JP2018123093A - Dibenzopyrromethene boron chelate compound, near infrared light absorbing dye, photoelectric conversion element, near-infrared photosensor and imaging element - Google Patents

Dibenzopyrromethene boron chelate compound, near infrared light absorbing dye, photoelectric conversion element, near-infrared photosensor and imaging element Download PDF

Info

Publication number
JP2018123093A
JP2018123093A JP2017016914A JP2017016914A JP2018123093A JP 2018123093 A JP2018123093 A JP 2018123093A JP 2017016914 A JP2017016914 A JP 2017016914A JP 2017016914 A JP2017016914 A JP 2017016914A JP 2018123093 A JP2018123093 A JP 2018123093A
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
compound
chelate compound
boron chelate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017016914A
Other languages
Japanese (ja)
Other versions
JP6770278B2 (en
Inventor
由治 久保
Yoshiharu Kubo
由治 久保
達也 青竹
Tatsuya AOTAKE
達也 青竹
秀典 薬師寺
Hidenori Yakushiji
秀典 薬師寺
山本 達也
Tatsuya Yamamoto
達也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Tokyo Metropolitan Public University Corp
Original Assignee
Nippon Kayaku Co Ltd
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd, Tokyo Metropolitan Public University Corp filed Critical Nippon Kayaku Co Ltd
Priority to JP2017016914A priority Critical patent/JP6770278B2/en
Publication of JP2018123093A publication Critical patent/JP2018123093A/en
Application granted granted Critical
Publication of JP6770278B2 publication Critical patent/JP6770278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To provide an organic compound having absorption characteristics in a near-infrared region, while showing high light durability, and has excellent photoelectric conversion performance, the organic compound to be used for a photoelectric conversion element, specifically an imaging element or a photosensor.SOLUTION: The present invention provides a dibenzopyrromethene boron chelate compound represented by formula (1) (Zis an unsubstituted/substituted naphthalene ring; R-Rindependently represent H, an aryl group, a heteroaryl group, an alkyl group, a cycloalkyl group, a halogen atom, a hydroxy group, an alkoxy group, a mercapto group, an alkylthio group, a nitro group, a substituted amino group, an amide group, an acyl group, a carboxyl group, an acyloxy group, a cyano group, a sulfo group, a sulfamoyl group, an alkyl sulfamoyl group, a carbamoyl group or an alkyl carbamoyl group).SELECTED DRAWING: Figure 1

Description

本発明は、ジベンゾピロメテンホウ素キレート構造を有する新規な化合物、光電変換素子、光センサー、撮像素子に関する。特に、近赤外領域に主たる吸収帯を有する光電変換素子及びその利用に関する。   The present invention relates to a novel compound having a dibenzopyromethene boron chelate structure, a photoelectric conversion element, an optical sensor, and an imaging element. In particular, the present invention relates to a photoelectric conversion element having a main absorption band in the near infrared region and use thereof.

780〜2000nmの近赤外領域(国際電気標準会議規格IEC60050−841;1983)に吸収帯を有する近赤外光吸収色素は、従来から産業上の様々な用途への応用が検討されている。例を挙げると、近赤外光吸収色素は、CD−R(Compact Disk−Recordable)等の光情報記録媒体;サーマルCTP(Computer To Plate)、フラッシュトナー定着、レーザー感熱記録等の印刷用途;熱遮断フィルム等の用途に利用されている。さらには、近赤外光吸収色素は、選択的に特定波長域の光を吸収するというその特性を用いて、PDP(プラズマ・ディスプレイ・パネル)フィルター等に用いられる近赤外線カットフィルターや、植物成長調整用フィルム等にも使用されている。また、近赤外光吸収色素は、溶媒に溶解又は分散させることにより、近赤外光吸収インクとして使用することも可能である。該近赤外光吸収インクによる印字物は、目視では認識が困難であり、近赤外光検出器等でのみ読み取りが可能であることから、例えば偽造防止等を目的とした印字等に使用される。   Near infrared light absorbing dyes having an absorption band in the near infrared region of 780 to 2000 nm (International Electrotechnical Commission Standard IEC60050-841; 1983) have been studied for various industrial applications. For example, near-infrared light absorbing dyes are optical information recording media such as CD-R (Compact Disk-Recordable); printing applications such as thermal CTP (Computer To Plate), flash toner fixing, laser thermal recording; It is used for applications such as barrier films. Furthermore, near-infrared light-absorbing dyes selectively absorb light in a specific wavelength region, so that near-infrared cut filters used for PDP (plasma display panel) filters, etc., and plant growth It is also used for adjustment films. The near infrared light absorbing dye can also be used as a near infrared light absorbing ink by dissolving or dispersing in a solvent. The printed matter using the near-infrared light absorbing ink is difficult to recognize visually and can be read only by a near-infrared light detector or the like. For example, it is used for printing for the purpose of preventing counterfeiting. The

このような不可視画像形成用の赤外光吸収材料としては、無機系の赤外光吸収材料と、有機系の赤外光吸収材料とが既に知られている。このうち、無機系の赤外光吸収材料としては、イッテルビウム等の希土類金属や、銅リン酸結晶化ガラス等が知られている。しかしながら、無機系の赤外光吸収材料は、近赤外領域の光の吸収性が十分でないために、不可視画像の単位面積あたりに多量の赤外光吸収材料が必要となる。そのため、無機系の赤外光吸収材料によって不可視画像を形成した場合、その表面上にさらに可視画像を形成すると、下側の不可視画像の凹凸が表面側の可視画像に影響を与えてしまう。   As such an infrared light absorbing material for forming an invisible image, an inorganic infrared light absorbing material and an organic infrared light absorbing material are already known. Among these, rare earth metals such as ytterbium, copper phosphate crystallized glass, and the like are known as inorganic infrared light absorbing materials. However, since the inorganic infrared light absorbing material does not sufficiently absorb light in the near infrared region, a large amount of infrared light absorbing material is required per unit area of the invisible image. Therefore, when an invisible image is formed with an inorganic infrared light absorbing material, when a visible image is further formed on the surface, the unevenness of the lower invisible image affects the visible image on the surface side.

それに対し、有機系の赤外光吸収材料は、赤外領域の光の吸収性が十分であるために、不可視画像の単位面積あたりの使用量が少なくてすむので、無機系の赤外光吸収材料を使用した場合のような不都合は生じない。そのため、現在に至るまで多くの有機系赤外光吸収材料の開発が進められている。   In contrast, organic infrared light-absorbing materials have sufficient absorption of light in the infrared region, so less use is required per unit area of invisible images. There are no inconveniences when using materials. Therefore, many organic infrared light absorbing materials have been developed so far.

例えば、特許文献1には、有機系の近赤外光吸収材料として、ナフタロシアニン系化合物が開示されている。しかしながら、ナフタロシアニン系化合物は、製造方法の煩雑さ、及び溶解性の調整の困難さがあることから、一般の工業的には、対イオン性色素化合物を近赤外光吸収材料として用いることが通常となっている。特許文献2には、赤外光領域に光吸収性を有する赤外線吸収物質の例として、アミニウム化合物が開示されている。また、特許文献3には、近赤外領域に蛍光波長を有する近赤外蛍光色素の例として、ナフトフルオレセイン化合物が開示されている。   For example, Patent Document 1 discloses a naphthalocyanine compound as an organic near infrared light absorbing material. However, since the naphthalocyanine-based compound has a complicated manufacturing method and difficulty in adjusting the solubility, the general industrial use of a counterionic dye compound as a near-infrared light absorbing material. It has become normal. Patent Document 2 discloses an aminium compound as an example of an infrared absorbing material having light absorption in the infrared light region. Patent Document 3 discloses a naphthofluorescein compound as an example of a near-infrared fluorescent dye having a fluorescence wavelength in the near-infrared region.

さらに、非特許文献1には、近赤外光領域に蛍光波長を有する近赤外蛍光色素の例として、ボロンジピロメテン化合物が報告されている。特許文献4では、ジベンゾピロメテンホウ素キレート化合物が長波長側の吸収極大波長を有するとして報告されており、特許文献5では有機薄膜太陽電池素子の増感剤として用いられている。非特許文献2では、近赤外波長領域にピークトップを示す、ジナフトピロメテンホウ素キレート化合物が報告されている。   Furthermore, Non-Patent Document 1 reports a boron dipyrromethene compound as an example of a near-infrared fluorescent dye having a fluorescence wavelength in the near-infrared light region. In Patent Document 4, it is reported that a dibenzopyromethene boron chelate compound has an absorption maximum wavelength on the long wavelength side, and in Patent Document 5, it is used as a sensitizer for organic thin-film solar cell elements. Non-Patent Document 2 reports a dinaphthopyromethene boron chelate compound that exhibits a peak top in the near-infrared wavelength region.

特開2007−3944号公報JP 2007-3944 A 特開平7−271081号公報Japanese Patent Laid-Open No. 7-271081 特開2012−219258号公報JP 2012-219258 A 特開2010−184880号公報JP 2010-184880 A 特開2012−199541号公報JP 2012-199541 A

Tetrahedron 2011.67.3187−3193Tetrahedron 2011.7.37.3187-3193 J.Org.Chem. 2016.81.1310−1315J. et al. Org. Chem. 2016.8.11.1310-1315

現在用いられている近赤外光吸収色素は、耐熱性、耐光性、製造方法の煩雑さと云った課題を抱えており、工業的な利用が可能かつ高い耐久性を示す材料が求められている。特に近赤外光のセンシングを目的とする場合、近赤外領域に強い吸収を有する有機化合物で作製する光電変換素子が望まれている。比較的耐熱性に優れたピロメテンホウ素キレート化合物は、上記要求を満たす有望な材料であり、前述したとおり報告はあるが、近赤外領域に吸収帯を有する材料としては不十分である。吸収帯の長波長化の手法としてπ共役長の拡張が効果的であること多く報告されているが、最高被占軌道(HOMO)のエネルギー準位が浅くなることで、酸化に対して不安定となり耐光性が低下する課題を有する。
例えば、非特許文献1では光吸収極大は711nmを示すが、近赤外領域の光を効果的に利用するにはより長波長化が必要である。また、特許文献4及び特許文献5では有機薄膜太陽電池素子用の増感剤として利用が開示されているが、光電変換波長の末端が800nmに達する程度であり、近赤外領域での光電変換材料としては十分ではない。
さらに、非特許文献2のジナフトピロメテンホウ素キレート化合物は800nm以上に光吸収極大を示すが、HOMOエネルギー準位が浅くなり、空気酸化に対する安定性が低下している。
Currently used near-infrared light-absorbing dyes have problems such as heat resistance, light resistance, and complicated manufacturing methods, and materials that can be industrially used and exhibit high durability are required. . In particular, for the purpose of sensing near infrared light, a photoelectric conversion element manufactured using an organic compound having strong absorption in the near infrared region is desired. A pyromethene boron chelate compound having relatively high heat resistance is a promising material that satisfies the above requirements, and as described above, there are reports, but it is insufficient as a material having an absorption band in the near infrared region. Although it has been reported that extension of the π conjugate length is effective as a technique for extending the wavelength of the absorption band, it is unstable against oxidation due to the shallowest energy level of the highest occupied orbit (HOMO). Thus, there is a problem that light resistance is lowered.
For example, in Non-Patent Document 1, the light absorption maximum is 711 nm, but in order to effectively use light in the near infrared region, a longer wavelength is required. Patent Document 4 and Patent Document 5 disclose use as a sensitizer for an organic thin film solar cell element, but the end of the photoelectric conversion wavelength reaches 800 nm, and photoelectric conversion in the near-infrared region. Not enough as a material.
Furthermore, although the dinaphthopyromethene boron chelate compound of Non-Patent Document 2 shows a light absorption maximum at 800 nm or more, the HOMO energy level becomes shallow and the stability against air oxidation is lowered.

本発明の目的は、以上のような課題に鑑み、工業的な利用が可能で、かつ近赤外領域帯に主たる吸収波長を有し、優れた光電変換性能を有する有機化合物、それを用いた光電変換素子、特に撮像素子、光センサーとしての利用を提供することにある。   In view of the above-described problems, the object of the present invention is an organic compound that can be used industrially, has an absorption wavelength mainly in the near-infrared region, and has excellent photoelectric conversion performance. The object is to provide use as a photoelectric conversion element, in particular, an image pickup element and an optical sensor.

本発明者は、上記課題を解決すべく、有機光電変換素子へ用いた際に十分な性能を発揮するような、ボロンジピロメテン化合物の3,5位にナフタレン環を以てB−Oキレート化による縮環構造を達成した新規のジベンゾピロメテンホウ素キレート化合物を開発し、且つこれを用いた薄膜が近赤外領域に主たる吸収波長を有し、加えてこれを用いた近赤外光電変換素子が実現することを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventor has reduced the concentration by boron chelation with a naphthalene ring at the 3,5-positions of a boron dipyrromethene compound that exhibits sufficient performance when used in an organic photoelectric conversion element. A novel dibenzopyromethene boron chelate compound with a ring structure has been developed, and a thin film using this compound has a main absorption wavelength in the near infrared region, and in addition, a near infrared photoelectric conversion device using this has been realized As a result, the present invention has been completed.

