CN103019101B - A kind of offshore wind turbine hoist controlling method and system - Google Patents
A kind of offshore wind turbine hoist controlling method and system Download PDFInfo
- Publication number
- CN103019101B CN103019101B CN201210489034.2A CN201210489034A CN103019101B CN 103019101 B CN103019101 B CN 103019101B CN 201210489034 A CN201210489034 A CN 201210489034A CN 103019101 B CN103019101 B CN 103019101B
- Authority
- CN
- China
- Prior art keywords
- fan
- hoisting
- wind turbine
- fan part
- components
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000009434 installation Methods 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims description 18
- 230000007613 environmental effect Effects 0.000 claims description 4
- 238000004088 simulation Methods 0.000 claims 4
- 239000000725 suspension Substances 0.000 claims 2
- 238000005457 optimization Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000008570 general process Effects 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/727—Offshore wind turbines
Landscapes
- Wind Motors (AREA)
Abstract
本发明公开了一种海上风机吊装控制方法,包括以下步骤:(1)建立需要安装的风机部件的三维模型以及环境模型,并依据风机部件的三维模型以及环境模型,计算风机部件的模拟吊装轨迹;(2)在需要安装的风机部件上标记定位点;(3)吊装需要安装的风机部件,根据定位点实时获取风机部件的位置信息,将该位置信息与模拟吊装轨迹进行对比,以修正风机部件的实际吊装轨迹,直至完成风机部件的安装。本发明还公开了一种海上风机吊装控制系统。本发明一种海上风机吊装控制方法和系统能够实现海上风机吊装路径的最优化,使操作人员准确知道风机部件的吊点位置和空间形态,能够保证风机部件的完整性,提高风机吊装的准确性和风机安装的效率。
The invention discloses a method for controlling the hoisting of an offshore wind turbine, comprising the following steps: (1) establishing a three-dimensional model and an environment model of the wind turbine components to be installed, and calculating the simulated hoisting trajectory of the wind turbine components according to the three-dimensional model of the wind turbine components and the environment model ;(2) mark the positioning points on the fan parts to be installed; (3) hoist the fan parts to be installed, obtain the position information of the fan parts in real time according to the positioning points, and compare the position information with the simulated hoisting trajectory to correct the fan parts. The actual lifting trajectory of the components until the installation of the fan components is completed. The invention also discloses an offshore fan hoisting control system. The offshore wind turbine hoisting control method and system of the present invention can realize the optimization of the offshore wind turbine hoisting path, enable operators to accurately know the hoisting point positions and spatial configurations of the wind turbine components, ensure the integrity of the wind turbine components, and improve the accuracy of the wind turbine hoisting and fan installation efficiency.
Description
技术领域technical field
本发明涉及海上风机安装领域,具体涉及一种海上风机吊装控制方法和系统。The invention relates to the field of installation of offshore wind turbines, in particular to an offshore wind turbine hoisting control method and system.
背景技术Background technique
海上风机吊装是一项复杂的系统工程,采用自升式风机安装船进行安装时,一般过程如下:自升式海上安装船装载一台或多台海上风机部件(包括塔筒,已安装好两个叶片的机舱以及第三叶片)至安装地点,海上安装平台上升至海面以上一定高度,起重机就位后,首先吊起塔筒至风机基础上方,直接安装在风机基础上,然后将机舱(已安装好两个叶片)吊起至塔筒上方,安装机舱,最后吊起第三叶片至机舱上方,完成风机的安装,海上安装平台降下高度,移动至下一个风机安装位置,进行风机安装。Offshore wind turbine hoisting is a complex system engineering. When using a jack-up wind turbine installation vessel for installation, the general process is as follows: The jack-up offshore installation vessel is loaded with one or more offshore wind turbine components (including towers, two installed The nacelle of the first blade and the third blade) to the installation site, the offshore installation platform rises to a certain height above the sea surface, and after the crane is in place, the tower is first hoisted to the top of the fan foundation and installed directly on the fan foundation, and then the nacelle (already Install two blades) to the top of the tower, install the nacelle, and finally lift the third blade to the top of the nacelle to complete the installation of the fan. The offshore installation platform lowers its height and moves to the next fan installation position to install the fan.
