JP2018113925A - Water treatment apparatus, water treatment method, and device for producing aquatic life rearing water - Google Patents
Water treatment apparatus, water treatment method, and device for producing aquatic life rearing water Download PDFInfo
- Publication number
- JP2018113925A JP2018113925A JP2017007427A JP2017007427A JP2018113925A JP 2018113925 A JP2018113925 A JP 2018113925A JP 2017007427 A JP2017007427 A JP 2017007427A JP 2017007427 A JP2017007427 A JP 2017007427A JP 2018113925 A JP2018113925 A JP 2018113925A
- Authority
- JP
- Japan
- Prior art keywords
- water
- treatment
- membrane filtration
- water tank
- organic matter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Farming Of Fish And Shellfish (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、タンパク質等の高分子有機物を含む高分子有機物含有水を処理する水処理装置および水処理方法に関する。また、本発明は、その水処理方法を利用した、水中生物の飼育水の製造装置に関する。 The present invention relates to a water treatment apparatus and a water treatment method for treating high molecular organic substance-containing water containing a high molecular organic substance such as protein. The present invention also relates to an apparatus for producing breeding water for aquatic organisms using the water treatment method.
膜ろ過を連続運転していくと、ろ過水量が低下するファウリングが生じる。このファウリングを抑制する方法あるいは膜を洗浄する方法として、一般的には次亜塩素酸ナトリウム水溶液を膜の2次側から1次側に逆流させる方法が用いられる。さらに膜の洗浄を高める方法として、塩素を含む水を膜の2次側から逆流させた後、その水を所定時間保持することで膜を洗浄する方法(特許文献1参照)や、マイクロバブルやナノバブルの微細気泡を用いた方法(特許文献2参照)等がある。 When the membrane filtration is continuously operated, fouling in which the amount of filtered water decreases occurs. As a method for suppressing this fouling or a method for washing the membrane, generally, a method in which a sodium hypochlorite aqueous solution is caused to flow backward from the secondary side to the primary side of the membrane is used. Further, as a method for enhancing the cleaning of the membrane, a method of cleaning the membrane by reversing chlorine-containing water from the secondary side of the membrane and holding the water for a predetermined time (see Patent Document 1), microbubbles, There is a method using nanobubbles (refer to Patent Document 2).
特に、養殖や水族館のようなタンパク質等の高分子有機物を含む高分子有機物含有水を膜ろ過処理しようとする場合、タンパク質等の高分子有機物がファウリングを助長してしまう可能性がある。さらに、一度ファウリングを起こしてしまった膜は、酸やアルカリ等を用いた薬品洗浄を行う必要があり、洗浄にかかるメンテナンス費用や、装置停止を見込んだ予備系列の設置等、コストが膨らむ要因となる。 In particular, when water containing a high molecular organic substance including a high molecular organic substance such as a protein such as aquaculture or aquarium is to be subjected to membrane filtration treatment, the high molecular organic substance such as a protein may promote fouling. In addition, once fouling has occurred, it is necessary to perform chemical cleaning using acid, alkali, etc., which increases costs such as maintenance costs for cleaning and the installation of a preliminary system in anticipation of equipment shutdown. It becomes.
本発明の目的は、膜のファウリングを抑制し、安定した運転が可能な、高分子有機物含有水を処理する水処理装置および水処理方法を提供することである。また、本発明の目的は、その水処理方法を利用した、水中生物の飼育水の製造装置を提供することである。 An object of the present invention is to provide a water treatment apparatus and a water treatment method for treating high molecular organic substance-containing water that can suppress fouling of a membrane and can be stably operated. Moreover, the objective of this invention is providing the manufacturing apparatus of the breeding water of aquatic organisms using the water treatment method.
本発明は、高分子有機物を含む高分子有機物含有水を処理する水処理装置であって、前記高分子有機物含有水を貯留する原水槽と、前記原水槽の水を循環して有機物処理を行う有機物処理手段と、前記原水槽の水を膜ろ過処理する膜ろ過手段と、を備える水処理装置である。 The present invention is a water treatment apparatus for treating high molecular organic substance-containing water including high molecular organic substances, and performs organic substance treatment by circulating the raw water tank storing the high molecular organic substance containing water and the water in the raw water tank. It is a water treatment apparatus provided with an organic matter treatment means and a membrane filtration means for subjecting the water in the raw water tank to a membrane filtration treatment.
前記水処理装置において、前記原水槽と膜ろ過手段との間に有機物濃度測定手段を備え、前記有機物濃度測定手段により測定した有機物濃度に応じて、前記原水槽から前記有機物処理手段へ循環する循環流量を制御することが好ましい。 In the water treatment apparatus, the organic matter concentration measuring means is provided between the raw water tank and the membrane filtration means, and the circulation is circulated from the raw water tank to the organic matter treatment means according to the organic matter concentration measured by the organic matter concentration measuring means. It is preferable to control the flow rate.
前記水処理装置において、前記高分子有機物含有水は、水中生物の飼育水であり、前記膜ろ過手段による膜ろ過処理で得られる膜ろ過処理水を飼育水として再利用することが好ましい。 In the water treatment device, the high molecular organic substance-containing water is a breeding water for aquatic organisms, and it is preferable to reuse the membrane filtration treated water obtained by membrane filtration treatment by the membrane filtration means as breeding water.
前記水処理装置において、前記有機物処理手段が、オゾンマイクロバブルを用いる手段であることが好ましい。 In the water treatment apparatus, the organic matter treatment means is preferably a means using ozone microbubbles.
また、本発明は、高分子有機物を含む高分子有機物含有水を処理する水処理方法であって、前記高分子有機物含有水を原水槽に貯留し、前記原水槽の水を循環して有機物処理を行い、前記原水槽の水を膜ろ過処理する水処理方法である。 The present invention is also a water treatment method for treating high molecular organic substance-containing water containing high molecular organic substances, wherein the high molecular organic substance-containing water is stored in a raw water tank, and the organic substance treatment is performed by circulating water in the raw water tank. This is a water treatment method in which the water in the raw water tank is subjected to membrane filtration treatment.
前記水処理方法において、前記原水槽から膜ろ過処理の間で有機物濃度を測定し、前記測定した有機物濃度に応じて、前記原水槽から前記有機物処理へ循環する循環流量を制御することが好ましい。 In the water treatment method, it is preferable that an organic substance concentration is measured between the raw water tank and the membrane filtration process, and a circulation flow rate circulating from the raw water tank to the organic substance treatment is controlled according to the measured organic substance concentration.
