JP2020189933A - Dibenzopyrromethene boron chelate compound, near infrared light absorption dye, photoelectric conversion element, near infrared light sensor and imaging element - Google Patents

Dibenzopyrromethene boron chelate compound, near infrared light absorption dye, photoelectric conversion element, near infrared light sensor and imaging element Download PDF

Info

Publication number
JP2020189933A
JP2020189933A JP2019096458A JP2019096458A JP2020189933A JP 2020189933 A JP2020189933 A JP 2020189933A JP 2019096458 A JP2019096458 A JP 2019096458A JP 2019096458 A JP2019096458 A JP 2019096458A JP 2020189933 A JP2020189933 A JP 2020189933A
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
infrared light
aromatic
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019096458A
Other languages
Japanese (ja)
Other versions
JP7177001B2 (en
Inventor
達也 青竹
Tatsuya AOTAKE
達也 青竹
智史 岩田
Satoshi Iwata
智史 岩田
雄一 貞光
Yuichi Sadamitsu
雄一 貞光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2019096458A priority Critical patent/JP7177001B2/en
Publication of JP2020189933A publication Critical patent/JP2020189933A/en
Application granted granted Critical
Publication of JP7177001B2 publication Critical patent/JP7177001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

To provide a near infrared light absorbing material that has absorption properties in a near infrared region and shows high solubility in solvent, allowing deposition by a solution process, an organic thin film containing the near infrared light absorbing material, an organic electronic device containing the organic thin film, and an organic photoelectric conversion element containing the organic thin film.SOLUTION: The present invention provides a dibenzopyrromethene boron chelate compound represented by formula (1). (R1 to R12 independently represent an aliphatic hydrocarbon group, an aromatic group or a heterocyclic group or the like; Z1 and Z2 independently represent a bivalent linking group with two H atoms removed from an aromatic ring of an aromatic compound, or a bivalent linking group with two H atoms removed from a heterocycle of a heterocyclic compound; n independently represents an integer of 0 or greater).SELECTED DRAWING: None

Description

本発明は、ジベンゾピロメテンホウ素キレート構造を有する新規な化合物、光電変換素子、光センサー、撮像素子に関する。特に、近赤外領域に主たる吸収帯を有する光電変換素子及びその利用に関する。 The present invention relates to a novel compound having a dibenzopyromethene boron chelate structure, a photoelectric conversion element, an optical sensor, and an imaging element. In particular, the present invention relates to a photoelectric conversion element having a main absorption band in the near infrared region and its use.

780乃至2000nmの近赤外領域(国際電気標準会議規格IEC60050−841;1983)に吸収帯を有する近赤外光吸収色素は、従来から産業上の様々な用途への応用が検討されている。例を挙げると、近赤外光吸収色素は、CD−R(Compact Disk−Recordable)等の光情報記録媒体;サーマルCTP(Computer To Plate)、フラッシュトナー定着、レーザー感熱記録等の印刷用途;熱遮断フィルム等の用途に利用されている。さらには、近赤外光吸収色素は、選択的に特定波長域の光を吸収するというその特性を用いて、PDP(プラズマ・ディスプレイ・パネル)のフィルター等に用いられる近赤外線カットフィルターや、植物成長調整用フィルム等にも使用されている。また、近赤外光吸収色素は、溶媒に溶解又は分散させることにより、近赤外光吸収インクとして使用することも可能である。該近赤外光吸収インクによる印字物は、目視では認識が困難であり、近赤外光検出器等でのみ読み取りが可能であることから、例えば偽造防止等を目的とした印字等に使用される。 Near-infrared light-absorbing dyes having an absorption band in the near-infrared region of 780 to 2000 nm (International Electrotechnical Commission standard IEC60050-841; 1983) have been studied for application to various industrial applications. For example, the near-infrared light absorbing dye is an optical information recording medium such as a CD-R (Compact Disk-Recordable); a printing application such as a thermal CTP (Computer To Plate), flash toner fixing, and laser heat sensitive recording; It is used for applications such as blocking films. Furthermore, the near-infrared light-absorbing dye uses its property of selectively absorbing light in a specific wavelength range to form a near-infrared cut filter used for a PDP (plasma display panel) filter or the like, or a plant. It is also used in growth adjustment films and the like. The near-infrared light-absorbing dye can also be used as a near-infrared light-absorbing ink by dissolving or dispersing it in a solvent. The printed matter using the near-infrared light absorbing ink is difficult to visually recognize and can be read only by a near-infrared photodetector or the like. Therefore, it is used for printing for the purpose of preventing counterfeiting, for example. To.

このような不可視画像形成用の近赤外光吸収材料としては、無機系の近赤外光吸収材料と、有機系の近赤外光吸収材料とが既に知られている。このうち、無機系の近赤外光吸収材料としては、イッテルビウム等の希土類金属や、銅リン酸結晶化ガラス等が知られている。しかしながら、無機系の近赤外光吸収材料は、近赤外領域の光の吸収性が十分でないために、不可視画像の単位面積あたりに多量の近赤外光吸収材料が必要となる。そのため、無機系の近赤外光吸収材料によって不可視画像を形成した場合、その表面上にさらに可視画像を形成すると、下側の不可視画像の凹凸が表面側の可視画像に影響を与えてしまう。 As the near-infrared light absorbing material for forming such an invisible image, an inorganic near-infrared light absorbing material and an organic near-infrared light absorbing material are already known. Of these, rare earth metals such as ytterbium and copper-phosphate crystallized glass are known as inorganic near-infrared light absorbing materials. However, since the inorganic near-infrared light absorbing material does not have sufficient light absorption in the near-infrared region, a large amount of near-infrared light absorbing material is required per unit area of the invisible image. Therefore, when an invisible image is formed by an inorganic near-infrared light absorbing material, if a visible image is further formed on the surface of the invisible image, the unevenness of the invisible image on the lower side affects the visible image on the surface side.

それに対し、有機系の近赤外光吸収材料は、近赤外領域の光の吸収性が十分であるために、不可視画像の単位面積あたりの使用量が少なくてすむので、無機系の近赤外光吸収材料を使用した場合のような不都合は生じない。そのため、現在に至るまで多くの有機系近赤外光吸収材料の開発が進められている。 On the other hand, the organic near-infrared light absorbing material has sufficient light absorption in the near-infrared region, so that the amount used per unit area of the invisible image can be small, and therefore the inorganic near-red There is no inconvenience as when using an external light absorbing material. Therefore, many organic near-infrared light absorbing materials have been developed to date.

例えば、特許文献1には、有機系の近赤外光吸収材料として、ナフタロシアニン系化合物が開示されている。しかしながら、ナフタロシアニン系化合物は、製造方法の煩雑さ、及び溶解性の調整の困難さがあることから、一般の工業的には、対イオン性色素化合物を近赤外光吸収材料として用いることが通常となっている。
また、さらに特許文献2には、近赤外領域に蛍光波長を有する近赤外蛍光色素の例として、ナフトフルオレセイン化合物が開示されている。
For example, Patent Document 1 discloses a naphthalocyanine compound as an organic near-infrared light absorbing material. However, since naphthalocyanine compounds have a complicated production method and difficulty in adjusting the solubility, it is generally industrially possible to use a counterionic dye compound as a near-infrared light absorbing material. It is normal.
Further, Patent Document 2 discloses a naphthofluorescein compound as an example of a near-infrared fluorescent dye having a fluorescence wavelength in the near-infrared region.

一方、有機エレクトロニクスデバイスは、原材料に希少金属などを含まず,安定した供給が可能であるのみならず、無機材料には無い屈曲性や湿式成膜法による製造が可能な点から、近年非常に関心が高まっている。有機エレクトロニクスデバイスの具体例としては有機EL素子、有機太陽電池素子、有機光電変換素子及び有機トランジスタ素子等が挙げられ、デバイスとしての性能は勿論のこと、有機材料の特色を活かした用途が検討されている。 On the other hand, organic electronic devices do not contain rare metals in their raw materials and can be stably supplied, as well as being flexible and can be manufactured by a wet film formation method, which are not found in inorganic materials. There is growing interest. Specific examples of organic electronic devices include organic EL elements, organic solar cell elements, organic photoelectric conversion elements, organic transistor elements, etc., and not only performance as devices but also applications utilizing the characteristics of organic materials are being studied. ing.

非特許文献1では、赤色又は近赤外光領域に吸収帯から蛍光帯を示し、堅牢性の優れた色素としてボロンジピロメテン色素(boron−dipyrromethene、以下「BODIPY」と称す。)に関する報告がなされている。
また、特許文献3乃至5には、BODIPY骨格を有する化合物をB−Oキレート化することにより、化合物の光に対する堅牢性が更に向上すると共に、吸収波長を長波長側にシフトさせることができることが記載されている。しかしながら、BODIPY骨格を有する化合物はB−Oキレート化することにより分子の剛直性が高くなるため、溶解性が著しく低下するのが一般的である。
Non-Patent Document 1 reports on boron-dipyrromethene (hereinafter referred to as "BODIPY") as a dye having an absorption band to a fluorescent band in the red or near-infrared light region and having excellent fastness. ing.
Further, according to Patent Documents 3 to 5, by BO-chelating a compound having a BODIPY skeleton, the fastness of the compound to light can be further improved and the absorption wavelength can be shifted to the longer wavelength side. Are listed. However, a compound having a BODIPY skeleton generally has a significantly reduced solubility because the rigidity of the molecule is increased by BO chelation.

特開2007−3944号公報JP-A-2007-3944 特開2012−219258号公報Japanese Unexamined Patent Publication No. 2012-219258 特開2016−166284号公報JP-A-2016-166284 国際公開第2013/035303号International Publication No. 2013/035303 国際公開第2018/079653号International Publication No. 2018/079653

Chem.Soc.Rev.,2014,43,4778−4823Chem. Soc. Rev. , 2014,43,4778-4823

現在用いられている近赤外光吸収色素には、更なる耐久性の向上が求められている。しかも工業的に用いるための加工容易性を考慮すると、溶剤に対する高い溶解性を有しつつ、近赤外光吸収特性を維持することが必要である。 The near-infrared light absorbing dyes currently used are required to have further improved durability. Moreover, considering the ease of processing for industrial use, it is necessary to maintain the near-infrared light absorption characteristics while having high solubility in a solvent.

本発明の目的は、近赤外領域帯に吸収特性を有すると共に、溶剤に対する高い溶解性を示すことによって溶液プロセスで薄膜を形成し得る近赤外光吸収材料、該近赤外光吸収材料を含む有機薄膜、該有機薄膜を含む有機エレクトロデバイス及び該有機薄膜を含む有機光電変換素子を提供することにある。 An object of the present invention is to obtain a near-infrared light absorbing material, which has absorption characteristics in the near-infrared region and can form a thin film by a solution process by exhibiting high solubility in a solvent. An object of the present invention is to provide an organic thin film containing the organic thin film, an organic electrodevice containing the organic thin film, and an organic photoelectric conversion element containing the organic thin film.