即ち、本発明は、
[1]下記一般式(1)で表されるジベンゾピロメテンホウ素キレート化合物、
That is, the present invention
[1] A dibenzopyromethene boron chelate compound represented by the following general formula (1):

Figure 2018123093
Figure 2018123093

(Zは無置換または置換基を有するナフタレン環を表す。R〜Rは各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。)
[2]下記一般式(2)で表されるジベンゾピロメテンホウ素キレート化合物、
(Z 1 represents an unsubstituted or substituted naphthalene ring. R 1 to R 8 each independently represents a hydrogen atom, an aryl group, a heteroaryl group, an alkyl group, a cycloalkyl group, a halogen atom, a hydroxy group, or an alkoxy group. , A mercapto group, an alkylthio group, a nitro group, a substituted amino group, an amide group, an acyl group, a carboxyl group, an acyloxy group, a cyano group, a sulfo group, a sulfamoyl group, an alkylsulfamoyl group, a carbamoyl group, and an alkylcarbamoyl group. )
[2] Dibenzopyromethene boron chelate compound represented by the following general formula (2),

Figure 2018123093
Figure 2018123093

(R〜R20は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。)
[3]下記一般式(3)で表されるジベンゾピロメテンホウ素キレート化合物、
(R 1 to R 20 are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group, substituted amino group, amide. Group, acyl group, carboxyl group, acyloxy group, cyano group, sulfo group, sulfamoyl group, alkylsulfamoyl group, carbamoyl group, alkylcarbamoyl group.)
[3] Dibenzopyromethene boron chelate compound represented by the following general formula (3),

Figure 2018123093
Figure 2018123093

(RとRは各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。)
[4]前項[1]乃至[3]のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物含む近赤外光吸収色素、
[5]前項[1]及至[3]のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物含む薄膜、
[6]前項[1]乃至[3]のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物、前項[4]に記載の近赤外吸収色素又は前項[5]に記載の薄膜を含む光電変換素子、
[7]前項[6]に記載の光電変換素子を備える近赤外光センサー、
[8]前項[6]に記載の光電変換素子を備える撮像素子、
に関する。
(R 2 and R 7 are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group, substituted amino group, amide Group, acyl group, carboxyl group, acyloxy group, cyano group, sulfo group, sulfamoyl group, alkylsulfamoyl group, carbamoyl group, alkylcarbamoyl group.)
[4] A near-infrared light absorbing dye containing the dibenzopyromethene boron chelate compound according to any one of [1] to [3],
[5] A thin film containing the dibenzopyromethene boron chelate compound according to any one of [1] to [3]
[6] A photoelectric comprising the dibenzopyromethene boron chelate compound according to any one of [1] to [3], the near-infrared absorbing dye according to [4], or the thin film according to [5]. Conversion element,
[7] A near-infrared light sensor comprising the photoelectric conversion element according to [6] above,
[8] An imaging device comprising the photoelectric conversion device according to [6] above,
About.

本発明のジベンゾピロメテンホウ素キレート化合物は、近赤外領域に主たる吸収特性を有し、優れた光電変換性能を有することから有機撮像素子はもとより光センサー、赤外センサー等のデバイスやそれらを用いたカメラ、ビデオカメラ、赤外線カメラ等の分野へ応用することができる。   The dibenzopyromethene boron chelate compound of the present invention has absorption characteristics mainly in the near-infrared region and has excellent photoelectric conversion performance. Therefore, it uses organic imaging devices as well as devices such as optical sensors and infrared sensors and uses them. It can be applied to fields such as conventional cameras, video cameras, and infrared cameras.

本発明の光電変換素子の実施形態を例示した断面図を示す。Sectional drawing which illustrated embodiment of the photoelectric conversion element of this invention is shown. 実施例3の薄膜における紫外可視近赤外光吸収スペクトルを示す。The ultraviolet visible near-infrared light absorption spectrum in the thin film of Example 3 is shown. 実施例4の薄膜における紫外可視近赤外光吸収スペクトルを示す。The ultraviolet-visible near-infrared light absorption spectrum in the thin film of Example 4 is shown. 比較例1の薄膜における紫外可視近赤外光吸収スペクトルを示す。The ultraviolet visible near-infrared light absorption spectrum in the thin film of the comparative example 1 is shown. 実施例5の光電変換素子における光電流応答性を示す。The photocurrent responsiveness in the photoelectric conversion element of Example 5 is shown. 実施例6の光電変換素子における光電流応答性を示す。The photocurrent responsiveness in the photoelectric conversion element of Example 6 is shown. 比較例2の光電変換素子における光電流応答性を示す。The photocurrent responsiveness in the photoelectric conversion element of the comparative example 2 is shown.

以下、本発明の内容について詳細に説明する。ここに記載する構成要件の説明については、本発明の代表的な実施態様や具体例に基づくものである一方、本発明はそのような実施態様や具体例に限定されない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明において近赤外領域とは、780nm以上2000nm以下の範囲内にある波長領域をいい、近赤外光吸収材料(色素)とは近赤外光領域に主たる吸収波長をもつ材料をいい、近赤外発光材料(色素)とは近赤外光領域において発光する材料をいう。   Hereinafter, the contents of the present invention will be described in detail. The explanation of the constituent elements described here is based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. In the present invention, the near infrared region refers to a wavelength region in the range of 780 nm to 2000 nm, and the near infrared light absorbing material (dye) is a material having a main absorption wavelength in the near infrared light region. A near-infrared light-emitting material (pigment) means a material that emits light in the near-infrared light region.

本発明の実施形態の一つであるジベンゾピロメテンホウ素キレート化合物は、下記式(1)で表される。   The dibenzopyromethene boron chelate compound which is one embodiment of the present invention is represented by the following formula (1).

Figure 2018123093
Figure 2018123093

(Zは無置換または置換基を有するナフタレン環を表す。R〜Rは各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。) (Z 1 represents an unsubstituted or substituted naphthalene ring. R 1 to R 8 each independently represents a hydrogen atom, an aryl group, a heteroaryl group, an alkyl group, a cycloalkyl group, a halogen atom, a hydroxy group, or an alkoxy group. , A mercapto group, an alkylthio group, a nitro group, a substituted amino group, an amide group, an acyl group, a carboxyl group, an acyloxy group, a cyano group, a sulfo group, a sulfamoyl group, an alkylsulfamoyl group, a carbamoyl group, and an alkylcarbamoyl group. )

上記式(1)中のZは無置換または置換基を有するナフタレン環の縮合位置はナフタレン環の1,2、2,1、2,3のいずれでも良い。 Z 1 in the above formula (1) may be any of 1 , 2, 2, 1, 2, 3 of the naphthalene ring as the condensation position of the unsubstituted or substituted naphthalene ring.

上記式(1)中のアリール基としては置換基を有してもよいベンゼン、ナフタレン、アントラセン、フェナントレン、アズレン、ビフェニル、ターフェニルが挙げられる。ヘテロアリール基としては置換基を有してもよいチオフェン、フラン、ピロール、ピリジン、インドール、ベンゾチオフェン、ベンゾフランなどが挙げられる。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ターシャリーブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などが挙げられる。シクロアルキル基としては、シクロペンチル基、シクロヘキシル基などが挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。アルコキシ基としては、酸素原子に上記アルキル基が結合したものが挙げられるが、酸素原子の数、位置、分岐数は問わない。置換アミノ基としては、アミノ基の水素原子が上記の有機基で置換されたものが挙げられる。アシル基としては、カルボニル基に上記芳香族基又はアルキル基が結合したものが挙げられる。アルキルスルファモイル基としては、スルファモイル基の水素原子が上記アルキル基で置換されたものが挙げられる。アルキルカルバモイル基としては、カルバモイル基の水素原子が上記アルキル基で置換されたものが挙げられる。   Examples of the aryl group in the above formula (1) include benzene, naphthalene, anthracene, phenanthrene, azulene, biphenyl, and terphenyl, which may have a substituent. Examples of the heteroaryl group include optionally substituted thiophene, furan, pyrrole, pyridine, indole, benzothiophene, benzofuran and the like. As the alkyl group, methyl group, ethyl group, propyl group, isopropyl group, normal butyl group, isobutyl group, tertiary butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group And dodecyl group. Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkoxy group include those in which the above alkyl group is bonded to an oxygen atom, but the number, position, and number of branches of the oxygen atom are not limited. Examples of the substituted amino group include those in which a hydrogen atom of the amino group is substituted with the above organic group. Examples of the acyl group include those in which the aromatic group or alkyl group is bonded to a carbonyl group. Examples of the alkylsulfamoyl group include those in which a hydrogen atom of the sulfamoyl group is substituted with the above alkyl group. Examples of the alkylcarbamoyl group include those in which the hydrogen atom of the carbamoyl group is substituted with the above alkyl group.

〜Rは水素原子、アルキル基、アリール基、ヘテロアリール基、ハロゲン原子、アルコキシ基、置換アミノ基が好ましく、水素原子、アルキル基、アリール基、ヘテロアリール基が合成の容易さからより好ましく、熱安定性の観点から水素原子、置換または無置換の環形成炭素数が6〜18のアリール基、置換または無置換の環形成原子数5〜20のヘテロアリール基が特に好ましい。 R 1 to R 8 are preferably a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a halogen atom, an alkoxy group, or a substituted amino group, and a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group is more easily synthesized. From the viewpoint of thermal stability, a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, and a substituted or unsubstituted heteroaryl group having 5 to 20 ring atoms are particularly preferable.

本発明の好ましい実施形態の一つであるジベンゾピロメテンホウ素キレート化合物は下記式(2)で表される。   A dibenzopyromethene boron chelate compound which is one of the preferred embodiments of the present invention is represented by the following formula (2).

Figure 2018123093
Figure 2018123093

(式(2)中のR〜R20は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。) (R 1 to R 20 in formula (2) are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group. A substituted amino group, an amide group, an acyl group, a carboxyl group, an acyloxy group, a cyano group, a sulfo group, a sulfamoyl group, an alkylsulfamoyl group, a carbamoyl group, and an alkylcarbamoyl group.

前記式(2)中のR〜R20は、水素原子、アルキル基、アリール基、ヘテロアリール基が好ましく、水素原子、アリール基、ヘテロアリール基が合成の容易さからより好ましく、熱安定性の観点から水素原子、炭素数が6〜18のアリール基、環形成原子数5〜20のヘテロアリール基が特に好ましい。 R 1 to R 20 in the formula (2) are preferably a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom, an aryl group, or a heteroaryl group because of ease of synthesis, and thermal stability. In view of the above, a hydrogen atom, an aryl group having 6 to 18 carbon atoms, and a heteroaryl group having 5 to 20 ring atoms are particularly preferable.

イソインドール環の置換基R〜Rは其々同じであっても異なっていてもよいが、合成の観点から、異なるイソインドール環上の同じ置換位置に在る置換基は、其々同じであることが好ましい。また、ナフタレン環の置換基R〜R20も其々同じであっても異なっていてもよいが、合成の観点から、異なるナフタレン環上の同じ置換位置に在る置換基は、其々同じであることが好ましい。即ち、前記式(2)に於いては、R=R、R=R、R=R6、=R、R=R20、R10=R19、R11=R18、12=R17、R13=R16、14=R15である構造が好ましい。 The substituents R 1 to R 8 on the isoindole ring may be the same or different, but from the viewpoint of synthesis, the substituents at the same substitution position on different isoindole rings are the same. It is preferable that In addition, the substituents R 9 to R 20 of the naphthalene ring may be the same or different, but from the viewpoint of synthesis, the substituents at the same substitution position on different naphthalene rings are the same. It is preferable that That is, in the above formula (2), R 1 = R 8 , R 2 = R 7 , R 3 = R 6, R 4 = R 5 , R 9 = R 20 , R 10 = R 19 , R 11 = R 18, R 12 = R 17, R 13 = R 16, R 14 = a R 15 structure is preferred.

本発明のより好ましい実施形態の一つであるジベンゾピロメテンホウ素キレート化合物は下記式(3)で表される。   The dibenzopyromethene boron chelate compound which is one of the more preferable embodiments of the present invention is represented by the following formula (3).

Figure 2018123093
Figure 2018123093

(式(3)中のRとRは水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。) (R 2 and R 7 in formula (3) are a hydrogen atom, an aryl group, a heteroaryl group, an alkyl group, a cycloalkyl group, a halogen atom, a hydroxy group, an alkoxy group, a mercapto group, an alkylthio group, a nitro group, and a substituted amino group. Group, amide group, acyl group, carboxyl group, acyloxy group, cyano group, sulfo group, sulfamoyl group, alkylsulfamoyl group, carbamoyl group, alkylcarbamoyl group.)

前記式(3)中のRとRの具体例は、前記式(1)中のR〜Rと同様であり、イソインドール環の置換基RとRは其々同じであっても異なっていてもよいが、合成の観点から、R=Rであることが好ましい。 Specific examples of R 2 and R 7 in the formula (3) are the same as R 1 to R 8 in the formula (1), and the substituents R 2 and R 7 on the isoindole ring are the same. Although it may be present or different, it is preferable that R 2 = R 7 from the viewpoint of synthesis.

、Rは合成の観点から水素原子、アルキル基、アリール基、ヘテロアリール基が好ましく、熱安定性の観点から水素原子、環形成炭素数が6〜18のアリール基、環形成原子数5〜20のヘテロアリール基が特に好ましい。 R 2 and R 7 are preferably a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group from the viewpoint of synthesis, and from the viewpoint of thermal stability, a hydrogen atom, an aryl group having 6 to 18 ring carbon atoms, or the number of ring atoms 5-20 heteroaryl groups are particularly preferred.

前記式(1)〜式(3)で表されるジベンゾピロメテンホウ素キレート化合物の具体例を下記するが、本発明はこれに限定されるものではない。なお、具体例として示した構造式は共鳴構造の一つを表したものにすぎず、図示した共鳴構造に限定されない。   Specific examples of the dibenzopyromethene boron chelate compounds represented by the above formulas (1) to (3) are shown below, but the present invention is not limited thereto. The structural formula shown as a specific example represents only one of the resonance structures, and is not limited to the illustrated resonance structure.

Figure 2018123093
Figure 2018123093

Figure 2018123093
Figure 2018123093

Figure 2018123093
Figure 2018123093

Figure 2018123093
Figure 2018123093

Figure 2018123093
Figure 2018123093

Figure 2018123093
Figure 2018123093

本発明のジベンゾピロメテンホウ素キレート化合物は、公知の方法により合成することができる。例えば、下記の反応工程(Org.Lett.,2011,4547)と同様にして得られる。合成例にて得られた各種の化合物は、必要に応じてMS(質量分析スペクトル)、NMR(核磁気共鳴スペクトル)の測定を行うことによりその構造式を決定することができる。   The dibenzopyromethene boron chelate compound of the present invention can be synthesized by a known method. For example, it is obtained in the same manner as the following reaction step (Org. Lett., 2011, 4547). The structural formulas of various compounds obtained in the synthesis examples can be determined by measuring MS (mass spectrometry spectrum) and NMR (nuclear magnetic resonance spectrum) as necessary.

Figure 2018123093
Figure 2018123093

本発明のジベンゾピロメテンホウ素キレート化合物の精製方法は特に限定されず、再結晶、カラムクロマトグラフィー及び真空昇華精製等の公知の方法が採用できる。また、必要に応じてこれらの方法を組み合わせて用いても良い。   The purification method of the dibenzopyromethene boron chelate compound of the present invention is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be employed. Moreover, you may use combining these methods as needed.