前記水処理方法において、前記高分子有機物含有水は、水中生物の飼育水であり、前記膜ろ過処理で得られる膜ろ過処理水を飼育水として再利用することが好ましい。 In the water treatment method, the high molecular organic substance-containing water is breeding water for aquatic organisms, and it is preferable to reuse the membrane filtration treated water obtained by the membrane filtration treatment as breeding water.
前記水処理方法において、前記有機物処理において、オゾンマイクロバブルを用いて処理を行うことが好ましい。 In the water treatment method, the organic matter treatment is preferably performed using ozone microbubbles.
また、本発明は、水中生物の飼育水の製造装置であって、前記水中生物を飼育する水槽と、前記水槽からの飼育水を貯留する原水槽と、前記原水槽の水を循環して有機物処理を行う有機物処理手段と、前記原水槽の水を膜ろ過処理する膜ろ過手段と、前記膜ろ過手段により膜ろ過処理した処理水の少なくとも一部を前記水槽に返送する返送手段と、を備える、水中生物の飼育水の製造装置である。 Further, the present invention is an apparatus for producing water for breeding aquatic organisms, comprising an aquarium for breeding the aquatic organisms, a raw aquarium for storing breeding water from the aquarium, and an organic substance by circulating water in the raw aquarium An organic matter treatment means for performing treatment, a membrane filtration means for subjecting the water in the raw water tank to a membrane filtration process, and a return means for returning at least a part of the treated water subjected to the membrane filtration treatment by the membrane filtration means to the water tank. It is a device for producing water for breeding underwater organisms.
本発明では、高分子有機物含有水を処理する水処理装置および水処理方法において、膜のファウリングを抑制し、安定した運転が可能となる。また、その水処理方法を利用した、水中生物の飼育水の製造装置を提供することができる。 In the present invention, in a water treatment apparatus and a water treatment method for treating high molecular organic substance-containing water, fouling of the membrane is suppressed and stable operation is possible. Moreover, the manufacturing apparatus of the breeding water of aquatic organisms using the water treatment method can be provided.
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.
本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。 An example of a water treatment apparatus according to an embodiment of the present invention is schematically shown in FIG.
水処理装置1は、高分子有機物含有水を貯留する原水槽12と、原水槽12の水を循環して有機物処理を行う有機物処理手段として、オゾン発生装置24を備えるオゾン処理装置22と、原水槽12の水を膜ろ過処理する膜ろ過手段として、膜ろ過装置16とを備える。水処理装置1は、水中生物を飼育する水槽10と、膜ろ過水を貯留する膜ろ過水槽18と、オゾン分解手段として活性炭処理装置20とを備えてもよい。水処理装置1は、原水槽12と膜ろ過装置16との間に有機物濃度測定手段として、有機物濃度測定装置14を備えてもよい。 The water treatment apparatus 1 includes a raw water tank 12 that stores high-molecular organic substance-containing water, an ozone treatment apparatus 22 that includes an ozone generator 24 as an organic substance treatment unit that circulates water in the raw water tank 12 and performs organic substance treatment, A membrane filtration device 16 is provided as membrane filtration means for membrane filtration of the water in the water tank 12. The water treatment device 1 may include a water tank 10 for breeding aquatic organisms, a membrane filtration water tank 18 for storing membrane filtered water, and an activated carbon treatment device 20 as an ozone decomposition unit. The water treatment device 1 may include an organic matter concentration measuring device 14 as an organic matter concentration measuring unit between the raw water tank 12 and the membrane filtration device 16.
図1の水処理装置1において、水槽10のオーバーフロー出口と原水槽12の原水入口とが原水配管40により接続されている。原水槽12の循環出口とオゾン処理装置22の入口とがポンプ36を介して原水循環配管52により接続され、オゾン処理装置22の出口と原水槽12の循環入口とが流量計38を介して原水循環配管54により接続されている。原水槽12の原水出口と膜ろ過装置16の入口とがポンプ30を介して原水供給配管42により接続されている。膜ろ過装置16の出口と膜ろ過水槽18の入口とが膜ろ過水配管44より接続され、膜ろ過水槽18の出口と活性炭処理装置20の入口とがポンプ32を介して膜ろ過水供給配管46により接続されている。活性炭処理装置20の出口と水槽10の入口とが返送配管48により接続されている。原水槽12と膜ろ過装置16との間、すなわち原水供給配管42には、有機物濃度測定装置14が設置されている。膜ろ過水槽18の下部と膜ろ過装置16の2次側入口とはポンプ34を介して逆洗水配管50により接続されている。膜ろ過装置16の1次側出口と、原水槽12の逆洗排水入口とは、逆洗排水配管58により接続されている。オゾン処理装置22の下部にはオゾン発生装置24がオゾン供給配管56により接続されている。有機物濃度測定装置14には制御装置26が電気的接続手段等により接続され、制御装置26と流量計38とは、電気的接続手段等により接続され、制御装置26とポンプ36とは、インバータ28を介して電気的接続手段等により接続されている。 In the water treatment apparatus 1 of FIG. 1, the overflow outlet of the water tank 10 and the raw water inlet of the raw water tank 12 are connected by a raw water pipe 40. The circulation outlet of the raw water tank 12 and the inlet of the ozone treatment apparatus 22 are connected by a raw water circulation pipe 52 through a pump 36, and the outlet of the ozone treatment apparatus 22 and the circulation inlet of the raw water tank 12 are fed through raw water through a flow meter 38. They are connected by a circulation pipe 54. The raw water outlet of the raw water tank 12 and the inlet of the membrane filtration device 16 are connected by a raw water supply pipe 42 via a pump 30. The outlet of the membrane filtration apparatus 16 and the inlet of the membrane filtration water tank 18 are connected by a membrane filtration water pipe 44, and the outlet of the membrane filtration water tank 18 and the inlet of the activated carbon treatment apparatus 20 are connected via a pump 32 to the membrane filtration water supply pipe 46. Connected by. The outlet of the activated carbon treatment device 20 and the inlet of the water tank 10 are connected by a return pipe 48. An organic substance concentration measuring device 14 is installed between the raw water tank 12 and the membrane filtration device 16, that is, in the raw water supply pipe 42. The lower part of the membrane filtration water tank 18 and the secondary side inlet of the membrane filtration device 16 are connected by a backwash water pipe 50 through a pump 34. The primary outlet of the membrane filtration device 16 and the backwash drainage inlet of the raw water tank 12 are connected by a backwash drainage pipe 58. An ozone generator 24 is connected to the lower part of the ozone treatment device 22 by an ozone supply pipe 56. A control device 26 is connected to the organic substance concentration measuring device 14 by an electrical connection means or the like, the control device 26 and the flow meter 38 are connected by an electrical connection means or the like, and the control device 26 and the pump 36 are connected to an inverter 28. It is connected by an electrical connection means or the like.