本発明者らは前記諸課題を解決するべく考究した結果、分子内にアゾメチン骨格を導入したジベンゾピロメテンホウ素キレート化合物を用いることにより上記の課題が解決することを見出し、本発明を完成するに至った。
即ち、本発明は、
[1]下記一般式(1)
As a result of studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by using a dibenzopyrromethene-boron chelate compound having an azomethine skeleton introduced into the molecule, and complete the present invention. I arrived.
That is, the present invention
[1] The following general formula (1)

Figure 2020189933
Figure 2020189933

(式中、R乃至Rはそれぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基、又はアシル基を表す。R及びR10はそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族基、又は複素環基を表す。R11及びR12はそれぞれ独立に脂肪族炭化水素基、芳香族基、又は複素環基を表す。Z及びZはそれぞれ独立に芳香族化合物の芳香環から水素原子を二つ除いた二価の連結基、又は複素環化合物の複素環から水素原子を二つ除いた二価の連結基を表す。nはそれぞれ独立に0以上の整数を表す。)で表されるジベンゾピロメテンホウ素キレート化合物、
[2]nが1である前項[1]に記載のジベンゾピロメテンホウ素キレート化合物、
[3]R及びR10が水素原子である前項[1]又は[2]に記載のジベンゾピロメテンホウ素キレート化合物、
[4]R11及びR12が芳香族基、又は複素環基である前項[1]乃至[3]のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物、
[5]前項[1]乃至[4]のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物含む近赤外吸収色素、
[6]前項[1]乃至[4]のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物含む有機薄膜、
[7]前項[1]乃至[4]のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物を含む光電変換素子、
[8]前項[7]に記載の光電変換素子を備える近赤外光センサー、及び
[9]前項[7]に記載の光電変換素子を備える撮像素子、
に関する。
(In the formula, R 1 to R 8 are independently hydrogen atoms, aliphatic hydrocarbon groups, alkoxy groups, alkylthio groups, aromatic groups, heterocyclic groups, halogen atoms, hydroxyl groups, mercapto groups, nitro groups and substituted amino groups, respectively. , An unsubstituted amino group, a cyano group, a sulfo group, or an acyl group. R 9 and R 10 independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aromatic group, or a heterocyclic group, respectively. R 11 and R 12 independently represents an aliphatic hydrocarbon group, an aromatic group, or a heterocyclic group. Z 1 and Z 2 are divalent linkages obtained by independently removing two hydrogen atoms from the aromatic ring of an aromatic compound. A dibenzopyrromethene boron chelate compound represented by a group or a divalent linking group obtained by removing two hydrogen atoms from the heterocycle of a heterocyclic compound. N represents an integer of 0 or more independently.)
[2] The dibenzopyrromethene boron chelate compound according to the previous item [1], wherein n is 1.
[3] The dibenzopyrromethene boron chelate compound according to the above item [1] or [2], wherein R 9 and R 10 are hydrogen atoms.
[4] The dibenzopyrromethene boron chelate compound according to any one of the above items [1] to [3], wherein R 11 and R 12 are aromatic groups or heterocyclic groups.
[5] A near-infrared absorbing dye containing the dibenzopyrromethene boron chelate compound according to any one of the preceding items [1] to [4].
[6] An organic thin film containing the dibenzopyrromethene boron chelate compound according to any one of the above items [1] to [4].
[7] A photoelectric conversion element containing the dibenzopyrromethene boron chelate compound according to any one of the above items [1] to [4].
[8] A near-infrared light sensor including the photoelectric conversion element according to the previous item [7], and [9] an imaging element including the photoelectric conversion element according to the previous item [7].
Regarding.

本発明のジベンゾピロメテンホウ素キレート化合物は、近赤外領域に吸収特性を有し、高い溶解性を有することで溶液塗布による成膜が可能なことから、ウェットプロセスによる光電素子の作製及びそれを含む有機撮像素子、光センサー、赤外センサー等のデバイスやそれらを用いたカメラ、ビデオカメラ、赤外線カメラ等の分野へ応用することができる。 Since the dibenzopyrromethene boron chelate compound of the present invention has absorption characteristics in the near infrared region and has high solubility, it is possible to form a film by coating with a solution. It can be applied to devices such as organic imaging elements, optical sensors, infrared sensors, etc., and cameras, video cameras, infrared cameras, etc. using them.

図1は、本発明の光電変換素子の実施態様を例示した断面図を示す。FIG. 1 shows a cross-sectional view illustrating an embodiment of the photoelectric conversion element of the present invention. 図2は、実施例3の有機薄膜の吸収スペクトルを示す。FIG. 2 shows the absorption spectrum of the organic thin film of Example 3. 図3は、実施例4の有機薄膜の吸収スペクトルを示す。FIG. 3 shows the absorption spectrum of the organic thin film of Example 4.

以下、本発明の内容について詳細に説明する。ここに記載する構成要件の説明については、本発明の代表的な実施態様や具体例に基づくものである一方、本発明はそのような実施態様や具体例に限定されない。なお、本発明において近赤外領域とは、780乃至2000nmの範囲内にある波長領域をいい、近赤外光吸収材料(色素)とは近赤外光領域に主たる吸収波長をもつ材料をいい、近赤外発光材料(色素)とは近赤外光領域において発光する材料をいう。 Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described here is based on typical embodiments and specific examples of the present invention, while the present invention is not limited to such embodiments and specific examples. In the present invention, the near-infrared region refers to a wavelength region in the range of 780 to 2000 nm, and the near-infrared light absorbing material (dye) refers to a material having a main absorption wavelength in the near-infrared light region. , Near-infrared light emitting material (dye) means a material that emits light in the near infrared light region.

本発明のジベンゾピロメテンホウ素キレート化合物は上記式(1)で表される。尚、上記の式(1)は共鳴構造の一つを示したものにすぎず、本発明の化合物は図示した共鳴構造に限定されるものではない。
式(1)中のR乃至Rはそれぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基、又はアシル基を表す。
The dibenzopyrromethene boron chelate compound of the present invention is represented by the above formula (1). The above formula (1) shows only one of the resonance structures, and the compound of the present invention is not limited to the illustrated resonance structure.
R 1 to R 8 in the formula (1) are independently hydrogen atom, aliphatic hydrocarbon group, alkoxy group, alkylthio group, aromatic group, heterocyclic group, halogen atom, hydroxyl group, mercapto group, nitro group, substitution. Represents an amino group, an unsubstituted amino group, a cyano group, a sulfo group, or an acyl group.

上記式(1)中のR乃至Rが表す脂肪族炭化水素基は、飽和又は不飽和の直鎖状、分岐状又は環状のいずれにも限定されず、その炭素数は1乃至30が好ましく、1乃至20がより好ましい。ここで、飽和又は不飽和の直鎖、分岐又は環状の脂肪族炭化水素基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、アリル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−セチル基、n−ヘプタデシル基、n−ブテニル基、2−エチルへキシル基、3−エチルヘプチル基、4−エチルオクチル基、2−ブチルオクチル基、3−ブチルノニル基、4−ブチルデシル基、2−ヘキシルデシル基、3−オクチルウンデシル基、4−オクチルドデシル基、2−オクチルドデシル基、2−デシルテトラデシル基、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
式(1)中のR乃至Rが表す脂肪族炭化水素基としては、直鎖状又は分岐状の脂肪族炭化水素基であることが好ましく、飽和の直鎖状又は分岐状のアルキル基であることがより好ましく、n−ブチル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、2−エチルへキシル基、2−メチルプロピル基又は2−ブチルオクチル基であることが更に好ましく、n−ヘキシル基、n−オクチル基又は2−メチルプロピル基であることが特に好ましい。
The aliphatic hydrocarbon group represented by R 1 to R 8 in the above formula (1) is not limited to any of saturated or unsaturated linear, branched or cyclic, and has 1 to 30 carbon atoms. Preferably, 1 to 20 is more preferable. Here, specific examples of the saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an iso-butyl group and an allyl group. , T-Butyl group, n-Pentyl group, n-Hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-cetyl group, n-heptadecyl group. , N-butenyl group, 2-ethylhexyl group, 3-ethylheptyl group, 4-ethyloctyl group, 2-butyloctyl group, 3-butylnonyl group, 4-butyldecyl group, 2-hexyldecyl group, 3-octyl Examples thereof include an undecyl group, a 4-octyldodecyl group, a 2-octyldodecyl group, a 2-decyltetradecyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group and a cyclohexyl group.
The aliphatic hydrocarbon group represented by R 1 to R 8 in the formula (1) is preferably a linear or branched aliphatic hydrocarbon group, and is a saturated linear or branched alkyl group. Is more preferable, n-butyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, 2-ethylhexyl group, 2-methylpropyl group or 2-butyloctyl group. It is more preferable that it is an n-hexyl group, an n-octyl group or a 2-methylpropyl group.

上記式(1)中のR乃至Rが表すアルコキシ基とは、酸素原子とアルキル基が結合した置換基であり、アルコキシ基が有するアルキル基としては、例えば式(1)中のR乃至Rが表す脂肪族炭化水素基の項に具体例として記載したアルキル基が挙げられる。
式(1)中のR乃至Rが表すアルコキシ基は、例えばアルコキシ基等の置換基を有していてもよい。
上記式(1)中のR乃至Rが表すアルキルチオ基とは、硫黄原子とアルキル基が結合した置換基であり、アルキルチオ基が有するアルキル基としては、例えば式(1)中のR乃至Rが表す脂肪族炭化水素基の項に具体例として記載したアルキル基が挙げられる。
式(1)中のR乃至Rが表すアルキルチオ基は、例えばアルキルチオ基等の置換基を有していてもよい。
The alkoxy group represented by R 1 to R 8 in the above formula (1) is a substituent in which an oxygen atom and an alkyl group are bonded, and the alkyl group contained in the alkoxy group is, for example, R 1 in the formula (1). to include alkyl groups described as specific examples in the section aliphatic hydrocarbon group represented by R 8.
The alkoxy group represented by R 1 to R 8 in the formula (1) may have a substituent such as an alkoxy group.
The alkylthio group represented by R 1 to R 8 in the above formula (1) is a substituent in which a sulfur atom and an alkyl group are bonded, and the alkyl group contained in the alkylthio group is, for example, R 1 in the formula (1). to include alkyl groups described as specific examples in the section aliphatic hydrocarbon group represented by R 8.
The alkylthio group represented by R 1 to R 8 in the formula (1) may have a substituent such as an alkylthio group.