申请号为201010122462.2的发明公开了一种海上风机叶片安装方法,包括步骤:A、在地面上将轮毂和其中两个叶片预装在机舱上,并在轮毂上第三个叶片的安装孔内安装一个工装套筒;B、运至海上安装现场;C、在工装套筒上预设一根吊绳和一根拉绳;D、将机舱吊装到风机塔筒的顶端;E、在用拉绳向下拉住工装套筒的同时,转动轮毂使工装套筒的轴线沿水平方向;F、将轮毂锁紧;G、用吊钩钩住工装套筒上的吊绳,拆除工装套筒;H、将第三个叶片水平地插入轮毂上的安装孔内并固定。The invention with the application number of 201010122462.2 discloses a method for installing the blades of offshore wind turbines, including steps: A. Pre-install the hub and two of the blades on the nacelle on the ground, and install them in the installation hole of the third blade on the hub A tooling sleeve; B. Transported to the offshore installation site; C. Preset a lifting rope and a stay rope on the tooling sleeve; D. Hoist the engine room to the top of the wind turbine tower; E. Use the stay rope While pulling down the frock sleeve, turn the hub so that the axis of the frock sleeve is in the horizontal direction; F, lock the hub; G, hook the sling on the frock sleeve with a hook, and remove the frock sleeve; H , Insert the third blade horizontally into the mounting hole on the hub and fix it.
在起重机吊运风机部件的过程中,操作人员在起重机底部的驾驶室内操作,风机安装现场的指挥人员通过对讲机和旗语与操作人员进行交流,指挥操作人员完成风机吊装工作,在这种操作模式下,容易出现以下问题:During the process of lifting the fan components by the crane, the operator operates in the cab at the bottom of the crane, and the commander at the fan installation site communicates with the operator through the walkie-talkie and semaphore, and directs the operator to complete the fan hoisting work. In this mode of operation , prone to the following problems:
(1)自升式风机安装船上的空间有限,需要吊装的风机部件放置在风机安装船的夹板上且尺寸较大,吊装过程对起重机的操作精度要求很高,容易出现不必要的碰撞而对风机部件造成损伤;(1) The space on the jack-up fan installation ship is limited, and the fan components that need to be hoisted are placed on the plywood of the fan installation ship and have a large size. The hoisting process requires high operating precision of the crane, which is prone to unnecessary collisions Damage to fan components;
(2)由于风机部件比较脆弱,指挥人员和操作员通过对讲机和旗语进行交流,会出现延时,在风机部件将要发生碰撞时,不能够及时进行处理,容易造成安全事故。(2) Since the fan components are relatively fragile, there will be a delay when the commanders and operators communicate through walkie-talkies and semaphores. When the fan components are about to collide, they cannot be dealt with in time, which may easily cause safety accidents.
因此,需要提供一种海上风机吊装控制方法和系统,使操作人员准确知道吊装的风机部件的吊点位置和空间形态,保证风机部件的完整性,提高风机吊装的准确性和风机安装的效率。Therefore, it is necessary to provide a method and system for controlling the hoisting of offshore wind turbines, so that operators can accurately know the hoisting point positions and spatial configurations of the hoisted wind turbine components, ensure the integrity of the wind turbine components, and improve the accuracy of wind turbine hoisting and the efficiency of wind turbine installation.
发明内容Contents of the invention
本发明提供了一种海上风机吊装控制方法和系统能够实现海上风机吊装路径的最优化,使操作人员准确知道风机部件的吊点位置和空间形态,能够保证风机部件的完整性,提高风机吊装的准确性和风机安装的效率。The invention provides a method and system for controlling the hoisting of an offshore fan, which can optimize the hoisting path of an offshore fan, enable the operator to accurately know the location of the hoisting point and the spatial configuration of the fan components, ensure the integrity of the fan components, and improve the efficiency of the fan hoisting. Accuracy and efficiency of fan installation.
一种海上风机吊装控制方法,包括以下步骤:A method for controlling the hoisting of an offshore wind turbine, comprising the following steps:
(1)建立需要安装的风机部件的三维模型以及环境模型,并依据风机部件的三维模型以及环境模型,计算风机部件的模拟吊装轨迹;(1) Establish the 3D model and environment model of the fan components to be installed, and calculate the simulated hoisting trajectory of the fan components based on the 3D model of the fan components and the environment model;
(2)在需要安装的风机部件上标记定位点;(2) Mark the positioning points on the fan components to be installed;
(3)吊装需要安装的风机部件,根据定位点实时获取风机部件的位置信息,将该位置信息与模拟吊装轨迹进行对比,以修正风机部件的实际吊装轨迹,直至完成风机部件的安装。(3) To hoist the fan components that need to be installed, obtain the position information of the fan components in real time according to the positioning points, and compare the position information with the simulated hoisting trajectory to correct the actual hoisting trajectory of the fan components until the installation of the fan components is completed.
作为优选,步骤(1)中,所述环境模型至少包括风机安装船、起重机和风机基础的相应信息。步骤(1)中,所述环境模型还包括对风机部件吊装过程能够形成干涉的构筑物的相应信息。Preferably, in step (1), the environment model includes at least the corresponding information of the wind turbine installation ship, the crane and the wind turbine foundation. In step (1), the environment model further includes corresponding information of structures that may interfere with the fan component hoisting process.
所述环境模型包括在风机部件吊装过程中,可能对风机部件构成干涉的所有物体的三维模型以及这些物体相互之间的位置关系,以便于模拟吊装轨迹时,能够避开这些物体的干扰。The environment model includes a three-dimensional model of all objects that may interfere with the fan component during the hoisting process of the fan component and the positional relationship between these objects, so as to avoid the interference of these objects when simulating the hoisting trajectory.
作为优选,步骤(1)中,所述风机部件的三维模型包括塔筒的三维模型、机舱的三维模型以及叶片的三维模型。Preferably, in step (1), the three-dimensional model of the wind turbine component includes a three-dimensional model of the tower, a three-dimensional model of the nacelle, and a three-dimensional model of the blades.
需要吊装的风机部件通常包括塔筒、已安装好两个叶片的机舱以及、第三叶片,通过对塔筒、机舱以及叶片进行三维建模,可以得到需要吊装的风机部件的三维模型,并将这些需要吊装的风机部件的三维模型依据实际情况置于环境模型中,计算这些风机部件的三维模型在环境模型中的模拟吊装轨迹。The fan components that need to be hoisted usually include the tower, the nacelle with two blades installed, and the third blade. Through the 3D modeling of the tower, nacelle, and blades, the 3D model of the fan parts that need to be hoisted can be obtained, and the The three-dimensional models of these fan parts that need to be hoisted are placed in the environment model according to the actual situation, and the simulated hoisting trajectories of the three-dimensional models of these fan parts in the environment model are calculated.
作为优选,步骤(1)中,建立风机部件的三维模型时,针对各个风机部件标识出对应的虚拟定位点,所述风机部件的模拟吊装轨迹为各个虚拟定位点的运行轨迹。Preferably, in step (1), when building the three-dimensional model of the fan components, the corresponding virtual positioning points are marked for each fan component, and the simulated hoisting trajectory of the fan components is the running trajectory of each virtual positioning point.
实际吊装过程中,通过风机部件上的定位点获取风机部件的位置信息,在风机部件的三维模型上相应标记虚拟定位点,在模拟吊装轨迹时,相应得到虚拟定位点的运行轨迹,依据该定位点的运行轨迹修正风机部件的吊装位置以及吊装形态。In the actual hoisting process, the position information of the fan components is obtained through the positioning points on the fan components, and the virtual positioning points are marked on the three-dimensional model of the fan components. The running trajectory of the point corrects the hoisting position and hoisting form of the fan components.