本発明の本発明のジベンゾピロメテンホウ素キレート化合物を用いて薄膜を作製することができる。薄膜又は固体状態において、光の吸収帯が780nm以上2500nm以下であることが好ましい。
該薄膜の膜厚は、その用途によって異なるが、通常0.01nm〜10μmであり、好ましくは0.05nm〜3μmであり、より好ましくは0.1nm〜1μmである。
本発明のジベンゾピロメテンホウ素キレート化合物は工業的な利用可能性が高くかつ大気安定性が良好である特徴を有する。また、式(1)で表されるジベンゾピロメテンホウ素キレート化合物は可溶性であり、溶液状態で塗布することが可能であるため、真空蒸着やスパッタなどの物理堆積法により有機化合物をデバイスへ加工しやすい等、有機化合物の加工プロセスが容易であることを示す。
A thin film can be produced using the dibenzopyromethene boron chelate compound of the present invention. In the thin film or solid state, the light absorption band is preferably 780 nm to 2500 nm.
The thickness of the thin film varies depending on the application, but is usually 0.01 nm to 10 μm, preferably 0.05 nm to 3 μm, and more preferably 0.1 nm to 1 μm.
The dibenzopyromethene boron chelate compound of the present invention is characterized by high industrial applicability and good atmospheric stability. In addition, since the dibenzopyromethene boron chelate compound represented by the formula (1) is soluble and can be applied in a solution state, an organic compound is processed into a device by a physical deposition method such as vacuum evaporation or sputtering. This indicates that the organic compound processing process is easy.

本発明のジベンゾピロメテンホウ素キレート化合物は近赤外光吸収特性を有する化合物(以下、「近赤外吸収色素」とも表す。)であることから、近赤外有機光電変換素子としての利用が期待される。当該素子に於いては、光に対する応答波長光の吸収帯の極大吸収が780nm以上2500nm以下であることが好ましく、780〜2000nmがより好ましく、780〜1500nmが特に好ましい。ここで、近赤外有機光電変換素子としては撮像素子、光センサ、光イメージセンサ等が挙げられる。   Since the dibenzopyromethene boron chelate compound of the present invention is a compound having near-infrared light absorption characteristics (hereinafter also referred to as “near-infrared absorbing dye”), it is expected to be used as a near-infrared organic photoelectric conversion element. Is done. In the element, the maximum absorption in the absorption band of the response wavelength light is preferably 780 nm to 2500 nm, more preferably 780 to 2000 nm, and particularly preferably 780 to 1500 nm. Here, examples of the near-infrared organic photoelectric conversion element include an imaging element, an optical sensor, and an optical image sensor.

本発明の光電変換素子について説明する。本発明のジベンゾピロメテンホウ素キレート化合物は、光電変換膜を含む光電変換素子として用いることができる。特に光電変換層の材料として好適に用いることが出来る。
光電変換素子とは、上部電極と下部電極である、対向する二つの電極膜間に、光電変換膜を含む光電変換部を配置した素子であって、一方の電極上方から光が光電変換部に入射されるものである。該光電変換部は前記の入射光量に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。下部の電極膜には読み出しのためのトランジスタが接続される場合もある。
該光電変換素子は、アレイ上に多数配置されていた場合は、入射光量に加え、入射位置情報を示すため、撮像素子となる。また、光の入射に関して、後部に存在する電極を含んだ光電変換素子が、より前部に存在する光電変換素子によって、吸収波長を邪魔されない場合は、複数の光電変換素子が積層していても良い。さらには、前述の複数の光電変換素子がそれぞれ異なる可視光を吸収する場合は多色の撮像素子となり、フルカラーフォトダイオードとなる。
The photoelectric conversion element of the present invention will be described. The dibenzopyromethene boron chelate compound of the present invention can be used as a photoelectric conversion element including a photoelectric conversion film. In particular, it can be suitably used as a material for the photoelectric conversion layer.
A photoelectric conversion element is an element in which a photoelectric conversion unit including a photoelectric conversion film is disposed between two opposing electrode films, which are an upper electrode and a lower electrode, and light is incident on the photoelectric conversion unit from above one electrode. It is incident. The photoelectric conversion unit generates electrons and holes according to the amount of incident light, and a signal corresponding to the charge is read out by a semiconductor to indicate the amount of incident light according to the absorption wavelength of the photoelectric conversion film unit. It is an element. In some cases, a transistor for reading is connected to the lower electrode film.
When a large number of the photoelectric conversion elements are arranged on the array, in addition to the amount of incident light, in addition to the incident position information, the photoelectric conversion element becomes an imaging element. In addition, regarding the incidence of light, when the photoelectric conversion element including the electrode existing in the rear part is not disturbed by the photoelectric conversion element existing in the front part, even if a plurality of photoelectric conversion elements are stacked. good. Furthermore, when the above-described plurality of photoelectric conversion elements absorb different visible lights, a multicolor imaging element is formed, and a full color photodiode is obtained.

図1を用いて光電変換素子の態様例を説明する。
図1の各態様例において、1が絶縁部、2が上部電極、3が電子ブロック層、4が光電変換部、5が正孔ブロック層、6が下部電極、7が絶縁基材、もしくは光電変換素子をそれぞれ表す。図中には読み出しのトランジスタを記載していないが、下部電極に接続されていればよく、更には、半導体が透明であれば下部電極の下に成膜されていてもよい。入射光は光電変換部以外が光電変換部の吸収波長を極度に邪魔しないものであれば、上部下部、いずれからの入射でもよい。本発明の光電変換素子は、前記式(1)で表される化合物を上記光電変換部の構成材料として用いることができる。
A mode example of the photoelectric conversion element will be described with reference to FIG.
1, 1 is an insulating portion, 2 is an upper electrode, 3 is an electron block layer, 4 is a photoelectric conversion portion, 5 is a hole blocking layer, 6 is a lower electrode, 7 is an insulating base material, or photoelectric. Each conversion element is represented. Although the readout transistor is not shown in the drawing, it may be connected to the lower electrode, and further, it may be formed under the lower electrode if the semiconductor is transparent. The incident light may be incident from any of the upper and lower portions as long as the light other than the photoelectric conversion portion does not extremely disturb the absorption wavelength of the photoelectric conversion portion. The photoelectric conversion element of this invention can use the compound represented by the said Formula (1) as a constituent material of the said photoelectric conversion part.

ここで、光電変換部は、光電変換層、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層、層間接触改良層など複数の層からなることが多いが、これに限定されるものではない。本発明の化合物は光電変換層以外にも用いることもできるが、光電変換層の有機薄膜層として用いることが好ましい。光電変換層は前記式(1)で表される化合物のみで構成されていてもよいが、前記式(1)で表される化合物以外に、公知の近赤外吸収物質その他を含んでいてもよい。   Here, the photoelectric conversion part is often composed of a plurality of layers such as a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, It is not limited to this. Although the compound of this invention can be used besides a photoelectric converting layer, it is preferable to use it as an organic thin film layer of a photoelectric converting layer. The photoelectric conversion layer may be composed only of the compound represented by the formula (1), but may contain a known near-infrared absorbing substance or the like in addition to the compound represented by the formula (1). Good.

光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層、もしくは複数の層であっても良く、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2−10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造であり、層間にバッファ層が挿入されていても良い。   In general, an organic semiconductor film is used for the photoelectric conversion layer. However, the organic semiconductor film may be a single layer or a plurality of layers. In this case, a P-type organic semiconductor film, an N-type organic semiconductor film, Alternatively, a mixed film (bulk heterostructure) thereof is used. On the other hand, in the case of a plurality of layers, it is about 2-10 layers, and is a structure in which any one of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk heterostructure) is laminated. A buffer layer may be inserted in

有機半導体膜には、吸収する波長帯に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体や燐光性金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。   For organic semiconductor films, triarylamine compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, triphenylmethane compounds, carbazole compounds, polysilane compounds, thiophene compounds, phthalocyanine compounds, cyanine compounds depending on the wavelength band to be absorbed , Merocyanine compound, oxonol compound, polyamine compound, indole compound, pyrrole compound, pyrazole compound, polyarylene compound, carbazole derivative, naphthalene derivative, anthracene derivative, phenanthrene derivative, phenylbutadiene derivative, styryl derivative, quinoline derivative, tetracene derivative, pyrene derivative Perylene derivatives, fluoranthene derivatives, quinacridone derivatives, coumarin derivatives, porphyrin derivatives and phosphorescent gold Complex (Ir complexes, Pt complexes, Eu complexes, etc.), or the like can be used.

ここで正孔輸送層は、発生した正孔を光電変換層から電極へ輸送し、光電変換層から電極への正孔の移動を容易にする機能と、電極からの電子移動をブロックする機能とを有する。また、電子輸送層は、発生した電子を光電変換層から電極へ輸送し、光電変換層から電極への電子の移動を容易にする機能と、電極からの正孔の移動をブロックする機能を有する。
また、正孔ブロック層は、電極から光電変換層への正孔の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。電子ブロック層は、電極から光電変換層への電子の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。また、正孔ブロック層、および電子ブロック層は、光電変換膜の光吸収を妨げないために、光電変換層の吸収波長での透過率が高いことが好ましく、もしくは薄膜で用いることが好ましい。
さらに光電変換層においては、入射光を受光することによって、それぞれ発生した電子と正孔を、電極へ輸送することで、電気信号として読み出し回路へ送るものである。
Here, the hole transport layer transports the generated holes from the photoelectric conversion layer to the electrode, facilitates movement of holes from the photoelectric conversion layer to the electrode, and functions to block electron transfer from the electrode. Have The electron transport layer has a function of transporting generated electrons from the photoelectric conversion layer to the electrode, facilitating movement of electrons from the photoelectric conversion layer to the electrode, and a function of blocking movement of holes from the electrode. .
In addition, the hole blocking layer has a function of preventing movement of holes from the electrode to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current. The electron blocking layer has a function of preventing movement of electrons from the electrode to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current. In addition, the hole block layer and the electron block layer preferably have high transmittance at the absorption wavelength of the photoelectric conversion layer, or are preferably used as a thin film, in order not to prevent light absorption of the photoelectric conversion film.
Furthermore, in the photoelectric conversion layer, by receiving incident light, the generated electrons and holes are transported to the electrodes, and are sent as electrical signals to the readout circuit.

光電変換素子において使用されうる電極膜は、光電変換層に含まれる正孔輸送性の光電変換膜または正孔輸送膜から正孔を取り出してこれを捕集する、もしくは光電変換層に含まれる電子輸送性の光電変換膜または電子輸送膜から電子を取り出してこれを吐き出すため、正孔輸送性光電変換膜、正孔輸送膜などの隣接する膜、もしくは、電子輸送性光電変換膜、電子輸送膜などの隣接する膜との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選ばれるため、特に限定されるものでないが、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル、タングステンなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーや炭素が挙げられる。また、必要であれば、複数の材料を用いても、また2層以上で構成されていてもよい。電極の抵抗も限定されないが、素子の受光を必要以上に妨げないものであれば限定されないが、素子の信号強度や、消費電力の観点からは低抵抗であることが好ましい。例えばシート抵抗値が300Ω/□以下のITO基板であれば素子電極として機能するが、数Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常5〜500nm、好ましくは10〜300nmの間で用いられる。ITOなどの膜形成方法としては、蒸着法、電子線ビーム法、スパッタリング法、化学反応法、塗布法などが挙げられる。必要に応じUV−オゾン処理、プラズマ処理などを施すことができる。   The electrode film that can be used in the photoelectric conversion element is a hole-transporting photoelectric conversion film or a hole-transporting film included in the photoelectric conversion layer, which collects holes or collects electrons or is included in the photoelectric conversion layer. In order to take out electrons from the transportable photoelectric conversion film or the electron transport film and discharge the electrons, adjacent films such as a hole transport photoelectric conversion film and a hole transport film, or an electron transport photoelectric conversion film and an electron transport film Although it is selected in consideration of adhesion to adjacent films such as, electron affinity, ionization potential, stability, etc., it is not particularly limited, but tin oxide (NESA), indium oxide, indium tin oxide (ITO) , Conductive metal oxides such as zinc indium oxide (IZO), metals such as gold, silver, platinum, chromium, aluminum, iron, cobalt, nickel, tungsten, copper iodide, Inorganic conductive substances such as reduction copper, polythiophene, polypyrrole, and conductive polymers or carbon such as polyaniline. If necessary, a plurality of materials may be used, or two or more layers may be used. The resistance of the electrode is not limited, but is not limited as long as it does not interfere with the light reception of the element more than necessary. From the viewpoint of signal strength of the element and power consumption, the resistance is preferably low. For example, an ITO substrate having a sheet resistance value of 300Ω / □ or less functions as an element electrode, but since it is possible to supply a substrate of several Ω / □, it is desirable to use a low-resistance product. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually 5 to 500 nm, preferably 10 to 300 nm. Examples of film forming methods such as ITO include a vapor deposition method, an electron beam method, a sputtering method, a chemical reaction method, and a coating method. If necessary, UV-ozone treatment, plasma treatment or the like can be performed.

透明電極膜の材料として特に好ましいのは、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO、FTO(フッ素ドープ酸化スズ)のいずれかの材料である。 透明電極膜の光透過率は、その透明電極膜を含む光電変換部に含まれる光電変換膜の吸収ピーク波長において、60%以上が好ましく、より好ましくは80%以上で、より好ましくは90%以上、より好ましくは95%以上である。 Particularly preferable as the material for the transparent electrode film are ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2 , FTO (fluorine). Doped tin oxide). The light transmittance of the transparent electrode film is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, at the absorption peak wavelength of the photoelectric conversion film included in the photoelectric conversion part including the transparent electrode film. More preferably, it is 95% or more.

また、光電変換層を複数積層する場合、積層膜内部の電極はそれぞれの光電変換膜が検出する光以外の波長の光を透過させる必要があり、吸収光に対し、好ましくは90%、さらに好ましくは95%以上の光を透過する材料を用いることが好ましい。   In addition, when a plurality of photoelectric conversion layers are stacked, the electrodes inside the stacked films need to transmit light having a wavelength other than the light detected by each photoelectric conversion film, and preferably 90%, more preferably, the absorbed light. Is preferably a material that transmits 95% or more of light.

電極膜はプラズマフリーで作製することが好ましい。プラズマフリーで電極膜を作成することで、プラズマが基板に与える影響を少なくすることができ、光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜中にプラズマが発生しないか、またはプラズマ発生源から基体までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基体に到達するプラズマが減ずるような状態を意味する。   The electrode film is preferably made plasma-free. By forming the electrode film without plasma, the influence of plasma on the substrate can be reduced, and the photoelectric conversion characteristics can be improved. Here, plasma free means that no plasma is generated during the formation of the electrode film, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state where the plasma to be reduced decreases.

電極膜の成膜中にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置がある。以下では、EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と言い、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と言う。   Examples of an apparatus that does not generate plasma during the formation of an electrode film include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus. Hereinafter, a method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method, and a method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.

