CA000386288A CA1185074A (en) 1981-08-28 1981-09-21 Separation of isotopes by controlled distribution
DD81234551A DD210517A3 (en) 1981-08-28 1981-11-02 PROCESS FOR ISOTOPE SEPARATION THROUGH CONTROLLABLE SEPARATION METHODS USING A SPECIFIC BALANCE CONCENTRATION EFFECT

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
AU74699/81A AU547079B2 (en) 1981-08-28 1981-08-28 Isotope separation process
GB08126409A GB2104797B (en) 1981-08-28 1981-08-29 A process for the separation of isotopes
IT23812/81A IT1138580B (en) 1981-08-28 1981-09-04 PROCESS FOR THE SEPARATION OF ISOTOPES WITH THE METHOD OF REGULATED DISTRIBUTION USING IN PARTICULAR THE ISOTOPIC CONCENTRATION EFFECT
DE19813135540 DE3135540A1 (en) 1981-08-28 1981-09-08 Isotope separation by the controlled distribution method utilising in particular the isotope concentration effect
FR8117190A FR2512354B1 (en) 1981-08-28 1981-09-10 PROCESS FOR THE SEPARATION OF ISOTOPES BY A CONTROLLED DISTRIBUTION, ESPECIALLY USING AN ISOTOPIC CONCENTRATION EFFECT
JP56145662A JPS5855030A (en) 1981-08-28 1981-09-17 Separation of isotope
CA000386288A CA1185074A (en) 1981-08-28 1981-09-21 Separation of isotopes by controlled distribution
DD81234551A DD210517A3 (en) 1981-08-28 1981-11-02 PROCESS FOR ISOTOPE SEPARATION THROUGH CONTROLLABLE SEPARATION METHODS USING A SPECIFIC BALANCE CONCENTRATION EFFECT

Publications (2)

Publication Number Publication Date
JPS5855030A JPS5855030A (en) 1983-04-01
JPH0253087B2 true JPH0253087B2 (en) 1990-11-15

Family

ID=27570105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145662A Granted JPS5855030A (en) 1981-08-28 1981-09-17 Separation of isotope

Country Status (8)

Country Link
JP (1) JPS5855030A (en)
AU (1) AU547079B2 (en)
CA (1) CA1185074A (en)
DD (1) DD210517A3 (en)
DE (1) DE3135540A1 (en)
FR (1) FR2512354B1 (en)
GB (1) GB2104797B (en)
IT (1) IT1138580B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584183A (en) * 1983-12-21 1986-04-22 Westinghouse Electric Corp. Process for separating zirconium isotopes
US4767513A (en) * 1987-03-10 1988-08-30 Westinghouse Electric Corp. Zirconium isotope separation process
US5130001A (en) * 1990-12-03 1992-07-14 Westinghouse Electric Corp. Uranium isotope separation by continuous anion exchange chromatography
CN105561790B (en) * 2015-12-23 2017-07-18 中国科学院上海高等研究院 Benzo-aza crown ether compound separates the application of lithium isotope
CN105540705B (en) * 2016-01-19 2018-02-16 东华大学 A kind of high concentration NPE waste water thermocatalytic prepares the method and its device of solid adsorbent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236590A (en) * 1975-09-15 1977-03-19 Us Government Method of carrying uranyl ions on cation exchange resins

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1514094A (en) * 1966-02-15 1968-02-23 Aquitaine Petrole Isotope enrichment production and measurement process
JPS5122596B2 (en) * 1972-10-05 1976-07-10
JPS5949052B2 (en) * 1977-09-14 1984-11-30 旭化成株式会社 Isotope separation device
JPS562834A (en) * 1979-06-22 1981-01-13 Asahi Chem Ind Co Ltd New separation of isotope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236590A (en) * 1975-09-15 1977-03-19 Us Government Method of carrying uranyl ions on cation exchange resins

Also Published As

Publication number Publication date
IT1138580B (en) 1986-09-17
IT8123812A0 (en) 1981-09-04
JPS5855030A (en) 1983-04-01
GB2104797B (en) 1985-11-13
AU7469981A (en) 1983-03-03
GB2104797A (en) 1983-03-16
CA1185074A (en) 1985-04-09
DE3135540A1 (en) 1983-06-09
DD210517A3 (en) 1984-06-13
FR2512354B1 (en) 1986-05-02
FR2512354A1 (en) 1983-03-11
AU547079B2 (en) 1985-10-03

Similar Documents

Publication Publication Date Title
Faris et al. Anion Exchange Resin Separation of the Rare Earths, Yttrium, and Scandium in Nitric Acid-Methanol Mixtures.
Fritz Early milestones in the development of ion-exchange chromatography: a personal account
Paramanik et al. Unique reversibility in extraction mechanism of U compared to solvent extraction for sorption of U (VI) and Pu (IV) by a novel solvent impregnated resin containing trialkyl phosphine oxide functionalized ionic liquid
Metwally Kinetic studies for sorption of some metal ions from aqueous acid solutions onto TDA impregnated resin
Kocjan Retention of some metal ions and their separation on silica gel modified with Acid Red 88
El-Shahawi et al. Kinetics, thermodynamic and chromatographic behaviour of the uranyl ions sorption from aqueous thiocyanate media onto polyurethane foams
Terada et al. The Chromatographic concentration of mercury in Sea Water with 2-Mercaptobenzothiazole supported on Silica Gel
Kosyakov et al. Separation of transplutonium and rare-earth elements by extraction with HDEHP from DTPA solutions
JPH0253087B2 (en)
Warshawsky et al. Impregnated Resins: Metal‐Ion Complexing Agents Incorporated Physically In Polymeric Matrices
Zhang et al. Preparation of a novel macroporous silica-based 2, 6-bis (5, 6-diisobutyl-1, 2, 4-triazine-3-yl) pyridine impregnated polymeric composite and its application in the adsorption for trivalent rare earths
Zhang et al. Bleeding evaluation of the stationary phase from a few novel macroporous silica-substrate polymeric materials used for radionuclide partitioning from HLLW in MAREC process
Banerjee et al. Highly efficient plutonium scavenging by an extraction chromatography resin containing a tetraaza-12-crown-4 ligand tethered with four diglycolamide pendent arms
Modolo et al. Recovery of actinides and lanthanides from high-level liquid waste by extraction chromatography using TODGA+ TBP impregnated resins
CN111621652B (en) Separation method for separating neptunium from sample to be detected
JPH07100371A (en) Adsorbent for removing rare earth element and adsorption separation method using the same
Kocjan Silica gel modified with some sulfonated chelating reagents as a sorbent for the preconcentration, isolation and separation of metal ions
Fritz et al. Separation of Iron by Reversed-Phase Chromatography.
Das et al. Reversed phase chromatographic separation of zirconium, niobium and hafnium tracers with HDEHP
Lyzlova et al. Development of a sorption technique for the selective separation of plutonium and americium from nitric acid intermediate-level wastes of chemical and metallurgical production
Shakir et al. Gel-liquid extraction and separation of U (VI), Th (IV), Ce (lll), and Co (ll)
Zaitsev et al. Recovery of Pd from spent fuel: 3. Recovery of Pd from nitric acid solutions using carbamoyl phosphine oxides
AKIBA et al. Equilibria and kinetics of uranium extraction with 5, 8-diethyl-7-hydroxydodecan-6-one oxime in various solvents
Shakir et al. Extraction of uranium (VI) by di‐(2‐ethylhexyl) phosphoric acid gels based on a styrene‐divinylbenzene copolymer
CS214905B1 (en) Method of separation of isotopes by method of controlled distribution of particularly balanced concentration effect