本実施形態に係る水処理方法および水処理装置1の動作について説明する。 The operation of the water treatment method and the water treatment apparatus 1 according to this embodiment will be described.
水槽10において魚類等の水中生物が飼育水中で飼育されている。飼育水には、水中生物の飼育に伴い、通常、タンパク質等の高分子有機物、懸濁物質等が含まれる。水槽10内の飼育水、すなわち高分子有機物等を含む高分子有機物含有水は、原水配管40を通して原水槽12に送液される。原水槽12内の高分子有機物含有水の一部は、ポンプ36により、原水循環配管52を通してオゾン処理装置22に供給される。 In the aquarium 10, aquatic organisms such as fish are bred in breeding water. The breeding water usually contains high-molecular organic substances such as proteins, suspended substances and the like with the breeding of aquatic organisms. Breeding water in the aquarium 10, that is, polymer organic matter-containing water including polymer organic matter and the like is sent to the raw water tank 12 through the raw water pipe 40. Part of the polymer organic matter-containing water in the raw water tank 12 is supplied to the ozone treatment device 22 through the raw water circulation pipe 52 by the pump 36.
オゾン処理装置22には、オゾン発生装置24で発生させたオゾンマイクロバブルがオゾン供給配管56を通して下部より供給される。オゾン処理装置22において、オゾンマイクロバブルにより、高分子有機物含有水中の有機物の循環処理(ここでは主に有機物の分解処理)が行われる(有機物処理工程)。また、オゾン処理装置22において、オゾンマイクロバブルを用いた加圧浮上により、濃縮された懸濁物質等が固液分離される。有機物処理が行われたオゾン処理水は、原水循環配管54を通して原水槽12に循環される。排オゾンは、オゾン排出配管等を通して排出され、オゾン除去装置により処理されてもよい。 Ozone microbubbles generated by the ozone generator 24 are supplied to the ozone treatment device 22 from below through an ozone supply pipe 56. In the ozone treatment device 22, circulation treatment (here mainly, decomposition treatment of the organic matter) of the organic matter in the polymer organic matter-containing water is performed by the ozone microbubble (here, the organic matter treatment step). Further, in the ozone treatment device 22, the concentrated suspended matter and the like are separated into solid and liquid by pressure floating using ozone microbubbles. The ozone-treated water that has undergone the organic treatment is circulated to the raw water tank 12 through the raw water circulation pipe 54. Exhaust ozone may be discharged through an ozone discharge pipe or the like and processed by an ozone removing device.
一方で、原水槽12中の原水は、ポンプ30により原水供給配管42を通して膜ろ過装置16に供給される。膜ろ過装置16において、原水中の残存した懸濁物質等が膜を用いてろ過されて除去される(膜ろ過工程)。 On the other hand, the raw water in the raw water tank 12 is supplied to the membrane filtration device 16 through the raw water supply pipe 42 by the pump 30. In the membrane filtration device 16, the suspended substances remaining in the raw water are filtered and removed using a membrane (membrane filtration step).
膜ろ過された膜ろ過水は、膜ろ過水配管44を通して必要に応じて膜ろ過水槽18に貯留された後、ポンプ32により膜ろ過水供給配管46を通して必要に応じて活性炭処理装置20に供給される。活性炭処理装置20において、膜ろ過水中の残オゾンが活性炭により分解処理される(オゾン分解工程)。 The membrane filtered water subjected to membrane filtration is stored in the membrane filtered water tank 18 as needed through the membrane filtered water pipe 44 and then supplied to the activated carbon treatment apparatus 20 as needed through the membrane filtered water supply pipe 46 by the pump 32. The In the activated carbon treatment apparatus 20, residual ozone in the membrane filtrate is decomposed by activated carbon (ozone decomposition step).
残オゾンが分解処理された処理水は、返送配管48を通して水槽10に返送され、飼育水として再利用されてもよい(返送工程)。ポンプ32および返送配管48等が、処理水の少なくとも一部を水槽10に返送する返送手段として機能する。処理水を水槽10に返送して再利用することで、補給水や排水にかかるコストを削減することができる。 The treated water obtained by decomposing the residual ozone may be returned to the water tank 10 through the return pipe 48 and reused as breeding water (returning process). The pump 32 and the return pipe 48 function as return means for returning at least a part of the treated water to the water tank 10. By returning the treated water to the water tank 10 and reusing it, it is possible to reduce the cost of makeup water and drainage.
膜ろ過装置16の洗浄が必要になった場合は、膜ろ過水が膜ろ過水槽18からポンプ34により逆洗水配管50を通して膜ろ過装置16の2次側から1次側に逆流されて、膜が洗浄されてもよい(逆洗工程)。逆洗排水は、系外に排出されてもよいし、逆洗排水配管58を通して原水槽12に供給されてもよい。 When the membrane filtration device 16 needs to be washed, the membrane filtration water is backflowed from the membrane filtration water tank 18 through the backwash water pipe 50 by the pump 34 from the secondary side to the primary side of the membrane filtration device 16. May be washed (back washing step). The backwash drainage may be discharged out of the system, or may be supplied to the raw water tank 12 through the backwash drainage pipe 58.
本実施形態に係る水処理装置1において、高分子有機物含有水を原水槽12に貯留し、原水槽12の水を循環して有機物処理を行い、原水槽12の水を膜ろ過処理することにより、高分子有機物や生物等による膜のファウリングを抑制し、膜ろ過装置16の安定した運転が可能となる。原水槽の水を循環して有機物処理を行うことによって、多段処理により有機物の効率的な分解が可能となる。 In the water treatment apparatus 1 according to the present embodiment, the organic organic substance-containing water is stored in the raw water tank 12, the water in the raw water tank 12 is circulated to perform organic substance treatment, and the water in the raw water tank 12 is subjected to membrane filtration treatment. In addition, fouling of the membrane caused by high molecular organic substances or living organisms is suppressed, and the membrane filtration device 16 can be stably operated. By performing the organic matter treatment by circulating the water in the raw water tank, the organic matter can be efficiently decomposed by the multistage treatment.
