JP2018116044A5 - - Google Patents

Download PDF

Info

Publication number
JP2018116044A5
JP2018116044A5 JP2017218394A JP2017218394A JP2018116044A5 JP 2018116044 A5 JP2018116044 A5 JP 2018116044A5 JP 2017218394 A JP2017218394 A JP 2017218394A JP 2017218394 A JP2017218394 A JP 2017218394A JP 2018116044 A5 JP2018116044 A5 JP 2018116044A5
Authority
JP
Japan
Prior art keywords
sensor
conductive
conductor
voltage
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017218394A
Other languages
Japanese (ja)
Other versions
JP2018116044A (en
JP7199804B2 (en
Filing date
Publication date
Priority claimed from US15/412,891 external-priority patent/US10281503B2/en
Application filed filed Critical
Publication of JP2018116044A publication Critical patent/JP2018116044A/en
Publication of JP2018116044A5 publication Critical patent/JP2018116044A5/ja
Application granted granted Critical
Publication of JP7199804B2 publication Critical patent/JP7199804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

導体と該導体を囲繞する絶縁体とからなる絶縁導体の交流(AC)電圧を測定するためのシステムは、ハウジングと、ハウジングに物理的に結合されるセンサアセンブリであって、そのセンサアセンブリは絶縁導体の導体と接触せずに、前記絶縁導体に近接して位置決め可能であり、前記センサアセンブリは、第1の導電センサと、第2の導電センサと、第3の導電センサとを備え、前記第1、第2、及び第3の導電センサは、前記センサアセンブリが前記絶縁導体に近接して位置付けられるとき、それぞれ動作時に記導体に容量的に結合し、前記第1、第2、及び第3の導電センサのそれぞれは、容量結合に影響を及ぼす少なくとも1つの特性に関して前記第1、第2及び第3の導電センサのうちの他の2つの導電センサと異なる、センサアセンブリと、前記第1、第2、及び第3の導電センサと電気的に結合された電圧測定サブシステムであって、動作中、それぞれ前記第1、第2、及び第3の導電センサでの電圧を示す第1、第2、及び第3のセンサ電圧信号を生成する電圧測定サブシステムと、前記電圧測定サブシステムに通信可能に接続された少なくとも1つのプロセッサであって、動作中、前記電圧測定サブシステムから前記第1、第2、及び第3のセンサ電圧信号を受信し、前記第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて前記絶縁導体の前記AC電圧を決定する、少なくとも1つのプロセッサと、を含むと要約され得る。
A system for measuring the AC (AC) voltage of an insulated conductor consisting of a conductor and an insulator surrounding the conductor is a housing and a sensor assembly physically coupled to the housing, the sensor assembly being insulated. It can be positioned close to the insulating conductor without contacting the conductor of the conductor, and the sensor assembly comprises a first conductive sensor, a second conductive sensor, and a third conductive sensor. The first, second, and third conductive sensors, when the sensor assembly is positioned close to the insulating conductor, are capacitively coupled to the conductor during operation , respectively, and the first, second, and third conductive sensors, respectively. And each of the third conductive sensors differ from the other two conductive sensors of the first, second and third conductive sensors in terms of at least one property that affects capacitive coupling, the sensor assembly and said. A voltage measurement subsystem that is electrically coupled to the first, second, and third conductive sensors and indicates the voltage at the first, second, and third conductive sensors, respectively, during operation. A voltage measurement subsystem that produces the first, second, and third sensor voltage signals and at least one processor communicably connected to the voltage measurement subsystem from the voltage measurement subsystem during operation. Receives the first, second, and third sensor voltage signals and determines the AC voltage of the insulating conductor based on at least a portion of the first, second, and third sensor voltage signals. Can be summarized as including, with at least one processor.

容量結合に影響を及ぼす少なくとも1つの特性には、少なくとも1つの物理的寸法が挙げられ得る。容量結合に影響を及ぼす少なくとも1つの特性には、センサアセンブリが絶縁導体に近接して位置付けられるときの物理的な面積、物理的な向き、又は前記絶縁導体からの物理的な間隔のうちの少なくとも1つが挙げられ得る。第1及び第2の導電センサのそれぞれは、直角を形成する第1の縁部及び第2の縁部、並びに直角と反対側の斜辺縁部を画定する平面直角三角形状を有してもよく、第1の導電センサ及び第2の導電センサの斜辺縁部は、互いに近接して位置付けられてもよい。第3の導電センサは、平面矩形状を有してもよい。第1及び第2の導電センサは、第1の平面に位置付けられてもよく、第3の導電センサは、第2の平面に位置付けられてもよく、第1の平面は、第2の平面に対して鋭角で配置されてもよい。第1の平面は、第2の平面に対し、20度~50度であり得る所定の角度で配置されてもよい。センサアセンブリは、センサアセンブリが絶縁導体に近接して位置付けられるとき、第1及び第2の導電センサを絶縁導体から絶縁する第1の絶縁材層であって、第1の厚さを有する第1の絶縁材層と、センサアセンブリが絶縁導体に近接して位置付けられるとき、第3の導電センサを絶縁導体から絶縁する第2の絶縁材層であって、第1の厚さと異なる第2の厚さを有する第2の絶縁材層と、を含んでもよい。第1の絶縁材層の第1の厚さは、第2の絶縁材層の第2の厚さより小さくてもよい。

At least one property that affects capacitive coupling may include at least one physical dimension. At least one characteristic that affects capacitive coupling is at least the physical area, physical orientation, or physical distance from the insulating conductor when the sensor assembly is positioned close to the insulating conductor. One can be mentioned. Each of the first and second conductivity sensors may have a plane right angle triangle that defines a first and second edge forming a right angle, as well as a hypotenuse edge opposite the right angle. , The hypotenuse of the first conductivity sensor and the second conductivity sensor may be positioned close to each other. The third conductive sensor may have a planar rectangular shape. The first and second conductive sensors may be positioned in the first plane, the third conductive sensor may be positioned in the second plane, and the first plane may be located in the second plane. On the other hand, it may be arranged at an acute angle. The first plane may be arranged at a predetermined angle, which may be 20 to 50 degrees, with respect to the second plane. The sensor assembly is a first insulating layer having a first thickness that insulates the first and second conductive sensors from the insulating conductor when the sensor assembly is positioned in close proximity to the insulating conductor. Insulation layer and a second insulation layer that insulates the third conductive sensor from the insulation conductor when the sensor assembly is positioned close to the insulation conductor, with a second thickness different from the first thickness. It may include a second insulating layer having a conductor. The first thickness of the first insulating material layer may be smaller than the second thickness of the second insulating material layer.

少なくとも1つのプロセッサは、動作中、第2のセンサ電圧信号で割られた第1のセンサ電圧信号か、第1のセンサ電圧信号及び第2のセンサ電圧信号の合計か、若しくは第1のセンサ電圧信号、第2のセンサ電圧信号、及び第3のセンサ電圧信号の合計のうちの少なくとも1つを決定し得る。少なくとも1つのプロセッサは、動作中、前記第1のセンサ電圧信号及び第2のセンサ電圧信号の合計を第3のセンサ電圧信号で割ったものを決定し得る。少なくとも1つのプロセッサは、動作中、第1、第2、及び第3のセンサ電圧信号から導出された少なくとも1つの値をルックアップ表と比較して、受信した第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて絶縁導体のAC電圧を決定してもよい。少なくとも1つのプロセッサは、動作中、第1、第2、及び第3のセンサ電圧信号から導出された少なくとも1つの値を使用して、第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて絶縁導体のAC電圧を決定してもよい。
At least one processor, during operation, is the first sensor voltage signal divided by the second sensor voltage signal, the sum of the first sensor voltage signal and the second sensor voltage signal , or the first sensor voltage. At least one of the sum of the signal, the second sensor voltage signal, and the third sensor voltage signal can be determined. At least one processor may determine, during operation, the sum of the first sensor voltage signal and the second sensor voltage signal divided by the third sensor voltage signal. At least one processor , during operation, compares at least one value derived from the first, second, and third sensor voltage signals to the lookup table and receives the first, second, and third. The AC voltage of the insulating conductor may be determined based on at least a portion of the sensor voltage signal of. At least one processor uses at least one value derived from the first, second, and third sensor voltage signals during operation to at least one of the first, second, and third sensor voltage signals. The AC voltage of the insulating conductor may be determined based on a part.

導体と該導体を囲繞する絶縁体とからなる絶縁導体の交流(AC)電圧を測定するためのシステムを操作する方法は、ハウジングと、ハウジングに物理的に結合されるセンサアセンブリであって、そのセンサアセンブリは絶縁導体の導体と接触せずに、絶縁導体に近接して位置決め可能であり、そのセンサアセンブリは、第1の導電センサ、第2の導電センサ、及び第3の導電センサを備え、第1、第2、及び第3の導電センサは、センサアセンブリが絶縁導体に近接して位置付けられるとき、それぞれ動作中導体に容量的に結合し、第1、第2、及び第3の導電センサのそれぞれは、容量結合に影響を及ぼす少なくとも1つの特性に関して第1、第2、及び第3の導電センサのうちの他の2つの導電センサと異なる、センサアセンブリと、を含むと要約されてもよく、その方法は、第1、第2、及び第3の導電センサと電気的に結合された電圧測定サブシステムを介して、それぞれ第1、第2、及び第3の導電センサでの電圧を示す第1、第2、及び第3のセンサ電圧信号を生成する工程と、電圧測定サブシステムに通信可能に接続された少なくとも1つのプロセッサによって、電圧測定サブシステムから第1、第2、及び第3のセンサ電圧信号を受信する工程と、少なくとも1つのプロセッサによって、第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて絶縁導体のAC電圧を決定する工程と、を含む。
A method of operating a system for measuring the AC (AC) voltage of an insulating conductor consisting of a conductor and an insulator surrounding the conductor is a housing and a sensor assembly physically coupled to the housing. The sensor assembly can be positioned close to the insulating conductor without contacting the conductor of the insulating conductor, the sensor assembly comprising a first conductive sensor, a second conductive sensor, and a third conductive sensor. The first, second, and third conductive sensors are capacitively coupled to the operating conductor, respectively, when the sensor assembly is positioned close to the insulating conductor, and the first, second, and third conductive sensors. Each of them is summarized to include a sensor assembly, which differs from the other two conductive sensors of the first, second, and third conductive sensors in terms of at least one property that affects capacitive coupling. Often, the method is to draw the voltage at the first, second, and third conductive sensors, respectively, via a voltage measurement subsystem that is electrically coupled to the first, second, and third conductive sensors. The first, second, and second from the voltage measurement subsystem by the steps of generating the first, second, and third sensor voltage signals shown and by at least one processor communicably connected to the voltage measurement subsystem. 3. The step of receiving the sensor voltage signal and the step of determining the AC voltage of the insulating conductor based on at least a part of the first, second, and third sensor voltage signals by at least one processor. ..

絶縁導体のAC電圧を決定する工程は、第2のセンサ電圧信号で割られた第1のセンサ電圧信号、第1のセンサ電圧信号及び第2のセンサ電圧信号の合計か、若しくは第1のセンサ電圧信号、第2のセンサ電圧信号、及び第3のセンサ電圧信号の合計のうちの少なくとも1つを決定する工程を含んでもよい。絶縁導体のAC電圧を決定する工程は、第1のセンサ電圧信号及び第2のセンサ電圧信号の合計を第3のセンサ電圧信号で割ったものを決定する工程を含んでもよい。絶縁導体のAC電圧を決定する工程は、第1、第2、及び第3のセンサ電圧信号から導出された少なくとも1つの値をルックアップ表と比較して、第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて絶縁導体のAC電圧を決定する工程を含んでもよい。絶縁導体のAC電圧を決定する工程は、第1、第2、及び第3のセンサ電圧信号から導出された少なくとも1つの値を使用して、第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて絶縁導体のAC電圧を決定する工程を含んでもよい。
The step of determining the AC voltage of the insulating conductor is the first sensor voltage signal divided by the second sensor voltage signal, the sum of the first sensor voltage signal and the second sensor voltage signal , or the first. It may include determining at least one of the sum of the sensor voltage signal, the second sensor voltage signal, and the third sensor voltage signal. The step of determining the AC voltage of the insulating conductor may include a step of determining the sum of the first sensor voltage signal and the second sensor voltage signal divided by the third sensor voltage signal. The step of determining the AC voltage of the insulating conductor is to compare at least one value derived from the first, second, and third sensor voltage signals with the lookup table and compare the first, second, and third. The step of determining the AC voltage of the insulating conductor based on at least a part of the sensor voltage signal of the above may be included. The step of determining the AC voltage of the insulating conductor uses at least one value derived from the first, second, and third sensor voltage signals to use the first, second, and third sensor voltage signals. The step of determining the AC voltage of the insulating conductor based on at least a part of the above may be included.

