JP2018119902A - Method of automatic marking to ceiling surface and unmanned flying object for automatic marking - Google Patents

Method of automatic marking to ceiling surface and unmanned flying object for automatic marking Download PDF

Info

Publication number
JP2018119902A
JP2018119902A JP2017012815A JP2017012815A JP2018119902A JP 2018119902 A JP2018119902 A JP 2018119902A JP 2017012815 A JP2017012815 A JP 2017012815A JP 2017012815 A JP2017012815 A JP 2017012815A JP 2018119902 A JP2018119902 A JP 2018119902A
Authority
JP
Japan
Prior art keywords
ceiling surface
unmanned flying
flying object
marking
wall member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017012815A
Other languages
Japanese (ja)
Other versions
JP6802721B2 (en
Inventor
卓 平井
Taku Hirai
卓 平井
星人 倉知
Hoshito Kurachi
星人 倉知
力 千葉
Tsutomu Chiba
力 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Doboku Co Ltd filed Critical Takenaka Doboku Co Ltd
Priority to JP2017012815A priority Critical patent/JP6802721B2/en
Publication of JP2018119902A publication Critical patent/JP2018119902A/en
Application granted granted Critical
Publication of JP6802721B2 publication Critical patent/JP6802721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of performing an automatic marking on a ceiling surface and an unmanned flying object for automatic marking capable of automatically and efficiently performing a marking expressly showing a desired position on the ceiling surface in advance and making the number of persons smaller using an unmanned flying object when an operation such as adhering a sheet to the ceiling surface is performed.SOLUTION: An unmanned flying object A comprising: a frame body 10 attached with a distance sensor 12; a rotor 1 capable of pressing an unmanned flying object A against a ceiling surface by generating a lift force by rotation; and a printing device 4 capable of printing to the ceiling surface, and mounting a wheel 2 capable of travelling in contact with the ceiling surface, a power source 3, and a microcomputer base for performing a displacement control of the wheel 2 on a rotational body 20 is raised and pressed against the ceiling surface. The unmanned flying object is displaced to the marking position located at a predetermined distance from a bridge beam 31 of the ceiling surface, and while the rotational body 20 is rotationally controlled, the marking is performed on the ceiling surface by the printing device 4 as the rotational body is horizontally and vertically displaced against a bridge beam 31 using the distance sensor 12.SELECTED DRAWING: Figure 6

Description

本発明は、既設構造物の天井面への自動墨出し方法と自動墨出し用無人飛翔体に関し、さらに言えば、橋梁の床版背面たる天井面にシート貼り付け等の補修工事を行う際、その位置を天井面に明示する墨出し作業を、無人飛翔体を利用して橋梁の橋桁からの距離を測定し、自動的に行う天井面への自動墨出し方法と同方法に用いる自動墨出し用無人飛翔体の技術分野に属する。   The present invention relates to an automatic marking method and an unmanned flying object for automatic marking on the ceiling surface of an existing structure, and more specifically, when performing repair work such as sheet pasting on the ceiling surface on the back of the bridge floor slab, Ink marking that clearly indicates the position on the ceiling surface is performed automatically by measuring the distance from the bridge girder of the bridge using an unmanned flying object and using the same method as the automatic marking method on the ceiling surface. Belongs to the technical field of unmanned flying vehicles.

近年、老朽化している橋梁の床版の補修工事が増加している。例えば、図8と図11に示したような橋梁Bの床版背面(天井面30)を補修するに当たり、補強シートを貼り付ける作業時には、その貼り付け位置を明示するため、天井面30を予め測位して墨出しを行っている。この墨出し作業は、作業員が狭所での上向き姿勢で且つ足場上の危険で困難な作業となる。しかも、足場を構築した後でなければ、墨出しに必要な橋梁Bの床版の正確な寸法を調査できない。   In recent years, repair work for slabs of aging bridges is increasing. For example, in repairing the floor slab back surface (ceiling surface 30) of the bridge B as shown in FIGS. 8 and 11, the ceiling surface 30 is previously set in order to clearly indicate the affixing position at the time of affixing the reinforcing sheet. I measure the position and make ink. This inking operation is a difficult and difficult task in which the worker is in an upward posture in a narrow place and is dangerous on the scaffolding. In addition, the exact dimensions of the floor slab of the bridge B necessary for inking can be examined only after the scaffold is constructed.

墨出し作業に関しては、例えば特許文献1に、回転量の検出センサが付帯された走行輪と自由輪を有する移動台車と、この移動台車上に搭載され直交2軸方向の任意方向に位置移動が可能とされたXY移動テーブルと、このXY移動テーブルの移動中心に設置され天井方向に延長されて回転可能に取り付けられた支柱部と、当該支柱部の回転中心からの距離を可変とされ天井面へのマーキングをなす墨出し部と、所定の位置情報が入力される制御部とを有し、墨出し部を作動可能とした天井墨出し作業装置が開示されている(同文献1の請求項1、図1参照)。   Regarding the marking work, for example, in Patent Document 1, a moving carriage having a traveling wheel and a free wheel attached with a rotation amount detection sensor, and a position movement in an arbitrary direction of two orthogonal axes mounted on the moving carriage. An XY moving table which is made possible, a support column which is installed at the moving center of the XY moving table and is extended in the ceiling direction so as to be rotatable, and a distance from the rotation center of the support column is variable. There is disclosed a ceiling inking operation device that has an inking unit that performs marking and a control unit to which predetermined position information is input, and that can operate the inking unit (claim 1 of the same document 1). 1, see FIG.

一方、最近では所謂ドローン(UAV)と称される無人飛翔体(無人飛行体)の技術が種々開発されてきている。例えば特許文献2には、電池と、前記電池から供給される電力で動作し複数のローターを回転させて当該無人飛行体を浮上及び飛行させる複数のモーターと、前記複数のモーターを制御して当該無人飛行体の飛行制御を行う制御部と、当該無人飛行体の高度を少なくとも検出する位置検出部とを備えた無人飛行体が開示されている(同文献2の請求項1参照)。   On the other hand, recently, various technologies for unmanned flying vehicles (unmanned flying vehicles) called so-called drones (UAV) have been developed. For example, in Patent Document 2, a battery, a plurality of motors that operate with electric power supplied from the battery and rotate a plurality of rotors to float and fly the unmanned air vehicle, and a plurality of motors that control the plurality of motors An unmanned aerial vehicle including a control unit that performs flight control of the unmanned aerial vehicle and a position detection unit that detects at least the altitude of the unmanned aerial vehicle is disclosed (see claim 1 of the document 2).

特許第2750660号公報Japanese Patent No. 2750660 特許第5887641号公報Japanese Patent No. 5887641

上記特許文献1に記載の天井墨出し作業装置は、天井面に照明や空調設備等の設置のための位置を円形状に墨出しする作業には適している。しかし、長い直線や格子状等の所望位置を明示する墨出し作業には適していない。また、天井方向に延長された回転可能な支柱部を、移動台車上のXY移動テーブルから天井面まで高く延ばしての墨出しは、作業を進める上で安定性に欠ける。しかも、その作業装置のXY移動テーブルが搭載された移動台車を、平坦な床面上に設置して移動させねばならず作業効率が悪い。   The ceiling marking device described in Patent Document 1 is suitable for the task of marking the position for installing lighting, air conditioning equipment, etc. in a circular shape on the ceiling surface. However, it is not suitable for marking out a desired position such as a long straight line or a grid. In addition, marking out by extending the rotatable column extending in the ceiling direction from the XY moving table on the moving carriage to the ceiling surface is not stable in proceeding with the work. In addition, the moving carriage on which the XY moving table of the working device is mounted must be installed and moved on a flat floor surface, resulting in poor working efficiency.

特に、橋梁の床版に墨出しをする(墨出し線を引く)に際しては、足場を構築した後でないと、床版の寸法を正確に実測調査できない。正確な寸法調査を終了した後には、複数の作業員が狭い場所で天井に向かって苦しい上向き作業をすることになり大変面倒である。このように格子状等の墨出し作業は困難を極めるため、自動化して作業効率を高めたいという要望がある。   In particular, when inking the bridge floor slab (drawing the inking line), the dimensions of the floor slab cannot be measured accurately until after the scaffolding is constructed. After the accurate dimensional survey is completed, it is very troublesome for a plurality of workers to perform difficult upward work toward the ceiling in a narrow place. As described above, since it is extremely difficult to perform the marking process such as a lattice shape, there is a demand for automation to increase the work efficiency.

一方、橋梁には橋桁があり、この橋桁からの距離をドローン(無人飛翔体)を利用した遠隔操作により計測し、当該ドローンにより天井の所望位置に自動的に直接墨出しを正確に行うことができれば、作業効率が高まることは明らかである。   On the other hand, there is a bridge girder on the bridge, and the distance from this bridge girder can be measured by remote control using a drone (unmanned flying object), and the drone can automatically and directly inscribe the desired position on the ceiling. If possible, it is clear that work efficiency will increase.

本発明は、上述した背景技術の課題に鑑みて案出されたものであり、その目的とするところは、天井面へのシートの貼り付け等の作業を行うに際し、事前に作業位置を天井面に明示する墨出しを、無人飛翔体を用いて、特には橋梁の橋桁からの距離を計測し、自動的に効率よく正確に行え、省人化が図れる天井面への自動墨出し方法と、同方法に用いる自動墨出し用無人飛翔体を提供することである。   The present invention has been devised in view of the problems of the background art described above, and the object of the present invention is to set the work position in advance on the ceiling surface when performing operations such as pasting a sheet on the ceiling surface. Ink marking is clearly performed on the ceiling surface using an unmanned flying object, especially by measuring the distance from the bridge girder of the bridge, automatically and efficiently, and saving labor. It is to provide an unmanned flying object for automatic summing used in the same method.

上記課題を解決するための手段として、請求項1に記載した発明に係る天井面への自動墨出し方法は、無人飛翔体により既設構造物の天井面へ墨出しする天井面の墨出し方法であって、
枠体と、その枠体の中央で回転自在に支持された回転体とにより骨格をなし、前記枠体には、距離センサ及び、回転により揚力を発生して上昇し天井面に当該無人飛翔体を押し付け自在な複数のローターと、天井面に向けて印字自在な印字装置が取り付けられていると共に、前記回転体には、天井面へ接して同天井面を任意方向に走行可能な複数の車輪及びその車輪の動力源と、所望の墨出し位置へ前記車輪を移動させる制御を行うマイコン基盤が搭載されて成る無人飛翔体を有し、
前記天井面の基準面となる橋桁、壁等の壁部材から無人飛翔体までの距離を前記距離センサにより計測し、墨出し位置を前記マイコン基盤に指示するための座標確認ソフトウェアがインストールされて割付図の座標を入力したコンピュータ装置により、前記壁部材から所定距離に位置する墨出し位置へ、無人飛翔体を上昇させて天井面へ押し付ける工程と
前記ローターによる当該無人飛翔体の天井面への押し付け状態を維持しつつ、当該無人飛翔体を、前記天井面の前記壁部材から一定距離を保って当該壁部材に対して平行移動させながら前記印字装置で天井面の所望位置へ墨出しする作業と、当該壁部材に対して墨出ししないで所定位置まで垂直移動させる作業を、割付図に従って前記回転体の回転を制御しつつ繰り返し行うことにより、天井面に複数本の墨出し線を所定の間隔をあけて平行に引く工程と、から成ることを特徴とする。
As a means for solving the above-mentioned problems, the method for automatically marking the ceiling surface according to the invention described in claim 1 is a ceiling surface marking method for marking the ceiling surface of an existing structure by an unmanned flying object. There,
A frame and a rotating body that is rotatably supported at the center of the frame form a skeleton, and the frame has a distance sensor and a lift generated by the rotation to rise and the unmanned flying object on the ceiling surface. A plurality of rotors that can be pressed and a printing device that can be printed toward the ceiling surface are attached, and a plurality of wheels that can contact the ceiling surface and travel on the ceiling surface in an arbitrary direction are attached to the rotating body And a power source of the wheel, and an unmanned flying body on which a microcomputer base for performing control for moving the wheel to a desired marking position is mounted,
Coordinate confirmation software is installed and assigned to measure the distance from a wall member such as a bridge girder and wall, which becomes the reference surface of the ceiling surface, to the unmanned flying object by the distance sensor and to indicate the marking position to the microcomputer board. The step of raising the unmanned flying object to the inking position located at a predetermined distance from the wall member by the computer device that has input the coordinates of the figure, and pressing the unmanned flying object on the ceiling surface by the rotor Maintaining the state and inking the unmanned flying object to a desired position on the ceiling surface with the printing device while moving the unmanned flying object parallel to the wall member while maintaining a certain distance from the wall member on the ceiling surface; By repeatedly performing the operation of vertically moving to a predetermined position without marking the wall member while controlling the rotation of the rotating body according to the allocation diagram, And a step of drawing a plurality of inking lines on the ceiling surface in parallel at a predetermined interval.

請求項2に記載した発明は、請求項1に記載した天井面への自動墨出し方法において、前記無人飛翔体を、前記天井面の前記壁部材から一定距離を保って当該壁部材に対して平行移動させながら前記印字装置で天井面の所望位置へ墨出しする作業と、当該壁部材に対して墨出ししないで所定位置まで垂直移動させる作業を、当該壁部材と直交する方向に設けられた壁部材についても行うことにより、天井面に複数本の墨出し線を略格子状に引く工程と、から成ることを特徴とする。   According to a second aspect of the present invention, in the automatic marking method on the ceiling surface according to the first aspect, the unmanned flying object is kept at a certain distance from the wall member of the ceiling surface with respect to the wall member. Work for marking the desired position on the ceiling surface with the printing apparatus while performing parallel movement and work for vertically moving to a predetermined position without marking the wall member are provided in a direction perpendicular to the wall member. It is characterized by comprising the step of drawing a plurality of inking lines on the ceiling surface in a substantially lattice shape by performing also on the wall member.

請求項3に記載した発明は、請求項1又は2に記載した天井面への自動墨出し方法において、前記無人飛翔体は、前記天井面に当接可能な上下移動自在なアンカー部を有しており、前記無人飛翔体の回転体の回転制御は、前記アンカー部を前記天井面に当接するように上昇させて前記車輪と天井面との接触状態を解除してから行うことを特徴とする。   According to a third aspect of the present invention, in the method for automatically marking a ceiling surface according to the first or second aspect, the unmanned flying object has a vertically movable anchor portion that can contact the ceiling surface. The rotation control of the rotating body of the unmanned flying body is performed after lifting the anchor portion so as to contact the ceiling surface and releasing the contact state between the wheel and the ceiling surface. .

請求項4に記載した発明に係る天井面への自動墨出し用無人飛翔体は、天井面に押し付けられながら同天井面へ墨出しする無人飛翔体であって、
当該無人飛翔体は、枠体と、同枠体の中央で回転自在に支持された回転体とにより骨格をなし、前記枠体には、当該枠体の一辺と平行に取り付けられた両端部に距離センサを備えたセンサ支持杆と、回転により揚力を発生して天井面に無人飛翔体を押し付け自在な複数のローターと、天井面に向けて印字自在な印字装置とが取り付けられ、前記回転体には、天井面へ接して同天井面を任意方向に走行可能な複数の車輪及びその車輪の動力源と、所望の墨出し位置へ前記車輪を移動させる制御を行うマイコン基盤とが搭載されており、
墨出し位置を前記マイコン基盤に指示するための座標確認ソフトウェアがインストールされたコンピュータ装置によって、前記距離センサが計測した天井面の前記壁部材から所定距離に位置する墨出し位置に当該無人飛翔体がローターによって天井面へ押し付けられた状態で、前記回転体で回転制御可能な車輪の移動により、前記壁部材に対して平行方向へ墨出し自在に構成されていることを特徴とする、天井面への自動墨出し用無人飛翔体。
The unmanned flying object for automatically marking on the ceiling surface according to the invention described in claim 4 is an unmanned flying object that marks the ceiling surface while being pressed against the ceiling surface,
The unmanned flying body forms a skeleton by a frame body and a rotating body that is rotatably supported at the center of the frame body, and the frame body has both ends attached in parallel to one side of the frame body. A sensor support rod provided with a distance sensor, a plurality of rotors capable of generating lift by rotation and pressing an unmanned flying object against a ceiling surface, and a printing device capable of printing toward the ceiling surface are attached, and the rotating body Is equipped with a plurality of wheels that can contact the ceiling surface and travel on the ceiling surface in an arbitrary direction, a power source of the wheels, and a microcomputer base that performs control to move the wheels to a desired marking position. And
The unmanned flying object is placed at the inking position located at a predetermined distance from the wall member of the ceiling surface measured by the distance sensor by a computer device in which coordinate checking software for instructing the inking position to the microcomputer base is installed. To the ceiling surface, which is configured to be able to incline in a direction parallel to the wall member by moving a wheel that can be rotationally controlled by the rotating body while being pressed against the ceiling surface by a rotor. An unmanned flying vehicle for automatic ink printing.

請求項5に記載した発明は、請求項4に記載した天井面への自動墨出し用無人飛翔体において、前記枠体に、アンカーリンク機構により上下移動自在なアンカー部と、当該アンカー部の上下位置をセンシングするフォトセンサが設置されていることを特徴とする。   According to a fifth aspect of the present invention, in the unmanned flying vehicle for automatic marking on the ceiling surface according to the fourth aspect, an anchor portion that is movable up and down by an anchor link mechanism and an upper and lower portion of the anchor portion on the frame body. A photosensor for sensing the position is installed.

請求項6に記載した発明は、請求項4又は5に記載した天井面への自動墨出し用無人飛翔体において、前記印字装置は、印字の実行と停止を自動制御可能なインクジェット又はロールマーカーであることを特徴とする。   According to a sixth aspect of the present invention, in the unmanned flying object for automatic marking on the ceiling surface according to the fourth or fifth aspect, the printing device is an inkjet or roll marker that can automatically control execution and stop of printing. It is characterized by being.

請求項7に記載した発明は、請求項4〜6のいずれか1項に記載した天井面への自動墨出し用無人飛翔体において、前記回転体に、天井面の前記壁部材に対し当該回転体が90度回転する位置をセンシングするフォトセンサが設置されていることを特徴とする。   According to a seventh aspect of the present invention, in the unmanned flying object for automatic ink marking onto the ceiling surface according to any one of the fourth to sixth aspects, the rotating body rotates relative to the wall member of the ceiling surface. A photo sensor for sensing a position where the body rotates 90 degrees is installed.

本発明に係る天井面への自動墨出し方法と自動墨出し用無人飛翔体によれば、枠体に距離センサと、複数のローターと、天井面に印字自在な印字装置とが取り付けられていると共に、その枠体の中央で回転自在に支持された回転体には、天井面を任意方向に走行可能な車輪とその動力源と、車輪の移動を制御するマイコン基盤等とを搭載した無人飛翔体を運転し、地上から上昇させて既設構造物の天井面に押し付けつつ、基準面となる橋桁、壁等の壁部材に対し平行に直線移動させながらの天井面への墨出しを、割付図に従って印字装置で行う。そのため、天井面の補修工事の際に行われる事前の狭所で上向きの困難な墨出し作業を、自動的に効率よく正確に行えて、省人化に寄与する。よって、施工性、経済性、及び作業効率性に非常に優れている。   According to the method for automatically marking ink on the ceiling surface and the unmanned flying object for automatic marking according to the present invention, a distance sensor, a plurality of rotors, and a printing device capable of printing on the ceiling surface are attached to the frame. In addition, the rotating body supported rotatably at the center of the frame body is equipped with a wheel that can travel on the ceiling surface in any direction, its power source, and a microcomputer base that controls the movement of the wheel. An illustration of marking on the ceiling surface while driving the body, raising it from the ground and pressing it against the ceiling surface of the existing structure while moving it linearly parallel to the wall members such as bridge girder and wall as the reference surface Follow the instructions on the printer. For this reason, it is possible to automatically and efficiently perform the ink marking work that is difficult in the narrow space in advance, which is performed at the time of repair work on the ceiling surface, and contribute to labor saving. Therefore, it is very excellent in workability, economical efficiency, and work efficiency.

本発明の天井面への自動墨出し用無人飛翔体を底面方向から示した全体図である。It is the whole figure which showed the unmanned flying object for automatic summoning to the ceiling surface of the present invention from the bottom. 前記自動墨出し用無人飛翔体を示した立面図である。It is the elevation which showed the unmanned flying object for the automatic ink marking. 自動墨出し用無人飛翔体における橋桁から所定距離のセンシング状況を底面方向から模式的に示した説明図である。It is explanatory drawing which showed typically the sensing condition of the predetermined distance from the bridge girder in the unmanned flying object for automatic summing out from the bottom face direction. 図3を側面方向からみた側面図である。It is the side view which looked at FIG. 3 from the side surface direction. 自動墨出し用無人飛翔体が天井面へ上昇し橋桁から所定距離をおいた状態を示した立面図である。It is the elevation which showed the state which the unmanned flying object for automatic summing rises to the ceiling surface, and has put the predetermined distance from the bridge girder. 自動墨出し用無人飛翔体が、橋桁に対して墨出ししないで所定位置まで垂直移動(矢印R参照)する状態を示した説明図である。It is explanatory drawing which showed the state which the unmanned flying object for automatic summing moves vertically to a predetermined position (see arrow R) without marking the bridge girder. 自動墨出し用無人飛翔体が、図6の状態から回転体(車輪)が右回りに90度回転し、橋桁に対して平行方向に移動しつつ墨出しを行う状態を示した説明図である。FIG. 7 is an explanatory diagram showing a state in which the unmanned flying object for automatic ink marking performs ink marking while the rotating body (wheel) rotates 90 degrees clockwise from the state of FIG. 6 and moves in a direction parallel to the bridge beam. . 橋梁の床版への墨出し例を説明するための仰視図である。It is a top view for demonstrating the example of ink marking to the floor slab of a bridge. 割付図の座標の入力工程を示したコンピュータ装置のディスプレイ図である。It is the display figure of the computer apparatus which showed the input process of the coordinate of an allocation drawing. 天井面への格子状の墨出し状態を示した上面図である。It is the top view which showed the grid | lattice-like inking state to a ceiling surface. 格子状の墨出しに沿って貼り付けられた炭素繊維シートを示した全体図である。It is the whole figure which showed the carbon fiber sheet affixed along grid | lattice-like marking.

以下に、図示した本発明に係る天井面への自動墨出し方法と自動墨出し用無人飛翔体の実施形態を説明する。   In the following, an embodiment of the illustrated automatic marking method on a ceiling surface and an unmanned flying object for automatic marking according to the present invention will be described.

先ずは、この天井面への自動墨出し方法に用いられる自動墨出し用無人飛翔体Aの構成、機能について説明する。図1に例示した自動墨出し用無人飛翔体Aは、コンパクトサイズで、既設構造物の天井面30へ押し付けられながら同天井面30に沿って水平移動して墨出しする構成である(図5参照)。全体的な骨格は、枠体10と、同枠体10の中央で回転自在に支持された回転体20とにより成る。枠体10は、長さ390mmの縦材10aが、縦方向に2本平行に配置されると共に、同じく長さ390mmの横材10bが、横方向に2本平行に配置され、各端部同士が接続して四角形状に組み立てられている。   First, the configuration and function of the unmanned flying object A for automatic inking used in the automatic inking method on the ceiling surface will be described. The unmanned flying object A for automatic inking illustrated in FIG. 1 has a compact size and is configured to move horizontally along the ceiling surface 30 while being pressed against the ceiling surface 30 of the existing structure (FIG. 5). reference). The overall skeleton includes a frame body 10 and a rotating body 20 that is rotatably supported at the center of the frame body 10. In the frame 10, two vertical members 10a having a length of 390 mm are arranged in parallel in the vertical direction, and two horizontal members 10b having a length of 390 mm are arranged in parallel in the horizontal direction. Are connected and assembled into a square shape.

そして、当該枠体10の内部スペースに向けて、各縦材10a、横材10bから内方に延びる複数の腕部18・・・が設けられ、中央に配置されたリング状の支持リング体16が前記複数の腕部18・・・に接続されて支持されている。支持リング体16は外径が310mmで、その内部構造は、内向きに開口して凹んだコ字状の溝部16aに形成されている(詳細図は省略)。よって、後述する回転体20が、前記枠体10の支持リング体16に回転自在に支持されている。具体的には、支持リング体16の外径310mmより若干小さな外径でディスク状の回転体20の外周が、支持リング体16の溝部16aに嵌り込んで支持され、回転体20が、枠体10とは別に独自に回転する構成となっている。   A plurality of arm portions 18... Extending inward from the vertical members 10 a and the horizontal members 10 b are provided toward the internal space of the frame body 10, and a ring-shaped support ring body 16 disposed in the center. Are connected to and supported by the plurality of arms 18. The support ring body 16 has an outer diameter of 310 mm, and its internal structure is formed in a U-shaped groove portion 16a that opens inward and is recessed (details are omitted). Therefore, the rotating body 20 described later is rotatably supported by the support ring body 16 of the frame body 10. Specifically, the outer periphery of the disk-shaped rotating body 20 having an outer diameter slightly smaller than the outer diameter 310 mm of the support ring body 16 is fitted into and supported by the groove 16a of the support ring body 16, and the rotating body 20 is Apart from 10, it is configured to rotate independently.

前記枠体10の四隅に、アンカー部14が上向きの垂直方向にそれぞれ取り付けられており、各アンカー部14・・・は、図2に示したようなアンカーリンク機構13により上下移動自在に構成されている。このアンカーリンク機構13は、前記アンカー部14の上端部を天井面30に十分に当接するように上昇させると前記車輪2と天井面30との接触状態を解除させる役割を果たす。また、当該アンカーリンク機構13の近傍には、アンカー部14の上下位置をセンシングするフォトセンサ15が設置されている。アンカー部14は、回転体20の後述する車輪2・・・が90度回転する際に位置ずれしないように、天井面30に枠体10を固定するもので、フォトセンサ15は当該アンカー部14の上下位置をセンシングするためのものである。図1中符号17は、アンカー部14を上下方向に伸縮するDCモータを示している。
なお、前記アンカー部14は、本実施例ではバランスよく4個配設して実施しているが、個数は適宜増減可能である。また、前記4個のアンカー部14は、本実施例では同期制御可能な構成で実施されている。
Anchor portions 14 are respectively attached to the four corners of the frame 10 in an upward vertical direction. Each anchor portion 14 is configured to be movable up and down by an anchor link mechanism 13 as shown in FIG. ing. The anchor link mechanism 13 serves to release the contact state between the wheel 2 and the ceiling surface 30 when the upper end portion of the anchor portion 14 is raised so as to sufficiently contact the ceiling surface 30. A photo sensor 15 that senses the vertical position of the anchor portion 14 is installed in the vicinity of the anchor link mechanism 13. The anchor portion 14 fixes the frame body 10 to the ceiling surface 30 so that the position of the wheels 2... It is for sensing the vertical position of. Reference numeral 17 in FIG. 1 indicates a DC motor that expands and contracts the anchor portion 14 in the vertical direction.
In the present embodiment, four anchor portions 14 are arranged in a balanced manner, but the number of the anchor portions 14 can be appropriately increased or decreased. Further, the four anchor portions 14 are implemented in a configuration capable of synchronous control in the present embodiment.

レーザー距離センサ12は、前記枠体10に取り付けられている。具体的には、長さ600mmのセンサ支持杆11の両端に、距離センサ12、12が各々設置された当該センサ支持杆11が、枠体10の一辺をなす縦材10a、ひいては橋桁31と平行(例えば図1の左方の縦材1aから270mm)となる位置で、横材10bの下部に取り付けられている(図2参照)。このレーザー距離センサ12は、0〜10Vアナログ電圧として出力するセンサで、その搭載された無人飛翔体Aから図6等に例示した橋桁31までの距離を計測する。よって、当該無人飛翔体Aの位置座標S(図9参照)を認識でき、距離センサ12搭載の無人飛翔体Aが、基準面Kとなる橋梁Bの橋桁31から一定距離を保って同橋桁31に対して平行方向に直線移動される構成である(図7参照)。
上記した枠体10には、各縦材10a、10a、横材10b、10bの中央部とアンカー部14の先端部とを接続する補強材10cがそれぞれ取り付けられている(図2参照)。
なお、本実施例では、基準面Kとして橋桁31(図8参照)を採用しているが、橋桁31には限定されず、実施部位に応じて壁、垂下壁等の壁部材を基準面Kとすることも勿論できる。
また、図3の説明図に示したように、距離センサ12、12の近傍における枠体10に、衝突感知センサ19、19をそれぞれ設ける形態で実施するのが好ましい。
The laser distance sensor 12 is attached to the frame 10. Specifically, the sensor support rod 11 having distance sensors 12 and 12 respectively installed at both ends of a sensor support rod 11 having a length of 600 mm is parallel to the vertical member 10 a that forms one side of the frame body 10, and by extension, the bridge girder 31. It is attached to the lower part of the cross member 10b at a position (for example, 270 mm from the left vertical member 1a in FIG. 1) (see FIG. 2). This laser distance sensor 12 is a sensor that outputs an analog voltage of 0 to 10 V, and measures the distance from the unmanned flying vehicle A on which it is mounted to the bridge girder 31 illustrated in FIG. Therefore, the position coordinates S (see FIG. 9) of the unmanned flying object A can be recognized, and the unmanned flying object A equipped with the distance sensor 12 can maintain the constant distance from the bridge girder 31 of the bridge B serving as the reference plane K. It is the structure which is linearly moved in the parallel direction with respect to (refer FIG. 7).
Reinforcing members 10c that connect the central portions of the vertical members 10a, 10a, the transverse members 10b, 10b and the tip end portions of the anchor portions 14 are attached to the frame body 10 (see FIG. 2).
In the present embodiment, the bridge girder 31 (see FIG. 8) is adopted as the reference plane K, but is not limited to the bridge girder 31, and a wall member such as a wall or a hanging wall is used as the reference plane K depending on the implementation site. Of course.
Further, as shown in the explanatory view of FIG. 3, it is preferable that the collision detection sensors 19 and 19 are provided in the frame 10 in the vicinity of the distance sensors 12 and 12, respectively.

前記枠体10の外方にローター1がバランス良く4枚配設されている。具体的に、枠体10の四隅からそれぞれ外方に延設された支持部材7の先端にローター1が各々取り付けられている。各ローター1の下方には、脚部1aが取り付けられている。前記4枚羽根で構成されるローター1は、隣り合うローター1、1(羽根)同士で回転方向が逆回転の構成で実施され、回転により揚力を発生して上昇し、天井面30へ当該無人飛翔体Aを押し付け自在な構成で実施されている。   Four rotors 1 are arranged on the outside of the frame body 10 with good balance. Specifically, the rotors 1 are respectively attached to the tips of the support members 7 that extend outward from the four corners of the frame body 10. A leg portion 1 a is attached below each rotor 1. The rotor 1 composed of the four blades is implemented by a configuration in which the rotation directions of the adjacent rotors 1 and 1 (blades) are opposite to each other. The rotation is generated by the rotation and rises to the ceiling surface 30. The flying object A is implemented with a configuration that allows the flying object A to be pressed freely.

また、前記枠体10の外方には墨出し用の印字装置4が取り付けられている。すなわち、図1に示したように、枠体10をなす一つの縦材10aの中央から外方に延設された支持部材8の先端に印字装置4が取り付けられている。
墨出しする当該印字装置4としては、墨出し(印字)の実行と停止を自動制御可能なインクジェット又はロールマーカーが好適である。一例としてインクジェット4を採用する場合、当該インクジェット4のノズルが上向きに設置され、天井面30に向けて印字自在に構成されている。当該ノズルのヘッド寸法は、一例として、30×30×70mm程度であり、ドットのサイズは、1.5mm程度である。天井面30との離隔(距離)は10mmぐらいが好ましい。印字速度は、本実施例では最大700ドット/秒を採用し、コンクリート面に対して印字可能な性能とされている。
A printing device 4 for inking is attached to the outside of the frame 10. That is, as shown in FIG. 1, the printing device 4 is attached to the tip of a support member 8 that extends outward from the center of one vertical member 10 a forming the frame 10.
As the printing device 4 for inking, an ink jet or roll marker capable of automatically controlling the execution and stop of inking (printing) is suitable. When the inkjet 4 is employed as an example, the nozzle of the inkjet 4 is installed upward and is configured to be able to print toward the ceiling surface 30. The head dimension of the nozzle is, for example, about 30 × 30 × 70 mm, and the dot size is about 1.5 mm. The distance (distance) from the ceiling surface 30 is preferably about 10 mm. In this embodiment, a maximum printing speed of 700 dots / second is adopted, and the printing speed can be printed on the concrete surface.

前記インクジェット4へインクを供給して補充するインク供給装置45が下方の作業床32に設置され(図5参照)、同インク供給装置45に接続されたインク供給チューブ46が無人飛翔体Aの前記インクジェット4に接続され、間断なく墨出し作業が行えるようになっている。なお、このインク供給装置45は印字操作のコントローラを兼ねている。   An ink supply device 45 for supplying and replenishing ink to the inkjet 4 is installed on the lower work floor 32 (see FIG. 5), and an ink supply tube 46 connected to the ink supply device 45 is connected to the unmanned flying object A. It is connected to the ink jet 4 so that the inking operation can be performed without interruption. The ink supply device 45 also serves as a controller for printing operation.

上述した回転体20の構成、機能は次のとおりである。回転体20は透明なアクリル板で成り、同回転体20の中心部にPLC22が貫通状態で設置されている。このPLC22は、入力指令を図5と図9に示したようなコンピュータ装置40のタッチパネル(ディスプレイ44)を介した数値に従わせ、前記距離センサ12等や後述する動力源のモータ3、17を連携して制御するプログラマブル・コントローラである。
また回転体20の中心部には、アナログユニット23とEtherNet/IP24が設置されている。アナログユニット23は、距離センサ12のアナログ電圧をデジタル変換する増設ユニットである。EtherNet/IP24は、コンピュータ装置40のディスプレイ44たるタッチパネルと前記PLC22を、LANケーブルで接続するための増設ユニットである。
The configuration and function of the rotating body 20 described above are as follows. The rotating body 20 is made of a transparent acrylic plate, and a PLC 22 is installed in the center of the rotating body 20 in a penetrating state. This PLC 22 makes input commands follow numerical values via the touch panel (display 44) of the computer device 40 as shown in FIGS. 5 and 9, and controls the distance sensor 12 and the power source motors 3 and 17 described later. It is a programmable controller that controls in cooperation.
An analog unit 23 and an EtherNet / IP 24 are installed at the center of the rotating body 20. The analog unit 23 is an extension unit that digitally converts the analog voltage of the distance sensor 12. The EtherNet / IP 24 is an extension unit for connecting the touch panel as the display 44 of the computer apparatus 40 and the PLC 22 with a LAN cable.

回転体20の上面に、車輪(本実施例では固定輪)2が取り付けられている。この車輪2は、軽量なアルミ製で成り、回転体20の外周付近に左右対称配置で、かつ前記距離センサ12とは反対側の位置に、2個設置されている。よって、この車輪2が天井面30へ接して同天井面30を走行可能な構成とされている。具体的には、後述する回転体20の回転制御に伴って、当該車輪2、2は、橋桁31に対し平行方向又は垂直方向に移動自在となっている。また、この車輪2の動力源3として、左右のタイヤ2、2を別々に回転させることができ、橋桁31との平行を保ちながら走行させるステッピングモータ3が車輪2、2の近傍に備わっている。各ステッピングモータ3、3は、近傍にそれぞれ設置されたモータドライバ5、5によって独立に制御される。
図1中の符号21はフォトセンサを示している。このフォトセンサ21は、天井面30の所定の基準面K(例えば、橋桁31の内壁面31a)に対して回転体20が確実に90度回転する位置をセンシングするためのものである。
Wheels (fixed wheels in this embodiment) 2 are attached to the upper surface of the rotating body 20. The wheels 2 are made of lightweight aluminum, and two wheels 2 are provided in the vicinity of the outer periphery of the rotating body 20 in a symmetrical arrangement and at a position opposite to the distance sensor 12. Therefore, the wheel 2 is configured to be able to travel on the ceiling surface 30 in contact with the ceiling surface 30. Specifically, the wheels 2 and 2 are movable in a parallel direction or a vertical direction with respect to the bridge girder 31 in accordance with the rotation control of the rotating body 20 described later. Further, as the power source 3 of the wheel 2, the left and right tires 2, 2 can be rotated separately, and a stepping motor 3 that runs while keeping parallel to the bridge girder 31 is provided in the vicinity of the wheels 2, 2. . Each of the stepping motors 3 and 3 is independently controlled by motor drivers 5 and 5 installed in the vicinity.
Reference numeral 21 in FIG. 1 denotes a photosensor. The photo sensor 21 is for sensing a position where the rotating body 20 reliably rotates 90 degrees with respect to a predetermined reference surface K (for example, the inner wall surface 31 a of the bridge girder 31) of the ceiling surface 30.

また、回転体20の上部には、上述した車輪2と同車輪2の動力源3(図1参照)、及び、複数のマイコン基盤(図示の便宜上省略)が搭載されている。マイコン基盤の一つは、距離センサ12による基準面K(橋桁31)からの現在位置の座標認識に基づいて、車輪2を所望の墨出し位置Pへ移動させる制御を行うものである。このマイコン基盤は、下記コンピュータ装置40からのリモートコントロールにより制御コマンドを受けて、車輪2を駆動する信号を出力する。前記ローター1の高度と揚力を保持する回転数と、当該無人飛翔体Aを空中で水平移動させるための制御を行う異なるマイコン基盤も搭載される。   In addition, the wheel 2 and the power source 3 of the wheel 2 (see FIG. 1) and a plurality of microcomputer boards (not shown for the sake of illustration) are mounted on the rotating body 20. One of the microcomputer boards performs control to move the wheel 2 to a desired marking position P based on the coordinate recognition of the current position from the reference plane K (bridge girder 31) by the distance sensor 12. This microcomputer board receives a control command by remote control from the computer device 40 described below, and outputs a signal for driving the wheel 2. A different microcomputer board for controlling the rotational speed for maintaining the altitude and lift of the rotor 1 and the control for horizontally moving the unmanned flying vehicle A in the air is also mounted.

前記ローター1と車輪2の動力源3とインクジェット4を作動させる電源装置6が作業床32上に設置され(図5参照)、送電ケーブル60を通じて電源が供給されている。前記したような外部固定電源によるほか、図示を省略したバッテリーを無人飛翔体Aに搭載させた各装置に付属させておき、電源を供給する構成としても実施可能である。   A power supply device 6 for operating the power source 3 of the rotor 1 and the wheels 2 and the ink jet 4 is installed on the work floor 32 (see FIG. 5), and power is supplied through a power transmission cable 60. In addition to the external fixed power source as described above, a configuration in which a battery (not shown) is attached to each device mounted on the unmanned flying object A and power can be supplied can be implemented.

前記コンピュータ装置40には、墨出し位置Pを前記マイコン基盤に指示するためのCAD等の座標確認ソフトウェア41がインストールされている。また、このコンピュータ装置40には、割付図43の座標Sが入力される(図9参照)。
なお、前記コンピュータ装置40と前記2種のマイコン基盤とは、ケーブル、或いは通信装置によりコンピュータ装置40からデータ伝送可能に接続されており、遠隔操作される。ここでいうコンピュータ装置40は、デスクトップ(図9参照)やタブレットPC(図5参照)、ノートブック等を含む広い概念を指す。
Coordinate confirmation software 41 such as CAD for instructing the inking position P to the microcomputer base is installed in the computer device 40. In addition, the coordinates S in the allocation diagram 43 are input to the computer device 40 (see FIG. 9).
The computer device 40 and the two types of microcomputer boards are connected by a cable or a communication device so as to be able to transmit data from the computer device 40, and are remotely operated. The computer device 40 here refers to a wide concept including a desktop (see FIG. 9), a tablet PC (see FIG. 5), a notebook, and the like.

次に、上記構成の無人飛翔体Aを用いた橋梁Bの床版背面(天井面30)への自動墨出し方法について、以下に説明する。
ちなみに、本実施例では、一例として、図8に係る縦横方向に配設された橋桁31のうち、橋の延長方向に配設された橋桁31の内壁面31aを基準面Kとして平行方向に墨出しし、次に、当該橋桁31と直交方向に配設された橋桁31の内壁面31bを基準面Kとして平行方向に墨出しし、もって図10に例示したように、略格子状に墨出し線Pを引いている。
なお、無人飛翔体Aはもとより、車輪2、アンカーリンク機構13、印字装置4等の制御は、図示を便宜上省略したリモートコントローラーで遠隔操作される。
Next, an automatic marking method on the back of the floor slab of the bridge B (ceiling surface 30) using the unmanned flying object A having the above configuration will be described below.
Incidentally, in the present embodiment, as an example, among the bridge girders 31 arranged in the vertical and horizontal directions according to FIG. 8, the inner wall surface 31a of the bridge girder 31 arranged in the extending direction of the bridge is used as a reference plane K in the parallel direction. Next, ink is drawn out in a parallel direction using the inner wall surface 31b of the bridge girder 31 arranged in a direction orthogonal to the bridge girder 31 as a reference plane K, and as shown in FIG. Line P is drawn.
Note that the control of the wheel 2, the anchor link mechanism 13, the printing device 4 and the like as well as the unmanned flying object A is remotely operated by a remote controller not shown for convenience.

先ず、図8に例示したような橋梁Bの天井面30へ墨出しを行うに際し、割付図43を作成する(図9参照)。なお、作業床32から天井面30までの高さは、例えば5〜10m程度である。   First, when performing marking on the ceiling surface 30 of the bridge B illustrated in FIG. 8, an allocation diagram 43 is created (see FIG. 9). The height from the work floor 32 to the ceiling surface 30 is, for example, about 5 to 10 m.

次に、作業床32上の前記無人飛翔体Aを、リモートコントローラーによる遠隔操作により天井面30に向けて上昇させ、同天井面30へ押し付ける(図5参照)。そして、図6、図7等に示したように、天井面30に押し付けられた無人飛翔体Aの距離センサ12、12により、前記橋桁31の内壁面31aから当該無人飛翔体A(インクジェット4)までの距離を計測させて、無人飛翔体Aの位置座標Sを認識させる。   Next, the unmanned flying object A on the work floor 32 is raised toward the ceiling surface 30 by remote operation with a remote controller and pressed against the ceiling surface 30 (see FIG. 5). Then, as shown in FIGS. 6, 7, etc., the unmanned flying object A (inkjet 4) from the inner wall surface 31 a of the bridge girder 31 by the distance sensors 12, 12 of the unmanned flying object A pressed against the ceiling surface 30. Until the position coordinate S of the unmanned flying object A is recognized.

前記位置座標Sを認識させた後、墨出し位置Pを前記無人飛翔体Aのマイコン基盤に指示するため、コンピュータ装置40のタッチパネル式ディスプレイ44に、割付図43の座標Sを入力する。そうすると、前記距離センサ12が計測した天井面30の基準面Kとなる橋桁31から所定距離に位置する墨出し位置Pへ、無人飛翔体Aが天井面30に押し付けられながら移動する(図6の矢印Rで示した方向参照)。   After recognizing the position coordinate S, the coordinate S shown in FIG. 43 is input to the touch panel display 44 of the computer device 40 in order to instruct the inking position P to the microcomputer base of the unmanned flying object A. Then, the unmanned flying object A moves from the bridge girder 31 as the reference plane K of the ceiling surface 30 measured by the distance sensor 12 to the inking position P located at a predetermined distance while being pressed against the ceiling surface 30 (FIG. 6). (See the direction indicated by arrow R).

図6に示したように、橋桁31の内壁面31aから所望の墨出し位置Pへ無人飛翔体Aが垂直移動したら、枠体10のアンカーリンク機構13により、アンカー部14・・・を上方へ伸長させて枠体10を天井面30にしっかりと固定させ、車輪2と天井面30との接触状態を解除させた後、図7に示したように、無人飛翔体Aの回転体20のみを右回りに90度回転させる。回転体20の車輪2、2が90度回転されたことを確認した後、アンカーリンク機構13によりアンカー部14を下方へ戻す。
そして、ローター1による当該無人飛翔体Aの天井面30への押し付け状態を維持しつつ、図3と図7に矢印Tで示した方向へと無人飛翔体Aを移動させる。そのとき無人飛翔体Aは、天井面30の橋桁31から一定距離を保ちつつ橋桁31に対し平行に直線移動しながら、無人飛翔体Aに搭載されたインクジェット4の上向きのノズルから天井面30に向けて、微量のインクをドットで多数噴射して天井面30の所望位置Pに墨出しする。
As shown in FIG. 6, when the unmanned flying object A moves vertically from the inner wall surface 31 a of the bridge girder 31 to the desired marking position P, the anchor portion 14... After extending the frame 10 firmly to the ceiling surface 30 and releasing the contact state between the wheels 2 and the ceiling surface 30, only the rotating body 20 of the unmanned flying object A is attached as shown in FIG. Rotate 90 degrees clockwise. After confirming that the wheels 2 and 2 of the rotating body 20 have been rotated 90 degrees, the anchor link mechanism 13 returns the anchor portion 14 downward.
Then, the unmanned flying object A is moved in the direction indicated by the arrow T in FIGS. 3 and 7 while maintaining the pressing state of the unmanned flying object A against the ceiling surface 30 by the rotor 1. At that time, the unmanned flying object A moves from the upward nozzle of the inkjet 4 mounted on the unmanned flying object A to the ceiling surface 30 while linearly moving parallel to the bridge beam 31 while maintaining a certain distance from the bridge girder 31 of the ceiling surface 30. Then, a large amount of a small amount of ink is ejected with dots, and the ink is put out at a desired position P on the ceiling surface 30.

このような、橋桁31(内側面31a)に対して平行に直線移動させながらの天井面30への墨出し作業と、橋桁31に対して垂直に墨出ししないで所定位置まで直線移動させながらの天井面30への墨出しの位置決め作業を、割付図43に従って、前記回転体20の回転を制御しつつ必要に応じ繰り返し行って、図8に係る縦横方向に配設された橋桁31のうち、橋の延長方向に配設された橋桁31の内壁面31aを基準面Kとした平行方向への墨出し作業を終了する。   Such marking work on the ceiling surface 30 while linearly moving parallel to the bridge girder 31 (inner side surface 31a), and linear movement to a predetermined position without marking the bridge girder 31 vertically. Of the bridge girders 31 arranged in the vertical and horizontal directions according to FIG. 8, the positioning operation for marking out the ceiling surface 30 is repeatedly performed as necessary while controlling the rotation of the rotating body 20 according to the allocation FIG. 43. The marking operation in the parallel direction with the inner wall surface 31a of the bridge girder 31 arranged in the extending direction of the bridge as the reference plane K is completed.

続いて、リモートコントローラーによる遠隔操作により無人飛翔体Aの全体の向きを90度変え、当該無人飛翔体Aを、当該橋桁31と直交方向に配設された橋桁31の内壁面31bに対峙するように天井面へ押し付ける(図6、図7参照)。そして、前記段落[0034]〜[0036]に記載した工程と同様の工程を割付図43に従って行う。すなわち、橋桁31(内側面31b)に対して平行に直線移動させながらの天井面30への墨出し作業と、橋桁31に対して垂直に墨出ししないで所定位置まで直線移動させながらの天井面30への墨出しの位置決め作業を、割付図43に従って、前記回転体20の回転を制御しつつ必要に応じ繰り返し行って、当該橋桁31の内壁面31bを基準面Kとした平行方向への墨出し作業を終了する。   Subsequently, the entire direction of the unmanned flying object A is changed by 90 degrees by remote control using a remote controller so that the unmanned flying object A faces the inner wall surface 31 b of the bridge girder 31 arranged in a direction orthogonal to the bridge girder 31. To the ceiling surface (see FIGS. 6 and 7). And the process similar to the process described in the said paragraph [0034]-[0036] is performed according to the allocation FIG. That is, the marking operation on the ceiling surface 30 while linearly moving parallel to the bridge girder 31 (inner side surface 31b), and the ceiling surface moving linearly to a predetermined position without marking the bridge girder 31 vertically. Ink marking positioning to 30 is repeated as necessary while controlling the rotation of the rotating body 20 in accordance with the allocation diagram 43, and the ink marking in the parallel direction with the inner wall surface 31b of the bridge girder 31 as the reference plane K is performed. The dispensing operation is finished.

前記図10は、前記工程を経て、縦と横に長い直線が交差する格子状の墨出し位置Pに墨出しを行った例を示している。同図10中、黒く塗った四角部分を点検用の窓部35として確保しておく。それ以外の天井面30に、墨出し位置Pに沿って規則的に補強用の炭素繊維シート33が貼り付けられる(図11参照)。   FIG. 10 shows an example in which inking is performed at a grid-like inking position P where long straight lines intersect with each other through the above process. In FIG. 10, a square portion painted black is secured as an inspection window portion 35. A reinforcing carbon fiber sheet 33 is regularly affixed to the other ceiling surface 30 along the marking position P (see FIG. 11).