逆洗工程中には、有機物の循環処理を行ってもよいし、停止してもよい。原水槽12に供給される逆洗排水に高分子有機物等を多く含む場合には、逆洗工程中でも有機物の循環処理を行うことが好ましい。 During the backwashing step, the organic material may be circulated or stopped. When the backwash wastewater supplied to the raw water tank 12 contains a large amount of organic polymer and the like, it is preferable to carry out the organic matter circulation treatment even during the backwash process.
高分子有機物とは、重量平均分子量が10万〜200万の範囲の有機物である。重量平均分子量は、排水中に含まれる有機物の成分を把握する方法として、LC−OCD(Liquid Chromatography−Organic Carbon Detection)装置(DOC−LABOR社製、mobel12007)を用いて、湿式酸化法(カラム:HW50S)で測定することができる。LC−OCDとは、有機物を分子量毎に分け、それぞれの成分の有機物濃度を測定する方法である。LC−OCDの測定例として、ヒラメを飼育した飼育水の分析結果を図2に示す。図2に示すLC−OCDスペクトルは、横軸の保持時間(RT:Retention Time)[min]が短いほど、有機物の分子量が大きいことを示すが、保持時間(RT)が26〜34min付近に検出されているピークが、重量平均分子量が10万〜200万の範囲のタンパク質等の高分子有機物である。 The high molecular weight organic material is an organic material having a weight average molecular weight in the range of 100,000 to 2,000,000. The weight average molecular weight is a wet oxidation method (column: 2007) using a LC-OCD (Liquid Chromatography-Organic Carbon Detection) apparatus (manufactured by DOC-LABOR, mobile 12007) as a method for grasping the components of organic substances contained in waste water. HW50S). LC-OCD is a method of dividing an organic substance into molecular weights and measuring the organic substance concentration of each component. As an example of LC-OCD measurement, FIG. 2 shows the analysis results of breeding water in which flounder was raised. The LC-OCD spectrum shown in FIG. 2 indicates that the shorter the retention time (RT: Retention Time) [min], the larger the molecular weight of the organic substance, but the retention time (RT) is detected around 26 to 34 minutes. The peaks that are observed are high molecular organic substances such as proteins having a weight average molecular weight in the range of 100,000 to 2,000,000.
有機物処理手段としては、オゾン発生装置を備えるオゾン処理装置の他に、紫外線酸化処理装置等が挙げられる。処理性能等の観点から、オゾン発生装置を備えるオゾン処理装置が好ましい。有機物処理手段としては、オゾンマイクロバブルを用いるオゾン処理装置であることが好ましい。 As an organic substance processing means, an ultraviolet oxidation processing apparatus etc. other than an ozone processing apparatus provided with an ozone generator are mentioned. From the viewpoint of processing performance and the like, an ozone processing apparatus including an ozone generator is preferable. As the organic substance treatment means, an ozone treatment apparatus using ozone microbubbles is preferable.
オゾンマイクロバブルは、例えば、直径が10μm〜100μm程度の、オゾンを含む微細なオゾン含有気泡である。オゾンマイクロバブルを用いるオゾン処理装置により、高分子有機物および懸濁物質を含む高分子有機物含有水に対して、オゾンを含む微細気泡であるオゾンマイクロバブルの表面に懸濁物質を疎水性吸着させ浮上分離させて除去するとともに、オゾンマイクロバブルによる有機物酸化効果が得られる。また、オゾンをマイクロバブルとして用いることで、オゾン処理装置22の槽内にオゾンマイクロバブルを長時間保持することができるため、有機物との反応時間が増え、有機物の処理効果が飛躍的に向上すると考えられる。 The ozone microbubble is, for example, a fine ozone-containing bubble containing ozone having a diameter of about 10 μm to 100 μm. Ozone treatment equipment using ozone microbubbles floats by adsorbing suspended substances on the surface of ozone microbubbles, which are fine bubbles containing ozone, to water containing polymer organic substances including polymer organic substances and suspended substances. While separating and removing, the organic substance oxidation effect by an ozone microbubble is acquired. Moreover, since ozone microbubbles can be held in the tank of the ozone treatment device 22 for a long time by using ozone as microbubbles, the reaction time with organic matter increases, and the treatment effect of organic matter is drastically improved. Conceivable.
膜ろ過装置16としては、例えば、限外ろ過膜(UF膜)または精密ろ過膜(MF膜)等のろ過膜を有するものであればよく、特に制限はない。 The membrane filtration device 16 is not particularly limited as long as it has a filtration membrane such as an ultrafiltration membrane (UF membrane) or a microfiltration membrane (MF membrane).
膜ろ過水中の残オゾンの濃度が高く、水槽10に返送されて生物の飼育等に影響を及ぼすことが懸念される場合は、膜ろ過装置16の後段に活性炭処理装置20等のオゾン分解手段を設けることが好ましい。膜ろ過装置16の後段にオゾン分解手段を備えることにより、残オゾンによる生物の飼育等への影響を低減することができる。このため、原水が養殖や水族館等の飼育水等である場合に、処理水を水槽10へ返送しても、生物への影響を低減することができる。 If the concentration of residual ozone in the membrane filtered water is high and there is a concern that it will be returned to the aquarium 10 and affect the breeding of living organisms, etc., an ozone decomposing means such as an activated carbon treatment device 20 will be installed downstream of the membrane filtration device 16. It is preferable to provide it. By providing the ozonolysis means at the subsequent stage of the membrane filtration device 16, it is possible to reduce the influence of residual ozone on the breeding of organisms. For this reason, even when the raw water is aquaculture, breeding water such as an aquarium, etc., even if the treated water is returned to the aquarium 10, the influence on living organisms can be reduced.
オゾン分解手段としては、活性炭を充填した活性炭充填塔等の活性炭処理装置の他に、Pd担持担体、酸化チタン、白金等の過酸化物分解触媒を充填した充填塔等が挙げられ、コスト等の観点から活性炭充填塔等の活性炭処理装置が好ましい。また、過酸化物分解触媒を充填した充填塔への通水方向は、下向流と上向流のどちらでもよいが、過酸化物の分解率を高めるためには下向流が好ましい。 Examples of the ozonolysis means include an activated carbon treatment apparatus such as an activated carbon packed tower packed with activated carbon, a packed tower packed with a Pd-supported carrier, a peroxide decomposition catalyst such as titanium oxide, platinum, etc. From the viewpoint, an activated carbon treatment apparatus such as an activated carbon packed tower is preferable. Further, the water flow direction to the packed tower packed with the peroxide decomposition catalyst may be either a downward flow or an upward flow, but a downward flow is preferable in order to increase the decomposition rate of the peroxide.