上記式(1)中のR乃至Rが表す芳香族基とは、芳香族化合物の芳香環から水素原子を一つ除いた残基である。式(1)のR乃至Rが表す芳香族基としては、例えばフェニル基、ビフェニル基、トリル基、インデニル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基、フェナンスニル基又はメシチル基等が挙げられるが、フェニル基、ビフェニル基、トリル基、ナフチル基又はメシチル基が好ましく、フェニル基、トリル基又はメシチル基がより好ましい。
尚、芳香族基と成り得る芳香族化合物は置換基を有していてもよく、該有していてもよい置換基は特に限定されない。
The aromatic group represented by R 1 to R 8 in the above formula (1) is a residue obtained by removing one hydrogen atom from the aromatic ring of the aromatic compound. Examples of the aromatic group represented by R 1 to R 8 of the formula (1) include a phenyl group, a biphenyl group, a trill group, an indenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a pyrenyl group, a phenanthnyl group, a mesityl group and the like. Examples thereof include a phenyl group, a biphenyl group, a trill group, a naphthyl group or a mesityl group, and a phenyl group, a trill group or a mesityl group is more preferable.
The aromatic compound that can be an aromatic group may have a substituent, and the substituent that may have the substituent is not particularly limited.

上記式(1)中のR乃至Rが表す複素環基とは、複素環化合物の複素環から水素原子を一つ除いた残基である。式(1)のR乃至Rが表す複素環基としては、例えばフラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、N−メチルイミダゾリル基、チアゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、インドリル基、ベンゾピラジル基、ベンゾピリミジル基、ベンゾチエニル基、ベンゾチアゾリル基、ピリジノチアゾリル基、ベンゾイミダゾリル基、ピリジノイミダゾリル基、N−メチルベンゾイミダゾリル基、ピリジノ−N−メチルイミダゾリル基、ベンゾオキサゾリル基、ピリジノオキサゾリル基、ベンゾチアジアゾリル基、ピリジノチアジアゾリル基、ベンゾオキサジアゾリル基、ピリジノオキサジアゾリル基、カルバゾリル基、フェノキサジニル基又はフェノチアジニル基等が挙げられ、チエニル基、チエノチエニル基、チアゾリル基、ピリジル基、ベンゾチアゾリル基、ベンゾチアジアゾリル基又はピリジノチアジアゾリル基が好ましく、チエニル基、チアゾリル基、ピリジル基がより好ましい。
尚、複素環基と成り得る複素環化合物は置換基を有していてもよく、該有していても良い置換基は特に限定されない。
The heterocyclic group represented by R 1 to R 8 in the above formula (1) is a residue obtained by removing one hydrogen atom from the heterocycle of the heterocyclic compound. Examples of the heterocyclic group represented by R 1 to R 8 of the formula (1) include a furanyl group, a thienyl group, a thienotienyl group, a pyrrolyl group, an imidazolyl group, an N-methylimidazolyl group, a thiazolyl group, an oxazolyl group, a pyridyl group and a pyrazil group. Group, pyrimidyl group, quinolyl group, indolyl group, benzopyrazyl group, benzopyrimidyl group, benzothienyl group, benzothiazolyl group, pyridinothiazolyl group, benzoimidazolyl group, pyridinoimidazolyl group, N-methylbenzoimidazolyl group, pyridino-N-methyl Imidazolyl group, benzoxazolyl group, pyridinooxazolyl group, benzothiazolyl group, pyridinothiazolyl group, benzoxaziazolyl group, pyridinooxadiazolyl group, carbazolyl group, phenoxadinyl group or phenothiazine Examples thereof include a thienyl group, a thienothienyl group, a thiazolyl group, a pyridyl group, a benzothiazolyl group, a benzothiadiazolyl group or a pyridinothiaazolyl group, and more preferably a thienyl group, a thiazolyl group and a pyridyl group.
The heterocyclic compound that can be a heterocyclic group may have a substituent, and the substituent that may have the substituent is not particularly limited.

上記式(1)中のR乃至Rが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子又は塩素原子が好ましく、フッ素原子がさらに好ましい。 Examples of the halogen atom represented by R 1 to R 8 in the above formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable.

上記式(1)中のR乃至Rが表す置換アミノ基は、アミノ基の水素原子が一つ又は二つ置換基で置換された置換基である。置換アミノ基の有する置換基としては、アルキル基又は芳香族基が好ましく、芳香族基がより好ましい。これら置換基の具体例としては、式(1)中のR乃至Rが表す脂肪族炭化水素基の項に記載したアルキル基及び式(1)中のR乃至Rが表す芳香族基と同じものが挙げられる。
上記式(1)中のR乃至Rが表すアシル基とは、カルボニル基と芳香族基又はアルキル基が結合した置換基であり、アシル基の有するアルキル基及び芳香族基としては、式(1)中のR乃至Rが表す脂肪族炭化水素基の項に記載したアルキル基、及び式(1)中のR乃至Rが表す芳香族基と同じものが挙げられる。
The substituted amino group represented by R 1 to R 8 in the above formula (1) is a substituent in which the hydrogen atom of the amino group is substituted with one or two substituents. As the substituent contained in the substituted amino group, an alkyl group or an aromatic group is preferable, and an aromatic group is more preferable. Specific examples of these substituents include the alkyl group described in the section of the aliphatic hydrocarbon group represented by R 1 to R 8 in the formula (1) and the aromatic represented by R 1 to R 8 in the formula (1). The same as the group can be mentioned.
The acyl group represented by R 1 to R 8 in the above formula (1) is a substituent in which a carbonyl group and an aromatic group or an alkyl group are bonded, and the alkyl group and the aromatic group contained in the acyl group are of the formula. Examples thereof include the alkyl group described in the section of the aliphatic hydrocarbon group represented by R 1 to R 8 in (1) and the same aromatic group represented by R 1 to R 8 in the formula (1).

式(1)におけるR乃至Rとしてはそれぞれ独立に水素原子、芳香族基、複素環基又はハロゲン原子が好ましく、それぞれ独立に水素原子、芳香族基又はハロゲン原子がより好ましい。
また、RとRが同一であることが好ましく、RとRが同一であることが好ましく、RとRが同一であることが好ましく、RとRが同一であることが好ましい。
As R 1 to R 8 in the formula (1), a hydrogen atom, an aromatic group, a heterocyclic group or a halogen atom is preferable independently, and a hydrogen atom, an aromatic group or a halogen atom is more preferable independently.
Further, it is preferable that R 1 and R 8 are the same, R 2 and R 7 are preferably the same, R 3 and R 6 are preferably the same, and R 4 and R 5 are the same. Is preferable.

式(1)中のR及びR10はそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族基、又は複素環基を表す。
上記式(1)中のR及びR10が表す脂肪族炭化水素基は、飽和又は不飽和の直鎖状、分岐状又は環状のいずれにも限定されず、その炭素数は1乃至10が好ましく、1乃至6がより好ましい。ここで、飽和又は不飽和の直鎖、分岐又は環状の脂肪族炭化水素基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、アリル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−セチル基、n−ヘプタデシル基、n−ブテニル基、2−エチルへキシル基、3−エチルヘプチル基、4−エチルオクチル基、2−ブチルオクチル基、3−ブチルノニル基、4−ブチルデシル基、2−ヘキシルデシル基、3−オクチルウンデシル基、4−オクチルドデシル基、2−オクチルドデシル基、2−デシルテトラデシル基、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
式(1)中のR及びR10が表す脂肪族炭化水素基としては、直鎖状又は分岐状の脂肪族炭化水素基であることが好ましく、飽和の直鎖状又は分岐状のアルキル基であることがより好ましく、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基又は2−ヘキシル基であることが更に好ましく、nメチル基、エチル基又はn−プロピル基であることが特に好ましい。
R 9 and R 10 in the formula (1) independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aromatic group, or a heterocyclic group, respectively.
The aliphatic hydrocarbon group represented by R 9 and R 10 in the above formula (1) is not limited to any of saturated or unsaturated linear, branched or cyclic, and has 1 to 10 carbon atoms. Preferably, 1 to 6 are more preferable. Here, specific examples of the saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an iso-butyl group and an allyl group. , T-Butyl group, n-Pentyl group, n-Hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-cetyl group, n-heptadecyl group. , N-Butenyl group, 2-ethylhexyl group, 3-ethylheptyl group, 4-ethyloctyl group, 2-butyloctyl group, 3-butylnonyl group, 4-butyldecyl group, 2-hexyldecyl group, 3-octyl Examples thereof include an undecyl group, a 4-octyldodecyl group, a 2-octyldodecyl group, a 2-decyltetradecyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group and a cyclohexyl group.
The aliphatic hydrocarbon group represented by R 9 and R 10 in the formula (1) is preferably a linear or branched aliphatic hydrocarbon group, and is a saturated linear or branched alkyl group. It is more preferably a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group or a 2-hexyl group, and an n-methyl group, an ethyl group or an n-propyl group. Is particularly preferable.

上記式(1)中のR及びR10が表す芳香族基とは、芳香族化合物の芳香環から水素原子を一つ除いた残基である。式(1)のR乃至R10が表す芳香族基としては、例えばフェニル基、ビフェニル基、トリル基、インデニル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基、フェナンスニル基及びメシチル基等が挙げられるが、フェニル基、ビフェニル基、トリル基、ナフチル基又はメシチル基が好ましく、フェニル基、トリル基又はメシチル基がより好ましい。
尚、芳香族基と成り得る芳香族化合物は置換基を有していてもよく、該有していてもよい置換基は特に限定されない。
The aromatic group represented by R 9 and R 10 in the above formula (1) is a residue obtained by removing one hydrogen atom from the aromatic ring of the aromatic compound. Examples of the aromatic group represented by R 9 to R 10 of the formula (1) include a phenyl group, a biphenyl group, a tolyl group, an indenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a pyrenyl group, a phenanthnyl group and a mesityl group. Although mentioned above, a phenyl group, a biphenyl group, a tolyl group, a naphthyl group or a mesityl group is preferable, and a phenyl group, a tolyl group or a mesityl group is more preferable.
The aromatic compound that can be an aromatic group may have a substituent, and the substituent that may have the substituent is not particularly limited.

上記式(1)中のR及びR10が表す複素環基とは、複素環化合物の複素環から水素原子を一つ除いた残基である。式(1)のR乃至R10が表す複素環基としては、例えばフラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、N−メチルイミダゾリル基、チアゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、インドリル基、ベンゾピラジル基、ベンゾピリミジル基、ベンゾチエニル基、ベンゾチアゾリル基、ピリジノチアゾリル基、ベンゾイミダゾリル基、ピリジノイミダゾリル基、N−メチルベンゾイミダゾリル基、ピリジノ−N−メチルイミダゾリル基、ベンゾオキサゾリル基、ピリジノオキサゾリル基、ベンゾチアジアゾリル基、ピリジノチアジアゾリル基、ベンゾオキサジアゾリル基、ピリジノオキサジアゾリル基、カルバゾリル基、フェノキサジニル基及びフェノチアジニル基等が挙げられ、チエニル基、チエノチエニル基、チアゾリル基、ピリジル基又はベンゾチアゾリル基が好ましく、チエニル基、チアゾリル基又はピリジル基がより好ましい。
尚、複素環基と成り得る複素環化合物は置換基を有していてもよく、該有していても良い置換基は特に限定されない。
The heterocyclic group represented by R 9 and R 10 in the above formula (1) is a residue obtained by removing one hydrogen atom from the heterocycle of the heterocyclic compound. Examples of the heterocyclic group represented by R 9 to R 10 of the formula (1) include a furanyl group, a thienyl group, a thienotienyl group, a pyrrolyl group, an imidazolyl group, an N-methylimidazolyl group, a thiazolyl group, an oxazolyl group, a pyridyl group and a pyrazil group. Group, pyrimidyl group, quinolyl group, indolyl group, benzopyrazyl group, benzopyrimidyl group, benzothienyl group, benzothiazolyl group, pyridinothiazolyl group, benzoimidazolyl group, pyridinoimidazolyl group, N-methylbenzoimidazolyl group, pyridino-N-methyl Imidazolyl group, benzoxazolyl group, pyridinooxazolyl group, benzothiazolyl group, pyridinothiazolyl group, benzoxaziazolyl group, pyridinooxadiazolyl group, carbazolyl group, phenoxadinyl group and phenothiazine Examples thereof include a thienyl group, a thienotienyl group, a thiazolyl group, a pyridyl group or a benzothiazolyl group, and a thienyl group, a thiazolyl group or a pyridyl group is more preferable.
The heterocyclic compound that can be a heterocyclic group may have a substituent, and the substituent that may have the substituent is not particularly limited.