導体と該導体を囲繞する絶縁体とからなる絶縁導体の交流(AC)電圧を測定する方法は、絶縁導体の導体と接触せずに、第1の導電センサと、第2の導電センサと、第3の導電センサとを備えるセンサアセンブリを前記絶縁体に近接して位置決めする工程であって、その第1、第2、及び第3の導電センサが、前記センサアセンブリが前記導体に近接して位置付けられるとき、それぞれ前記導体に容量的に結合し、前記第1、第2、及び第3の導電センサのそれぞれは、容量結合に影響を及ぼす少なくとも1つの特性に関して前記第1、第2及び第3の導電センサのうちの他の2つの導電センサと異なる、工程と、前記第1、第2、及び第3の導電センサと電気的に結合された電圧測定サブシステムを介して、それぞれ前記第1、第2、及び第3の導電センサでの電圧を示す第1、第2、及び第3のセンサ電圧信号を生成する工程と、前記電圧測定サブシステムに通信可能に接続された少なくとも1つのプロセッサによって、前記電圧測定サブシステムから前記第1、第2、及び第3のセンサ電圧信号を受信する工程と、前記少なくとも1つのプロセッサによって、前記第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて前記絶縁導体の前記AC電圧を決定する工程と、を含むと要約され得る。
The method of measuring the AC (AC) voltage of an insulating conductor consisting of a conductor and an insulator surrounding the conductor is to measure a first conductive sensor and a second conductive sensor without contacting the conductor of the insulating conductor. And a step of positioning a sensor assembly including a third conductive sensor in close proximity to the insulator, wherein the first, second, and third conductive sensors are the conductors of the sensor assembly. When positioned in close proximity to, each of the first, second, and third conductive sensors is capacitively coupled to the conductor , and each of the first, second, and third conductive sensors has the first property with respect to at least one property that affects the capacitive coupling. A process different from the other two conductive sensors of the first, second and third conductive sensors and a voltage measurement subsystem electrically coupled to the first, second and third conductive sensors. Through, communication is possible with the step of generating the first, second, and third sensor voltage signals indicating the voltages at the first, second, and third conductive sensors, respectively, and the voltage measurement subsystem. The step of receiving the first, second, and third sensor voltage signals from the voltage measurement subsystem by at least one connected processor, and the first, second, and more by the at least one processor. And the step of determining the AC voltage of the insulating conductor based on at least a portion of the third sensor voltage signal can be summarized as including.

第1、第2、及び第3の導電センサのそれぞれの導電センサは、少なくとも1つの物理的寸法に関して前記第1、第2、及び第3の導電センサのうちの他の2つの導電センサと異なってもよい。第1、第2、及び第3の導電センサのそれぞれの導電センサは、センサアセンブリが絶縁導体に近接して位置付けられるとき、物理的な面積、物理的な向き、又は前記絶縁導体からの物理的な間隔の少なくとも1つに関して前記第1、第2、及び第3の導電センサのうちの他の2つの導電センサと異なってもよい。第1及び第2の導電センサのそれぞれは、直角を形成する第1の縁部及び第2の縁部、並びに直角と反対側の斜辺縁部を画定する平面直角三角形状を有してもよく、第1の導電センサ及び第2の導電センサの斜辺縁部は、互いに近接して位置付けられてもよい。第3の導電センサは、平面矩形状を有してもよい。第1及び第2の導電センサは、第1の平面に位置付けられてもよく、第3の導電センサは、第2の平面に位置付けられてもよく、第1の平面は、第2の平面に対して鋭角に配置されてもよい。
Each of the first , second, and third conductive sensors differs from the other two conductive sensors of the first, second, and third conductive sensors in terms of at least one physical dimension. You may. The conductive sensors of the first , second, and third conductive sensors, respectively, have a physical area, physical orientation, or physical from the insulating conductor when the sensor assembly is positioned in close proximity to the insulating conductor. It may differ from the other two conductive sensors of the first, second, and third conductive sensors with respect to at least one of the above-mentioned intervals . Each of the first and second conductivity sensors may have a plane right angle triangle that defines a first and second edge forming a right angle, as well as a hypotenuse edge opposite the right angle. , The hypotenuse of the first conductivity sensor and the second conductivity sensor may be positioned close to each other. The third conductive sensor may have a planar rectangular shape. The first and second conductive sensors may be positioned in the first plane, the third conductive sensor may be positioned in the second plane, and the first plane may be located in the second plane. On the other hand, it may be arranged at an acute angle.

センサアセンブリが、該センサアセンブリが絶縁導体に近接して位置付けられるとき、第1及び第2の導電センサを絶縁導体から絶縁する第1の絶縁材層であって、第1の厚さを有する第1の絶縁材層と、センサアセンブリが絶縁導体に近接して位置付けられるとき、第3の導電センサを絶縁導体から絶縁する第2の絶縁材層であって、第1の厚さと異なる第2の厚さを有する第2の絶縁材層と、を含んでもよい。
A first insulating layer having a first thickness that insulates the first and second conductive sensors from the insulating conductor when the sensor assembly is positioned in close proximity to the insulating conductor. A second insulating layer that insulates the third conductive sensor from the insulating conductor when the insulating material layer 1 and the sensor assembly are positioned close to the insulating conductor, and is different from the first thickness. It may include a second insulating layer having a thickness.

センサアセンブリが、第1、第2、及び第3の導電センサのそれぞれを少なくとも部分的に囲む少なくとも1つの内部接地ガードを含んでもよい。
The sensor assembly may include at least one internal ground guard that at least partially surrounds each of the first, second, and third conductive sensors.

Claims (27)

導体と該導体を囲繞する絶縁体とからなる絶縁導体の交流(AC)電圧を測定するためのシステムであって、
ハウジングと、
前記ハウジングに物理的に結合されるセンサアセンブリであって、前記センサアセンブリは前記絶縁導体の導体と接触せずに、前記絶縁導体に近接して位置決め可能であり、前記センサアセンブリは、第1の導電センサと、第2の導電センサと、第3の導電センサとを備え、前記第1、第2、及び第3の導電センサは、前記センサアセンブリが前記絶縁導体に近接して位置付けられるとき、それぞれ動作時に記導体に容量的に結合し、前記第1、第2、及び第3の導電センサのそれぞれは、容量結合に影響を及ぼす少なくとも1つの特性に関して前記第1、第2及び第3の導電センサのうちの他の2つの導電センサと異なる、センサアセンブリと、
前記第1、第2、及び第3の導電センサと電気的に結合された電圧測定サブシステムであって、動作中、それぞれ前記第1、第2、及び第3の導電センサでの電圧を示す第1、第2、及び第3のセンサ電圧信号を生成する電圧測定サブシステムと、
前記電圧測定サブシステムに通信可能に接続された少なくとも1つのプロセッサであって、動作中、
前記電圧測定サブシステムから前記第1、第2、及び第3のセンサ電圧信号を受信し、
記第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて前記絶縁導体の前記AC電圧を決定する、少なくとも1つのプロセッサと、を備えるシステム。
A system for measuring the alternating current (AC) voltage of an insulating conductor consisting of a conductor and an insulator surrounding the conductor.
With the housing
A sensor assembly that is physically coupled to the housing, the sensor assembly can be positioned close to the insulating conductor without contacting the conductor of the insulating conductor, and the sensor assembly is the first. It comprises a conductive sensor, a second conductive sensor, and a third conductive sensor, wherein the first, second, and third conductive sensors are when the sensor assembly is positioned in close proximity to the insulating conductor. Each of the first, second, and third conductive sensors is capacitively coupled to the conductor during operation, and each of the first, second, and third conductive sensors has the first, second, and third with respect to at least one characteristic that affects the capacitive coupling . The sensor assembly, which is different from the other two conductive sensors of the three conductive sensors,
A voltage measurement subsystem electrically coupled to the first, second, and third conductivity sensors that, during operation, indicates the voltage at the first, second, and third conductivity sensors, respectively. A voltage measurement subsystem that produces first, second, and third sensor voltage signals, and
At least one processor communicably connected to the voltage measurement subsystem, during operation.
The first, second, and third sensor voltage signals are received from the voltage measurement subsystem and
A system comprising at least one processor that determines the AC voltage of the insulating conductor based on at least a portion of the first, second, and third sensor voltage signals.
容量結合に影響を及ぼす前記少なくとも1つの特性が、少なくとも1つの物理的寸法を含む、請求項1に記載のシステム。 The system of claim 1, wherein the at least one property affecting capacitive coupling comprises at least one physical dimension. 容量結合に影響を及ぼす前記少なくとも1つの特性は、前記センサアセンブリが前記絶縁導体に近接して位置付けられるとき、物理的な面積、物理的な向き、又は前記絶縁導体からの物理的な間隔の少なくとも1つを含む、請求項1に記載のシステム。 The at least one characteristic that affects the capacitive coupling is at least the physical area, physical orientation, or physical distance from the insulating conductor when the sensor assembly is positioned in close proximity to the insulating conductor. The system of claim 1, comprising one. 前記第1及び第2の導電センサのそれぞれが、直角を形成する第1の縁部及び第2の縁部、並びに前記直角と反対側の斜辺縁部を画定する平面直角三角形状を有し、前記第1の導電センサ及び前記第2の導電センサの前記斜辺縁部が、互いに近接して位置付けられている、請求項1に記載のシステム。 Each of the first and second conductivity sensors has a plane right-angled triangular shape defining a first edge and a second edge forming a right angle, and a hypotenuse edge opposite the right angle. The system according to claim 1, wherein the hypotenuse portion of the first conductive sensor and the second conductive sensor is positioned close to each other. 前記第3の導電センサが、平面矩形状を有する、請求項4に記載のシステム。 The system according to claim 4, wherein the third conductive sensor has a planar rectangular shape. 前記第1及び第2の導電センサが、第1の平面に位置付けられ、前記第3の導電センサが、第2の平面に位置付けられ、前記第1の平面は、前記第2の平面に対して鋭角で配置されている、請求項5に記載のシステム。 The first and second conductive sensors are positioned on a first plane, the third conductive sensor is positioned on a second plane, and the first plane is relative to the second plane. The system according to claim 5, which is arranged at an acute angle. 前記第1の平面が、前記第2の平面に対し、20度~50度である所定の角度で配置されている、請求項6に記載のシステム。 The system according to claim 6, wherein the first plane is arranged at a predetermined angle of 20 to 50 degrees with respect to the second plane. 前記センサアセンブリは、
前記センサアセンブリが前記絶縁導体に近接して位置付けられるとき、前記第1及び第2の導電センサを前記絶縁導体から絶縁する第1の絶縁材層であって、第1の厚さを有する第1の絶縁材層と、
前記センサアセンブリが前記絶縁導体に近接して位置付けられるとき、前記第3の導電センサを前記絶縁導体から絶縁する第2の絶縁材層であって、前記第1の厚さと異なる第2の厚さを有する第2の絶縁材層と、を備える、請求項1に記載のシステム。
The sensor assembly is
A first insulating layer having a first thickness that insulates the first and second conductive sensors from the insulating conductor when the sensor assembly is positioned in close proximity to the insulating conductor. Insulation layer and
A second insulating layer that insulates the third conductive sensor from the insulating conductor when the sensor assembly is positioned in close proximity to the insulating conductor, with a second thickness different from the first thickness. The system according to claim 1, comprising a second insulating layer comprising the above.
前記第1の絶縁材層の前記第1の厚さが、前記第2の絶縁材層の前記第2の厚さよりも小さい、請求項8に記載のシステム。 The system according to claim 8, wherein the first thickness of the first insulating material layer is smaller than the second thickness of the second insulating material layer. 前記第1、第2、及び第3の導電センサのそれぞれを少なくとも部分的に囲む少なくとも1つの内部接地ガードを更に備える、請求項1に記載のシステム。 The system of claim 1, further comprising at least one internal ground guard that at least partially surrounds each of the first, second, and third conductive sensors. 前記少なくとも1つのプロセッサが、動作中、
前記第2のセンサ電圧信号で割られた前記第1のセンサ電圧信号
前記第1のセンサ電圧信号及び前記第2のセンサ電圧信号の合計若しくは
前記第1のセンサ電圧信号、第2のセンサ電圧信号、及び前記第3のセンサ電圧信号の合計のうち少なくとも1つを決定する、請求項1に記載のシステム。
While the at least one processor is in operation
The first sensor voltage signal divided by the second sensor voltage signal ,
The sum of the first sensor voltage signal and the second sensor voltage signal, or
The system according to claim 1, wherein at least one of the sum of the first sensor voltage signal, the second sensor voltage signal, and the third sensor voltage signal is determined.
前記少なくとも1つのプロセッサが、動作中、前記第1のセンサ電圧信号及び前記第2のセンサ電圧信号の合計を前記第3のセンサ電圧信号で割ったものを決定する、請求項11に記載のシステム。 11. The system of claim 11, wherein at least one processor determines, in operation, the sum of the first sensor voltage signal and the second sensor voltage signal divided by the third sensor voltage signal. .. 前記少なくとも1つのプロセッサが、動作中、前記第1、第2、及び第3のセンサ電圧信号から導出された少なくとも1つの値をルックアップ表と比較して、前記受信した第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて前記絶縁導体の前記AC電圧を決定する、請求項1に記載のシステム。 While in operation, the at least one processor compares at least one value derived from the first, second, and third sensor voltage signals with a lookup table and receives the first, second, and so on. And the system of claim 1, wherein the AC voltage of the insulating conductor is determined based on at least a portion of the third sensor voltage signal. 前記少なくとも1つのプロセッサが、動作中、前記第1、第2、及び第3のセンサ電圧信号から導出された少なくとも1つの値を使用して、前記第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて前記絶縁導体の前記AC電圧を決定する、請求項1に記載のシステム。 While the at least one processor is in operation, the first, second, and third sensors use at least one value derived from the first, second, and third sensor voltage signals. The system of claim 1, wherein the AC voltage of the insulating conductor is determined based on at least a portion of the voltage signal. 導体と該導体を囲繞する絶縁体とからなる絶縁導体の交流(AC)電圧を測定するためのシステムを操作する方法であって、前記システムは、ハウジングと、前記ハウジングに物理的に結合されるセンサアセンブリと、を含み、前記センサアセンブリは、前記絶縁導体の導体と接触せずに、前記絶縁導体に近接して位置決め可能であり、前記センサアセンブリは、第1の導電センサと、第2の導電センサと、第3の導電センサと、を備え、前記第1、第2、及び第3の導電センサは、前記センサアセンブリが前記絶縁導体に近接して位置付けられるとき、それぞれ動作中、記導体に容量的に結合し、前記第1、第2、及び第3の導電センサのそれぞれは、容量結合に影響を及ぼす少なくとも1つの特性に関して前記第1、第2及び第3の導電センサのうちの他の2つの導電センサと異なり、前記方法が、
前記第1、第2、及び第3の導電センサと電気的に結合された電圧測定サブシステムを介して、それぞれ前記第1、第2、及び第3の導電センサでの電圧を示す第1、第2、及び第3のセンサ電圧信号を生成する工程と、
前記電圧測定サブシステムに通信可能に接続された少なくとも1つのプロセッサによって、前記電圧測定サブシステムから前記第1、第2、及び第3のセンサ電圧信号を受信する工程と、
前記少なくとも1つのプロセッサによって、前記第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて前記絶縁導体の前記AC電圧を決定する工程と、を含む方法。
A method of operating a system for measuring the AC (AC) voltage of an insulating conductor consisting of a conductor and an insulator surrounding the conductor, wherein the system is physically coupled to the housing and to the housing. Including a sensor assembly, the sensor assembly can be positioned close to the insulating conductor without contacting the conductor of the insulating conductor, and the sensor assembly is a first conductive sensor and a second. It comprises a conductive sensor and a third conductive sensor, wherein the first, second, and third conductive sensors are in operation , respectively , when the sensor assembly is positioned close to the insulating conductor. Capacitively coupled to the conductor , each of the first, second, and third conductive sensors of the first, second, and third conductive sensors with respect to at least one property that affects the capacitive coupling . Unlike our other two conductive sensors , the above method
1. The process of generating the second and third sensor voltage signals, and
A step of receiving the first, second, and third sensor voltage signals from the voltage measurement subsystem by at least one processor communicatively connected to the voltage measurement subsystem.
A method comprising the step of determining the AC voltage of the insulating conductor based on at least a portion of the first, second, and third sensor voltage signals by the at least one processor.
前記絶縁導体の前記AC電圧を決定する工程が、
前記第2のセンサ電圧信号で割られた前記第1のセンサ電圧信号
前記第1のセンサ電圧信号及び前記第2のセンサ電圧信号の合計か、若しくは
前記第1のセンサ電圧信号、第2のセンサ電圧信号、及び前記第3のセンサ電圧信号の合計のうち少なくとも1つを決定する工程を含む、請求項15に記載の方法。
The step of determining the AC voltage of the insulating conductor is
The first sensor voltage signal divided by the second sensor voltage signal ,
The sum of the first sensor voltage signal and the second sensor voltage signal , or
15. The method of claim 15, comprising the step of determining at least one of the sum of the first sensor voltage signal, the second sensor voltage signal, and the third sensor voltage signal.
前記絶縁導体の前記AC電圧を決定する工程が、前記第1のセンサ電圧信号及び前記第2のセンサ電圧信号の合計を前記第3のセンサ電圧信号で割ったものを決定する工程を含む、請求項15に記載の方法。 The step of determining the AC voltage of the insulating conductor includes a step of determining the sum of the first sensor voltage signal and the second sensor voltage signal divided by the third sensor voltage signal. Item 5. The method according to Item 15. 前記絶縁導体の前記AC電圧を決定する工程が、前記第1、第2、及び第3のセンサ電圧信号から導出された少なくとも1つの値をルックアップ表と比較して、前記第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて前記絶縁導体の前記AC電圧を決定する工程を含む、請求項15に記載の方法。 The step of determining the AC voltage of the insulating conductor compares at least one value derived from the first, second, and third sensor voltage signals with the lookup table, and the first, first, first. 2. The method of claim 15, comprising determining the AC voltage of the insulating conductor based on at least a portion of the third sensor voltage signal. 前記絶縁導体の前記AC電圧を決定する工程が、前記第1、第2、及び第3のセンサ電圧信号から導出された少なくとも1つの値を使用して、前記第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて前記絶縁導体の前記AC電圧を決定する工程を含む、請求項15に記載の方法。 The step of determining the AC voltage of the insulating conductor uses at least one value derived from the first, second, and third sensor voltage signals to the first, second, and first. 15. The method of claim 15, comprising determining the AC voltage of the insulating conductor based on at least a portion of the sensor voltage signal of 3. 導体と該導体を囲繞する絶縁体とからなる絶縁導体の交流(AC)電圧を測定する方法であって、
前記絶縁導体の導体と接触せずに、第1の導電センサと、第2の導電センサと、第3の導電センサとを備えるセンサアセンブリを前記絶縁体に近接して位置決めする工程であって、前記第1、第2、及び第3の導電センサが、前記センサアセンブリが前記導体に近接して位置付けられるとき、それぞれ前記導体に容量的に結合し、前記第1、第2、及び第3の導電センサのそれぞれは、容量結合に影響を及ぼす少なくとも1つの特性に関して前記第1、第2及び第3の導電センサのうちの他の2つの導電センサと異なる、工程と、
前記第1、第2、及び第3の導電センサと電気的に結合された電圧測定サブシステムを介して、それぞれ前記第1、第2、及び第3の導電センサでの電圧を示す第1、第2、及び第3のセンサ電圧信号を生成する工程と、
前記電圧測定サブシステムに通信可能に接続された少なくとも1つのプロセッサによって、前記電圧測定サブシステムから前記第1、第2、及び第3のセンサ電圧信号を受信する工程と、
前記少なくとも1つのプロセッサによって、前記第1、第2、及び第3のセンサ電圧信号の少なくとも一部に基づいて前記絶縁導体の前記AC電圧を決定する工程と、を含む方法。
A method of measuring the alternating current (AC) voltage of an insulating conductor consisting of a conductor and an insulator surrounding the conductor.
A step of positioning a sensor assembly including a first conductive sensor, a second conductive sensor, and a third conductive sensor in close proximity to the insulator without contacting the conductor of the insulating conductor. The first, second, and third conductive sensors are capacitively coupled to the conductor when the sensor assembly is positioned in close proximity to the conductor , respectively, and the first, second, and third conductive sensors, respectively. And each of the third conductive sensors differs from the other two conductive sensors of the first, second and third conductive sensors in terms of at least one property that affects capacitive coupling,
1. The process of generating the second and third sensor voltage signals, and
A step of receiving the first, second, and third sensor voltage signals from the voltage measurement subsystem by at least one processor communicatively connected to the voltage measurement subsystem.
A method comprising the step of determining the AC voltage of the insulating conductor based on at least a portion of the first, second, and third sensor voltage signals by the at least one processor.
前記第1、第2、及び第3の導電センサのそれぞれの導電センサは、少なくとも1つの物理的寸法に関して前記第1、第2、及び第3の導電センサのうちの他の2つの導電センサと異なる、請求項20に記載の方法。 Each of the first, second, and third conductive sensors has a conductive sensor with the other two of the first, second, and third conductive sensors with respect to at least one physical dimension. A different method according to claim 20. 前記第1、第2、及び第3の導電センサのそれぞれの導電センサは、前記センサアセンブリが前記絶縁導体に近接して位置付けられるとき、物理的な面積、物理的向き、又は前記絶縁導体からの物理的な間隔の少なくとも1つに関して前記第1、第2、及び第3の導電センサのうちの他の2つの導電センサと異なる、請求項20に記載の方法。 The conductive sensors of the first, second, and third conductive sensors, respectively, are from the physical area, physical orientation, or from the insulating conductor when the sensor assembly is positioned in close proximity to the insulating conductor. 20. The method of claim 20, which differs from the other two conductive sensors of the first, second, and third conductive sensors with respect to at least one of the physical spacings . 前記第1及び第2の導電センサのそれぞれは、直角を形成する第1の縁部及び第2の縁部、並びに前記直角と反対側の斜辺縁部を画定する平面直角三角形状を有し、前記第1の導電センサ及び前記第2の導電センサの前記斜辺縁部は、互いに近接して位置付けられている、請求項20に記載の方法。 Each of the first and second conductivity sensors has a plane right-angled triangular shape defining a first edge and a second edge forming a right angle, and a hypotenuse edge opposite the right angle. The method according to claim 20, wherein the hypotenuse portion of the first conductive sensor and the second conductive sensor is positioned close to each other. 前記第3の導電センサは、平面矩形状を有する、請求項23に記載の方法。 23. The method of claim 23, wherein the third conductive sensor has a planar rectangular shape. 前記第1及び第2の導電センサは、第1の平面に位置付けられ、前記第3の導電センサは、第2の平面に位置付けられ、前記第1の平面は、前記第2の平面に対して鋭角配置されている、請求項24に記載の方法。 The first and second conductive sensors are positioned on a first plane, the third conductive sensor is positioned on a second plane, and the first plane is relative to the second plane. 24. The method of claim 24, which is arranged at an acute angle. 前記センサアセンブリが、
センサアセンブリが前記絶縁導体に近接して位置付けられるとき、前記第1及び第2の導電センサを前記絶縁導体から絶縁する第1の絶縁材層であって、第1の厚さを有する第1の絶縁材層と、
前記センサアセンブリが前記絶縁導体に近接して位置付けられるとき、前記第3の導電センサを前記絶縁導体から絶縁する第2の絶縁材層であって、前記第1の厚さと異なる第2の厚さを有する第2の絶縁材層を含む請求項20に記載の方法。
The sensor assembly
A first insulating layer having a first thickness that insulates the first and second conductive sensors from the insulating conductor when the sensor assembly is positioned in close proximity to the insulating conductor. Insulation layer and
A second insulating layer that insulates the third conductive sensor from the insulating conductor when the sensor assembly is positioned in close proximity to the insulating conductor, with a second thickness different from the first thickness. The method of claim 20, comprising a second insulating layer having a sensor.
前記センサアセンブリが、前記第1、第2、及び第3の導電センサのそれぞれを少なくとも部分的に囲む少なくとも1つの内部接地ガードを含む、請求項20に記載の方法。
20. The method of claim 20 , wherein the sensor assembly comprises at least one internal ground guard that at least partially surrounds each of the first, second, and third conductive sensors.
JP2017218394A 2016-11-11 2017-11-13 Non-contact voltage measurement system using multiple capacitors Active JP7199804B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662421124P 2016-11-11 2016-11-11
US62/421,124 2016-11-11
US15/412,891 2017-01-23
US15/412,891 US10281503B2 (en) 2016-11-11 2017-01-23 Non-contact voltage measurement system using multiple capacitors

Publications (3)

Publication Number Publication Date
JP2018116044A JP2018116044A (en) 2018-07-26
JP2018116044A5 true JP2018116044A5 (en) 2022-02-01
JP7199804B2 JP7199804B2 (en) 2023-01-06

Family

ID=60301945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017218394A Active JP7199804B2 (en) 2016-11-11 2017-11-13 Non-contact voltage measurement system using multiple capacitors

Country Status (5)

Country Link
US (1) US10281503B2 (en)
EP (1) EP3321698B1 (en)
JP (1) JP7199804B2 (en)
CN (1) CN108089047B (en)
TW (1) TWI791002B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202461B1 (en) * 2017-03-06 2017-09-27 株式会社シーブイエンジニアリング Current measuring device
GB2579376B (en) * 2018-11-29 2020-12-30 Trust Power Ltd Non-invasive electricity monitoring
DE202019100449U1 (en) * 2019-01-25 2020-04-30 Wago Verwaltungsgesellschaft Mbh Bracket device, control cabinet and readout device
CN110045176A (en) * 2019-03-20 2019-07-23 国网河南省电力公司电力科学研究院 Industrial equipment contact voltage monitoring device and system
CN110146733A (en) * 2019-05-10 2019-08-20 深圳市华星光电半导体显示技术有限公司 Non-contact voltage measuring device and non-contact voltage measurement method
US11112433B2 (en) 2019-08-08 2021-09-07 Fluke Corporation Non-contact electrical parameter measurement device with clamp jaw assembly
JP2021124513A (en) 2020-02-05 2021-08-30 フルークコーポレイションFluke Corporation Non-contact voltage measurement with adjustable-size rogowski coil
CN113219230A (en) 2020-02-05 2021-08-06 弗兰克公司 Sensor probe for contactless electrical measurement with a clamp having an adjustable inner region
US11614469B2 (en) 2020-12-04 2023-03-28 Interbay Assets, Llc Capacitive non-contact voltage sensing method and apparatus
US11002765B1 (en) 2020-12-04 2021-05-11 Vizi Metering, Inc. Non-contact voltage sensing method and apparatus
CN113176441B (en) * 2021-06-11 2022-07-01 广西电网有限责任公司电力科学研究院 Non-contact voltage measuring device and method

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174856A (en) * 1982-04-08 1983-10-13 Yokogawa Hokushin Electric Corp Combined electrode for contactless voltmeter
US4709339A (en) 1983-04-13 1987-11-24 Fernandes Roosevelt A Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules
US5124642A (en) * 1989-12-21 1992-06-23 Sigma Instruments, Inc. Power line post insulator with dual inductor current sensor
JPH06235735A (en) * 1992-04-27 1994-08-23 Kaise Kk Digital clamp tester
US5473244A (en) 1992-09-17 1995-12-05 Libove; Joel M. Apparatus for measuring voltages and currents using non-contacting sensors
JPH06222087A (en) 1993-01-27 1994-08-12 Hamamatsu Photonics Kk Voltage detector
US5973501A (en) 1993-10-18 1999-10-26 Metropolitan Industries, Inc. Current and voltage probe for measuring harmonic distortion
US6043640A (en) * 1997-10-29 2000-03-28 Fluke Corporation Multimeter with current sensor
US6118270A (en) 1998-02-17 2000-09-12 Singer; Jerome R. Apparatus for fast measurements of current and power with scaleable wand-like sensor
IL127699A0 (en) 1998-12-23 1999-10-28 Bar Dov Aharon Method and device for non contact detection of external electric or magnetic fields
US6091237A (en) 1999-09-14 2000-07-18 Chen; Lee-Fei Three-phrase clamp-type power meter
US6731102B2 (en) * 2001-01-31 2004-05-04 Ideal Industries, Inc. Electronic test instrument with extended functions
US6812685B2 (en) 2001-03-22 2004-11-02 Actuant Corporation Auto-selecting, auto-ranging contact/noncontact voltage and continuity tester
JP3761470B2 (en) 2001-04-04 2006-03-29 北斗電子工業株式会社 Non-contact voltage measurement method and apparatus, and detection probe
CN100442060C (en) 2004-01-07 2008-12-10 苏帕鲁尔斯有限公司 Voltage measuring device
US7164263B2 (en) * 2004-01-16 2007-01-16 Fieldmetrics, Inc. Current sensor
US7256588B2 (en) 2004-04-16 2007-08-14 General Electric Company Capacitive sensor and method for non-contacting gap and dielectric medium measurement
JP4611774B2 (en) 2005-03-04 2011-01-12 東日本電信電話株式会社 Non-contact voltage detection method and non-contact voltage detection device
US7466145B2 (en) 2005-10-12 2008-12-16 Hioki Denki Kabushiki Kaisha Voltage measuring apparatus and power measuring apparatus
JP4607753B2 (en) 2005-12-16 2011-01-05 日置電機株式会社 Voltage measuring device and power measuring device
JP4607752B2 (en) 2005-12-16 2011-01-05 日置電機株式会社 Variable capacitance circuit, voltage measuring device and power measuring device
JP4713358B2 (en) 2006-02-08 2011-06-29 日置電機株式会社 Voltage detector
JP4648228B2 (en) 2006-03-24 2011-03-09 日置電機株式会社 Voltage detection apparatus and initialization method
JP5106798B2 (en) 2006-06-22 2012-12-26 日置電機株式会社 Voltage measuring device
JP4726721B2 (en) 2006-07-03 2011-07-20 日置電機株式会社 Voltage measuring device
JP4726722B2 (en) 2006-07-03 2011-07-20 日置電機株式会社 Voltage measuring device
JP4629625B2 (en) 2006-07-12 2011-02-09 日置電機株式会社 Voltage measuring device
GB0614261D0 (en) 2006-07-18 2006-08-30 Univ Sussex The Electric Potential Sensor
JP5106909B2 (en) 2007-04-10 2012-12-26 日置電機株式会社 Line voltage measuring device
JP5144110B2 (en) 2007-04-13 2013-02-13 日置電機株式会社 Voltage measuring device
JP4927632B2 (en) 2007-04-13 2012-05-09 日置電機株式会社 Voltage measuring device
FI121522B (en) * 2007-06-06 2010-12-15 Abb Oy Procedure for controlling frequency converter unit and frequency converter assembly
US7755347B1 (en) 2007-06-12 2010-07-13 Geist Manufacturing Inc. Current and voltage measurement device
JP5160248B2 (en) 2008-01-18 2013-03-13 日置電機株式会社 Voltage detector
US20100090682A1 (en) 2008-02-14 2010-04-15 Armstrong Eric A Multi-Meter Test Lead Probe For Hands-Free Electrical Measurement of Control Panel Industrial Terminal Blocks
US8222886B2 (en) 2008-06-18 2012-07-17 Hioki Denki Kabushiki Kaisha Voltage detecting apparatus and line voltage detecting apparatus having a detection electrode disposed facing a detected object
JP5389389B2 (en) 2008-07-22 2014-01-15 日置電機株式会社 Line voltage measuring apparatus and program
CN101881791B (en) 2009-04-30 2015-08-05 日置电机株式会社 Voltage check device
JP5340817B2 (en) 2009-06-11 2013-11-13 日置電機株式会社 Voltage detector
US8330449B2 (en) 2009-07-20 2012-12-11 Fluke Corporation Clamp-on multimeters including a Rogowski coil for measuring alternating current in a conductor
US10660697B2 (en) * 2009-11-10 2020-05-26 Cardea Medsystems (Tianjin) Co., Ltd. Hollow body cavity ablation apparatus
JP5420387B2 (en) 2009-12-09 2014-02-19 日置電機株式会社 Voltage detector
US9615147B2 (en) * 2010-05-17 2017-04-04 Flir Systems, Inc. Multisensory meter system
JP5474707B2 (en) 2010-08-30 2014-04-16 日置電機株式会社 Detection circuit and voltage detection device for voltage detection device
US8680845B2 (en) 2011-02-09 2014-03-25 International Business Machines Corporation Non-contact current and voltage sensor
US9063184B2 (en) 2011-02-09 2015-06-23 International Business Machines Corporation Non-contact current-sensing and voltage-sensing clamp
JP5737750B2 (en) 2011-02-25 2015-06-17 株式会社日立パワーソリューションズ AC power measuring device
JP5834663B2 (en) 2011-04-06 2015-12-24 富士通株式会社 AC power measuring device
JP2013167523A (en) * 2012-02-15 2013-08-29 Omron Corp Detection device and method, and detection system
JP4995993B2 (en) 2012-03-05 2012-08-08 日置電機株式会社 Clamp sensor
CN204214925U (en) 2012-03-16 2015-03-18 菲力尔系统公司 Electric transducer and electric transducer label
CN102636689B (en) * 2012-05-09 2014-07-02 中国人民解放军重庆通信学院 Non-contact power voltage measuring method
US20140035607A1 (en) 2012-08-03 2014-02-06 Fluke Corporation Handheld Devices, Systems, and Methods for Measuring Parameters
JP5981271B2 (en) 2012-08-28 2016-08-31 日置電機株式会社 Voltage measuring sensor and voltage measuring device
US9007077B2 (en) 2012-08-28 2015-04-14 International Business Machines Corporation Flexible current and voltage sensor
JP5981270B2 (en) 2012-08-28 2016-08-31 日置電機株式会社 Voltage measuring sensor and voltage measuring device
JP6104578B2 (en) 2012-11-30 2017-03-29 日置電機株式会社 Inspection apparatus and inspection method
US9651584B2 (en) * 2012-12-05 2017-05-16 Schneider Electric USA, Inc. Isolated and self-calibrating voltage measurement sensor
US9461559B2 (en) * 2013-03-15 2016-10-04 Rockwell Automation Technologies, Inc. Active front end power converter with boost mode derating to protect filter inductor
JP6372164B2 (en) 2014-05-26 2018-08-15 オムロン株式会社 Voltage measuring device and voltage measuring method
JP6210938B2 (en) 2014-06-18 2017-10-11 日置電機株式会社 Non-contact voltage detector
CN104198821B (en) * 2014-07-17 2016-09-14 浙江大学 Capacity coupling non-contact conductance measurement apparatus based on impedance cancellation and method thereof
US9689903B2 (en) 2014-08-12 2017-06-27 Analog Devices, Inc. Apparatus and methods for measuring current
TWI649568B (en) 2014-10-17 2019-02-01 日商日置電機股份有限公司 Voltage detecting device
KR20160065613A (en) * 2014-12-01 2016-06-09 삼성전자주식회사 Voltage measurement device and voltage sensor
US9915686B2 (en) * 2014-12-29 2018-03-13 Eaton Corporation Voltage sensor housing and assembly including the same
WO2016175123A1 (en) 2015-04-28 2016-11-03 アルプス・グリーンデバイス株式会社 Non-contact voltage measurement device
JP2016223818A (en) 2015-05-27 2016-12-28 パナソニックIpマネジメント株式会社 Probe and voltage measurement device using the probe

Similar Documents

Publication Publication Date Title
JP2018116044A5 (en)
JP7199804B2 (en) Non-contact voltage measurement system using multiple capacitors
US11131786B2 (en) Scanner for detecting objects behind an opaque surface
TW201819928A (en) Non-contact voltage measurement system using reference signal
JP2016519563A (en) closure
US8773135B2 (en) Resistivity imaging using phase sensitive detection with a floating reference signal
CN103765235A (en) Contactless capacitive distance sensor
JP2016017882A5 (en)
JP2019528531A5 (en)
JP6372162B2 (en) Voltage measuring device and voltage measuring method
WO2016194358A1 (en) Skin resistance measuring device
JP2014010027A (en) Position orientation method of temperature changed place of insulation electric wire or cable
CN105182081A (en) Method for testing square resistance of sheet material
CN204462065U (en) A kind of hand-held capacitance imaging probe
JP2015155894A (en) Electric characteristics measurement device
KR20090035774A (en) Touch sensor and touch screen using thereof
KR101525429B1 (en) Pressure sensor and position pointing device with pressure sensor
US11693143B2 (en) Scanner for detecting objects behind an opaque surface
US9588162B2 (en) Capacitive positioning device
JP7152708B2 (en) capacitive sensor
US11385270B2 (en) Capacitance-type sensing system and wearable device for indirect contact
JP6821318B2 (en) Inspection equipment and inspection method
JP5768648B2 (en) Dielectric constant sensor
JP7062478B2 (en) Non-contact communication medium
JP2014116839A (en) Antenna structure, radio communication device, and antenna inspection method