図1の例では、処理水の全てが水槽10に返送されて飼育水に添加されているが、処理水の少なくとも一部が水槽10に返送されて飼育水に添加されればよく、処理水の一部が水槽10に返送されて飼育水に添加されてもよいし、処理水の全てが水槽10に返送されて飼育水に添加されてもよい。使用する水量を低減する等の観点から、処理水の一部が水槽10に返送されることが好ましく、処理水の全てが水槽10に返送されることがより好ましい。処理水の全てが水槽10に返送される閉鎖循環系とすることにより、使用する水量を低減することができる等の利点がある。また、循環は、常時循環してもよいし、定期的に循環してもよい。通常は、水槽10中の水質をできるだけ保つために、常時循環すればよい。 In the example of FIG. 1, all of the treated water is returned to the aquarium 10 and added to the breeding water, but at least a part of the treated water may be returned to the aquarium 10 and added to the breeding water. A part of the water may be returned to the water tank 10 and added to the breeding water, or all of the treated water may be returned to the water tank 10 and added to the breeding water. From the viewpoint of reducing the amount of water used, it is preferable that a part of the treated water is returned to the water tank 10, and it is more preferable that all the treated water is returned to the water tank 10. By setting it as the closed circulation system by which all the treated water is returned to the water tank 10, there exists an advantage that the amount of water to be used can be reduced. Further, the circulation may be performed constantly or periodically. Usually, in order to keep the water quality in the water tank 10 as much as possible, it may be circulated at all times.
本実施形態に係る水処理方法および水処理装置において、原水槽12と膜ろ過装置16との間に有機物濃度測定手段として有機物濃度測定装置14を備え、有機物濃度測定装置14により測定した原水の有機物濃度に応じて、原水槽12からオゾン処理装置22へ循環する循環流量を制御することが好ましい。有機物濃度測定装置14により測定した原水の有機物濃度が高い場合には、原水槽12からオゾン処理装置22へ循環する循環流量を高くし、有機物濃度が低い場合には、原水槽12からオゾン処理装置22へ循環する循環流量を低くすればよい。また、有機物濃度測定装置14により測定した原水の有機物濃度が所定の基準値以下(例えば1mg/L以下)になるように、循環流量を制御してもよい。有機物濃度測定装置14により測定した原水の有機物濃度が所定の基準値を超える等、一時的に高くなった場合には、原水槽12から膜ろ過装置16への原水の供給を停止して、原水槽12からオゾン処理装置22への循環処理を所定の時間行ってもよい。 In the water treatment method and the water treatment apparatus according to this embodiment, the organic matter concentration measuring device 14 is provided as an organic matter concentration measuring means between the raw water tank 12 and the membrane filtration device 16, and the organic matter of the raw water measured by the organic matter concentration measuring device 14 is used. It is preferable to control the circulation flow rate circulating from the raw water tank 12 to the ozone treatment device 22 according to the concentration. When the organic matter concentration of the raw water measured by the organic matter concentration measuring device 14 is high, the circulation flow rate circulating from the raw water tank 12 to the ozone treatment device 22 is increased, and when the organic matter concentration is low, the ozone treatment device is fed from the raw water tank 12 to the ozone treatment device 22. What is necessary is just to make low the circulating flow volume which circulates to 22. Further, the circulation flow rate may be controlled so that the organic matter concentration of the raw water measured by the organic matter concentration measuring device 14 is not more than a predetermined reference value (for example, 1 mg / L or less). If the organic matter concentration of the raw water measured by the organic matter concentration measuring device 14 temporarily increases, such as exceeding a predetermined reference value, the supply of raw water from the raw water tank 12 to the membrane filtration device 16 is stopped, Circulation treatment from the water tank 12 to the ozone treatment device 22 may be performed for a predetermined time.
有機物濃度測定装置14としては、有機物の濃度が測定できるものであればよく、特に制限はない。有機物濃度測定装置14としては、例えば、原水の吸光度を測定する分光光度計等が挙げられる。有機物濃度測定装置14としては、例えば、有機汚染モニタ(株式会社明電舎製UVAM−222K)を利用することができる。 The organic substance concentration measuring device 14 is not particularly limited as long as it can measure the organic substance concentration. Examples of the organic substance concentration measuring device 14 include a spectrophotometer that measures the absorbance of raw water. For example, an organic contamination monitor (UVAM-222K manufactured by Meidensha Co., Ltd.) can be used as the organic concentration measuring device 14.
循環流量の制御方法の例を以下に示すが、これに限定するものではない。
(1)ブランク水の有機物濃度測定(=A0)
(2)高分子有機物含有水の有機物濃度測定(=A1)
(3)演算
A’=A1―A0
インバータ28の出力(%)=B0+A’×B1
B0=基本出力、B1=係数
(4)上記(3)の演算結果を制御装置26によりインバータ28に出力し、ポンプ36の循環流量を変化
Although the example of the control method of a circulation flow rate is shown below, it is not limited to this.
(1) Measurement of organic matter concentration in blank water (= A0)
(2) Measurement of organic substance concentration in water containing polymer organic substance (= A1)
(3) Operation A ′ = A1−A0
Output of inverter 28 (%) = B0 + A ′ × B1
B0 = Basic output, B1 = Coefficient (4) The calculation result of (3) above is output to the inverter 28 by the control device 26, and the circulating flow rate of the pump 36 is changed.
有機物濃度測定装置14により測定した有機物濃度に応じて、原水槽12からオゾン処理装置22へ循環する循環流量を制御することにより、タンパク質等の有機物を含む高分子有機物含有水中の懸濁物質を、安定処理することが可能となり、膜ろ過装置16の膜洗浄のランニングコストや、水処理装置1が過剰に大きくなることによるイニシャルコストを削減することが可能となる。特に、給餌等の要因により飼育水中の高分子有機物濃度が変動する場合に有効である。 In accordance with the organic matter concentration measured by the organic matter concentration measuring device 14, by controlling the circulation flow rate that circulates from the raw water tank 12 to the ozone treatment device 22, the suspended matter in the polymer organic matter-containing water containing the organic matter such as protein is obtained. It is possible to perform a stable treatment, and it is possible to reduce the running cost of the membrane filtration of the membrane filtration device 16 and the initial cost due to the excessively large water treatment device 1. This is particularly effective when the concentration of macromolecular organic matter in the breeding water varies due to factors such as feeding.