成膜中プラズマを減ずることが出来るような状態を実現できる装置(以下、プラズマフリーである成膜装置という)については、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着法などが考えられる。   As an apparatus that can realize a state in which plasma can be reduced during film formation (hereinafter referred to as a plasma-free film formation apparatus), for example, an opposed target sputtering apparatus or an arc plasma deposition method can be considered.

透明導電膜(Transparent Conductive Oxide:以下「TCO」と略す。)を電極膜とした場合、DCショート、あるいはリーク電流増大が生じる場合がある。この原因の一つは、光電変換膜に導入される微細なクラックがTCOなどの緻密な膜によって被覆され、反対側の電極膜との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る電極の場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換膜の膜厚(クラックの深さ)に対して制御する事により、リーク電流の増大を大きく抑制できる。   When a transparent conductive oxide (hereinafter referred to as “TCO”) is an electrode film, a DC short circuit or an increase in leakage current may occur. One reason for this is thought to be that fine cracks introduced into the photoelectric conversion film are covered with a dense film such as TCO, and conduction between the opposite electrode film is increased. For this reason, in the case of an electrode having a poor film quality such as Al, an increase in leakage current hardly occurs. By controlling the film thickness of the electrode film with respect to the film thickness (crack depth) of the photoelectric conversion film, an increase in leakage current can be largely suppressed.

通常、導電性膜をある範囲より薄くすると、急激な抵抗値の増加をもたらすが、本実施形態の固体撮像素子では、シート抵抗は、好ましくは100〜10000Ω/□でよく、薄膜化できる膜厚の範囲の自由度は大きい。また、透明導電性薄膜は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換膜での光吸収を増大させ、光電変換能を増大させるため、非常に好ましい。   Usually, when the conductive film is made thinner than a certain range, the resistance value is rapidly increased. However, in the solid-state imaging device of this embodiment, the sheet resistance is preferably 100 to 10000Ω / □, and the film thickness can be reduced. The degree of freedom is large. Further, the thinner the transparent conductive thin film is, the less light is absorbed, and the light transmittance is generally increased. The increase in light transmittance is very preferable because it increases the light absorption in the photoelectric conversion film and increases the photoelectric conversion ability.

正孔ブロック層は正孔阻止性物質単独又は二種類以上の物質を積層、混合することにより形成される。正孔阻止性物質としては、バソフェナントロリン、バソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体などが用いられるが、正孔阻止性物質は、正孔が電極から素子外部に流れ出てしまうのを阻止することができる化合物であれば特に限定されるものではない。有機光電変換素子の正孔ブロック層薄膜の形成方法は後述のとおりでよい。リーク電流を防止する目的には膜厚は薄い方が良いが、光入射時の信号読み出しには、十分な電流量が必要なため、膜厚はなるべく薄い方が良い。一般的には発電層として5〜500nm程度が好ましい。   The hole blocking layer is formed by laminating and mixing hole blocking substances alone or two or more kinds. As the hole blocking substance, phenanthroline derivatives such as bathophenanthroline and bathocuproin, silole derivatives, quinolinol derivative metal complexes, oxadiazole derivatives, oxazole derivatives, and the like are used. The compound is not particularly limited as long as it is a compound that can prevent flowing out of the element. The method for forming the hole blocking layer thin film of the organic photoelectric conversion element may be as described below. For the purpose of preventing leakage current, it is better that the film thickness is thin. However, since a sufficient amount of current is required for signal readout at the time of light incidence, the film thickness should be as thin as possible. In general, the power generation layer is preferably about 5 to 500 nm.

有機光電変換素子の有機薄膜の形成方法は、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、さらにはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、0.5〜5000nmの間から選ばれる。好ましくは1〜1000nm、より好ましくは5〜500nmである。   Generally, the organic thin film of the organic photoelectric conversion device is formed by resistance heating vapor deposition which is a vacuum process, electron beam vapor deposition, sputtering, molecular lamination method, casting which is a solution process, spin coating, dip coating, blade coating, wire. Coating methods such as bar coating and spray coating, printing methods such as ink jet printing, screen printing, offset printing and letterpress printing, soft lithography methods such as microcontact printing, and a combination of these methods Can be adopted. The thickness of each layer depends on the resistance value and charge mobility of each substance and cannot be limited, but is selected from 0.5 to 5000 nm. Preferably it is 1-1000 nm, More preferably, it is 5-500 nm.

有機光電変換素子を構成する有機薄膜のうち、電極間に存在する、光電変換層、正孔輸送層、正孔ブロック層、電子輸送層、電子ブロック層などの薄膜の1層又は複数層に上記一般式(1)で表される有機化合物を含有させることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られる。   Among the organic thin films constituting the organic photoelectric conversion element, one or more thin films such as a photoelectric conversion layer, a hole transport layer, a hole block layer, an electron transport layer, and an electron block layer, which are present between the electrodes, are described above. By including the organic compound represented by the general formula (1), it is possible to obtain an element that efficiently converts even a weak light energy into an electric signal.

(光センサー、イメージ・センサー)
電極間に電圧を印加した状態、あるいは無印加の状態で、透明または半透明の電極側から光を入射させることにより、光電流が流れ、これにより光電変換素子を光センサーとして用いることができる。また、該光センサーを複数集積してモジュール化することにより、複数の光電変換素子を含むイメージ・センサーとして用いることができる。モジュールとは、複数の光電変換素子を含むデバイスである。モジュールは、複数の光電変換素子を集積した構成を有している。モジュールにはイメージ・センサーなどが含まれる。ここで、光センサーには赤外光センサー等のデバイスを含む。
(Light sensor, image sensor)
When light is incident from the transparent or translucent electrode side in a state where a voltage is applied between the electrodes or in a state where no voltage is applied, a photocurrent flows, whereby the photoelectric conversion element can be used as an optical sensor. Further, by integrating a plurality of the optical sensors into a module, it can be used as an image sensor including a plurality of photoelectric conversion elements. A module is a device including a plurality of photoelectric conversion elements. The module has a configuration in which a plurality of photoelectric conversion elements are integrated. Modules include image sensors. Here, the optical sensor includes a device such as an infrared light sensor.

近赤外光センサーは、赤外領域の光(赤外線)を受光し電気信号に変換して、必要な情報を取り出して応用する技術、またその技術を利用した機器をいう。人間の視覚を刺激しないで物を見られる、対象物の温度を遠くから非接触で瞬時に測定できるなどの特徴を持つ。近赤外に感光する赤外線フィルムやイメージ・センサーなどを用いることで、肉眼で見える像とは異なる映像を撮影することができる。   A near-infrared light sensor is a technology that receives light in the infrared region (infrared light), converts it into an electrical signal, takes out necessary information, and applies it, and a device that uses that technology. It has features such as being able to see an object without stimulating human vision and measuring the temperature of an object instantly from a distance without contact. By using an infrared film or an image sensor that is sensitive to the near infrared, it is possible to shoot an image that is different from an image that can be seen with the naked eye.

(用途)
本発明の光電変換素子は、優れた光電変換性能や近赤外吸収特性を利用した光センサー等のデバイスを利用してカメラ、デジタルスチルカメラ、赤外線カメラ等の分野に応用することができる。
その他の用途として、デジタルビデオカメラ、下記用途などでの監視カメラ(オフィスビル、駐車場、金融機関・無人契約機、ショッピングセンター、コンビニエンスストア、アウトレットモール、百貨店、パチンコホール、カラオケボックス、ゲームセンター、病院)、その他各種のセンサー(テレビドアホン、個人認証用センサー、ファクトリーオートメーション用センサー、家庭用ロボット、産業用ロボット、配管検査システム)、医療用センサー(内視鏡、眼底カメラ)、テレビ会議システム、テレビ電話、カメラつきケータイ、自動車安全走行システム(バックガイドモニタ、衝突予測、車線維持システム)、テレビゲーム用センサーなどの用途に用いることが出来る。
(Use)
The photoelectric conversion element of the present invention can be applied to the fields of cameras, digital still cameras, infrared cameras, and the like using devices such as an optical sensor using excellent photoelectric conversion performance and near infrared absorption characteristics.
Other applications include digital video cameras, surveillance cameras for the following applications (office buildings, parking lots, financial institutions and unmanned contractors, shopping centers, convenience stores, outlet malls, department stores, pachinko halls, karaoke boxes, game centers, Hospital), various other sensors (TV door phone, personal authentication sensor, factory automation sensor, home robot, industrial robot, piping inspection system), medical sensor (endoscope, fundus camera), video conference system, It can be used for applications such as videophones, mobile phones with cameras, safe driving systems for vehicles (back guide monitors, collision prediction, lane keeping systems), and video game sensors.

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。実施例中、部は特に指定しない限り質量部を、%は質量%を表す。また反応温度は、特に断りのない限り反応系内の内温を記載した。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated still in detail, this invention is not limited to these examples. In Examples, “part” means “part by mass” unless otherwise specified, and “%” means “% by mass”. Moreover, the reaction temperature described the internal temperature in a reaction system unless there is particular notice.

合成例にて得られた各種の化合物は、必要に応じてMS(質量分析スペクトル)、NMR(核磁気共鳴スペクトル)の測定を行うことによりその構造式を決定した。
また、実施例中の電流電圧の印加測定は、特に指定しない限り、半導体パラメータアナライザ4200−SCS(ケースレーインスツルメンツ社)を用いて行った。入射光の照射は、特に指定しない限り、PVL−3300(朝日分光社)を用いた。イオン化ポテンシャル測定は、特に指定しない限り、理研計器株式会社大気中光電子分光法AC−3(商標登録)を用いて測定した値である。
The structural formulas of various compounds obtained in the synthesis examples were determined by measuring MS (mass spectrometry spectrum) and NMR (nuclear magnetic resonance spectrum) as necessary.
Moreover, unless otherwise specified, the application measurement of the current voltage in an Example was performed using the semiconductor parameter analyzer 4200-SCS (Keithley Instruments company). Irradiation of incident light was performed using PVL-3300 (Asahi Spectrometer) unless otherwise specified. The ionization potential measurement is a value measured using the atmospheric photoelectron spectroscopy AC-3 (registered trademark), unless otherwise specified.

(実施例1)化合物(1)の合成

Figure 2018123093
Example 1 Synthesis of Compound (1)
Figure 2018123093

化合物(A−2)の合成
窒素雰囲気下、脱水エタノール(14mL)に溶解させた3−メトキシ−2−ナフタエ酸メチル(3.02g、13.9mmol)に、ヒドラジン一水和物(3.0mL,61.7mmol)を加え80℃で一晩撹拌させた。反応終了後、溶媒を留去し析出した固体をヘキサンで洗浄、濾過により灰色固体を得た(2.71g、収率90%)。
H NMR(500 MHz,CDCl):δ(ppm)9.06(s,1H),8.77(s,1H),7.91(d,1H),7.75(d,1H,J=8.15Hz),7.53(t,1H,J=7.47Hz),7.23(s,1H),4.23(s,2H),4.07(s,3H).FAB−MS:m/z=217[M+H]
Synthesis of Compound (A-2) Methyl 3-methoxy-2-naphthaenoate (3.02 g, 13.9 mmol) dissolved in dehydrated ethanol (14 mL) was added to hydrazine monohydrate (3.0 mL) under a nitrogen atmosphere. 61.7 mmol) and stirred at 80 ° C. overnight. After completion of the reaction, the solvent was distilled off and the precipitated solid was washed with hexane and filtered to obtain a gray solid (2.71 g, yield 90%).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 9.06 (s, 1H), 8.77 (s, 1H), 7.91 (d, 1H), 7.75 (d, 1H, J = 8.15 Hz), 7.53 (t, 1H, J = 7.47 Hz), 7.23 (s, 1H), 4.23 (s, 2H), 4.07 (s, 3H). FAB-MS: m / z = 217 [M + H] +

化合物(A−3)の合成
窒素雰囲気下、A−2(1.01g,4.70mmol)、2−ヒドロキシアセトフェノン(0.7mL,5.81mmol)を脱水エタノール(13mL)に溶解させ一晩還流させた。反応終了後、濾過により析出した白色固体を得た(1.49g,収率96%)。
H NMR (500 MHz, CDCl):δ(ppm)12.9(s,1H),11.1(s,1H),8.93(s,1H),7.94(d,1H,J=8.10Hz),7.76(d,1H,J=8.20 Hz),7.55(ddd,1H,J=8.16,6.94,1.19Hz),7.47(dd,1H,J=7.95,1.60Hz),7.43(ddd,1H,J=8.09,6.91,1.16Hz),7.28−7.31(m, 2H),7.06(dd,1H,J=8.33,1.13Hz),6.87(td,1H,J=7.57,1.20Hz),4.19(s,3H),2.40(s,3H).
HRMS(FAB):m/z[M+H] 理論値C2019,335.1396; 実測値,335.1383.
Synthesis of Compound (A-3) A-2 (1.01 g, 4.70 mmol) and 2-hydroxyacetophenone (0.7 mL, 5.81 mmol) were dissolved in dehydrated ethanol (13 mL) and refluxed overnight under a nitrogen atmosphere. I let you. After completion of the reaction, a white solid precipitated by filtration was obtained (1.49 g, yield 96%).
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 12.9 (s, 1H), 11.1 (s, 1H), 8.93 (s, 1H), 7.94 (d, 1H, J = 8.10 Hz), 7.76 (d, 1H, J = 8.20 Hz), 7.55 (ddd, 1H, J = 8.16, 6.94, 1.19 Hz), 7.47 ( dd, 1H, J = 7.95, 1.60 Hz), 7.43 (ddd, 1H, J = 8.09, 6.91, 1.16 Hz), 7.28-7.31 (m, 2H) 7.06 (dd, 1H, J = 8.33, 1.13 Hz), 6.87 (td, 1H, J = 7.57, 1.20 Hz), 4.19 (s, 3H), 2. 40 (s, 3H).
HRMS (FAB): m / z [M + H] + theory C 20 H 19 N 2 O 3 , 335.1396; Found, 335.1383.