したがって、上記した天井面の自動墨出し方法によれば、上記構成の無人飛翔体Aを上昇させて天井面30へ押し付けつつ、印字装置4で天井面30の墨出しを所望の位置に正確に軽便に行うことができる。よって、天井面30の補修工事の際に行われる事前の狭所で且つ上向きの困難な墨出し作業を、自動的に機械化して効率よく正確に行うことができる。   Therefore, according to the above-described automatic marking method of the ceiling surface, the unmanned flying body A having the above configuration is raised and pressed against the ceiling surface 30, and the marking on the ceiling surface 30 is accurately performed at a desired position by the printing device 4. It can be done lightly. Therefore, it is possible to automatically mechanize the ink marking work that is difficult in the narrow space in advance and difficult to be performed at the time of repair work of the ceiling surface 30 to be performed efficiently and accurately.

以上に本発明の実施例を図面に基づいて説明したが、本発明は、図示例の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。
例えば、図1に破線で例示したように、前記センサ支持杆11(の上下の前記センサ12、12)と直交する配置にさらに前記距離センサ12、12を左右に設けて実施すると、前記段落[0038]の冒頭に記載したような、無人飛翔体Aの全体の向きを変える作業を無用にできるほか、直交方向に設けた橋桁31、31等の壁部材の距離を感知しながら天井面30に対し縦横方向にフレキシブルに墨出し作業を行うことができる等、自在性に富む墨出し作業を行うことができる。
The embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to the illustrated examples, and variations of design changes and application that a person skilled in the art normally performs without departing from the technical idea thereof. Note that it includes the range.
For example, as illustrated with a broken line in FIG. 1, when the distance sensors 12 and 12 are further provided on the left and right in an arrangement orthogonal to the sensor support rod 11 (the upper and lower sensors 12 and 12), the paragraph [ [0038] In addition to making it unnecessary to change the overall direction of the unmanned vehicle A as described at the beginning of [0038], the ceiling surface 30 is detected while sensing the distance between wall members such as the bridge girders 31 and 31 provided in the orthogonal direction. On the other hand, it is possible to perform inking work with great flexibility, such as flexible inking work in the vertical and horizontal directions.

1 ローター
2 車輪
3 動力源(ステッピングモータ)
4 印字装置(インクジェット)
5 モータドライバ
6 電源装置
7 支持部材
8 支持部材
10 枠体
10a 縦材(一辺)
10b 横材(一辺)
11 センサ支持杆
12 距離センサ
13 アンカーリンク機構
14 アンカー部
15 フォトセンサ
16 支持リング体
16a 溝部
17 DCモータ
18 腕部
19 衝突感知センサ
20 回転体
21 フォトセンサ
22 PLC
23 アナログ入力ユニット
24 EtherNet/IP
27 DCモータ
30 天井面(床版背面)
31 橋桁
31a 内壁面
31b 内側面
32 作業床
33 炭素繊維シート
35 窓部
40 コンピュータ装置
41 座標確認ソフトウェア
43 割付図
44 ディスプレイ
45 インク供給装置
A 無人飛翔体
B 橋梁
P 墨出し位置(墨出し線)
S 座標
K 基準面
1 Rotor 2 Wheel 3 Power source (Stepping motor)
4 Printing device (inkjet)
DESCRIPTION OF SYMBOLS 5 Motor driver 6 Power supply device 7 Support member 8 Support member 10 Frame 10a Vertical member (one side)
10b Slab (one side)
DESCRIPTION OF SYMBOLS 11 Sensor support rod 12 Distance sensor 13 Anchor link mechanism 14 Anchor part 15 Photo sensor 16 Support ring body 16a Groove part 17 DC motor 18 Arm part 19 Collision detection sensor 20 Rotating body 21 Photo sensor 22 PLC
23 Analog input unit 24 EtherNet / IP
27 DC motor 30 Ceiling surface (back of floor slab)
31 Bridge Girder 31a Inner Wall 31b Inner Side 32 Work Floor 33 Carbon Fiber Sheet 35 Window 40 Computer Device 41 Coordinate Confirmation Software 43 Allocation Diagram 44 Display 45 Ink Supply Device A Unmanned Flying Object B Bridge P Inking Position (Inking Line)
S coordinate K Reference plane

Claims (7)

無人飛翔体により既設構造物の天井面へ墨出しする天井面への墨出し方法であって、
枠体と、その枠体の中央で回転自在に支持された回転体とにより骨格をなし、前記枠体には、距離センサ及び、回転により揚力を発生して上昇し天井面に当該無人飛翔体を押し付け自在な複数のローターと、天井面に向けて印字自在な印字装置が取り付けられていると共に、前記回転体には、天井面へ接して同天井面を任意方向に走行可能な複数の車輪及びその車輪の動力源と、所望の墨出し位置へ前記車輪を移動させる制御を行うマイコン基盤が搭載されて成る無人飛翔体を有し、
前記天井面の基準面となる橋桁、壁等の壁部材から無人飛翔体までの距離を前記距離センサにより計測し、墨出し位置を前記マイコン基盤に指示するための座標確認ソフトウェアがインストールされて割付図の座標を入力したコンピュータ装置により、前記壁部材から所定距離に位置する墨出し位置へ、無人飛翔体を上昇させて天井面へ押し付ける工程と 前記ローターによる当該無人飛翔体の天井面への押し付け状態を維持しつつ、当該無人飛翔体を、前記天井面の前記壁部材から一定距離を保って当該壁部材に対して平行移動させながら前記印字装置で天井面の所望位置へ墨出しする作業と、当該壁部材に対して墨出ししないで所定位置まで垂直移動させる作業を、割付図に従って前記回転体の回転を制御しつつ繰り返し行うことにより、天井面に複数本の墨出し線を所定の間隔をあけて平行に引く工程と、から成ることを特徴とする、天井面への自動墨出し方法。
A method of inking the ceiling surface of the existing structure with an unmanned flying object.
A frame and a rotating body that is rotatably supported at the center of the frame form a skeleton, and the frame has a distance sensor and a lift generated by the rotation to rise and the unmanned flying object on the ceiling surface. A plurality of rotors that can be pressed and a printing device that can be printed toward the ceiling surface are attached, and a plurality of wheels that can contact the ceiling surface and travel on the ceiling surface in an arbitrary direction are attached to the rotating body And a power source of the wheel, and an unmanned flying body on which a microcomputer base for performing control for moving the wheel to a desired marking position is mounted,
Coordinate confirmation software is installed and assigned to measure the distance from a wall member such as a bridge girder and wall, which becomes the reference surface of the ceiling surface, to the unmanned flying object by the distance sensor and to indicate the marking position to the microcomputer board. The step of raising the unmanned flying object to the inking position located at a predetermined distance from the wall member by the computer device that has input the coordinates of the figure, and pressing the unmanned flying object on the ceiling surface by the rotor Maintaining the state and inking the unmanned flying object to a desired position on the ceiling surface with the printing device while moving the unmanned flying object parallel to the wall member while maintaining a certain distance from the wall member on the ceiling surface; By repeatedly performing the operation of vertically moving to a predetermined position without marking the wall member while controlling the rotation of the rotating body according to the allocation diagram, A method for automatically marking a ceiling surface, comprising: drawing a plurality of marking lines on the ceiling surface in parallel with a predetermined interval.
前記無人飛翔体を、前記天井面の前記壁部材から一定距離を保って当該壁部材に対して平行移動させながら前記印字装置で天井面の所望位置へ墨出しする作業と、当該壁部材に対して墨出ししないで所定位置まで垂直移動させる作業を、当該壁部材と直交する方向に設けられた壁部材についても行うことにより、天井面に複数本の墨出し線を略格子状に引く工程と、から成ることを特徴とする、請求項1に記載した天井面への自動墨出し方法。   An operation of marking the unmanned flying object to a desired position on the ceiling surface with the printing device while moving the unmanned flying object parallel to the wall member while maintaining a certain distance from the wall member on the ceiling surface; The step of vertically moving to a predetermined position without marking the mark is also performed on the wall member provided in a direction orthogonal to the wall member, thereby drawing a plurality of marking lines on the ceiling surface in a substantially lattice shape, The method for automatically marking a ceiling surface according to claim 1, comprising: 前記無人飛翔体は、前記天井面に当接可能な上下移動自在なアンカー部を有しており、前記無人飛翔体の回転体の回転制御は、前記アンカー部を前記天井面に当接するように上昇させて前記車輪と天井面との接触状態を解除してから行うことを特徴とする、請求項1又は2に記載した天井面への自動墨出し方法。   The unmanned flying body has an anchor part that can move up and down and can be brought into contact with the ceiling surface. The rotation control of the rotating body of the unmanned flying body is performed so that the anchor part comes into contact with the ceiling surface. The method for automatically marking out the ceiling surface according to claim 1 or 2, wherein the method is performed after lifting and releasing the contact state between the wheel and the ceiling surface. 天井面に押し付けられながら同天井面へ墨出しする無人飛翔体であって、
当該無人飛翔体は、枠体と、同枠体の中央で回転自在に支持された回転体とにより骨格をなし、前記枠体には、当該枠体の一辺と平行に取り付けられた両端部に距離センサを備えたセンサ支持杆と、回転により揚力を発生して天井面に無人飛翔体を押し付け自在な複数のローターと、天井面に向けて印字自在な印字装置とが取り付けられ、前記回転体には、天井面へ接して同天井面を任意方向に走行可能な複数の車輪及びその車輪の動力源と、所望の墨出し位置へ前記車輪を移動させる制御を行うマイコン基盤とが搭載されており、
墨出し位置を前記マイコン基盤に指示するための座標確認ソフトウェアがインストールされたコンピュータ装置によって、前記距離センサが計測した天井面の前記壁部材から所定距離に位置する墨出し位置に当該無人飛翔体がローターによって天井面へ押し付けられた状態で、前記回転体で回転制御可能な車輪の移動により、前記壁部材に対して平行方向へ墨出し自在に構成されていることを特徴とする、天井面への自動墨出し用無人飛翔体。
It is an unmanned flying object that puts ink on the ceiling surface while being pressed against the ceiling surface,
The unmanned flying body forms a skeleton by a frame body and a rotating body that is rotatably supported at the center of the frame body, and the frame body has both ends attached in parallel to one side of the frame body. A sensor support rod provided with a distance sensor, a plurality of rotors capable of generating lift by rotation and pressing an unmanned flying object against a ceiling surface, and a printing device capable of printing toward the ceiling surface are attached, and the rotating body Is equipped with a plurality of wheels that can contact the ceiling surface and travel on the ceiling surface in an arbitrary direction, a power source of the wheels, and a microcomputer base that performs control to move the wheels to a desired marking position. And
The unmanned flying object is placed at the inking position located at a predetermined distance from the wall member of the ceiling surface measured by the distance sensor by a computer device in which coordinate checking software for instructing the inking position to the microcomputer base is installed. To the ceiling surface, which is configured to be able to incline in a direction parallel to the wall member by moving a wheel that can be rotationally controlled by the rotating body while being pressed against the ceiling surface by a rotor. An unmanned flying vehicle for automatic ink printing.
前記枠体に、アンカーリンク機構により上下移動自在なアンカー部と、当該アンカー部の上下位置をセンシングするフォトセンサが設置されていることを特徴とする、請求項4に記載した天井面への自動墨出し用無人飛翔体。   The automatic mounting to the ceiling surface according to claim 4, wherein an anchor portion that is movable up and down by an anchor link mechanism and a photosensor that senses the vertical position of the anchor portion are installed on the frame body. Unmanned flying object for ink drawing. 前記印字装置は、印字の実行と停止を自動制御可能なインクジェット又はロールマーカーであることを特徴とする、請求項4又は5に記載した天井面への自動墨出し用無人飛翔体。   6. The unmanned flying object for automatically marking on a ceiling according to claim 4 or 5, wherein the printing device is an inkjet or roll marker capable of automatically controlling execution and stop of printing. 前記回転体に、天井面の前記壁部材に対し当該回転体が90度回転する位置をセンシングするフォトセンサが設置されていることを特徴とする、請求項4〜6のいずれか1項に記載した天井面への自動墨出し用無人飛翔体。   The photo sensor which senses the position which the said rotary body rotates 90 degree | times with respect to the said wall member of a ceiling surface is installed in the said rotary body, The any one of Claims 4-6 characterized by the above-mentioned. Unmanned flying object for automatic ink marking on the ceiling.
JP2017012815A 2017-01-27 2017-01-27 Automatic marking method on the ceiling surface and unmanned aerial vehicle for automatic marking Active JP6802721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012815A JP6802721B2 (en) 2017-01-27 2017-01-27 Automatic marking method on the ceiling surface and unmanned aerial vehicle for automatic marking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012815A JP6802721B2 (en) 2017-01-27 2017-01-27 Automatic marking method on the ceiling surface and unmanned aerial vehicle for automatic marking

Publications (2)

Publication Number Publication Date
JP2018119902A true JP2018119902A (en) 2018-08-02
JP6802721B2 JP6802721B2 (en) 2020-12-16

Family

ID=63045115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012815A Active JP6802721B2 (en) 2017-01-27 2017-01-27 Automatic marking method on the ceiling surface and unmanned aerial vehicle for automatic marking

Country Status (1)

Country Link
JP (1) JP6802721B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021117656A1 (en) * 2019-12-09 2021-06-17

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134064U (en) * 1991-05-30 1992-12-14 日本管洗工業株式会社 Surface inspection and marking mechanism
JPH0611347A (en) * 1992-06-25 1994-01-21 Ohbayashi Corp Inking equipment
US20140034775A1 (en) * 2012-08-02 2014-02-06 Neurosciences Research Foundation Vehicle capable of stabilizing a payload when in motion
WO2016075428A1 (en) * 2014-11-13 2016-05-19 Gary Sewell Unmanned vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134064U (en) * 1991-05-30 1992-12-14 日本管洗工業株式会社 Surface inspection and marking mechanism
JPH0611347A (en) * 1992-06-25 1994-01-21 Ohbayashi Corp Inking equipment
US20140034775A1 (en) * 2012-08-02 2014-02-06 Neurosciences Research Foundation Vehicle capable of stabilizing a payload when in motion
WO2016075428A1 (en) * 2014-11-13 2016-05-19 Gary Sewell Unmanned vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021117656A1 (en) * 2019-12-09 2021-06-17
WO2021117656A1 (en) * 2019-12-09 2021-06-17 三菱電機株式会社 Marking support system, marking support device, information processing device, marking support method, and program
JP7179203B2 (en) 2019-12-09 2022-11-28 三菱電機株式会社 Marking support system, information processing device, marking support method and program

Also Published As

Publication number Publication date
JP6802721B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP7149903B2 (en) Marking robot, marking robot system, and measuring robot
JP4716175B2 (en) Construction support method and construction support system
JP2001289638A (en) Mobile working equipment
JP7315660B2 (en) Full-scale topography marking system
EP2913731B1 (en) Systems and methods for movement of objects on uneven floor
JP6179502B2 (en) Three-dimensional shape measuring method and apparatus using multicopter
CN103786235B (en) A kind of tower 3D printer and Method of printing thereof
KR101071109B1 (en) Wall climbing printing method and system thereof
JP6288675B2 (en) Kinematic characteristic measuring device and kinematic characteristic measuring method
CN109467010B (en) Method for moving a load by means of a crane
EP2952435A1 (en) Method and apparatus for aligning segments
CN103019101B (en) A kind of offshore wind turbine hoist controlling method and system
JP2006084460A (en) Indicating device, indicating method, installation information calculating device, and installation information calculation method
JP6795741B2 (en) Automatic marking method on the ceiling surface and unmanned aerial vehicle for automatic marking
CN107102653B (en) Device and method for controlling ground angle of mounting equipment of unmanned aerial vehicle
CN111238379A (en) Construction measuring equipment
JP6802721B2 (en) Automatic marking method on the ceiling surface and unmanned aerial vehicle for automatic marking
JP7105101B2 (en) inking method or inking system
JP6760601B2 (en) Measuring device for ceiling air control port
CN203792467U (en) Tower type 3D printer
CN113443160B (en) Unmanned aerial vehicle landing device and control method
JP2018087446A (en) Concrete floor surface finishing device and concrete floor surface finishing method
CN206717882U (en) A kind of furred ceiling decoration construction robot
CN105862081B (en) A kind of automatic crust breaking of pole changing of aluminum electrolytic cell process anode cracks system and method
CN111307040A (en) Construction measuring equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6802721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250