本実施形態に係る水処理装置1および水処理方法は、水族館や養殖等、水中生物を飼育する際に用いられる飼育水等の処理に適用され、飼育水は海水であっても、淡水であってもよい。水族館や養殖のような水中生物を飼育する過程で生じる、タンパク質等の高分子有機物を含む高分子有機物含有水の処理に好適に適用される。生物を飼育する場合、給餌等の要因により飼育水中の有機物濃度が変動する(例えば、±0.5〜10mg/L)特徴がある。特に、水族館や養殖のような水中生物を飼育する過程で生じる、タンパク質等の高分子有機物を含む海水の処理に適しており、魚類等の水中生物の養殖や水族館等の魚類等の水中生物の飼育水処理に用いられる閉鎖系循環処理により適している。すなわち、本実施形態に係る水処理装置1は、水中生物の飼育水の製造装置または処理装置として、好適に用いることができる。 The water treatment apparatus 1 and the water treatment method according to the present embodiment are applied to treatment of breeding water used when raising aquatic organisms such as aquariums and aquaculture, and the breeding water is fresh water even if it is seawater. May be. It is suitably applied to the treatment of water containing high molecular organic substances including high molecular organic substances such as proteins that are produced in the process of breeding aquatic organisms such as aquariums and aquaculture. When raising an organism, there is a characteristic that the concentration of organic matter in the breeding water varies (for example, ± 0.5 to 10 mg / L) due to factors such as feeding. In particular, it is suitable for the treatment of seawater containing macromolecular organic matter such as proteins, which is produced in the process of breeding aquatic organisms such as aquariums and aquaculture, and aquaculture of aquatic organisms such as fish and aquatic organisms such as fish in aquariums It is more suitable for closed system circulation treatment used for breeding water treatment. That is, the water treatment apparatus 1 according to the present embodiment can be suitably used as a production apparatus or a treatment apparatus for breeding water for aquatic organisms.
高分子有機物含有水中の高分子有機物の濃度は、例えば、0.1〜5mg/Lの範囲である。高分子有機物含有水中の懸濁物質の濃度は、例えば、10〜100mg/Lの範囲である。 The density | concentration of the high molecular organic substance in high molecular organic substance containing water is the range of 0.1-5 mg / L, for example. The concentration of the suspended substance in the high molecular organic substance-containing water is, for example, in the range of 10 to 100 mg / L.
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.
<実施例1>
実施例では、図1に示す水処理装置1を用い、比較例では、オゾン処理装置、膜ろ過装置、活性炭処理装置を直列接続とした実験系である、図3に示す水処理装置を用いた。実施例の実験条件を表1、比較例の実験条件を表2に示す。
<Example 1>
In the examples, the water treatment device 1 shown in FIG. 1 was used, and in the comparative example, the water treatment device shown in FIG. 3, which is an experimental system in which an ozone treatment device, a membrane filtration device, and an activated carbon treatment device were connected in series, was used. . Table 1 shows experimental conditions for the examples, and Table 2 shows experimental conditions for the comparative examples.
比較例で用いた図3に示す水処理装置では、水槽100から高分子有機物含有水を原水槽102に貯留した後、ポンプによりストレーナ114を通してオゾン処理装置104に供給した。オゾン処理装置104にはオゾン発生装置116で発生させたオゾンマイクロバブルを供給した。オゾン処理したオゾン処理水をオゾン処理水槽106に貯留した後、ポンプにより膜ろ過装置108に供給し、膜ろ過処理を行った。膜ろ過水を膜ろ過水槽110に貯留した後、ポンプにより活性炭処理装置112に供給し、活性炭処理を行った。処理水は水槽100に返送した。 In the water treatment apparatus shown in FIG. 3 used in the comparative example, after the high molecular organic substance-containing water was stored in the raw water tank 102 from the water tank 100, it was supplied to the ozone treatment apparatus 104 through the strainer 114 by a pump. Ozone microbubbles generated by the ozone generator 116 were supplied to the ozone treatment device 104. The ozone-treated water treated with ozone was stored in the ozone-treated water tank 106 and then supplied to the membrane filtration device 108 by a pump to perform membrane filtration. After the membrane filtered water was stored in the membrane filtered water tank 110, it was supplied to the activated carbon treatment device 112 by a pump to perform activated carbon treatment. The treated water was returned to the water tank 100.
実施例において、有機物濃度測定装置14により測定した有機物濃度に応じて、原水槽12からオゾン処理装置22へ循環する循環流量を制御した。循環流量の制御方法を以下に示す。
(1)ブランク海水(人工海水)の有機物濃度測定(=A0)
(2)高分子有機物含有水(飼育水)の有機物濃度測定(=A1)
(3)演算
A’=A1―A0
インバータ28の出力(%)=B0+A’×B1
B0=基本出力、B1=係数
(4)上記(3)の演算結果を制御装置26によりインバータ28に出力し、ポンプ36の循環流量を変化
In the Example, according to the organic substance density | concentration measured with the organic substance concentration measuring apparatus 14, the circulation flow volume circulated from the raw | natural water tank 12 to the ozone treatment apparatus 22 was controlled. The control method of the circulation flow rate is shown below.
(1) Organic matter concentration measurement of blank seawater (artificial seawater) (= A0)
(2) Measurement of organic substance concentration in high molecular organic substance-containing water (bred water) (= A1)
(3) Operation A ′ = A1−A0
Output of inverter 28 (%) = B0 + A ′ × B1
B0 = Basic output, B1 = Coefficient (4) The calculation result of (3) above is output to the inverter 28 by the control device 26, and the circulating flow rate of the pump 36 is changed.
実施例および比較例の膜間差圧のトレンドを図4に示す。 The trend of the transmembrane pressure difference between the example and the comparative example is shown in FIG.