化合物(A−4)の合成
テトラヒドロフラン(22mL)に化合物(A−3)(401mg,1.20mmol)を溶解させた。氷冷しながらこの溶液に、四酢酸鉛(674mg,1.52mmol)を少量ずつ加え、室温で3時間撹拌させた。反応終了後、シリカゲルを敷いた桐山濾過により析出した固体を除き、溶媒を留去したのち、ジクロロメタンと蒸留水で分液処理をおこなった。有機相を乾燥させ、溶媒を留去し、カラムクロマトグラフィー(順相シリカゲル、酢酸エチル:ヘキサン=2:3)により精製をおこない白色固体を得た(311mg,85%)。
HNMR(500MHz,CDCl):δ(ppm)8.08(s,1H),7.80(d,1H,J=8.20Hz),7.75(d,1H,J=8.25Hz),7.66(dd,1H,J=7.65,0.85Hz),7.56(td,1H,J=7.50,1.13Hz),7.52(ddd,1H,J=8.22,7.05,1.30Hz),7.50(td,1H,J=7.50,1.28Hz),7.43(dd,1H,J=7.60,0.90Hz),7.37(ddd,1H,J=8.16,6.94,1.19Hz),7.18(s,1H),3.80(s,3H),2.51(s,3H).
HRMS(FAB):m/z[M+H]理論値C2017,305.1178;実測値,305.1166.
Synthesis of Compound (A-4) Compound (A-3) (401 mg, 1.20 mmol) was dissolved in tetrahydrofuran (22 mL). To this solution was added lead tetraacetate (674 mg, 1.52 mmol) little by little, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, the solid precipitated by Kiriyama filtration with silica gel was removed, and the solvent was distilled off, followed by liquid separation with dichloromethane and distilled water. The organic phase was dried, the solvent was distilled off, and purification was performed by column chromatography (normal phase silica gel, ethyl acetate: hexane = 2: 3) to obtain a white solid (311 mg, 85%).
1 HNMR (500 MHz, CDCl 3 ): δ (ppm) 8.08 (s, 1H), 7.80 (d, 1H, J = 8.20 Hz), 7.75 (d, 1H, J = 8.25 Hz) ), 7.66 (dd, 1H, J = 7.65, 0.85 Hz), 7.56 (td, 1H, J = 7.50, 1.13 Hz), 7.52 (ddd, 1H, J = 8.22, 7.05, 1.30 Hz), 7.50 (td, 1H, J = 7.50, 1.28 Hz), 7.43 (dd, 1H, J = 7.60, 0.90 Hz) 7.37 (ddd, 1H, J = 8.16, 6.94, 1.19 Hz), 7.18 (s, 1H), 3.80 (s, 3H), 2.51 (s, 3H) .
HRMS (FAB): m / z [M + H] + theory C 20 H 17 O 3, 305.1178 ; Found, 305.1166.

化合物(A−5)の合成
化合物(A−4)(202mg,0.603mmol)をエタノール(10mL)、酢酸(2mL)に溶解させ、溶液を65℃に加熱後、塩化アンモニウム(32.5mg,0.608mmol)、酢酸アンモニウム(296mg,3.84mmol)を加えた。80℃で一晩撹拌後、飽和炭酸水素ナトリウム水溶液でクエンチし、ジクロロメタンと飽和食塩水で分液処理をおこなった。有機相を硫酸ナトリウムで乾燥させ、溶媒を留去し、カラムクロマトグラフィー(順相シリカゲル,ベンゼン:ヘキサン=3:1)により精製をおこない、青紫色の固体を得た(86.3mg,収率51%)。
HNMR(500MHz,CDCl):δ(ppm)8.40(s,2H),7.98(d,2H,J=8.05Hz),7.92(d,2H,J=8.05Hz),7.85(d,2H,J=8.10Hz),7.76(d,2H,J=8.20Hz),7.66(s,1H),7.48(ddd,2H,J=8.09,6.91,1.16Hz),7.39(ddd,4H,J=7.98,6.95,1.00Hz),7.29(ddd,2H,J=7.91,6.94,0.94Hz),7.23(s,2H),3.78(s,6H).
HRMS(FAB):m/z[M+H]理論値C3929,557.2229;実測値,557.2220.
Synthesis of Compound (A-5) Compound (A-4) (202 mg, 0.603 mmol) was dissolved in ethanol (10 mL) and acetic acid (2 mL), the solution was heated to 65 ° C., and then ammonium chloride (32.5 mg, 0.608 mmol) and ammonium acetate (296 mg, 3.84 mmol) were added. After stirring at 80 ° C. overnight, the mixture was quenched with a saturated aqueous sodium hydrogen carbonate solution and subjected to liquid separation treatment with dichloromethane and saturated brine. The organic phase was dried over sodium sulfate, the solvent was distilled off, and purification was performed by column chromatography (normal phase silica gel, benzene: hexane = 3: 1) to obtain a blue-violet solid (86.3 mg, yield). 51%).
1 HNMR (500 MHz, CDCl 3 ): δ (ppm) 8.40 (s, 2H), 7.98 (d, 2H, J = 8.05 Hz), 7.92 (d, 2H, J = 8.05 Hz) ), 7.85 (d, 2H, J = 8.10 Hz), 7.76 (d, 2H, J = 8.20 Hz), 7.66 (s, 1H), 7.48 (ddd, 2H, J = 8.09, 6.91, 1.16 Hz), 7.39 (ddd, 4H, J = 7.98, 6.95, 1.00 Hz), 7.29 (ddd, 2H, J = 7.91) , 6.94, 0.94 Hz), 7.23 (s, 2H), 3.78 (s, 6H).
HRMS (FAB): m / z [M + H] + theoretical value C 39 H 29 N 2 O 2 , 557.2229; found value, 557.2220.

化合物(A−6)の合成
窒素雰囲気下、化合物(A−5)(1.60g,2.88mmol)を脱水トルエン(115mL)に溶解させ、トリエチルアミン(1.1mL,7.94mmol)を加えて撹拌させた。80℃に加熱したのち、三フッ化ホウ素・ジエチルエーテル錯体(3.0mL,24.3mmol)を滴下し、100℃で9時間撹拌させた。蒸留水を加えてクエンチし、ジクロロメタンと蒸留水で分液処理をおこなった。有機相を硫酸ナトリウムで乾燥後、溶媒を留去した。ジクロロメタン/ヘキサンで再沈殿をおこない、濃青色固体を得た(1.48g,収率85%)。cis体とtrans体の混合物として同定データを記す。
HNMR(500MHz,DMSO−d):δ(ppm)8.73(s,1H),8.20(d,1H,J=8.35Hz),8.20(d,1H,J=8.20Hz),7.98(s,1H),7.93(s,1H),7.84(d,1H,J=9.05Hz),7.84(d,1H,J=7.15Hz),7.82(d,1H,J=7.10Hz),7.77(d,1H,J=8.10Hz),7.55−7.59(2H,m),7.46−7.50(2H,m),7.48(s,1H),7.44(s,1H),7.29−7.36(2H,m),7.32(1H,d,J=7.95Hz),7.27(1H,d,J=7.20Hz),7.27(2H,t,J=7.50Hz),3.82(s,3H),3.75(s,3H)
HRMS(FAB):m/z[M]理論値C3927BF,604.2134;実測値,604.2129.
元素分析 理論値(重量%)C3927BF・0.7HO:C,75.91;H,4.64;N,4.54.実測値(重量%):C,75.91;H,4.48;N,4.58.
Synthesis of Compound (A-6) Compound (A-5) (1.60 g, 2.88 mmol) was dissolved in dehydrated toluene (115 mL) under a nitrogen atmosphere, and triethylamine (1.1 mL, 7.94 mmol) was added. Allowed to stir. After heating to 80 ° C., boron trifluoride / diethyl ether complex (3.0 mL, 24.3 mmol) was added dropwise, and the mixture was stirred at 100 ° C. for 9 hours. Distilled water was added for quenching, and liquid separation treatment was performed with dichloromethane and distilled water. The organic phase was dried over sodium sulfate and the solvent was distilled off. Reprecipitation was performed with dichloromethane / hexane to obtain a dark blue solid (1.48 g, yield 85%). The identification data is described as a mixture of cis and trans isomers.
1 HNMR (500 MHz, DMSO-d 6 ): δ (ppm) 8.73 (s, 1H), 8.20 (d, 1H, J = 8.35 Hz), 8.20 (d, 1H, J = 8) .20 Hz), 7.98 (s, 1 H), 7.93 (s, 1 H), 7.84 (d, 1 H, J = 9.05 Hz), 7.84 (d, 1 H, J = 7.15 Hz) ), 7.82 (d, 1H, J = 7.10 Hz), 7.77 (d, 1H, J = 8.10 Hz), 7.55-7.59 (2H, m), 7.46-7 .50 (2H, m), 7.48 (s, 1H), 7.44 (s, 1H), 7.29-7.36 (2H, m), 7.32 (1H, d, J = 7) .95 Hz), 7.27 (1H, d, J = 7.20 Hz), 7.27 (2H, t, J = 7.50 Hz), 3.82 (s, 3H), 3.75 (s, 3H) )
HRMS (FAB): m / z [M] + theoretical value C 39 H 27 BF 2 N 2 O 2 , 604.2134; found value, 604.2129.
Elemental analysis Theoretical value (% by weight) C 39 H 27 BF 2 N 2 O 2 .0.7H 2 O: C, 75.91; H, 4.64; N, 4.54. Found (wt%): C, 75.91; H, 4.48; N, 4.58.

化合物(1)の合成
窒素雰囲気下、化合物(A−6)(700.3mg,1.159mmol)を脱水ジクロロエタン(115mL)に溶解させ、0℃で撹拌させた。この溶液に三臭化ホウ素(6.0mL,6.0mmol)を滴下後、2時間撹拌を続けた。その後反応液を40℃に加熱し、一晩撹拌させた。反応終了後、氷冷しながら飽和炭酸水素ナトリウム水溶液を加えてクエンチした。水相を除いて溶媒を留去し、エタノールで析出した固体を洗浄後、濾過により濃緑色固体を得た(611.2mg、粗収率;98%)。その後、昇華精製を経て光沢のある赤色固体を得た。
元素分析 理論値(重量%)C3721BN・0.2HO:C,82.30;H,3.99;N,5.19.実測値(重量%):C,82.18;H,3.85;N,5.25.
HRMS(APCI):m/z(M+H)理論値C3722BN,537.1774;実測値 537.1775.
Synthesis of Compound (1) Compound (A-6) (700.3 mg, 1.159 mmol) was dissolved in dehydrated dichloroethane (115 mL) and stirred at 0 ° C. under a nitrogen atmosphere. Boron tribromide (6.0 mL, 6.0 mmol) was added dropwise to this solution, and stirring was continued for 2 hours. The reaction was then heated to 40 ° C. and allowed to stir overnight. After completion of the reaction, the reaction solution was quenched by adding a saturated aqueous sodium hydrogen carbonate solution while cooling with ice. The aqueous phase was removed, the solvent was distilled off, and the solid precipitated with ethanol was washed, followed by filtration to obtain a dark green solid (611.2 mg, crude yield; 98%). Thereafter, a glossy red solid was obtained through sublimation purification.
Elemental analysis Theoretical value (wt%) C 37 H 21 BN 2 O 2 · 0.2H 2 O: C, 82.30; H, 3.99; N, 5.19. Found (wt%): C, 82.18; H, 3.85; N, 5.25.
HRMS (APCI): m / z (M + H) + theoretical value C 37 H 22 BN 2 O 2 , 537.1774; found value 537.1775.

(実施例2) 化合物(5)の合成

Figure 2018123093
Example 2 Synthesis of Compound (5)
Figure 2018123093

化合物(A−7)の合成
窒素雰囲気下、化合物(A−2)(4.00g,18.5mmol)と2−ブロモ−4−メトキシアセトフェノン(4.70g,21.9mmol)を脱水エタノール(50mL)に溶解させ,一晩還流させた。反応終了後、濾過により析出した白色固体を得た(7.41g,収率97%)。
HNMR(500MHz,CDCl):δ(ppm)13.2(s,1H),11.1(s,1H),8.91(s,1H,7.93(d,1H,J=8.20Hz),7.75(d,1H,J=8.20Hz),7.55(ddd,1H,J=8.12,6.98,1.16Hz),7.44(ddd,1H,J=8.12,6.97,1.14Hz),7.27(s,1H),7.27(d,1H,J=8.65Hz,H),7.22(d,1H,J=2.00Hz),6.97(dd,1H,J=8.48,2.08Hz),4.19(s,3H),2.37(s,3H).
HRMS(FAB):m/z(M+H)理論値 C2018BrN,413.0501;実測値,413.0519.
Synthesis of Compound (A-7) Compound (A-2) (4.00 g, 18.5 mmol) and 2-bromo-4-methoxyacetophenone (4.70 g, 21.9 mmol) were mixed with dehydrated ethanol (50 mL) under a nitrogen atmosphere. ) And refluxed overnight. After completion of the reaction, a white solid precipitated by filtration was obtained (7.41 g, yield 97%).
1 HNMR (500 MHz, CDCl 3 ): δ (ppm) 13.2 (s, 1H), 11.1 (s, 1H), 8.91 (s, 1H, 7.93 (d, 1H, J = 8) .20 Hz), 7.75 (d, 1H, J = 8.20 Hz), 7.55 (ddd, 1H, J = 8.12, 6.98, 1.16 Hz), 7.44 (ddd, 1H, J = 8.12, 6.97, 1.14 Hz), 7.27 (s, 1H), 7.27 (d, 1H, J = 8.65 Hz, H j ), 7.22 (d, 1H, J = 2.00 Hz), 6.97 (dd, 1H, J = 8.48, 2.08 Hz), 4.19 (s, 3H), 2.37 (s, 3H).
HRMS (FAB): m / z (M + H) + theoretical C 20 H 18 BrN 2 O 3 , 413.0501; Found, 413.0519.

化合物(A−8)の合成
テトラヒドロフラン(24mL)に化合物(A−7)(501mg,1.21mmol)を溶解させた。氷冷しながらこの溶液に、四酢酸鉛(658mg,1.48mmol)を少量ずつ加え、室温で3時間撹拌させた。反応終了後、シリカゲルを敷いた桐山濾過により析出した固体を除き、溶媒を留去したのち、ジクロロメタンと蒸留水で分液処理をおこなった。有機相を乾燥させ、溶媒を留去し、カラムクロマトグラフィー(順相シリカゲル,酢酸エチル:ヘキサン=2:3)により精製をおこない淡黄色固体を得た(400mg,86%)。
HNMR(500MHz,CDCl):δ(ppm)8.18(s,1H),7.84(d,1H,J=8.20Hz),7.75(d,1H,J=8.10Hz),7.68(dd,1H,J=8.20,1.90Hz),7.58(d,1H,J=8.20Hz),7.53(1H,ddd,J=8.22,6.93,1.28Hz),7.53(d,1H,J=1.9Hz),7.39(ddd,1H,J=8.17,6.93,1.20Hz),7.17(s,1H),3.78(s,3H),2.48(s,3H).
HRMS(FAB):m/z(M)理論値C2015BrO,382.0205;実測値,382.0219.
Synthesis of Compound (A-8) Compound (A-7) (501 mg, 1.21 mmol) was dissolved in tetrahydrofuran (24 mL). To this solution was added lead tetraacetate (658 mg, 1.48 mmol) little by little, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, the solid precipitated by Kiriyama filtration with silica gel was removed, and the solvent was distilled off, followed by liquid separation with dichloromethane and distilled water. The organic phase was dried, the solvent was distilled off, and purification was performed by column chromatography (normal phase silica gel, ethyl acetate: hexane = 2: 3) to obtain a pale yellow solid (400 mg, 86%).
1 HNMR (500 MHz, CDCl 3 ): δ (ppm) 8.18 (s, 1H), 7.84 (d, 1H, J = 8.20 Hz), 7.75 (d, 1H, J = 8.10 Hz) ), 7.68 (dd, 1H, J = 8.20, 1.90 Hz), 7.58 (d, 1H, J = 8.20 Hz), 7.53 (1H, ddd, J = 8.22) 6.93, 1.28 Hz), 7.53 (d, 1 H, J = 1.9 Hz), 7.39 (ddd, 1 H, J = 8.17, 6.93, 1.20 Hz), 7.17 (S, 1H), 3.78 (s, 3H), 2.48 (s, 3H).
HRMS (FAB): m / z (M) + theoretical C 20 H 15 BrO 3, 382.0205 ; Found, 382.0219.

化合物(A−9)の合成
化合物(A−8)(304mg,0.794mmol)をエタノール(10mL)、酢酸(2mL)に溶解させ、溶液を65°Cに加熱後、塩化アンモニウム(45.7mg,0.854mmol)、酢酸アンモニウム(369mg,4.79mmol)を加えた。80℃で12時間撹拌後、飽和炭酸水素ナトリウム水溶液でクエンチし、ジクロロメタンと飽和食塩水で分液処理をおこなった。有機相を硫酸ナトリウムで乾燥させ、溶媒を留去し、カラムクロマトグラフィー(順相シリカゲル、ベンゼン:ヘキサン=3:1)により精製をおこない、濃紫色の固体を得た(124mg,収率44%)。
HNMR(500MHz,CDCl):δ(ppm)8.31(s,2H),8.04(d,2H,J=1.40Hz),7.85(d,2H,J=8.10Hz),7.81(d,2H,J=8.50Hz),7.76(d,2H,J=8.10Hz),7.56(s,1H),7.50(ddd,2H,J=8.10,6.95,1.14Hz),7.46(dd,2H,J=8.50,1.70Hz),7.40(ddd,2H,J=8.07,6.87,1.16Hz),7.23(s,2H),3.77(s,6H).
HRMS(FAB):m/z(M+H)理論値 C3927Br,713.0439;実測値,713.0405.
Synthesis of Compound (A-9) Compound (A-8) (304 mg, 0.794 mmol) was dissolved in ethanol (10 mL) and acetic acid (2 mL), and the solution was heated to 65 ° C., and then ammonium chloride (45.7 mg). , 0.854 mmol) and ammonium acetate (369 mg, 4.79 mmol). After stirring at 80 ° C. for 12 hours, the reaction mixture was quenched with a saturated aqueous sodium hydrogen carbonate solution and subjected to liquid separation treatment with dichloromethane and saturated brine. The organic phase was dried over sodium sulfate, the solvent was distilled off, and purification was performed by column chromatography (normal phase silica gel, benzene: hexane = 3: 1) to obtain a dark purple solid (124 mg, 44% yield). ).
1 HNMR (500 MHz, CDCl 3 ): δ (ppm) 8.31 (s, 2H), 8.04 (d, 2H, J = 1.40 Hz), 7.85 (d, 2H, J = 8.10 Hz) ), 7.81 (d, 2H, J = 8.50 Hz), 7.76 (d, 2H, J = 8.10 Hz), 7.56 (s, 1H), 7.50 (ddd, 2H, J = 8.10, 6.95, 1.14 Hz), 7.46 (dd, 2H, J = 8.50, 1.70 Hz), 7.40 (ddd, 2H, J = 8.07, 6.87). , 1.16 Hz), 7.23 (s, 2H), 3.77 (s, 6H).
HRMS (FAB): m / z (M + H) + theoretical C 39 H 27 Br 2 N 2 O 2, 713.0439; Found, 713.0405.

化合物(A−10)の合成
窒素雰囲気下、化合物(A−9)(162mg,0.226mmol)を脱水トルエン(10mL)に溶解させ、トリエチルアミン(0.1mL,0.721mmol)を加えて撹拌させた。80℃に加熱したのち、三フッ化ホウ素ジエチルエーテル錯体(0.25mL,2.03mmol)を滴下し、100℃で5時間撹拌させた。蒸留水を加えてクエンチし、ジクロロメタンと飽和食塩水で分液処理をおこなった。有機相を硫酸ナトリウムで乾燥後、溶媒を留去した。メタノールで洗浄をおこない、濾過により青紫色固体を得た(155mg,収率90%)。cis体とtrans体の混合物として同定データを記す。
HNMR(500MHz,DMSO−d):δ(ppm)8.84(s,1H),8.16(1H,d,J=8.45Hz),8.16(d,1H,J=8.90Hz),7.98(s,1H),7.94(s,1H),7.84(dd,2H,J=8.48,3.78Hz),7.82(d,1H,J=8.95Hz),7.77(d,1H,J=7.90Hz),7.73(dd,1H,J=8.82,1.67Hz),7.73(dd,1H,J=8.75,1.40Hz),7.48−7.51(m,4H),7.49(s,1H),7.45(s,1H),7.37−7.30(m,2H),3.83(s,3H),3.76(s,6H).
HRMS(FAB):m/z(M)理論値 C3925BBr,760.0344;実測値,760.0307.
Synthesis of Compound (A-10) Compound (A-9) (162 mg, 0.226 mmol) is dissolved in dehydrated toluene (10 mL) under nitrogen atmosphere, and triethylamine (0.1 mL, 0.721 mmol) is added and stirred. It was. After heating to 80 ° C., boron trifluoride diethyl ether complex (0.25 mL, 2.03 mmol) was added dropwise, and the mixture was stirred at 100 ° C. for 5 hours. Distilled water was added to quench, and liquid separation treatment was performed with dichloromethane and saturated saline. The organic phase was dried over sodium sulfate and the solvent was distilled off. The product was washed with methanol, and a blue-violet solid was obtained by filtration (155 mg, yield 90%). The identification data is described as a mixture of cis and trans isomers.
1 HNMR (500 MHz, DMSO-d 6 ): δ (ppm) 8.84 (s, 1H), 8.16 (1H, d, J = 8.45 Hz), 8.16 (d, 1H, J = 8) .90 Hz), 7.98 (s, 1H), 7.94 (s, 1H), 7.84 (dd, 2H, J = 8.48, 3.78 Hz), 7.82 (d, 1H, J = 8.95 Hz), 7.77 (d, 1H, J = 7.90 Hz), 7.73 (dd, 1H, J = 8.82, 1.67 Hz), 7.73 (dd, 1H, J = 8.75, 1.40 Hz), 7.48-7.51 (m, 4H), 7.49 (s, 1H), 7.45 (s, 1H), 7.37-7.30 (m, 2H), 3.83 (s, 3H), 3.76 (s, 6H).
HRMS (FAB): m / z (M) + theoretical value C 39 H 25 BBr 2 F 2 N 2 O 2 , 760.0344; found value, 760.0307.

化合物(A−11)の合成
化合物(A−10)(1.46g,1.92mmol)とフェニルボロン酸(0.936g,7.68mmol)をテトラヒドロフラン(100mL)と2M炭酸カリウム水溶液(23mL)に溶解させ、凍結脱気を3回おこなった。窒素雰囲気下のグローブバッグ内でPd(PPh(0.44g,0.381mmol)を加え、70℃で一晩撹拌させた。反応終了後,蒸留水を加えてクエンチし、ジクロロメタンで分液処理をおこなった。有機相を硫酸ナトリウムで乾燥後、溶媒を留去した。カラムクロマトグラフィー(順相シリカゲル,ベンゼン:ヘキサン=3:1)により精製をおこない、再沈殿(ジクロロメタン/メタノール)により濃赤紫色固体を得た(1.02g,収率71%)。cis体とtrans体の混合物として同定データを記す。
HNMR(500MHz,DMSO−d):δ(ppm)8.82(s,1H),8.31(d,1H,J=8.50Hz),8.30(d,1H,J=8.55Hz),8.03(s,1H),7.99(s,1H),7.92(dd,2H,J=8.52,1.47Hz),7.85(d,1H,J=8.35Hz),7.85(d,1H,J=7.90Hz),7.84(d,1H,J=8.15Hz),7.79(d,1H,J=8.10Hz),7.65(dd,4H,J=7.38,1.28Hz),7.47−7.51(m,4H),7.51(s,1H),7.47(s,1H),7.43(t,1H,J=7.67Hz),7.42(t,1H,J=7.62Hz),7.30−7.37(m,4H),3.85(s,3H),3.78(s,3H).
FAB−MS:m/z=756(M)
元素分析 理論値(重量%)C5135BF:C,80.96;H,4.66;N,3.70.実測値(重量%):C,80.85;H,4.66;N,3.69.
Synthesis of Compound (A-11) Compound (A-10) (1.46 g, 1.92 mmol) and phenylboronic acid (0.936 g, 7.68 mmol) were added to tetrahydrofuran (100 mL) and 2M aqueous potassium carbonate solution (23 mL). It was dissolved and freeze-deaerated three times. Pd (PPh 3 ) 4 (0.44 g, 0.381 mmol) was added in a glove bag under a nitrogen atmosphere, and the mixture was stirred at 70 ° C. overnight. After completion of the reaction, the reaction solution was quenched by adding distilled water and subjected to liquid separation treatment with dichloromethane. The organic phase was dried over sodium sulfate and the solvent was distilled off. Purification was performed by column chromatography (normal phase silica gel, benzene: hexane = 3: 1), and a deep red-purple solid was obtained by reprecipitation (dichloromethane / methanol) (1.02 g, yield 71%). The identification data is described as a mixture of cis and trans isomers.
1 HNMR (500 MHz, DMSO-d 6 ): δ (ppm) 8.82 (s, 1H), 8.31 (d, 1H, J = 8.50 Hz), 8.30 (d, 1H, J = 8) .55 Hz), 8.03 (s, 1 H), 7.9 (s, 1 H), 7.92 (dd, 2 H, J = 8.52, 1.47 Hz), 7.85 (d, 1 H, J = 8.35 Hz), 7.85 (d, 1H, J = 7.90 Hz), 7.84 (d, 1H, J = 8.15 Hz), 7.79 (d, 1H, J = 8.10 Hz) 7.65 (dd, 4H, J = 7.38, 1.28 Hz), 7.47-7.51 (m, 4H), 7.51 (s, 1H), 7.47 (s, 1H) , 7.43 (t, 1H, J = 7.67 Hz), 7.42 (t, 1H, J = 7.62 Hz), 7.30-7.37 (m, 4H), 3.85 ( , 3H), 3.78 (s, 3H).
FAB-MS: m / z = 756 (M) +
Elemental analysis Theoretical value (wt%) C 51 H 35 BF 2 N 2 O 2: C, 80.96; H, 4.66; N, 3.70. Found (wt%): C, 80.85; H, 4.66; N, 3.69.

化合物(5)の合成
窒素雰囲気下、化合物(A−11)(701mg,0.927mmol)を脱水ジクロロエタン(92mL)に溶解させ、0℃で撹拌させた。この溶液に三臭化ホウ素(5.0mL,5.0mmol)を滴下後、2時間撹拌を続けた。その後反応液を40℃に加熱し、一晩撹拌させた。反応終了後、氷冷しながら飽和炭酸水素ナトリウム水溶液を加えてクエンチした。水相を除いて溶媒を留去し、メタノールで析出した固体を洗浄後、濾過により緑色固体を定量的に得た(665mg)。その後、昇華精製を経て光沢のある緑色固体を得た。
FAB−MS:m/z=688(M)
Synthesis of Compound (5) Compound (A-11) (701 mg, 0.927 mmol) was dissolved in dehydrated dichloroethane (92 mL) and stirred at 0 ° C. under a nitrogen atmosphere. Boron tribromide (5.0 mL, 5.0 mmol) was added dropwise to this solution, and stirring was continued for 2 hours. The reaction was then heated to 40 ° C. and allowed to stir overnight. After completion of the reaction, the reaction solution was quenched by adding a saturated aqueous sodium hydrogen carbonate solution while cooling with ice. The aqueous phase was removed, the solvent was distilled off, the solid precipitated with methanol was washed, and then a green solid was quantitatively obtained by filtration (665 mg). Then, a glossy green solid was obtained through sublimation purification.
FAB-MS: m / z = 688 (M) + .

(実施例3)化合物(1)を用いた薄膜の作成と評価
実施例1で得られた化合物(1)を予め洗浄したガラス基板に100nmの膜厚に抵抗加熱真空蒸着し、得られた有機薄膜について、吸収スペクトルを測定した。得られた吸収スペクトルを図2に示す。結果、化合物(1)の薄膜状態における主たる吸収帯の吸収極大は785nmに観測された。イオン化ポテンシャルは5.3eVであった。
(Example 3) Preparation and evaluation of thin film using compound (1) The compound (1) obtained in Example 1 was subjected to resistance heating vacuum deposition to a film thickness of 100 nm on a glass substrate previously washed, and the resulting organic The absorption spectrum was measured about the thin film. The obtained absorption spectrum is shown in FIG. As a result, the absorption maximum of the main absorption band in the thin film state of compound (1) was observed at 785 nm. The ionization potential was 5.3 eV.

(実施例4)化合物(5)を用いた薄膜の作成と評価
実施例2で得られた化合物(5)を予め洗浄したガラス基板に80nmの膜厚に抵抗加熱真空蒸着し、得られた有機薄膜について、吸収スペクトルを測定した。得られた吸収スペクトルを図3に示す。結果、化合物(2)の薄膜状態における主たる吸収帯の吸収極大は788nmに観測された。イオン化ポテンシャルは5.3eVであった。
(Example 4) Preparation and evaluation of thin film using compound (5) Compound (5) obtained in Example 2 was vacuum-deposited with resistance heating to a film thickness of 80 nm on a glass substrate previously washed, and the resulting organic The absorption spectrum was measured about the thin film. The obtained absorption spectrum is shown in FIG. As a result, the absorption maximum of the main absorption band in the thin film state of compound (2) was observed at 788 nm. The ionization potential was 5.3 eV.

(比較合成例1)比較化合物Bの合成

Figure 2018123093
(Comparative Synthesis Example 1) Synthesis of Comparative Compound B
Figure 2018123093

化合物(A−13)の合成
窒素雰囲気下、化合物(A−12)(5.01g,30.1mmol)、2−ヒドロキシアセトフェノン(4.5mL,37.4mmol)を脱水エタノール(80mL)に溶解させ一晩還流させた。反応終了後、濾過により析出した白色固体の化合物(A−13)を得た(5.80g,収率68%)。
HNMR(500MHz,CDCl):δ(ppm)12.9(s,1H),11.0(s,1H),8.36(dd,1H,J=7.80,1.80Hz),7.53(ddd,1H,J=8.34,7.26,1.79Hz),7.47(dd,1H,J=7.97,1.58Hz),7.29(td,1H,J=7.70,1.50Hz),7.17(td,1H,J=7.56,0.88Hz,H),7.05(dd,1H,J=8.33,1.13Hz),7.05(dd,1H,J=8.23,1.35Hz),6.87(td,1H,J=7.59,1.23Hz),4.10(s,3H),2.39(s,3H).FAB−MS:m/z=285(M+H)
Synthesis of Compound (A-13) Compound (A-12) (5.01 g, 30.1 mmol) and 2-hydroxyacetophenone (4.5 mL, 37.4 mmol) were dissolved in dehydrated ethanol (80 mL) under a nitrogen atmosphere. Refluxed overnight. After completion of the reaction, a white solid compound (A-13) precipitated by filtration was obtained (5.80 g, yield 68%).
1 HNMR (500 MHz, CDCl 3 ): δ (ppm) 12.9 (s, 1H), 11.0 (s, 1H), 8.36 (dd, 1H, J = 7.80, 1.80 Hz), 7.53 (ddd, 1H, J = 8.34, 7.26, 1.79 Hz), 7.47 (dd, 1H, J = 7.97, 1.58 Hz), 7.29 (td, 1H, J = 7.70, 1.50 Hz), 7.17 (td, 1H, J = 7.56, 0.88 Hz, H d ), 7.05 (dd, 1H, J = 8.33, 1.13 Hz) ), 7.05 (dd, 1H, J = 8.23, 1.35 Hz), 6.87 (td, 1H, J = 7.59, 1.23 Hz), 4.10 (s, 3H), 2 .39 (s, 3H). FAB-MS: m / z = 285 (M + H) + .

化合物(A−14)の合成
テトラヒドロフラン(190mL)に化合物(A−13)(3.01g,10.6mmol)を溶解させた。氷冷しながらこの溶液に、四酢酸鉛(5.72g,12.9mmol)を少量ずつ加え、室温で2時間撹拌させた。反応終了後、シリカゲルを敷いた桐山濾過により析出した固体を除き、溶媒を留去したのち、ジクロロメタンと蒸留水で分液処理をおこなった。有機相を乾燥させ、溶媒を留去し淡黄色固体の化合物(A−14)を得た(2.61g,収率97%)。
HNMR(500MHz,CDCl):δ(ppm)7.65−7.68(m,2H),7.47−7.54(m,3H),7.37(dd,1H,J=6.98,1.78Hz),7.03(td,1H,J=7.58,0.95Hz),6.94(d,1H,J=8.25Hz),3.64(s,3H),2.49(s,3H).
FAB−MS:m/z=255(M+H)
Synthesis of Compound (A-14) Compound (A-13) (3.01 g, 10.6 mmol) was dissolved in tetrahydrofuran (190 mL). To this solution was added ice tetraacetate (5.72 g, 12.9 mmol) little by little, and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, the solid precipitated by Kiriyama filtration with silica gel was removed, and the solvent was distilled off, followed by liquid separation with dichloromethane and distilled water. The organic phase was dried, and the solvent was distilled off to obtain a pale yellow solid compound (A-14) (2.61 g, yield 97%).
1 HNMR (500 MHz, CDCl 3 ): δ (ppm) 7.65-7.68 (m, 2H), 7.47-7.54 (m, 3H), 7.37 (dd, 1H, J = 6) .98, 1.78 Hz), 7.03 (td, 1H, J = 7.58, 0.95 Hz), 6.94 (d, 1H, J = 8.25 Hz), 3.64 (s, 3H) , 2.49 (s, 3H).
FAB-MS: m / z = 255 (M + H) + .

化合物(A−15)の合成
化合物(A−14)(1.00g,3.95mmol)をエタノール(55mL)、酢酸(11mL)に溶解させ、溶液を65°Cに加熱後、塩化アンモニウム(216mg,4.03mmol)、酢酸アンモニウム(1.95g,25.4mmol)を加えた。80℃で一晩撹拌後、飽和重曹水でクエンチし、ジクロロメタンと飽和食塩水で分液処理をおこなった。有機相を硫酸ナトリウムで乾燥させ、溶媒を留去し、カラムクロマトグラフィー(順相シリカゲル,ジクロロメタン:ヘキサン=1:1)により精製をおこない、光沢のある深緑色の固体の化合物(A−15)を得た(458mg,収率51%)。
HNMR(500MHz,CDCl):δ(ppm)7.94(dd,2H,J=7.48,1.53Hz),7.93(d,2H,J=7.95Hz),7.84(d,2H,J=8.15Hz),7.61(s,1H),7.38(td,2H,J=7.82,1.35Hz),7.35(t,2H,J=7.43Hz),7.24(t,2H,J=7.58Hz),7.11(td,2H,J=7.32,0.70Hz),7.04(d,2H,J=8.25Hz),3.77(s,6H).
FAB−MS:m/z=456(M)
Synthesis of Compound (A-15) Compound (A-14) (1.00 g, 3.95 mmol) was dissolved in ethanol (55 mL) and acetic acid (11 mL), and the solution was heated to 65 ° C., and then ammonium chloride (216 mg). 4.03 mmol) and ammonium acetate (1.95 g, 25.4 mmol). After stirring at 80 ° C. overnight, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate and subjected to liquid separation treatment with dichloromethane and saturated brine. The organic phase is dried over sodium sulfate, the solvent is distilled off, and the residue is purified by column chromatography (normal phase silica gel, dichloromethane: hexane = 1: 1) to give a bright dark green solid compound (A-15) (458 mg, 51% yield) was obtained.
1 HNMR (500 MHz, CDCl 3 ): δ (ppm) 7.94 (dd, 2H, J = 7.48, 1.53 Hz), 7.93 (d, 2H, J = 7.95 Hz), 7.84 (D, 2H, J = 8.15 Hz), 7.61 (s, 1H), 7.38 (td, 2H, J = 7.82, 1.35 Hz), 7.35 (t, 2H, J = 7.43 Hz), 7.24 (t, 2H, J = 7.58 Hz), 7.11 (td, 2H, J = 7.32, 0.70 Hz), 7.04 (d, 2H, J = 8) .25 Hz), 3.77 (s, 6H).
FAB-MS: m / z = 456 (M) + .

化合物(A−16)の合成
窒素雰囲気下、化合物(A−15)(1.01g,2.21mmol)を脱水トルエン(88mL)に溶解させ、トリエチルアミン(0.8mL,5.77mmol)を加えて撹拌させた。80℃に加熱したのち、三フッ化ホウ素ジエチルエーテル錯体(2.5mL,20.3mmol)を滴下し、100℃で3時間撹拌させた。蒸留水を加えてクエンチし、ジクロロメタンと蒸留水で分液処理をおこなった。有機相を硫酸ナトリウムで乾燥後、溶媒を留去した。得られた固体をメタノールで洗浄し、濾過により青紫色固体の化合物(A−16)を得た(1.10g,収率99%)。
HNMR(500MHz,DMSO−d):δ(ppm)8.65(s,1H),8.16(d,1H,J=8.20Hz),8.15(d,1H,J=8.20Hz),7.54(t,2H,J=7.37Hz),7.48(td,2H,J=7.91,1.63Hz),7.45(d,1H,J=7.60Hz),7.38(d,1H,J=7.15Hz),7.29(d,1H,J=8.10Hz),7.26(d,1H,J=6.85Hz)7.28(t,1H,J=8.15Hz),7.25(t,1H,J=7.43Hz),7.20(d,1H,J=8.25Hz),7.17(d,1H,J=8.25Hz),7.07(td,1H,J=7.50,0.75Hz),7.01(td,1H,J=7.49,0.72Hz),3.72(s,6H),3.66(s,6H).
FAB−MS:m/z=504(M)
元素分析 理論値(重量%)C3123BF:C,73.83;H,4.60;N,5.55.実測値(重量%):C,73.54;H,4.63;N,5.55.
Synthesis of Compound (A-16) In a nitrogen atmosphere, Compound (A-15) (1.01 g, 2.21 mmol) was dissolved in dehydrated toluene (88 mL), and triethylamine (0.8 mL, 5.77 mmol) was added. Allowed to stir. After heating to 80 ° C., boron trifluoride diethyl ether complex (2.5 mL, 20.3 mmol) was added dropwise and allowed to stir at 100 ° C. for 3 hours. Distilled water was added for quenching, and liquid separation treatment was performed with dichloromethane and distilled water. The organic phase was dried over sodium sulfate and the solvent was distilled off. The obtained solid was washed with methanol, and a blue-violet solid compound (A-16) was obtained by filtration (1.10 g, yield 99%).
1 HNMR (500 MHz, DMSO-d 6 ): δ (ppm) 8.65 (s, 1H), 8.16 (d, 1H, J = 8.20 Hz), 8.15 (d, 1H, J = 8) 20 Hz), 7.54 (t, 2H, J = 7.37 Hz), 7.48 (td, 2H, J = 7.91, 1.63 Hz), 7.45 (d, 1H, J = 7. 60 Hz), 7.38 (d, 1H, J = 7.15 Hz), 7.29 (d, 1H, J = 8.10 Hz), 7.26 (d, 1H, J = 6.85 Hz) 7.28 (T, 1H, J = 8.15 Hz), 7.25 (t, 1H, J = 7.43 Hz), 7.20 (d, 1H, J = 8.25 Hz), 7.17 (d, 1H, J = 8.25 Hz), 7.07 (td, 1H, J = 7.50, 0.75 Hz), 7.01 (td, 1H, J = 7.49, 0.72) z), 3.72 (s, 6H), 3.66 (s, 6H).
FAB-MS: m / z = 504 (M) + .
Elemental analysis Theoretical value (wt%) C 31 H 23 BF 2 N 2 O 2: C, 73.83; H, 4.60; N, 5.55. Found (wt%): C, 73.54; H, 4.63; N, 5.55.

比較化合物(B)の合成
窒素雰囲気下、化合物(A−16)(700mg,1.39mmol)を脱水ジクロロエタン(138mL)に溶解させ、0℃で撹拌させた。この溶液に三臭化ホウ素(7.0mL,7.0mmol)を滴下後、2時間撹拌を続けた。その後反応液を40℃に加熱し、一晩撹拌させた。反応終了後、氷冷しながら飽和重曹水を加えてクエンチした。水相を除いて溶媒を留去し、メタノールで析出した固体を洗浄後、濾過により青緑色固体を得た(515mg,粗収率85%)。その後、昇華精製を経て光沢のある緑色固体を得た。
APCI−MS:m/z=436(M)
Synthesis of Comparative Compound (B) Compound (A-16) (700 mg, 1.39 mmol) was dissolved in dehydrated dichloroethane (138 mL) and stirred at 0 ° C. under a nitrogen atmosphere. Boron tribromide (7.0 mL, 7.0 mmol) was added dropwise to this solution, and stirring was continued for 2 hours. The reaction was then heated to 40 ° C. and allowed to stir overnight. After completion of the reaction, the reaction was quenched by adding saturated aqueous sodium bicarbonate while cooling with ice. The aqueous phase was removed, the solvent was distilled off, and the solid precipitated with methanol was washed, followed by filtration to obtain a blue-green solid (515 mg, crude yield 85%). Then, a glossy green solid was obtained through sublimation purification.
APCI-MS: m / z = 436 (M) + .

(比較例1)比較化合物Bを用いた薄膜の作成と評価
比較化合物Bを予め洗浄したガラス基板に80nmの膜厚に抵抗加熱真空蒸着し、得られた有機薄膜について、吸収スペクトルを測定した。得られた吸収スペクトルを図4に示す。結果、比較化合物Bの薄膜状態における主たる吸収帯の吸収極大は757nmに観測された。イオン化ポテンシャルは5.1eVであった。
(Comparative example 1) Preparation and evaluation of thin film using comparative compound B Resistance compound was vacuum-deposited to a film thickness of 80 nm on a glass substrate previously washed with comparative compound B, and the absorption spectrum of the obtained organic thin film was measured. The obtained absorption spectrum is shown in FIG. As a result, the absorption maximum of the main absorption band in the thin film state of Comparative Compound B was observed at 757 nm. The ionization potential was 5.1 eV.

比較例1に示した比較化合物Bと比較して、本発明のジベンゾピロメテンホウ素キレート化合物を用いた薄膜は、近赤外領域の光をより効率的に吸収し、かつHOMOエネルギーの安定化が達成されていることが確認できる。   Compared with Comparative Compound B shown in Comparative Example 1, the thin film using the dibenzopyromethene boron chelate compound of the present invention absorbs light in the near infrared region more efficiently and stabilizes HOMO energy. It can be confirmed that it has been achieved.

(実施例5)光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に光電変換層として、化合物(1)を抵抗加熱真空蒸着し、100nmの膜厚に成膜した。その上に電極として、アルミニウムを抵抗加熱真空蒸着し、100nmの膜厚に成膜し、本発明の光電変換素子を作製した。ITOとアルミニウムを電極として、800nm、半値幅20nmの光照射を行った状態で、1Vの電圧を印加した際の光電流応答性を測定したところ、暗所での電流は8.49×10−9A/cm、明所での電流は3.77×10−6A/cmであり、その明暗比は4.4×10であった。得られた光電変換素子の光電流応答性を図5に示す。
(Example 5) Production of photoelectric conversion element and evaluation thereof As a photoelectric conversion layer on ITO transparent conductive glass (manufactured by Geomat Co., Ltd., ITO film thickness 150 nm), compound (1) was vacuum-heated by resistance heating, and the film thickness was 100 nm. A film was formed. On top of that, aluminum was resistively heated and vacuum-deposited as an electrode to form a film having a thickness of 100 nm, thereby producing the photoelectric conversion element of the present invention. When the photocurrent response was measured when a voltage of 1 V was applied in a state where light irradiation with 800 nm and a half-value width of 20 nm was performed using ITO and aluminum as electrodes, the current in the dark was 8.49 × 10 −. 9 a / cm 2, the current in the light is 3.77 × 10 -6 a / cm 2 , the contrast ratio was 4.4 × 10 2. The photocurrent response of the obtained photoelectric conversion element is shown in FIG.

(実施例6)光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に光電変換層として、化合物(5)を抵抗加熱真空蒸着し、100nmの膜厚に成膜した。その上に電極として、アルミニウムを抵抗加熱真空蒸着し、100nmの膜厚に成膜し、本発明の光電変換素子を作製した。ITOとアルミニウムを電極として、800nm、半値幅20nmの光照射を行った状態で、1Vの電圧を印加した際の光電流応答性を測定したところ、暗所での電流は1.09×10−9A/cmであり、明所での電流は5.34×10−7A/cmであり、その明暗比は4.9×10であった。得られた光電変換素子の光電流応答性を図6に示す。
(Example 6) Production of photoelectric conversion element and evaluation thereof As a photoelectric conversion layer on ITO transparent conductive glass (manufactured by Geomatic Co., Ltd., ITO film thickness 150 nm), compound (5) was vacuum-heated by resistance heating, and the film thickness was 100 nm. A film was formed. On top of that, aluminum was resistively heated and vacuum-deposited as an electrode to form a film having a thickness of 100 nm, thereby producing the photoelectric conversion element of the present invention. When photocurrent response was measured when a voltage of 1 V was applied in a state where light irradiation with 800 nm and a half width of 20 nm was performed using ITO and aluminum as electrodes, the current in the dark was 1.09 × 10 −. 9 A / cm 2 , the current in the light place was 5.34 × 10 −7 A / cm 2 , and the light / dark ratio was 4.9 × 10 2 . FIG. 6 shows the photocurrent response of the obtained photoelectric conversion element.

(比較例2)光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に光電変換層として、比較化合物Bを抵抗加熱真空蒸着し、80nmの膜厚に成膜した。その上に電極として、アルミニウムを抵抗加熱真空蒸着し、100nmの膜厚に成膜し、比較用の光電変換素子を作製した。ITOとアルミニウムを電極として、775nm、半値幅20nmの光照射を行った状態で、0.05Vの電圧を印加した際の光電流応答性を測定したところ、暗所での電流は5.18×10−8A/cmであり、明所での電流は9.47×10−7A/cmであり、その明暗比は18であった。得られた光電変換素子の光電流応答特性を図7に示す。また、1Vの電圧を印加した際の光電流応答性を測定したところ、暗所での電流は8.15×10−6A/cmであり、明所での電流は1.42×10−5A/cmであり、その明暗比は1.7であった。
(Comparative Example 2) Production of photoelectric conversion element and its evaluation Comparative compound B was vacuum heated by resistance heating as a photoelectric conversion layer on ITO transparent conductive glass (manufactured by Geomat Co., Ltd., ITO film thickness 150 nm) to a film thickness of 80 nm. A film was formed. On top of that, aluminum was resistively heated and vacuum-deposited as an electrode, and a film having a thickness of 100 nm was formed to produce a comparative photoelectric conversion element. When photocurrent response was measured when a voltage of 0.05 V was applied with ITO and aluminum being used as electrodes and irradiating with light of 775 nm and a half width of 20 nm, the current in the dark was 5.18 ×. 10 −8 A / cm 2 , the current in the light place was 9.47 × 10 −7 A / cm 2 , and the light / dark ratio was 18. The photocurrent response characteristic of the obtained photoelectric conversion element is shown in FIG. Further, when the photocurrent response when a voltage of 1 V was applied was measured, the current in the dark was 8.15 × 10 −6 A / cm 2 and the current in the bright was 1.42 × 10 6. It was −5 A / cm 2 and the light / dark ratio was 1.7.

比較例2に示した比較化合物Bを用いた光電変換素子は、光照射がない状態での暗電流の漏れが激しく、明暗比が非常に悪いのに対し、本発明のジベンゾピロメテンホウ素キレート化合物を用いた光電変換素子は、3桁の明暗比が得られていることから光電変換特性に優れていることが確認できる。   The photoelectric conversion element using the comparative compound B shown in Comparative Example 2 has a strong dark current leakage in the absence of light irradiation and a very poor contrast ratio, whereas the dibenzopyromethene boron chelate compound of the present invention. It can be confirmed that the photoelectric conversion element using the above has excellent photoelectric conversion characteristics since a three-digit light / dark ratio is obtained.

本発明のジベンゾピロメテンホウ素キレート化合物は、良好な近赤外吸収特性と蒸着可能な耐熱性を兼ね備えており、優れた近赤外光電変換特性を示すことから有機エレクトロニクスデバイス材料として有用である。   The dibenzopyromethene boron chelate compound of the present invention has good near-infrared absorption characteristics and heat resistance that can be deposited, and exhibits excellent near-infrared photoelectric conversion characteristics, so that it is useful as an organic electronics device material.

1絶縁部
2上部電極
3電子ブロック層もしくは正孔輸送層
4光電変換部
5正孔ブロック層もしくは電子輸送層
6下部電極
7絶縁基材、もしくは他光電変換素子
1 Insulating part 2 Upper electrode 3 Electron blocking layer or hole transporting layer 4 Photoelectric conversion part 5 Hole blocking layer or electron transporting layer 6 Lower electrode 7 Insulating substrate, or other photoelectric conversion element

Claims (8)

下記一般式(1)で表されるジベンゾピロメテンホウ素キレート化合物。
Figure 2018123093
(式(1)中のZは無置換または置換基を有するナフタレン環を表す。R〜Rは各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。)
A dibenzopyromethene boron chelate compound represented by the following general formula (1).
Figure 2018123093
(Z 1 in formula (1) represents an unsubstituted or substituted naphthalene ring. R 1 to R 8 each independently represents a hydrogen atom, an aryl group, a heteroaryl group, an alkyl group, a cycloalkyl group, or a halogen atom. Hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group, substituted amino group, amide group, acyl group, carboxyl group, acyloxy group, cyano group, sulfo group, sulfamoyl group, alkylsulfamoyl group, carbamoyl group, Represents an alkylcarbamoyl group.)
下記一般式(2)で表されるジベンゾピロメテンホウ素キレート化合物。
Figure 2018123093
(式(2)中のR〜R20は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。)
A dibenzopyromethene boron chelate compound represented by the following general formula (2).
Figure 2018123093
(R 1 to R 20 in formula (2) are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group. A substituted amino group, an amide group, an acyl group, a carboxyl group, an acyloxy group, a cyano group, a sulfo group, a sulfamoyl group, an alkylsulfamoyl group, a carbamoyl group, and an alkylcarbamoyl group.
下記一般式(3)で表されるジベンゾピロメテンホウ素キレート化合物。
Figure 2018123093
(式(3)中のRとRは各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。)
A dibenzopyromethene boron chelate compound represented by the following general formula (3).
Figure 2018123093
(R 2 and R 7 in formula (3) are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group. A substituted amino group, an amide group, an acyl group, a carboxyl group, an acyloxy group, a cyano group, a sulfo group, a sulfamoyl group, an alkylsulfamoyl group, a carbamoyl group, and an alkylcarbamoyl group.
請求項1〜請求項3のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物含む近赤外吸収色素。   The near-infrared absorption pigment | dye containing the dibenzopyromethene boron chelate compound as described in any one of Claims 1-3. 請求項1〜請求項3のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物含む薄膜。   The thin film containing the dibenzopyromethene boron chelate compound as described in any one of Claims 1-3. 請求項1〜請求項3のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物、請求項4に記載の近赤外吸収色素又は請求項5に記載の薄膜を含む光電変換素子。   The photoelectric conversion element containing the dibenzopyromethene boron chelate compound as described in any one of Claims 1-3, the near-infrared absorption dye of Claim 4, or the thin film of Claim 5. 請求項6に記載の光電変換素子を備える近赤外光センサー。   A near-infrared light sensor comprising the photoelectric conversion element according to claim 6. 請求項6に記載の光電変換素子を備える撮像素子。
An imaging device comprising the photoelectric conversion device according to claim 6.
JP2017016914A 2017-02-01 2017-02-01 Dibenzopyrromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion element, near-infrared light sensor and image sensor Active JP6770278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016914A JP6770278B2 (en) 2017-02-01 2017-02-01 Dibenzopyrromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion element, near-infrared light sensor and image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016914A JP6770278B2 (en) 2017-02-01 2017-02-01 Dibenzopyrromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion element, near-infrared light sensor and image sensor

Publications (2)

Publication Number Publication Date
JP2018123093A true JP2018123093A (en) 2018-08-09
JP6770278B2 JP6770278B2 (en) 2020-10-14

Family

ID=63110030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016914A Active JP6770278B2 (en) 2017-02-01 2017-02-01 Dibenzopyrromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion element, near-infrared light sensor and image sensor

Country Status (1)

Country Link
JP (1) JP6770278B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155911A1 (en) * 2018-02-06 2019-08-15 富士フイルム株式会社 Color conversion composition, compound used for same, and light-emitting device
WO2020059484A1 (en) * 2018-09-18 2020-03-26 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, infrared sensor, method for producing optical filter, camera module, compound, and dispersion composition
WO2021039205A1 (en) 2019-08-29 2021-03-04 富士フイルム株式会社 Composition, film, near-infrared cut-off filter, pattern formation method, laminate, solid-state imaging element, infrared sensor, image display device, camera module and compound
WO2022234383A1 (en) * 2021-05-07 2022-11-10 株式会社半導体エネルギー研究所 Electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184880A (en) * 2009-02-10 2010-08-26 Mitsubishi Chemicals Corp Dibenzopyrromethene boron chelate compound, method for producing the same, solar battery using the same, photopolymerizable composition, optical storage medium, light-emitting element, optical filter and fluorescent pigment for medical diagnosis
JP2012199541A (en) * 2011-03-10 2012-10-18 Mitsubishi Chemicals Corp Organic thin-film solar cell element, solar cell, and solar cell module
WO2013035303A1 (en) * 2011-09-09 2013-03-14 出光興産株式会社 Organic thin film solar cell material
JP2016166284A (en) * 2015-03-09 2016-09-15 公立大学法人首都大学東京 Novel organic compound and use thereof
WO2017159610A1 (en) * 2016-03-18 2017-09-21 日本化薬株式会社 Organic compound, near infrared absorbing dye, photoelectric conversion element, light sensor thereof, and imaging element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184880A (en) * 2009-02-10 2010-08-26 Mitsubishi Chemicals Corp Dibenzopyrromethene boron chelate compound, method for producing the same, solar battery using the same, photopolymerizable composition, optical storage medium, light-emitting element, optical filter and fluorescent pigment for medical diagnosis
JP2012199541A (en) * 2011-03-10 2012-10-18 Mitsubishi Chemicals Corp Organic thin-film solar cell element, solar cell, and solar cell module
WO2013035303A1 (en) * 2011-09-09 2013-03-14 出光興産株式会社 Organic thin film solar cell material
JP2016166284A (en) * 2015-03-09 2016-09-15 公立大学法人首都大学東京 Novel organic compound and use thereof
WO2017159610A1 (en) * 2016-03-18 2017-09-21 日本化薬株式会社 Organic compound, near infrared absorbing dye, photoelectric conversion element, light sensor thereof, and imaging element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155911A1 (en) * 2018-02-06 2019-08-15 富士フイルム株式会社 Color conversion composition, compound used for same, and light-emitting device
JPWO2019155911A1 (en) * 2018-02-06 2020-12-03 富士フイルム株式会社 Color conversion composition, compounds used for this, and light emitting device
US11434420B2 (en) 2018-02-06 2022-09-06 Fujifilm Corporation Color conversion composition, compound used for same, and light emitting device
WO2020059484A1 (en) * 2018-09-18 2020-03-26 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, infrared sensor, method for producing optical filter, camera module, compound, and dispersion composition
JPWO2020059484A1 (en) * 2018-09-18 2021-08-30 富士フイルム株式会社 Compositions, membranes, optical filters, solid-state image sensors, infrared sensors, methods for manufacturing optical filters, camera modules, compounds, and dispersion compositions.
JP7113907B2 (en) 2018-09-18 2022-08-05 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging device, infrared sensor, method for manufacturing optical filter, camera module, compound, and dispersion composition
WO2021039205A1 (en) 2019-08-29 2021-03-04 富士フイルム株式会社 Composition, film, near-infrared cut-off filter, pattern formation method, laminate, solid-state imaging element, infrared sensor, image display device, camera module and compound
WO2022234383A1 (en) * 2021-05-07 2022-11-10 株式会社半導体エネルギー研究所 Electronic equipment

Also Published As

Publication number Publication date
JP6770278B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6803362B2 (en) Photoelectric conversion element for image sensor
JP6618785B2 (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same
JP6907187B2 (en) Organic compounds, near-infrared absorbing dyes, photoelectric conversion elements and their optical sensors, image sensors
JP6465350B2 (en) Novel organic compounds and their use
CN109476681B (en) Dibenzopyrrole methylene boron chelate compound, near-infrared ray absorbing material, thin film and organic electronic device
JP6770278B2 (en) Dibenzopyrromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion element, near-infrared light sensor and image sensor
JP6910880B2 (en) Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these
EP3666777B1 (en) Dibenzopyrromethene boron chelate compound, near-infrared light-absorbing material, thin-film, and organic electronic device
JP6862277B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP7390320B2 (en) Dibenzopyrromethene boron chelate compounds, near-infrared absorption materials, organic thin films and organic electronic devices
JP6619806B2 (en) Fused polycyclic aromatic compounds
JP2018206878A (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same
JP2017137264A (en) Organic compound, infrared light absorbing material and use thereof
JP7033039B2 (en) Dibenzopyrromethene boron chelate compounds and their uses
JP2021015963A (en) Photoelectric conversion element material and uses thereof
JP2020189933A (en) Dibenzopyrromethene boron chelate compound, near infrared light absorption dye, photoelectric conversion element, near infrared light sensor and imaging element
JP2020189950A (en) Dibenzopyrromethene boron chelate compound, near infrared light absorption dye, photoelectric conversion element, near infrared light sensor and imaging element
JP2020010024A (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element
WO2022181439A1 (en) Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element
JP2017034112A (en) Near-infrared photoelectric conversion element, optical sensor, and material for near-infrared photoelectric conversion element
JP2017079317A (en) Material for photoelectric conversion element for image pickup device and photoelectric conversion element including the same
JP2017041560A (en) Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6770278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250