作为优选,步骤(1)中,计算风机部件的模拟吊装轨迹时,将每一个风机部件的吊装进程分为起重机就位、吊钩起吊、吊装风机部件和安装就位四个环节,并针对每一环节辅以相应的文字和语音提示。Preferably, in step (1), when calculating the simulated hoisting trajectory of fan components, the hoisting process of each fan component is divided into four links: crane placement, hook lifting, fan component hoisting and installation in place, and for each One link is supplemented by corresponding text and voice prompts.
在模拟吊装轨迹时,确定吊装过程中每一个动作细节和定位点的运行轨迹,例如,起重机底座的旋转角度,吊钩的旋转角度,吊臂的仰角,吊钩的下降位置以及距离等信息,并给出相应的文字和语音提示,保证吊装过程的顺利高效进行。When simulating the hoisting trajectory, determine the details of each movement and the running trajectory of the positioning point during the hoisting process, such as the rotation angle of the crane base, the rotation angle of the hook, the elevation angle of the boom, the lowering position and distance of the hook, etc. And give corresponding text and voice prompts to ensure the smooth and efficient hoisting process.
作为优选,步骤(2)中,所述定位点为对应风机部件的吊点和/或端点。Preferably, in step (2), the positioning point is a hanging point and/or an end point of a corresponding fan component.
定位点需要选取风机部件上能够体现风机部件形状和空间形态的定位点,例如,圆柱形的塔筒可以在两端取点,已安装好两个叶片的机舱,可以在机舱的吊点和两端以及叶片的端部取点,第三叶片,可以在吊点和第三叶片的两端取定位点,通过定位点的位置即可确定风机部件的位置和空间形态。The positioning point needs to select the positioning point on the fan component that can reflect the shape and spatial form of the fan component. For example, the cylindrical tower can be selected at both ends, and the nacelle with two blades can be installed at the lifting point and the two The end and the end of the blade take points, and the third blade can take positioning points at the hanging point and the two ends of the third blade, and the position and spatial form of the fan components can be determined by the position of the positioning points.
作为优选,步骤(2)中,定位点的数目至少为两个。Preferably, in step (2), the number of positioning points is at least two.
定位点的数目越多,则相应的风机部件的位置和空间形态判断越准确,但是,定位点的数目过多,则定位点与模拟吊装轨迹中对应的虚拟定位点比对时,运算量也越大,相应地效率会有所降低。The more the number of positioning points, the more accurate the judgment of the location and spatial form of the corresponding fan components will be. The larger it is, the corresponding efficiency will decrease.
作为优选,步骤(3)中,吊装需要安装的风机部件时,摄取需安装的风机部件的图像,捕捉图像中的定位点信息,确定该图像中的定位点与模拟吊装轨迹中对应的虚拟定位点的关系,并依据该关系发出修正指令,直至完成风机部件的安装。Preferably, in step (3), when hoisting the fan components to be installed, the image of the fan components to be installed is taken, the positioning point information in the image is captured, and the virtual positioning corresponding to the positioning point in the image and the simulated hoisting trajectory is determined point relationship, and issue correction instructions based on the relationship until the installation of fan components is completed.
吊装需要安装的风机部件时,起重机依据指令由初始位置移动至起吊位置,降下吊钩,将需要安装的风机部件吊起,在吊装过程中,依据模拟吊装轨迹中对应的虚拟定位点调整风机部件的空间形态,直至风机部件实际的定位点位置与虚拟定位点重合,直至完成风机部件的吊装。When hoisting the fan components that need to be installed, the crane moves from the initial position to the lifting position according to the instructions, lowers the hook, and lifts the fan components that need to be installed. During the hoisting process, adjust the fan components according to the corresponding virtual positioning points in the simulated hoisting trajectory The spatial form of the fan component until the position of the actual positioning point of the fan component coincides with the virtual positioning point, until the hoisting of the fan component is completed.
本发明还提供了一种海上风机吊装系统,包括带有起重机的风机安装船,还设有:The present invention also provides an offshore wind turbine hoisting system, which includes a wind turbine installation ship with a crane, and is also equipped with:
第一角度传感器,用于测量所述起重机的吊臂水平转角;The first angle sensor is used to measure the horizontal rotation angle of the boom of the crane;
第二角度传感器,用于测量所述起重机的吊臂竖向转角;The second angle sensor is used to measure the vertical angle of the boom of the crane;
位置传感器,用于测量所述起重机的吊钩位置;a position sensor for measuring the position of the hook of the crane;
摄像机,用于摄取需要安装的风机部件的图像;A camera for capturing images of fan components to be installed;
控制单元,用于构建需要安装的风机部件的三维模型以及环境模型,依据环境模型以及风机部件的三维模型计算风机部件的模拟吊装轨迹,并在吊装过程中,依据所述摄像机摄取的图像确定风机部件的位置信息,并与模拟吊装轨迹进行对比,以修正风机部件的实际吊装轨迹。The control unit is used to construct the three-dimensional model and the environment model of the fan parts to be installed, calculate the simulated hoisting trajectory of the fan parts according to the environment model and the three-dimensional model of the fan parts, and determine the fan part according to the images captured by the camera during the hoisting process. The position information of the components is compared with the simulated hoisting trajectory to correct the actual hoisting trajectory of the fan components.
利用第一角度传感器和第二角度传感器得到起重机的吊臂的转动角度,确定吊臂所在位置,利用位置传感器确定吊钩的位置,并依据该数据更新环境模型,利用摄像机拍摄风机部件的图像,控制单元依据所述摄像机摄取的图像确定风机部件的位置信息,并与模拟吊装轨迹进行对比,以修正风机部件的实际吊装轨迹。Use the first angle sensor and the second angle sensor to obtain the rotation angle of the boom of the crane, determine the position of the boom, use the position sensor to determine the position of the hook, update the environment model according to the data, and use the camera to take pictures of the fan components. The control unit determines the position information of the fan component according to the image captured by the camera, and compares it with the simulated hoisting trajectory to correct the actual hoisting trajectory of the fan component.
本发明一种海上风机吊装控制方法和系统通过在风机部件上标记定位点,模拟定位点的运行轨迹,通过控制吊装过程中风机部件实际的定位点轨迹与模拟定位点的运行轨迹相吻合,保证风机部件在吊装过程中不会因碰撞而损伤,提高风机吊装的准确性。The hoisting control method and system of an offshore fan in the present invention mark the positioning points on the fan components, simulate the running trajectory of the positioning points, and control the actual positioning point trajectory of the fan components in the hoisting process to match the running trajectory of the simulated positioning points, ensuring Fan components will not be damaged by collision during hoisting, which improves the accuracy of fan hoisting.
附图说明Description of drawings
图1为本发明海上风机吊装系统工作时的示意图;Fig. 1 is the schematic diagram when the offshore wind turbine hoisting system of the present invention works;
图2为本发明海上风机吊装系统工作时的俯视图;Fig. 2 is a top view of the offshore fan hoisting system of the present invention when it is in operation;
图3为风机部件已安装好两个叶片的机舱的示意图;Fig. 3 is a schematic diagram of a cabin with two blades installed on the fan assembly;
图4为风机部件第三叶片的示意图;Fig. 4 is a schematic diagram of the third blade of the fan part;
图5为风机部件塔筒的示意图。Fig. 5 is a schematic diagram of a tower of a fan component.
具体实施方式detailed description
下面结合附图,对本发明一种海上风机吊装控制方法和系统做详细描述。A method and system for controlling the hoisting of an offshore wind turbine according to the present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示,一种海上风机吊装系统,包括带有起重机的风机安装船,还设有用于测量所述起重机的吊臂水平转角的第一角度传感器1、用于测量所述起重机的吊臂竖向转角的第二角度传感器7、用于测量所述起重机的吊钩位置的位置传感器2、用于摄取需要安装的风机部件的图像的摄像机6以及控制单元,用于构建需要安装的风机部件的三维模型以及环境模型,依据环境模型以及风机部件的三维模型计算风机部件的模拟吊装轨迹,并在吊装过程中,依据所述摄像机6摄取的图像确定风机部件的位置信息,并与模拟吊装轨迹进行对比,以修正风机部件的实际吊装轨迹。As shown in Fig. 1, a kind of offshore wind turbine hoisting system comprises the wind turbine installation ship with crane, is also provided with the first angle sensor 1 that is used for measuring the horizontal rotation angle of the boom of described crane, is used for measuring the crane of described crane. A second angle sensor 7 for the vertical angle of the arm, a position sensor 2 for measuring the position of the hook of the crane, a camera 6 for taking images of the wind turbine parts to be installed and a control unit for building the wind turbine to be installed The three-dimensional model of the component and the environment model, calculate the simulated hoisting track of the fan component according to the environment model and the three-dimensional model of the fan component, and determine the position information of the fan component according to the image captured by the camera 6 during the hoisting process, and compare it with the simulated hoisting Trajectories are compared to correct the actual hoisting trajectory of the fan components.
一种海上风机吊装控制方法,包括以下步骤:A method for controlling the hoisting of an offshore wind turbine, comprising the following steps:
(1)建立需要安装的风机部件的三维模型以及环境模型,并依据风机部件的三维模型以及环境模型,计算风机部件的模拟吊装轨迹;(1) Establish the 3D model and environment model of the fan components to be installed, and calculate the simulated hoisting trajectory of the fan components based on the 3D model of the fan components and the environment model;
如图1所示,需要安装的风机部件包括已安装好两个叶片3的机舱8、塔筒4以及第三叶片9。环境模型包括风机安装船、起重机、风机基础5以及风机部件在吊装过程中可能会碰到的各种构筑物,风机基础5部分位于海平面11以下。As shown in FIG. 1 , the fan components to be installed include a nacelle 8 with two blades 3 installed, a tower 4 and a third blade 9 . The environmental model includes the wind turbine installation ship, crane, wind turbine foundation 5 and various structures that the wind turbine components may encounter during hoisting. The wind turbine foundation 5 is partly located below sea level 11 .
(2)在需要安装的风机部件上标记定位点;(2) Mark the positioning points on the fan components to be installed;
风机部件已安装好两个叶片3的机舱8选取的定位点10如图3所示,风机部件第三叶片9选取的定位点10如图4所示,风机部件塔筒4选取的定位点10如图5所示。The positioning point 10 selected by the nacelle 8 with two blades 3 installed on the fan component is shown in Figure 3, the positioning point 10 selected by the third blade 9 of the fan component is shown in Figure 4, and the positioning point 10 selected by the fan component tower 4 As shown in Figure 5.
在步骤(1)中风机部件的三维模型中相应标记虚拟定位点,将模拟吊装轨迹转化为虚拟定位点的运行轨迹。Mark the virtual positioning points in the three-dimensional model of the fan components in step (1), and convert the simulated hoisting trajectory into the running trajectory of the virtual positioning points.
在环境模型中模拟风机部件的吊装过程,包括以下步骤:Simulate the lifting process of wind turbine components in the environment model, including the following steps:
A、起重机就位:起重机由初始位置移动至风机部件所在位置,给予起重机旋转角度,吊臂仰角以及吊钩下降位置和距离的语音和文字提示;A. The crane is in place: the crane moves from the initial position to the location of the fan components, and gives voice and text prompts for the crane's rotation angle, boom elevation angle, hook drop position and distance;
B、吊钩起吊:将需安装的风机部件吊起,给予吊钩上升距离、起重机吊臂仰角变化的语音和文字提示;B. Hook lifting: Lift the fan parts to be installed, and give voice and text prompts for the lifting distance of the hook and the change of the elevation angle of the crane arm;
C、吊装风机部件:将需安装的风机部件吊运至风机基础,给予起重机旋转角度,吊臂仰角变化以及吊钩下降位置和下降距离的语音和文字提示;C. Hoisting fan components: Lift the fan components to be installed to the fan foundation, give the crane rotation angle, the change of the boom elevation angle, and the voice and text prompts of the hook's lowering position and lowering distance;
D、安装就位:将吊运至风机基础上方的风机部件进行安装。D. Installation in place: Install the fan components lifted above the fan foundation.
(3)吊装需要安装的风机部件,根据定位点实时获取风机部件的位置信息,将该位置信息与模拟吊装轨迹进行对比,以修正风机部件的实际吊装轨迹,直至完成风机部件的安装。(3) To hoist the fan components that need to be installed, obtain the position information of the fan components in real time according to the positioning points, and compare the position information with the simulated hoisting trajectory to correct the actual hoisting trajectory of the fan components until the installation of the fan components is completed.
风机部件的实际吊装过程包括以下步骤:The actual lifting process of fan components includes the following steps:
a、利用第一角度传感器1和第二角度传感器7得到起重机的吊臂的转动角度,确定吊臂所在位置,利用位置传感器2确定吊钩的位置,并依据该数据更新环境模型;a. Utilize the first angle sensor 1 and the second angle sensor 7 to obtain the rotation angle of the boom of the crane, determine the position of the boom, use the position sensor 2 to determine the position of the hook, and update the environment model according to the data;
b、利用摄像机6拍摄风机部件的图像,通过对图像中定位点的图像捕捉和处理,确定被吊起的风机部件的位置和空间形态,将该风机部件的位置和空间形态与虚拟定位点的运行轨迹进行对比,在二者误差超出允许的范围时,给予提示,操作人员及时进行调整,保证吊装过程的安全进行。B. Utilize the camera 6 to take the image of the fan part, and determine the position and spatial form of the lifted fan part by capturing and processing the image of the positioning point in the image, and compare the position and the spatial form of the fan part with the virtual positioning point The running track is compared, and when the error of the two exceeds the allowable range, a reminder is given, and the operator makes adjustments in time to ensure the safety of the hoisting process.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210489034.2A CN103019101B (en) | 2012-11-26 | 2012-11-26 | A kind of offshore wind turbine hoist controlling method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210489034.2A CN103019101B (en) | 2012-11-26 | 2012-11-26 | A kind of offshore wind turbine hoist controlling method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103019101A CN103019101A (en) | 2013-04-03 |
CN103019101B true CN103019101B (en) | 2016-01-13 |
Family
ID=47967819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210489034.2A Expired - Fee Related CN103019101B (en) | 2012-11-26 | 2012-11-26 | A kind of offshore wind turbine hoist controlling method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103019101B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201602778SA (en) * | 2013-10-08 | 2016-05-30 | Univ Nanyang Tech | Method and system for intelligent crane lifting |
CN105460796A (en) * | 2015-12-18 | 2016-04-06 | 朱荣华 | Offshore platform fan hoisting system and hoisting method |
CN107247439A (en) * | 2017-05-09 | 2017-10-13 | 南京建磊电力技术有限公司 | The control method of driving long-distance intelligent automatic running based on virtual reality |
CN107247438A (en) * | 2017-05-09 | 2017-10-13 | 南京建磊电力技术有限公司 | Driving long-distance intelligent automatic running system based on virtual reality |
CN107403275B (en) * | 2017-08-01 | 2020-12-22 | 贺州学院 | Lifting risk warning method and device |
CN110562853A (en) * | 2019-10-10 | 2019-12-13 | 徐州嘉安健康产业有限公司 | Safety monitoring system and method for crane hook |
CN111285242B (en) * | 2020-03-03 | 2024-07-02 | 电子科技大学 | Wind-powered electricity generation blade hoist |
CN111734583B (en) * | 2020-04-30 | 2021-05-07 | 广东水电二局股份有限公司 | Accurate in-place installation method for wind power generation large-elevation impeller |
CN112141889B (en) * | 2020-08-14 | 2023-07-18 | 湖南省中南桥梁安装工程有限公司 | Blind hoisting system and method for hoisting member of cable crane |
CN114933255B (en) * | 2022-05-13 | 2024-05-17 | 海洋石油工程股份有限公司 | Integral lifting installation method for offshore wind turbine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101230846A (en) * | 2007-01-28 | 2008-07-30 | 黄金伦 | Floating water wind power station |
CN101793106A (en) * | 2009-12-29 | 2010-08-04 | 郝钲声 | Installing mechanism of intertidal belt wind generator upright post without crane and operation method thereof |
CN102108936A (en) * | 2009-12-25 | 2011-06-29 | 通用电气公司 | System and method for monitoring and controlling a wind park |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102042174A (en) * | 2009-10-22 | 2011-05-04 | 陈宏� | Water-float wind-water wheel sail wind driven generator |
-
2012
- 2012-11-26 CN CN201210489034.2A patent/CN103019101B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101230846A (en) * | 2007-01-28 | 2008-07-30 | 黄金伦 | Floating water wind power station |
CN102108936A (en) * | 2009-12-25 | 2011-06-29 | 通用电气公司 | System and method for monitoring and controlling a wind park |
CN101793106A (en) * | 2009-12-29 | 2010-08-04 | 郝钲声 | Installing mechanism of intertidal belt wind generator upright post without crane and operation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103019101A (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103019101B (en) | A kind of offshore wind turbine hoist controlling method and system | |
Jiang et al. | A parametric study on the final blade installation process for monopile wind turbines under rough environmental conditions | |
CN107906165B (en) | An active damping device suitable for offshore monopile wind turbine installation | |
CN106219416B (en) | A kind of double lifting rope section construction crane machines using GNSS technologies | |
CN109405804B (en) | Operation assisting method and system | |
CN107215779B (en) | Method, device and system for hoisting assembly type building component | |
CN207844903U (en) | A kind of tower crane positioning device of assembled architecture prefabricated components | |
CN103883485A (en) | Method of mounting a wind turbine | |
JP7593801B2 (en) | Anti-sway device, positioning device, anti-sway method, and positioning method for a load suspended by a tower crane | |
CN109215081A (en) | A kind of tower crane space-location method based on machine vision | |
CN111989285B (en) | Lifting tool | |
CN108226979A (en) | A kind of navigation device and method of the installation of assembled architecture prefabricated components | |
CN104951581A (en) | Equipment installation construction scheme simulation verification method and device based on CAM platform | |
CN104404888B (en) | A kind of large-scale aerial gradient adjustment Lift-on/Lift-off System and application | |
CN115321366A (en) | Multi-tower machine avoiding method, avoiding device and storage medium | |
CN102635242A (en) | Construction method for butt joint operation for large I-shape beam | |
CN102877412A (en) | Method of pre-assembly in integral erecting way of steel tower | |
CN110512581B (en) | Construction method of offshore wind power jacket | |
CN114476943B (en) | Method for determining hoisting point of large wind power generation component | |
CN111847243B (en) | Prefabricated part hoisting attitude control method based on LoRa technology | |
CN203544345U (en) | Underwater mounting and automatic positioning integrated device for cross beam of slide way | |
CN102175199A (en) | Non-slideway multi-module construction measuring method | |
CN104709825A (en) | Control system and hoisting system for hoisting tool | |
CN106245695B (en) | The revolving platform of dumping plough and pylon assembly method | |
CN107795283A (en) | Derrick installation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160113 Termination date: 20201126 |
|
CF01 | Termination of patent right due to non-payment of annual fee |