図4に示すように、比較例に比べて、実施例では膜ろ過装置の膜間差圧の上昇を抑制することができた。この結果から、実施例の水処理装置および水処理方法によって、膜のファウリングを抑制することが可能となり、膜ろ過装置の安定運転や膜の薬品洗浄頻度を抑制できることが示唆された。また、オゾン処理装置への循環流量を高めに設定することで、膜ろ過装置の膜間差圧上昇を抑制することは可能であるが、ポンプの電気代等のコストがかかってしまう。 As shown in FIG. 4, compared to the comparative example, in the example, an increase in the transmembrane pressure difference of the membrane filtration device could be suppressed. From these results, it was suggested that the fouling of the membrane can be suppressed by the water treatment device and the water treatment method of the example, and the stable operation of the membrane filtration device and the chemical cleaning frequency of the membrane can be suppressed. Moreover, by setting the circulation flow rate to the ozone treatment device high, it is possible to suppress the increase in the transmembrane pressure difference of the membrane filtration device, but costs such as the electricity cost of the pump are required.
このように、実施例では、高分子有機物含有水を処理する水処理装置および水処理方法において、膜のファウリングを抑制し、安定した運転が可能となった。 Thus, in the Example, in the water treatment apparatus and the water treatment method for treating high molecular organic substance-containing water, fouling of the membrane was suppressed and stable operation became possible.
1 水処理装置、10,100 水槽、12,102 原水槽、14 有機物濃度測定装置、16,108 膜ろ過装置、18,110 膜ろ過水槽、20,112 活性炭処理装置、22,104 オゾン処理装置、24,116 オゾン発生装置、26 制御装置、28 インバータ,30,32,34,36 ポンプ、38 流量計、40 原水配管、42 原水供給配管、44 膜ろ過水配管、46 膜ろ過水供給配管、48 返送配管、50 逆洗水配管、52,54 原水循環配管、56 オゾン供給配管、58 逆洗排水配管、106 オゾン処理水槽、114 ストレーナ。 DESCRIPTION OF SYMBOLS 1 Water treatment apparatus, 10,100 Water tank, 12,102 Raw water tank, 14 Organic substance concentration measuring apparatus, 16,108 Membrane filtration apparatus, 18,110 Membrane filtration water tank, 20,112 Activated carbon treatment apparatus, 22,104 Ozone treatment apparatus, 24,116 Ozone generator, 26 control device, 28 inverter, 30, 32, 34, 36 pump, 38 flow meter, 40 raw water piping, 42 raw water supply piping, 44 membrane filtered water piping, 46 membrane filtered water supply piping, 48 Return piping, 50 Backwash water piping, 52, 54 Raw water circulation piping, 56 Ozone supply piping, 58 Backwash drainage piping, 106 Ozone-treated water tank, 114 strainer.
Claims (9)
前記高分子有機物含有水を貯留する原水槽と、
前記原水槽の水を循環して有機物処理を行う有機物処理手段と、
前記原水槽の水を膜ろ過処理する膜ろ過手段と、
を備えることを特徴とする水処理装置。 A water treatment apparatus for treating water containing polymer organic matter including polymer organic matter,
A raw water tank for storing the polymer organic matter-containing water;
An organic matter treatment means for treating the organic matter by circulating the water in the raw water tank;
Membrane filtration means for membrane filtration treatment of the water in the raw water tank,
A water treatment apparatus comprising:
前記原水槽と膜ろ過手段との間に有機物濃度測定手段を備え、
前記有機物濃度測定手段により測定した有機物濃度に応じて、前記原水槽から前記有機物処理手段へ循環する循環流量を制御することを特徴とする水処理装置。 The water treatment device according to claim 1,
An organic matter concentration measuring means is provided between the raw water tank and the membrane filtration means,
A water treatment apparatus characterized by controlling a circulation flow rate circulating from the raw water tank to the organic matter treatment means according to the organic matter concentration measured by the organic matter concentration measurement means.
前記高分子有機物含有水は、水中生物の飼育水であり、前記膜ろ過手段による膜ろ過処理で得られる膜ろ過処理水を飼育水として再利用することを特徴とする水処理装置。 The water treatment device according to claim 1 or 2,
The water containing a high molecular organic substance is a breeding water for aquatic organisms, and a membrane filtration treated water obtained by membrane filtration treatment by the membrane filtration means is reused as breeding water.
前記有機物処理手段が、オゾンマイクロバブルを用いる手段であることを特徴とする水処理装置。 The water treatment device according to any one of claims 1 to 3,
The water treatment apparatus, wherein the organic substance treatment means is means using ozone microbubbles.
前記高分子有機物含有水を原水槽に貯留し、前記原水槽の水を循環して有機物処理を行い、前記原水槽の水を膜ろ過処理することを特徴とする水処理方法。 A water treatment method for treating polymer-containing water containing polymer organic matter,
A water treatment method characterized by storing the polymer organic matter-containing water in a raw water tank, circulating the water in the raw water tank to perform organic treatment, and subjecting the water in the raw water tank to membrane filtration.
前記原水槽から膜ろ過処理の間で有機物濃度を測定し、前記測定した有機物濃度に応じて、前記原水槽から前記有機物処理へ循環する循環流量を制御することを特徴とする水処理方法。 The water treatment method according to claim 5,
A water treatment method characterized in that an organic substance concentration is measured between the raw water tank and a membrane filtration treatment, and a circulation flow rate circulating from the raw water tank to the organic substance treatment is controlled according to the measured organic substance concentration.
前記高分子有機物含有水は、水中生物の飼育水であり、前記膜ろ過処理で得られる膜ろ過処理水を飼育水として再利用することを特徴とする水処理方法。 The water treatment method according to claim 5 or 6,
The water-containing method is characterized in that the high molecular organic substance-containing water is a breeding water for aquatic organisms, and the membrane filtration treated water obtained by the membrane filtration treatment is reused as breeding water.
前記有機物処理において、オゾンマイクロバブルを用いて処理を行うことを特徴とする水処理方法。 The water treatment apparatus according to any one of claims 5 to 7,
In the organic matter treatment, the treatment is performed using ozone microbubbles.