式(1)におけるR及びR10としては、それぞれ独立に水素原子、脂肪族炭化水素基、芳香族基又は複素環基が好ましく、それぞれ独立に水素原子、脂肪族炭化水素基又は芳香族基がより好ましく、水素原子が更に好ましい。 As R 9 and R 10 in the formula (1), a hydrogen atom, an aliphatic hydrocarbon group, an aromatic group or a heterocyclic group are preferable independently, and a hydrogen atom, an aliphatic hydrocarbon group or an aromatic group are independently obtained. Is more preferable, and a hydrogen atom is further preferable.

式(1)中のR11及びR12はそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基を表す。
上記式(1)中のR11及びR12が表す脂肪族炭化水素基は、飽和又は不飽和の直鎖状、分岐状又は環状のいずれにも限定されず、その炭素数は1乃至10が好ましく、1乃至6がより好ましい。ここで、飽和又は不飽和の直鎖、分岐又は環状の脂肪族炭化水素基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、アリル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−セチル基、n−ヘプタデシル基、n−ブテニル基、2−エチルへキシル基、3−エチルヘプチル基、4−エチルオクチル基、2−ブチルオクチル基、3−ブチルノニル基、4−ブチルデシル基、2−ヘキシルデシル基、3−オクチルウンデシル基、4−オクチルドデシル基、2−オクチルドデシル基、2−デシルテトラデシル基、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
R 11 and R 12 in the formula (1) independently represent an aliphatic hydrocarbon group, an aromatic group, and a heterocyclic group, respectively.
The aliphatic hydrocarbon groups represented by R 11 and R 12 in the above formula (1) are not limited to saturated or unsaturated linear, branched or cyclic, and have 1 to 10 carbon atoms. Preferably, 1 to 6 are more preferable. Here, specific examples of the saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an iso-butyl group and an allyl group. , T-Butyl group, n-Pentyl group, n-Hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-cetyl group, n-heptadecyl group. , N-Butenyl group, 2-ethylhexyl group, 3-ethylheptyl group, 4-ethyloctyl group, 2-butyloctyl group, 3-butylnonyl group, 4-butyldecyl group, 2-hexyldecyl group, 3-octyl Examples thereof include an undecyl group, a 4-octyldodecyl group, a 2-octyldodecyl group, a 2-decyltetradecyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group and a cyclohexyl group.

上記式(1)中のR11及びR12が表す芳香族基とは、芳香族化合物の芳香環から水素原子を一つ除いた残基である。式(1)のR11乃至R12が表す芳香族基としては、例えばフェニル基、ビフェニル基、トリル基、フルオロフェニル基、インデニル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基、フェナンスニル基及びメシチル基等が挙げられるが、フェニル基、ビフェニル基、トリル基又はメシチル基が好ましく、フェニル基、トリル基、フルオロフェニル基又はメシチル基がより好ましい。
尚、芳香族基と成り得る芳香族化合物は置換基を有していてもよく、該有していてもよい置換基は特に限定されない。
The aromatic group represented by R 11 and R 12 in the above formula (1) is a residue obtained by removing one hydrogen atom from the aromatic ring of the aromatic compound. Examples of the aromatic group represented by R 11 to R 12 of the formula (1) include a phenyl group, a biphenyl group, a tolyl group, a fluorophenyl group, an indenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a pyrenyl group, a phenanthnyl group and the like. Examples thereof include a methyl group, but a phenyl group, a biphenyl group, a tolyl group or a mesityl group is preferable, and a phenyl group, a tolyl group, a fluorophenyl group or a mesityl group is more preferable.
The aromatic compound that can be an aromatic group may have a substituent, and the substituent that may have the substituent is not particularly limited.

上記式(1)中のR11及びR12が表す複素環基とは、複素環化合物の複素環から水素原子を一つ除いた残基である。式(1)のR11乃至R12が表す複素環基としては、例えばフラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、N−メチルイミダゾリル基、チアゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、インドリル基、ベンゾピラジル基、ベンゾピリミジル基、ベンゾチエニル基、ベンゾチアゾリル基、ピリジノチアゾリル基、ベンゾイミダゾリル基、ピリジノイミダゾリル基、N−メチルベンゾイミダゾリル基、ピリジノ−N−メチルイミダゾリル基、ベンゾオキサゾリル基、ピリジノオキサゾリル基、ベンゾチアジアゾリル基、ピリジノチアジアゾリル基、ベンゾオキサジアゾリル基、ピリジノオキサジアゾリル基、カルバゾリル基、フェノキサジニル基及びフェノチアジニル基等が挙げられ、チエニル基、チエノチエニル基、チアゾリル基、ピリジル基、オキサゾリル基又はベンゾチアゾリル基が好ましく、チエニル基、チアゾリル基又はベンゾチアゾリル基がより好ましい。
尚、複素環基と成り得る複素環化合物は置換基を有していてもよく、該有していても良い置換基は特に限定されない。
The heterocyclic group represented by R 11 and R 12 in the above formula (1) is a residue obtained by removing one hydrogen atom from the heterocycle of the heterocyclic compound. Examples of the heterocyclic group represented by R 11 to R 12 of the formula (1) include a furanyl group, a thienyl group, a thienotienyl group, a pyrrolyl group, an imidazolyl group, an N-methylimidazolyl group, a thiazolyl group, an oxazolyl group, a pyridyl group and a pyrazil group. Group, pyrimidyl group, quinolyl group, indolyl group, benzopyrazyl group, benzopyrimidyl group, benzothienyl group, benzothiazolyl group, pyridinothiazolyl group, benzoimidazolyl group, pyridinoimidazolyl group, N-methylbenzoimidazolyl group, pyridino-N-methyl Imidazolyl group, benzoxazolyl group, pyridinooxazolyl group, benzothiazolyl group, pyridinothiazolyl group, benzoxaziazolyl group, pyridinooxadiazolyl group, carbazolyl group, phenoxadinyl group and phenothiazine Examples thereof include a thienyl group, a thienotienyl group, a thiazolyl group, a pyridyl group, an oxazolyl group or a benzothiazolyl group, and a thienyl group, a thiazolyl group or a benzothiazolyl group is more preferable.
The heterocyclic compound that can be a heterocyclic group may have a substituent, and the substituent that may have the substituent is not particularly limited.

式(1)におけるR11及びR12としては、それぞれ独立に芳香族基又は複素環基が好ましく、芳香族基がより好ましい。 As R 11 and R 12 in the formula (1), an aromatic group or a heterocyclic group is preferable independently, and an aromatic group is more preferable.

式(1)中のZ及びZはそれぞれ独立に芳香族化合物の芳香環から水素原子を二つ除いた二価の連結基、又は複素環化合物の複素環から水素原子を二つ除いた二価の連結基を表す。
上記式(1)中のZ及びZが表す芳香族化合物の芳香環から水素原子を一つ除いた二価の連結基となり得る芳香族化合物としては、例えばベンゼン、ナフタレン、アントラセン、ピレン、フルオレン及びフェナントレン等が挙げられ、ベンゼン又はナフタレンが好ましく、ベンゼンがより好ましい。
尚、二価の連結基と成り得る芳香族化合物は置換基を有していてもよく、該有していてもよい置換基は特に限定されない。
Z 1 and Z 2 in the formula (1) are divalent linking groups in which two hydrogen atoms are independently removed from the aromatic ring of the aromatic compound, or two hydrogen atoms are removed from the heterocycle of the heterocyclic compound. Represents a divalent linking group.
Examples of the aromatic compound which can be a divalent linking group obtained by removing one hydrogen atom from the aromatic ring of the aromatic compound represented by Z 1 and Z 2 in the above formula (1) include benzene, naphthalene, anthracene and pyrene. Examples thereof include fluorene and phenanthrene, and benzene or naphthalene is preferable, and benzene is more preferable.
The aromatic compound that can be a divalent linking group may have a substituent, and the substituent that may have the substituent is not particularly limited.

上記式(1)中のZ及びZが表す複素環化合物の複素環から水素原子を一つ除いた二価の連結基となり得る芳香族化合物としては、例えばチオフェン、フラン、ピロール、チアゾール、イミダゾール、オキサゾール、ピリジン、ピラジン、ピリミジン及びキノリン等が挙げられ、チオフェン、チアゾール又はピリジンが好ましく、チオフェンがより好ましい。
尚、二価の連結基と成り得る複素環化合物は置換基を有していてもよく、該有していてもよい置換基は特に限定されない。
Examples of the aromatic compound that can be a divalent linking group obtained by removing one hydrogen atom from the heterocycle of the heterocyclic compound represented by Z 1 and Z 2 in the above formula (1) include thiophene, furan, pyrrole, and thiazole. Examples thereof include imidazole, oxazole, pyridine, pyrazine, pyrimidine and quinoline, with thiophene, thiazole or pyridine being preferable, and thiophene being more preferable.
The heterocyclic compound that can be a divalent linking group may have a substituent, and the substituent that may have the substituent is not particularly limited.

式(1)中、二価の連結基Z及びZの数を意味するnはそれぞれ独立に0以上の整数を表し、それぞれ独立に0又は1が好ましく、1がより好ましい。 In the formula (1), n, which means the number of divalent linking groups Z 1 and Z 2 , each independently represents an integer of 0 or more, and 0 or 1 is preferable independently, and 1 is more preferable.

次に、本発明の一般式(1)で表される化合物の合成方法について詳細に説明する。
前記式(1)で表される化合物は例えば以下の示す合成スキームにより合成することができる。化合物(a)は、公知の方法(特許文献5)を参考に合成可能であり、得られた化合物(a)を2級アミン誘導体と反応させて、化合物(b)とした後に、三臭化ホウ素を反応させることでB−Oキレート化することにより式(1)で表される化合物が得られる。これらの化合物の精製方法は特に限定されず、例えば洗浄、再結晶、カラムクロマトグラフィー、真空昇華等が採用でき、必要に応じてこれらの方法を組み合わせることができる。
Next, a method for synthesizing the compound represented by the general formula (1) of the present invention will be described in detail.
The compound represented by the formula (1) can be synthesized, for example, by the synthetic scheme shown below. Compound (a) can be synthesized with reference to a known method (Patent Document 5), and the obtained compound (a) is reacted with a secondary amine derivative to obtain compound (b), and then tribromide. The compound represented by the formula (1) can be obtained by BO chelating by reacting with boron. The purification method of these compounds is not particularly limited, and for example, washing, recrystallization, column chromatography, vacuum sublimation and the like can be adopted, and these methods can be combined as necessary.

Figure 2020189933
Figure 2020189933

前記式(1)で表される化合物の具体例として、式(1−1)乃至(1−128)で表される化合物を以下に示すが、本発明はこれに限定されない。なお、具体例として示した構造式は共鳴構造の一つを表したものにすぎず、図示した共鳴構造に限定されない。 Specific examples of the compound represented by the formula (1) include the compounds represented by the formulas (1-1) to (1-128) below, but the present invention is not limited thereto. The structural formula shown as a specific example merely represents one of the resonance structures, and is not limited to the illustrated resonance structure.

Figure 2020189933
Figure 2020189933
Figure 2020189933
Figure 2020189933

Figure 2020189933
Figure 2020189933
Figure 2020189933
Figure 2020189933

Figure 2020189933
Figure 2020189933
Figure 2020189933
Figure 2020189933

Figure 2020189933
Figure 2020189933
Figure 2020189933
Figure 2020189933

Figure 2020189933
Figure 2020189933
Figure 2020189933
Figure 2020189933

本発明の近赤外光吸収色素は、上記式(1)で表される化合物を含有する。
本発明の近赤外光吸収色素中の式(1)で表される化合物の含有量は、近赤外光吸収色素を用いる用途において必要とされる近赤外光の吸収能力が発現する限り特に限定されないが、通常は50質量%以上であり、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましい。
本発明の近赤外光吸収色素には、式(1)で表される化合物以外の化合物(例えば式(1)で表される化合物以外の近赤外光吸収色素等)や添加剤等を併用してもよい。併用し得る化合物や添加剤等は、近赤外光吸収材料を用いる用途において必要とされる近赤外光の吸収能力が発現する限り特に限定されない。
The near-infrared light absorbing dye of the present invention contains a compound represented by the above formula (1).
The content of the compound represented by the formula (1) in the near-infrared light-absorbing dye of the present invention is as long as the near-infrared light absorption capacity required in the application using the near-infrared light-absorbing dye is exhibited. Although not particularly limited, it is usually 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more.
The near-infrared light absorbing dye of the present invention includes compounds other than the compound represented by the formula (1) (for example, a near-infrared light absorbing dye other than the compound represented by the formula (1)), additives and the like. It may be used together. The compounds and additives that can be used in combination are not particularly limited as long as the near-infrared light absorbing ability required in the application using the near-infrared light absorbing material is exhibited.

本発明の化合物を用いて、薄膜を作製することができる。当該薄膜は本発明の化合物のみで構成されていてもよいが、別途公知の近赤外光吸収色素を含んでいてもよい。 A thin film can be prepared using the compound of the present invention. The thin film may be composed only of the compound of the present invention, but may contain a separately known near-infrared light absorbing dye.

本発明の薄膜の形成方法には、一般的な乾式成膜法や湿式成膜法が挙げられる。具体的には真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等が挙げられる。
一般的な近赤外光吸収色素は、加工の容易性という観点からは化合物を溶液状態で塗布するようなプロセスが望まれているが、有機膜を積層するような有機エレクトロニクスデバイスの場合、塗布溶液が下層の有機膜を侵す恐れがあることから不向きである。
Examples of the thin film forming method of the present invention include a general dry film forming method and a wet film forming method. Specifically, it is a vacuum process such as resistance heating vapor deposition, electron beam deposition, sputtering, molecular lamination method, solution process casting, spin coating, dip coating, blade coating, wire bar coating, spray coating and other coating methods, and inkjet printing. , Screen printing, offset printing, printing methods such as letterpress printing, soft lithography methods such as microcontact printing, and the like.
For general near-infrared light absorbing dyes, a process of applying a compound in a solution state is desired from the viewpoint of ease of processing, but in the case of an organic electronics device in which an organic film is laminated, application is desired. It is not suitable because the solution may attack the organic film underneath.

この様な多層積層構造を実現するためには、乾式成膜法、例えば抵抗加熱蒸着の様な蒸着可能な材料を用いることが適切である。したがって、近赤外領域に主たる吸収波長を有し、且つ蒸着可能な近赤外光吸収色素が近赤外光電変換材料として好ましい。 In order to realize such a multi-layer laminated structure, it is appropriate to use a dry film deposition method, for example, a material capable of vapor deposition such as resistance heating vapor deposition. Therefore, a near-infrared light absorbing dye having a main absorption wavelength in the near-infrared region and capable of vapor deposition is preferable as the near-infrared photoelectric conversion material.

各層の成膜には上記の手法を複数組み合わせた方法を採用してもよい。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は0.5乃至5000nmの範囲であり、好ましくは1乃至1000nmの範囲、より好ましくは5乃至500nmの範囲である。 A method in which a plurality of the above methods are combined may be adopted for film formation of each layer. The thickness of each layer cannot be limited because it depends on the resistance value and charge mobility of each substance, but is usually in the range of 0.5 to 5000 nm, preferably in the range of 1 to 1000 nm, and more preferably 5. It is in the range of to 500 nm.

〔有機エレクトロニクスデバイス〕
本発明の化合物、近赤外光吸収材料或いは近赤外発光材料又はこれらを用いた有機薄膜を含む有機エレクトロニクスデバイスを作製することができる。有機エレクトロニクスデバイスとしては、例えば、薄膜トランジスタ、有機光電変換素子、有機太陽電池素子、有機エレクトロルミネッセンス素子(以下、「有機EL素子」又は「有機発光素子」と表す。)、有機発光トランジスタ素子、有機半導体レーザー素子などが挙げられる。本発明では、特に近赤外用途の展開が期待される有機光電変換素子、有機EL素子に着目する。ここでは本発明の実施形態の一つである近赤外光吸収材料として用いた近赤外有機光電変換素子、近赤外発光特性を利用した有機EL素子、有機半導体レーザー素子について説明する。
なお、ここでは詳細に説明しないが、700nmを超える近赤外光は、生体組織に対する透過性が高い。従って、生体内組織の観測のため利用も可能であるため、近赤外蛍光プローブ等、医療分野での病理解明、診断等において、その目的に応じて、いろいろな態様での適用が可能である。
[Organic electronics device]
An organic electronic device including the compound of the present invention, a near-infrared light absorbing material, a near-infrared light emitting material, or an organic thin film using these can be produced. Examples of the organic electronics device include a thin film, an organic photoelectric conversion element, an organic solar cell element, an organic electroluminescence element (hereinafter, referred to as “organic EL element” or “organic light emitting element”), an organic light emitting transistor element, and an organic semiconductor. Examples include laser elements. In the present invention, we pay particular attention to organic photoelectric conversion elements and organic EL elements, which are expected to be used in near-infrared applications. Here, a near-infrared organic photoelectric conversion element used as a near-infrared light absorbing material, an organic EL element utilizing near-infrared emission characteristics, and an organic semiconductor laser element, which are one of the embodiments of the present invention, will be described.
Although not described in detail here, near-infrared light exceeding 700 nm has high transparency to living tissues. Therefore, since it can be used for observing in vivo tissues, it can be applied in various forms depending on the purpose in pathological elucidation, diagnosis, etc. in the medical field such as near-infrared fluorescent probe. ..

〔有機光電変換素子〕
上記式(1)で表される化合物は近赤外光吸収特性を有する化合物であることから、近赤外有機光電変換素子としての利用が期待される。特に、本発明の有機光電変換素子に於ける光電変換層に用いることができる。当該素子に於いては、光に対する応答波長光の吸収帯の極大吸収が780nm以上2500nm以下であることが好ましい。ここで、近赤外有機光電変換素子としては近赤外光センサ、有機撮像素子、近赤外光イメージセンサ等が挙げられる。
[Organic photoelectric conversion element]
Since the compound represented by the above formula (1) is a compound having near-infrared light absorption characteristics, it is expected to be used as a near-infrared organic photoelectric conversion element. In particular, it can be used as a photoelectric conversion layer in the organic photoelectric conversion element of the present invention. In the device, the maximum absorption of the absorption band of the response wavelength light with respect to light is preferably 780 nm or more and 2500 nm or less. Here, examples of the near-infrared organic photoelectric conversion element include a near-infrared light sensor, an organic imaging element, and a near-infrared light image sensor.

有機光電変換素子は、対向する一対の電極膜間に光電変換部(膜)を配置した素子であって、電極膜の上方から光が光電変換部に入射されるものである。光電変換部は前記の入射光に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。光電変換素子は、アレイ状に多数配置されている場合、入射光量に加え入射位置情報をも示すため、撮像素子となる。又、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いてもよい。 An organic photoelectric conversion element is an element in which a photoelectric conversion unit (film) is arranged between a pair of electrode films facing each other, and light is incident on the photoelectric conversion unit from above the electrode films. The photoelectric conversion unit generates electrons and holes in response to the incident light, and a semiconductor reads out a signal corresponding to the charge to indicate the amount of incident light according to the absorption wavelength of the photoelectric conversion film unit. Is. A transistor for reading may be connected to the electrode film on the side where light is not incident. When a large number of photoelectric conversion elements are arranged in an array, they are image pickup elements because they show incident position information in addition to the amount of incident light. Further, when the photoelectric conversion element arranged closer to the light source does not shield (transmit) the absorption wavelength of the photoelectric conversion element arranged behind the photoelectric conversion element when viewed from the light source side, a plurality of photoelectric conversion elements are laminated. You may use it.

本発明の有機光電変換素子は、前記式(1)で表される化合物を上記光電変換部の構成材料として用いることができる。
光電変換部は、光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等から成る群より選択される一種又は複数種の光電変換層以外の有機薄膜層とから成ることが多い。本発明の化合物は光電変換層以外にも用いることもできるが、光電変換層の有機薄膜層として用いることが好ましい。光電変換層は前記式(1)で表される化合物のみで構成されていてもよいが、前記式(1)で表される化合物以外に、公知の近赤外光吸収材料やその他を含んでいてもよい。
In the organic photoelectric conversion element of the present invention, the compound represented by the formula (1) can be used as a constituent material of the photoelectric conversion unit.
The photoelectric conversion unit is one or a plurality of types selected from the group consisting of a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. It is often composed of an organic thin film layer other than the photoelectric conversion layer. Although the compound of the present invention can be used in addition to the photoelectric conversion layer, it is preferable to use it as an organic thin film layer of the photoelectric conversion layer. The photoelectric conversion layer may be composed of only the compound represented by the formula (1), but includes a known near-infrared light absorbing material and others in addition to the compound represented by the formula (1). You may.

本発明の有機光電変換素子で用いられる電極膜は、後述する光電変換部に含まれる光電変換層が、正孔輸送性を有する場合や光電変換層以外の有機薄膜層が正孔輸送性を有する正孔輸送層である場合は、該光電変換層やその他の有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、又光電変換部に含まれる光電変換層が電子輸送性を有する場合や、有機薄膜層が電子輸送性を有する電子輸送層である場合は、該光電変換層やその他の有機薄膜層から電子を取り出して、これを吐出する役割を果たすものである。よって、電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する光電変換層やその他の有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属:ヨウ化銅及び硫化銅等の無機導電性物質:ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー:炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、複数を2層以上に積層して用いてもよい。電極膜に用いる材料の導電性も、光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点からできるだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば、電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV−オゾン処理やプラズマ処理等を施してもよい。 In the electrode film used in the organic photoelectric conversion element of the present invention, when the photoelectric conversion layer included in the photoelectric conversion unit described later has hole transportability or the organic thin film layer other than the photoelectric conversion layer has hole transportability. In the case of a hole transport layer, it plays a role of extracting holes from the photoelectric conversion layer and other organic thin film layers and collecting them, and the photoelectric conversion layer included in the photoelectric conversion unit has electron transportability. In some cases, or when the organic thin film layer is an electron transporting layer having electron transporting properties, it plays a role of extracting electrons from the photoelectric conversion layer and other organic thin film layers and discharging them. Therefore, the material that can be used as the electrode film is not particularly limited as long as it has a certain degree of conductivity, but the adhesion to the adjacent photoelectric conversion layer and other organic thin film layers, electron affinity, ionization potential, stability, etc. It is preferable to select in consideration of. Materials that can be used as the electrode film include conductive metal oxides such as tin oxide (NESA), indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); gold, silver, platinum, chromium and aluminum. , Metals such as iron, cobalt, nickel and tungsten: Inorganic conductive substances such as copper iodide and copper sulfide: Conductive polymers such as polythiophene, polypyrrole and polyaniline: Carbon and the like. If necessary, a plurality of these materials may be mixed and used, or a plurality of these materials may be laminated in two or more layers. The conductivity of the material used for the electrode film is not particularly limited as long as it does not interfere with the light reception of the photoelectric conversion element more than necessary, but it is preferably as high as possible from the viewpoint of the signal strength of the photoelectric conversion element and the power consumption. For example, an ITO film having a conductivity of 300 Ω / □ or less functions sufficiently as an electrode film, but a commercially available substrate having an ITO film having a conductivity of several Ω / □ is also available. Therefore, it is desirable to use a substrate having such high conductivity. The thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, but is usually about 5 to 500 nm, preferably about 10 to 300 nm. Examples of the method for forming a film such as ITO include a conventionally known vapor deposition method, electron beam method, sputtering method, chemical reaction method, coating method and the like. The ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment, or the like, if necessary.

電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO、FTO(フッ素ドープ酸化スズ)等が挙げられる。光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。 As the material of the transparent electrode film used for at least one of the electrode films on the side where light is incident, ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide) , GZO (gallium-doped zinc oxide), TiO 2 , FTO (fluorinated tin oxide) and the like. The transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and particularly preferably 95% or more. ..

又、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは上記記載の一対の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。 Further, when a plurality of photoelectric conversion layers having different wavelengths to be detected are laminated, the electrode film used between the photoelectric conversion layers (this is an electrode film other than the pair of electrode films described above) is each photoelectric. It is necessary to transmit light having a wavelength other than the light detected by the conversion layer, and it is preferable to use a material that transmits 90% or more of the incident light, and a material that transmits 95% or more of the light is used for the electrode film. Is more preferable.

電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマが与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、又はプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減ぜられるような状態を意味する。 The electrode film is preferably plasma-free. By producing these electrode films in a plasma-free manner, the influence of plasma on the substrate on which the electrode film is provided can be reduced, and the photoelectric conversion characteristics of the photoelectric conversion element can be improved. Here, plasma-free means that plasma is not generated when the electrode film is formed, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state in which the plasma is reduced.

電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と称し、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と称する。 Examples of devices that do not generate plasma during film formation of the electrode film include an electron beam vapor deposition device (EB vapor deposition device) and a pulse laser vapor deposition device. The method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method, and the method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.

成膜中プラズマを減ずることができるような状態を実現できる装置(以下、プラズマフリーである成膜装置という)としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。 As an apparatus capable of realizing a state in which plasma can be reduced during film formation (hereinafter referred to as a plasma-free film forming apparatus), for example, an opposed target sputtering apparatus, an arc plasma vapor deposition apparatus, or the like can be considered.

透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(Transparent Conductive Oxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。 When the transparent conductive film is used as an electrode film (for example, the first conductive film), a DC short circuit or an increase in leakage current may occur. One of the reasons for this is that fine cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transient Conductive Oxide), and the conductivity between the film and the electrode film on the opposite side of the transparent conductive film is increased. it is conceivable that. Therefore, when a material such as Al, which is inferior in film quality, is used for the electrode, the leakage current is unlikely to increase. By controlling the film thickness of the electrode film according to the film thickness (crack depth) of the photoelectric conversion layer, an increase in leakage current can be suppressed.

通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の光センサ用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。又、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。 Usually, when the conductive film is made thinner than a predetermined value, a rapid increase in resistance value occurs. The sheet resistance of the conductive film in the photoelectric conversion element for an optical sensor of the present embodiment is usually 100 to 10000 Ω / □, and the degree of freedom in film thickness is large. Further, the thinner the transparent conductive film, the smaller the amount of light absorbed, and generally the higher the light transmittance. When the light transmittance is high, the amount of light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion ability is improved, which is very preferable.

本発明の有機光電変換素子が有する光電変換部は、光電変換層及び光電変換層以外の有機薄膜層を含む場合もある。光電変換部を構成する光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層若しくは複数の層であってもよく、一層の場合は、p型有機半導体膜、n型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2乃至10層程度であり、p型有機半導体膜、n型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)の何れかを積層した構造であり、層間にバッファ層が挿入されていてもよい。なお、上記の混合膜により光電変換層を形成する場合、本発明の一般式(1)で表される化合物をp型半導体材料として用い、n型半導体材料としては一般的なフラーレンや、その誘導体を用いることが好ましい。 The photoelectric conversion unit included in the organic photoelectric conversion element of the present invention may include an organic thin film layer other than the photoelectric conversion layer and the photoelectric conversion layer. An organic semiconductor film is generally used for the photoelectric conversion layer constituting the photoelectric conversion unit, but the organic semiconductor film may be one layer or a plurality of layers, and in the case of one layer, a p-type organic semiconductor film, n. A type organic semiconductor film or a mixed film thereof (bulk heterostructure) is used. On the other hand, in the case of a plurality of layers, there are about 2 to 10 layers, which is a structure in which any of a p-type organic semiconductor film, an n-type organic semiconductor film, or a mixed film (bulk heterostructure) thereof is laminated, and the layers are layers. A buffer layer may be inserted in. When the photoelectric conversion layer is formed by the above mixed film, the compound represented by the general formula (1) of the present invention is used as a p-type semiconductor material, and fullerenes and derivatives thereof, which are common as n-type semiconductor materials, are used. It is preferable to use.

本発明の有機光電変換素子において、光電変換部を構成する光電変換層以外の有機薄膜層は、光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層又は層間接触改良層等としても用いられる。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層(以下「キャリアブロック層」とも表す。)から成る群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。 In the organic photoelectric conversion element of the present invention, the organic thin film layer other than the photoelectric conversion layer constituting the photoelectric conversion unit is a layer other than the photoelectric conversion layer, for example, an electron transport layer, a hole transport layer, an electron block layer, and a hole block. It is also used as a layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. In particular, by using it as one or more thin film layers selected from the group consisting of an electron transport layer, a hole transport layer, an electron block layer and a hole block layer (hereinafter, also referred to as “carrier block layer”), even with weak light energy. This is preferable because an element that efficiently converts an electric signal can be obtained.

加えて、例えば有機撮像素子は、一般的には高コントラスト化や省電力化を目的として、暗電流の低減により性能向上を目指すと考えられため、層構造内にキャリアブロック層を挿入する手法が好ましい。これらのキャリアブロック層は、有機エレクトロニクスデバイス分野では一般に用いられており、其々デバイスの構成膜中において正孔若しくは電子の逆移動を制御する機能を有する。 In addition, for example, organic image sensors are generally considered to aim at improving performance by reducing dark current for the purpose of high contrast and power saving, so a method of inserting a carrier block layer in the layer structure is used. preferable. These carrier block layers are generally used in the field of organic electronic devices, and each has a function of controlling the reverse movement of holes or electrons in the constituent film of the device.

電子輸送層は、光電変換層で発生した電子を電極膜へ輸送する役割と、電子輸送先の電極膜から光電変換層に正孔が移動するのをブロックする役割とを果たす。正孔輸送層は、発生した正孔を光電変換層から電極膜へ輸送する役割と、正孔輸送先の電極膜から光電変換層に電子が移動するのをブロックする役割とを果たす。電子ブロック層は、電極膜から光電変換層への電子の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。正孔ブロック層は、電極膜から光電変換層への正孔の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。 The electron transport layer plays a role of transporting electrons generated in the photoelectric conversion layer to the electrode film and a role of blocking holes from moving from the electrode film of the electron transport destination to the photoelectric conversion layer. The hole transport layer plays a role of transporting generated holes from the photoelectric conversion layer to the electrode film and a role of blocking the movement of electrons from the electrode film of the hole transport destination to the photoelectric conversion layer. The electron block layer plays a role of hindering the movement of electrons from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current. The hole block layer has a function of hindering the movement of holes from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.

図1に本発明の有機光電変換素子の代表的な素子構造を示すが、本発明はこの構造に限定されるものではない。図1の態様例においては、1が絶縁部、2が一方の電極膜、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜、7が絶縁基材又は他の有機光電変換素子をそれぞれ表す。図中には読み出し用のトランジスタを記載していないが、2又は6の電極膜と接続されていればよく、更には光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側に成膜されていてもよい。有機光電変換素子への光の入射は、光電変換層4を除く構成要素が、光電変換層の主たる吸収波長の光を入射することを極度に阻害することがなければ、上部若しくは下部からの何れからでもよい。 FIG. 1 shows a typical element structure of the organic photoelectric conversion element of the present invention, but the present invention is not limited to this structure. In the example of the embodiment of FIG. 1, 1 is an insulating part, 2 is one electrode film, 3 is an electron block layer, 4 is a photoelectric conversion layer, 5 is a hole block layer, 6 is the other electrode film, and 7 is an insulating group. Represents a material or other organic photoelectric conversion element, respectively. Although the transistor for reading is not shown in the figure, it suffices if it is connected to the electrode film of 2 or 6, and if the photoelectric conversion layer 4 is transparent, the side opposite to the side on which light is incident is opposite. It may be formed on the outside of the electrode film of. The light incident on the organic photoelectric conversion element can be either from the upper part or the lower part unless the components other than the photoelectric conversion layer 4 extremely prevent the light of the main absorption wavelength of the photoelectric conversion layer from being incident. It may be from.

[有機半導体レーザー素子について]
上記一般式(1)で表される化合物は近赤外発光特性を有する化合物であることから、有機半導体レーザー素子としての利用が期待される。すなわち、上記一般式(1)で表される化合物を含有する有機半導体レーザー素子に共振器構造を組み込み、効率的にキャリアを注入して励起状態の密度を十分に高めることができれば、光が増幅されレーザー発振に至る事が期待される。従来、光励起によるレーザー発振が観測されるのみで、電気励起によるレーザー発振に必要とされる、高密度のキャリアを有機半導体素子に注入し、高密度の励起状態を発生させるのは非常に困難と提唱されているが、上記一般式(1)で表される化合物を含有する有機半導体素子を用いることで、高効率な発光(電界発光)が起こる可能性が期待される。
[About organic semiconductor laser devices]
Since the compound represented by the general formula (1) is a compound having near-infrared emission characteristics, it is expected to be used as an organic semiconductor laser device. That is, if the resonator structure is incorporated into the organic semiconductor laser device containing the compound represented by the general formula (1) and carriers can be efficiently injected to sufficiently increase the density of the excited state, the light is amplified. It is expected that this will lead to laser oscillation. Conventionally, only laser oscillation by photoexcitation is observed, and it is very difficult to inject high-density carriers required for laser oscillation by electroluminescence into an organic semiconductor device to generate a high-density excited state. Although it has been proposed, it is expected that highly efficient light emission (electroluminescence) may occur by using an organic semiconductor device containing the compound represented by the above general formula (1).

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。合成例に記載の化合物は、必要に応じて質量分析スペクトル、核磁気共鳴スペクトル(NMR)により構造を決定した。実施例におけるH NMRの測定は、JNM−ECS400(JEOL社製)を用いて、分子量の測定はISQ LT GC−MS(Thermo Fisher Scientific社製)を用いて、また吸収スペクトルのλmaxの値はUV−1700(島津製作所製)を用いてそれぞれ行った。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The structure of the compound described in the synthesis example was determined by mass spectrometry spectrum and nuclear magnetic resonance spectrum (NMR), if necessary. In the examples, 1 H NMR was measured using JNM-ECS400 (manufactured by JEOL), the molecular weight was measured using ISQ LT GC-MS (manufactured by Thermo Fisher Scientific), and the value of λmax in the absorption spectrum was UV-1700 (manufactured by Shimadzu Corporation) was used for each.

実施例1(本発明の化合物の合成)
下記のスキームにより式(1−68)で表される本発明の化合物を合成した。
Example 1 (Synthesis of the compound of the present invention)
The compound of the present invention represented by the formula (1-68) was synthesized by the following scheme.

Figure 2020189933
Figure 2020189933

(工程1)上記スキーム中、式(2−2)で表される中間体化合物の合成
フラスコ中で、上記式(2−1)で表される化合物(0.55mmol)とアニリン(5.4mmol)をトルエン(36mL)に溶解し、95℃に加熱して4時間撹拌した。反応液を放冷して、溶媒を濃縮乾燥した後に、エタノールで懸濁ろ過することにより、式(2−2)で表される中間体化合物を得た(0.34mmol、収率62質量%)。式(2−2)で表される化合物の分子量の測定結果は以下のとおりであった。
EI−MS(m/z):910[M]
(Step 1) Synthesis of Intermediate Compound Represented by Formula (2-2) in the above Scheme In a flask, the compound (0.55 mmol) represented by the above formula (2-1) and aniline (5.4 mmol). ) Was dissolved in toluene (36 mL), heated to 95 ° C., and stirred for 4 hours. The reaction mixture was allowed to cool, the solvent was concentrated and dried, and then the solvent was suspended and filtered through ethanol to obtain an intermediate compound represented by the formula (2-2) (0.34 mmol, yield 62% by mass). ). The measurement results of the molecular weight of the compound represented by the formula (2-2) were as follows.
EI-MS (m / z): 910 [M] +

(工程2)上記具体例の式(1−68)で表される化合物の合成
フラスコ中で、工程1で得られた式(2−2)で表される中間体化合物(0.29mmol)をジクロロメタン(25mL)に溶解させた。次いで、三臭化ホウ素(5.7mL)を反応系に加え、18時間攪拌した。反応液を飽和炭酸水素ナトリウム水溶液に加えることで中和したのち、有機層を濃縮乾燥した。メタノールを加えて、懸濁ろ過することにより式(1−68)で表される本発明の化合物を得た。(0.12mmol、収率:41質量%)。
式(1−68)で表される化合物の分子量の測定結果は以下のとおりであった。
EI−MS(m/z):842[M]
H NMR(CDCl)δ(ppm)=8.46(s、2H)、7.92(m、6H)、7.78(d、4H)、7.71(d、2H)、7.48(s、1H)、7.40(t、4H)、7.30−7.21(m、10H)
(Step 2) Synthesis of compound represented by formula (1-68) of the above specific example In a flask, an intermediate compound (0.29 mmol) represented by formula (2-2) obtained in step 1 is placed. It was dissolved in dichloromethane (25 mL). Boron tribromide (5.7 mL) was then added to the reaction system and stirred for 18 hours. The reaction solution was neutralized by adding it to a saturated aqueous sodium hydrogen carbonate solution, and then the organic layer was concentrated and dried. Methanol was added and suspension filtration was performed to obtain the compound of the present invention represented by the formula (1-68). (0.12 mmol, yield: 41% by mass).
The measurement results of the molecular weight of the compound represented by the formula (1-68) were as follows.
EI-MS (m / z): 842 [M] +
1 1 H NMR (CDCl 3 ) δ (ppm) = 8.46 (s, 2H), 7.92 (m, 6H), 7.78 (d, 4H), 7.71 (d, 2H), 7. 48 (s, 1H), 7.40 (t, 4H), 7.30-7.21 (m, 10H)

実施例2(本発明の化合物の合成)
(工程3)上記具体例の式(1−101)で表される本発明の化合物の合成
フラスコ中で、ジ((ホルミルチエニル)−メトキシチエニル)ジフルオロジベンゾピロメテンーBF錯体(0.033mmol)と3,5―ジメチルアニリン(0.30mmol)をトルエン(2mL)に溶解し、95℃に加熱して3時間撹拌した。反応液を放冷して、溶媒を濃縮乾燥した後に、エタノールで懸濁ろ過することにより、中間体化合物を得た(0.020mmol)。前記で得られた中間体化合物をフラスコ中でジクロロメタン(2mL)に溶解させた。次いで、三臭化ホウ素(0.5mL)を反応系に加え、7時間攪拌した。反応液を飽和炭酸水素ナトリウム水溶液に加えることで中和したのち、有機層を濃縮乾燥した。メタノールを加えて、懸濁ろ過することにより式(1−101)で表される本発明の化合物を得た。(0.11mmol、収率:33質量%)。
式(1−101)で表される化合物の分子量の測定結果は以下のとおりであった。
EI−MS(m/z):910[M]
H NMR(CDCl)δ(ppm)=8.52(s、2H)、7.93(dd、2H)、7.65(d、2H)、7.45(s、1H)、7.40(d、2H)、7.34(d、2H)、7.28(d、2H)、7.08(s、2H)、6.89(s、2H)、6.87(s、4H)、2.34(s、12H)
Example 2 (Synthesis of the compound of the present invention)
(Step 3) Synthesis of the compound of the present invention represented by the formula (1-101) of the above specific example In a flask, a di ((formylthiline) -methoxythionyl) difluorodibenzopyromethene-BF 2 complex (0.033 mmol) ) And 3,5-dimethylaniline (0.30 mmol) were dissolved in toluene (2 mL), heated to 95 ° C., and stirred for 3 hours. The reaction mixture was allowed to cool, the solvent was concentrated and dried, and then suspension filtration was performed with ethanol to obtain an intermediate compound (0.020 mmol). The intermediate compound obtained above was dissolved in dichloromethane (2 mL) in a flask. Boron tribromide (0.5 mL) was then added to the reaction system and stirred for 7 hours. The reaction solution was neutralized by adding it to a saturated aqueous sodium hydrogen carbonate solution, and then the organic layer was concentrated and dried. Methanol was added and suspension filtration was performed to obtain the compound of the present invention represented by the formula (1-101). (0.11 mmol, yield: 33% by mass).
The measurement results of the molecular weight of the compound represented by the formula (1-101) were as follows.
EI-MS (m / z): 910 [M] +
1 1 H NMR (CDCl 3 ) δ (ppm) = 8.52 (s, 2H), 7.93 (dd, 2H), 7.65 (d, 2H), 7.45 (s, 1H), 7. 40 (d, 2H), 7.34 (d, 2H), 7.28 (d, 2H), 7.08 (s, 2H), 6.89 (s, 2H), 6.87 (s, 4H) ), 2.34 (s, 12H)

比較例1(比較用の化合物の合成)
特許文献5に記載の方法に準じて、下記式(3−1)で表される比較用の化合物を得た。
Comparative Example 1 (Synthesis of Compound for Comparison)
A comparative compound represented by the following formula (3-1) was obtained according to the method described in Patent Document 5.

Figure 2020189933
Figure 2020189933

(本発明の化合物及び比較用の化合物のクロロホルムに対する溶解度測定)
実施例1、2及び比較例1で得られた本発明の化合物及び比較用の化合物のクロロホルムへの溶解度を測定し、結果を表1に示した。
(Measurement of solubility of the compound of the present invention and the compound for comparison in chloroform)
The solubility of the compound of the present invention and the compound for comparison obtained in Examples 1 and 2 and Comparative Example 1 in chloroform was measured, and the results are shown in Table 1.

Figure 2020189933
Figure 2020189933

実施例1及び2で得られた本発明の化合物(式(1−68)、(1−101))はいずれも10mg/mL以上の溶解度を示したのに対して。比較例1で得られた比較用の化合物(式(3−1))は2mg/mL以下の溶解度であった。この結果より、本発明の化合物が比較用の化合物よりも高い溶解度を有する事は明らかである。 While the compounds of the present invention (formulas (1-68) and (1-101)) obtained in Examples 1 and 2 all showed a solubility of 10 mg / mL or more. The comparative compound (formula (3-1)) obtained in Comparative Example 1 had a solubility of 2 mg / mL or less. From this result, it is clear that the compound of the present invention has a higher solubility than the comparative compound.

(本発明の化合物及び比較用の化合物のクロロホルム溶液の吸収スペクトルのλmaxの測定)
実施例1、2及び比較例1で得られた化合物のクロロホルム溶液(濃度1.0×10−5mol/L)を調製し、吸収スペクトルの測定結果に基づいて求めたλmaxの値を表2に示した。
(Measurement of λmax of absorption spectrum of chloroform solution of compound of the present invention and compound for comparison)
Chloroform solutions (concentration 1.0 × 10-5 mol / L) of the compounds obtained in Examples 1 and 2 and Comparative Example 1 were prepared, and the value of λmax obtained based on the measurement result of the absorption spectrum is shown in Table 2. It was shown to.

Figure 2020189933
Figure 2020189933

表2の結果より、実施例1及び2で得られた本発明の化合物(式(1−68)、(1−101))は比較用の化合物(式(3−1))よりも長波長領域にλmaxを有しており、近赤外光をより効率的に吸収できることは明らかである。 From the results in Table 2, the compounds of the present invention (formulas (1-68) and (1-101)) obtained in Examples 1 and 2 have longer wavelengths than the comparative compounds (formula (3-1)). It has λmax in the region, and it is clear that it can absorb near-infrared light more efficiently.

実施例3(本発明の化合物を含む有機薄膜の作成と評価)
実施例1で得られた式(1−68)で表される化合物を用いて、0.5wt%のクロロホルム溶液を調製した後、石英基板上に100μL塗布し、1000rpm、30秒の条件でスピンコーティングをすることで本発明の有機薄膜を得た。得られた有機薄膜について吸収スペクトルを測定し、結果を図2に示した。実施例3の有機薄膜のλmaxは897nmであった。
Example 3 (Preparation and evaluation of an organic thin film containing the compound of the present invention)
A 0.5 wt% chloroform solution was prepared using the compound represented by the formula (1-68) obtained in Example 1, 100 μL was applied onto a quartz substrate, and the mixture was spun at 1000 rpm for 30 seconds. The organic thin film of the present invention was obtained by coating. The absorption spectrum of the obtained organic thin film was measured, and the result is shown in FIG. The λmax of the organic thin film of Example 3 was 897 nm.

実施例4(本発明の化合物を含む有機薄膜の作成と評価)
実施例2で得られた式(1−101)で表される化合物を用いて、0.5wt%のクロロホルム溶液を調製した後、石英基板上に100μL塗布し、1000rpm、30秒間の条件でスピンコーティングをすることで本発明の有機薄膜を得た。得られた有機薄膜について吸収スペクトルを測定し、結果を図3に示した。実施例4の有機薄膜のλmaxは933nmであった。
Example 4 (Preparation and evaluation of an organic thin film containing the compound of the present invention)
A 0.5 wt% chloroform solution was prepared using the compound represented by the formula (1-101) obtained in Example 2, 100 μL was applied onto a quartz substrate, and the mixture was spun at 1000 rpm for 30 seconds. The organic thin film of the present invention was obtained by coating. The absorption spectrum of the obtained organic thin film was measured, and the result is shown in FIG. The λmax of the organic thin film of Example 4 was 933 nm.

図3及び4の結果より、本発明の化合物を含む有機薄膜が、近赤外光領域でも良好な光吸収特性を示すことは明らかである。 From the results of FIGS. 3 and 4, it is clear that the organic thin film containing the compound of the present invention exhibits good light absorption characteristics even in the near infrared light region.

本発明の化合物は、合成上の簡便さと、溶媒に対する高い溶解性、溶液プロセスによる成膜性、近赤外領域における吸収特性を兼ね備えており、近赤外領域における光吸収色素として非常に有用である。 The compound of the present invention has simple synthesis, high solubility in a solvent, film forming property by a solution process, and absorption characteristics in the near infrared region, and is very useful as a light absorbing dye in the near infrared region. is there.

(図1)
1 絶縁部
2 上部電極
3 電子ブロック層
4 光電変換層
5 正孔ブロック層
6 下部電極
7 絶縁基材若しくは他光電変換素子


(Fig. 1)
1 Insulation part 2 Upper electrode 3 Electronic block layer 4 Photoelectric conversion layer 5 Hole block layer 6 Lower electrode 7 Insulating base material or other photoelectric conversion element


Claims (9)

下記一般式(1)
Figure 2020189933
(式中、R乃至Rはそれぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基、又はアシル基を表す。R及びR10はそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族基、又は複素環基を表す。R11及びR12はそれぞれ独立に脂肪族炭化水素基、芳香族基、又は複素環基を表す。Z及びZはそれぞれ独立に芳香族化合物の芳香環から水素原子を二つ除いた二価の連結基、又は複素環化合物の複素環から水素原子を二つ除いた二価の連結基を表す。nはそれぞれ独立に0以上の整数を表す。)で表されるジベンゾピロメテンホウ素キレート化合物。
The following general formula (1)
Figure 2020189933
(In the formula, R 1 to R 8 are independently hydrogen atoms, aliphatic hydrocarbon groups, alkoxy groups, alkylthio groups, aromatic groups, heterocyclic groups, halogen atoms, hydroxyl groups, mercapto groups, nitro groups and substituted amino groups, respectively. , An unsubstituted amino group, a cyano group, a sulfo group, or an acyl group. R 9 and R 10 independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aromatic group, or a heterocyclic group, respectively. R 11 and R 12 independently represents an aliphatic hydrocarbon group, an aromatic group, or a heterocyclic group. Z 1 and Z 2 are divalent linkages obtained by independently removing two hydrogen atoms from the aromatic ring of an aromatic compound. A dibenzopyrromethene boron chelate compound represented by a group or a divalent linking group obtained by removing two hydrogen atoms from the heterocycle of a heterocyclic compound. N represents an integer of 0 or more independently.
nが1である請求項1に記載のジベンゾピロメテンホウ素キレート化合物。 The dibenzopyrromethene boron chelate compound according to claim 1, wherein n is 1. 及びR10が水素原子である請求項1又は2に記載のジベンゾピロメテンホウ素キレート化合物。 The dibenzopyrromethene boron chelate compound according to claim 1 or 2, wherein R 9 and R 10 are hydrogen atoms. 11及びR12が芳香族基、又は複素環基である請求項1乃至3のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物。 The dibenzopyrromethene boron chelate compound according to any one of claims 1 to 3, wherein R 11 and R 12 are aromatic groups or heterocyclic groups. 請求項1乃至4のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物含む近赤外吸収色素。 A near-infrared absorbing dye containing the dibenzopyrromethene boron chelate compound according to any one of claims 1 to 4. 請求項1乃至4のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物含む有機薄膜。 An organic thin film containing the dibenzopyrromethene boron chelate compound according to any one of claims 1 to 4. 請求項1乃至4のいずれか一項に記載のジベンゾピロメテンホウ素キレート化合物を含む光電変換素子。 A photoelectric conversion element containing the dibenzopyrromethene boron chelate compound according to any one of claims 1 to 4. 請求項7に記載の光電変換素子を備える近赤外光センサー。 A near-infrared light sensor comprising the photoelectric conversion element according to claim 7. 請求項7に記載の光電変換素子を備える撮像素子。

An image pickup device including the photoelectric conversion element according to claim 7.

JP2019096458A 2019-05-23 2019-05-23 Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device Active JP7177001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096458A JP7177001B2 (en) 2019-05-23 2019-05-23 Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096458A JP7177001B2 (en) 2019-05-23 2019-05-23 Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device

Publications (2)

Publication Number Publication Date
JP2020189933A true JP2020189933A (en) 2020-11-26
JP7177001B2 JP7177001B2 (en) 2022-11-22

Family

ID=73454912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096458A Active JP7177001B2 (en) 2019-05-23 2019-05-23 Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device

Country Status (1)

Country Link
JP (1) JP7177001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181439A1 (en) * 2021-02-25 2022-09-01 日本化薬株式会社 Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525516A (en) * 1994-09-30 1996-06-11 Eastman Chemical Company Method for tagging petroleum products
CN104926846A (en) * 2015-06-01 2015-09-23 天津师范大学 BODIPY compound as well as preparation method and application thereof
JP2016166284A (en) * 2015-03-09 2016-09-15 公立大学法人首都大学東京 Novel organic compound and use thereof
WO2018079653A1 (en) * 2016-10-28 2018-05-03 日本化薬株式会社 Dibenzopyrromethene boron chelate compound, near infrared light absorbing material, thin film, and organic electronic device
WO2019011456A1 (en) * 2017-07-13 2019-01-17 Alanod Gmbh & Co. Kg Optoelectronic device with a component which is surface-mounted on a frame support structure, and reflective composite material for such a device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525516A (en) * 1994-09-30 1996-06-11 Eastman Chemical Company Method for tagging petroleum products
US5525516B1 (en) * 1994-09-30 1999-11-09 Eastman Chem Co Method for tagging petroleum products
JP2016166284A (en) * 2015-03-09 2016-09-15 公立大学法人首都大学東京 Novel organic compound and use thereof
CN104926846A (en) * 2015-06-01 2015-09-23 天津师范大学 BODIPY compound as well as preparation method and application thereof
WO2018079653A1 (en) * 2016-10-28 2018-05-03 日本化薬株式会社 Dibenzopyrromethene boron chelate compound, near infrared light absorbing material, thin film, and organic electronic device
WO2019011456A1 (en) * 2017-07-13 2019-01-17 Alanod Gmbh & Co. Kg Optoelectronic device with a component which is surface-mounted on a frame support structure, and reflective composite material for such a device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181439A1 (en) * 2021-02-25 2022-09-01 日本化薬株式会社 Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element

Also Published As

Publication number Publication date
JP7177001B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP6844934B2 (en) Dibenzopyrromethene boron chelate compounds, near-infrared light absorbing materials, thin films and organic electronics devices
JP6575921B2 (en) Heterocyclic compound and organic light emitting device including the same
JP7073382B2 (en) Dibenzopyrromethene boron chelate compounds, near-infrared light absorbing materials, thin films and organic electronics devices
JP2018129510A (en) Organic photoelectric conversion material for image pickup device and organic photoelectric conversion device and organic imaging device using the same
JP6770278B2 (en) Dibenzopyrromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion element, near-infrared light sensor and image sensor
WO2020162345A1 (en) Dibenzopyrromethene boron chelate compound, near-infrared absorbing material, organic thin film and organic electronic device
JP7177001B2 (en) Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device
JP7177002B2 (en) Dibenzopyromethene boron chelate compound, near-infrared light absorbing dye, photoelectric conversion device, near-infrared light sensor and imaging device
JP7033039B2 (en) Dibenzopyrromethene boron chelate compounds and their uses
JP2021116297A (en) Boron chelate compound, near infrared light absorption material, thin film, and organic electronic device
JP2017137264A (en) Organic compound, infrared light absorbing material and use thereof
WO2022181439A1 (en) Boron chelate compound, near-infrared light absorbing material, thin film, photoelectric conversion element, and imaging element
JP7357880B2 (en) New cyclic compounds and their uses
JP2022081515A (en) Photo-electric conversion element, two-dimensional sensor, image sensor, and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221110

R150 Certificate of patent or registration of utility model

Ref document number: 7177001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150