前記水中生物を飼育する水槽と、
前記水槽からの飼育水を貯留する原水槽と、
前記原水槽の水を循環して有機物処理を行う有機物処理手段と、
前記原水槽の水を膜ろ過処理する膜ろ過手段と、
前記膜ろ過手段により膜ろ過処理した処理水の少なくとも一部を前記水槽に返送する返送手段と、
を備えることを特徴とする水中生物の飼育水の製造装置。 An apparatus for producing water for breeding underwater organisms,
A tank for breeding the aquatic organisms;
A raw water tank for storing breeding water from the water tank;
An organic matter treatment means for treating the organic matter by circulating the water in the raw water tank;
Membrane filtration means for membrane filtration treatment of the water in the raw water tank,
A return means for returning at least a part of the treated water subjected to membrane filtration by the membrane filtration means to the water tank;
An apparatus for producing water for breeding aquatic organisms, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017007427A JP6996846B2 (en) | 2017-01-19 | 2017-01-19 | Water treatment equipment, water treatment methods, and equipment for producing breeding water for aquatic organisms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017007427A JP6996846B2 (en) | 2017-01-19 | 2017-01-19 | Water treatment equipment, water treatment methods, and equipment for producing breeding water for aquatic organisms |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018113925A true JP2018113925A (en) | 2018-07-26 |
JP6996846B2 JP6996846B2 (en) | 2022-01-17 |
Family
ID=62984576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017007427A Active JP6996846B2 (en) | 2017-01-19 | 2017-01-19 | Water treatment equipment, water treatment methods, and equipment for producing breeding water for aquatic organisms |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6996846B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021000606A (en) * | 2019-06-21 | 2021-01-07 | オルガノ株式会社 | Water treatment method and water treatment apparatus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000301174A (en) * | 1999-04-19 | 2000-10-31 | Kurita Water Ind Ltd | Waste water treatment apparatus |
JP2002292379A (en) * | 2001-03-30 | 2002-10-08 | Nomura Micro Sci Co Ltd | Method and device for accelerated oxidation treatment |
JP2002306930A (en) * | 2001-04-13 | 2002-10-22 | Toray Ind Inc | Method for treating water and equipment for water treatment |
JP2003047969A (en) * | 2001-08-08 | 2003-02-18 | Mitsubishi Heavy Ind Ltd | Method for sterilizing nursery water with ozone gas |
JP2015019647A (en) * | 2013-07-23 | 2015-02-02 | 株式会社キッツ | Removal method and removal device for ammonia contained in culture water |
JP2015181973A (en) * | 2014-03-20 | 2015-10-22 | オルガノ株式会社 | Membrane filtration system, membrane filtration method, and apparatus of producing rearing water for aquatic organism |
JP2015192612A (en) * | 2014-03-31 | 2015-11-05 | 株式会社キッツ | Circulation-type culture method and circulation-type culture device |
US20160113249A1 (en) * | 2014-10-27 | 2016-04-28 | Chi-Tse Kuo | Liquid bubble separator of circulating water system |
JP2016214175A (en) * | 2015-05-22 | 2016-12-22 | オルガノ株式会社 | Water treatment apparatus and water treatment method |
-
2017
- 2017-01-19 JP JP2017007427A patent/JP6996846B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000301174A (en) * | 1999-04-19 | 2000-10-31 | Kurita Water Ind Ltd | Waste water treatment apparatus |
JP2002292379A (en) * | 2001-03-30 | 2002-10-08 | Nomura Micro Sci Co Ltd | Method and device for accelerated oxidation treatment |
JP2002306930A (en) * | 2001-04-13 | 2002-10-22 | Toray Ind Inc | Method for treating water and equipment for water treatment |
JP2003047969A (en) * | 2001-08-08 | 2003-02-18 | Mitsubishi Heavy Ind Ltd | Method for sterilizing nursery water with ozone gas |
JP2015019647A (en) * | 2013-07-23 | 2015-02-02 | 株式会社キッツ | Removal method and removal device for ammonia contained in culture water |
JP2015181973A (en) * | 2014-03-20 | 2015-10-22 | オルガノ株式会社 | Membrane filtration system, membrane filtration method, and apparatus of producing rearing water for aquatic organism |
JP2015192612A (en) * | 2014-03-31 | 2015-11-05 | 株式会社キッツ | Circulation-type culture method and circulation-type culture device |
US20160113249A1 (en) * | 2014-10-27 | 2016-04-28 | Chi-Tse Kuo | Liquid bubble separator of circulating water system |
JP2016214175A (en) * | 2015-05-22 | 2016-12-22 | オルガノ株式会社 | Water treatment apparatus and water treatment method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021000606A (en) * | 2019-06-21 | 2021-01-07 | オルガノ株式会社 | Water treatment method and water treatment apparatus |
JP7382744B2 (en) | 2019-06-21 | 2023-11-17 | オルガノ株式会社 | Water treatment method and water treatment equipment |
Also Published As
Publication number | Publication date |
---|---|
JP6996846B2 (en) | 2022-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6251095B2 (en) | Membrane filtration system, membrane filtration method, and apparatus for producing water for breeding aquatic organisms | |
JP6719970B2 (en) | Membrane filtration system and membrane filtration method | |
CN106103349A (en) | Method for treating water | |
JP6947602B2 (en) | Water treatment equipment and water treatment method | |
WO2013178296A1 (en) | De-ballast filtration | |
JP7202796B2 (en) | Water treatment device and water treatment method | |
JP6291527B2 (en) | Circulating water treatment equipment | |
JP2010094584A (en) | Method of treating ballast water and apparatus for treating ballast water | |
JP2018089598A (en) | Water treating device | |
JP6996846B2 (en) | Water treatment equipment, water treatment methods, and equipment for producing breeding water for aquatic organisms | |
JP5526093B2 (en) | Seawater desalination method and seawater desalination apparatus | |
JP2020049442A (en) | Method for treating white turbidity of treated water and apparatus therefor | |
JP2019047783A (en) | Sea water filtration equipment and filtration method of sea water for refill | |
KR20190095151A (en) | The water treatment system for fish breeding by applying membrane filtration process | |
JP7382744B2 (en) | Water treatment method and water treatment equipment | |
JP7188942B2 (en) | MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD | |
JP4304803B2 (en) | Water treatment apparatus cleaning method and water treatment apparatus | |
JP7175837B2 (en) | Method and apparatus for producing breeding water for marine organisms | |
JP2001187324A (en) | Washing method of membrane filter device, and water treating device | |
WO2020012786A1 (en) | Water treatment device and water treatment method | |
KR102312754B1 (en) | Water treatment equipment of integrated type using ceramic membrane and ozone oxidation reaction | |
JP2006000728A (en) | Method for preparing ballast water and apparatus for preparing ballast water to be loaded onto vessel | |
JP2009241040A (en) | Method and apparatus for regenerating membrane for manufacturing ballast water | |
JP2009241042A (en) | Method and apparatus for refreshing membrane for preparing ballast water | |
EP2855361B1 (en) | De-ballast filtration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6996846 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |