JP2018111058A - Operating method of water treating apparatus - Google Patents

Operating method of water treating apparatus Download PDF

Info

Publication number
JP2018111058A
JP2018111058A JP2017001990A JP2017001990A JP2018111058A JP 2018111058 A JP2018111058 A JP 2018111058A JP 2017001990 A JP2017001990 A JP 2017001990A JP 2017001990 A JP2017001990 A JP 2017001990A JP 2018111058 A JP2018111058 A JP 2018111058A
Authority
JP
Japan
Prior art keywords
water
water treatment
treatment device
load
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017001990A
Other languages
Japanese (ja)
Other versions
JP6288319B1 (en
Inventor
森田 博志
Hiroshi Morita
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017001990A priority Critical patent/JP6288319B1/en
Priority to CN201780082243.6A priority patent/CN110139835A/en
Priority to PCT/JP2017/032489 priority patent/WO2018131209A1/en
Priority to KR1020197010622A priority patent/KR102453719B1/en
Priority to TW106132183A priority patent/TWI732939B/en
Application granted granted Critical
Publication of JP6288319B1 publication Critical patent/JP6288319B1/en
Publication of JP2018111058A publication Critical patent/JP2018111058A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operating method of a water treating apparatus which can sufficiently use up a water treating device to the life thereof.SOLUTION: The operating method of a water treating apparatus including a plurality of water treating devices of the same type and the same treatment capacity arranged in parallel comprises making the same water to be treated flow through each of the water treating devices, to obtain treated water. The water to be treated is made to flow through a part of water treating devices A with higher load than the load with which the water to be treated is made to flow through other water treating devices B. When quality of water treated with the water treating devices A deteriorates, the life of the water treating devices B is predicted according to integrated load to the water treating devices A up to that time. Based on the prediction result, the amount and time of water flow after that time to each the water treating device are controlled.SELECTED DRAWING: Figure 1

Description

本発明は、イオン交換樹脂塔、活性炭塔などの水処理器が複数個、並列設置されている水処理装置を運転する方法に係り、特に水処理器の水処理能力を十分に使い尽すように運転する方法に関する。   The present invention relates to a method for operating a water treatment device in which a plurality of water treatment devices such as an ion exchange resin tower and an activated carbon tower are installed in parallel, and in particular, to fully use the water treatment capacity of the water treatment device. It relates to how to drive.

ボイラー用水などの一般産業用純水、発電所で用いられる高度な純水、半導体工場・液晶工場などでウェハや基板の洗浄水・リンス水として使われる超純水は、ほとんど全てが被処理水中に含まれる不純物を除去する水処理器を複数組み合わせて使う水処理システムにより製造されている。水処理器としては、イオン交換樹脂塔、活性炭塔、RO膜装置、UF膜装置、イオン交換フィルターなどが広く用いられている。   Almost all of the industrial pure water such as boiler water, advanced pure water used in power plants, and ultrapure water used as wafer and substrate cleaning water and rinse water in semiconductor factories and liquid crystal factories are treated water. It is manufactured by a water treatment system that uses a plurality of water treatment devices that remove impurities contained in the water. As water treatment devices, ion exchange resin towers, activated carbon towers, RO membrane devices, UF membrane devices, ion exchange filters, and the like are widely used.

これらの水処理器の使用方法としては、不純物除去工程と再生工程を繰り返して使う方法のほか、一定水準まで使用した段階で新品に更新する一過式の使用方法などがある。いずれの場合も、所望の処理水質を保ちつつ不純物除去工程(通水工程)を長く保つことが望ましい。   As a method of using these water treatment devices, there are a method of repeatedly using an impurity removal step and a regeneration step, and a temporary method of updating to a new product when used to a certain level. In either case, it is desirable to keep the impurity removal step (water flow step) long while maintaining the desired treated water quality.

水処理器は、処理水質の悪化傾向が認められた場合でも、速やかに再生あるいは新品への更新に移ることが困難な場合が多い。そのため、実際には一定期間ごと、あるいは一定処理量ごとに、計画的に再生・更新を行うことが行われている。   In many cases, it is difficult to promptly regenerate or replace a water treatment device with a new one even when a tendency to deteriorate the quality of treated water is observed. Therefore, in practice, regeneration / update is performed in a planned manner at regular intervals or at regular intervals.

しかしながら、被処理水の水質は年中一定と限らないため、一定期間ごと、あるいは一定処理量ごとの再生・更新を行う場合には、被処理水の水質が厳しい(除去すべき不純物濃度が高い)状態を前提に条件設定されるので、結果的にある程度余裕のある時点での再生・更新となることが多い。また、そうしないと所望の水質を確保できないリスクがある。   However, since the quality of the water to be treated is not always constant throughout the year, the quality of the water to be treated is strict (when the concentration of impurities to be removed is high) ) Since the condition is set on the assumption of the state, the reproduction / update is often performed at a time when there is some margin as a result. Otherwise, there is a risk that the desired water quality cannot be ensured.

特許文献1には、実機のイオン交換樹脂装置と並列に小型のイオン交換樹脂充填カラムを設置し、この小型のイオン交換樹脂充填カラムに同一の原水(被処理水)を通水してその処理水質を監視し、イオン交換樹脂装置の残寿命を推定する方法が記載されている。   In Patent Document 1, a small ion exchange resin packed column is installed in parallel with the actual ion exchange resin device, and the same raw water (treated water) is passed through the small ion exchange resin packed column to treat it. A method for monitoring water quality and estimating the remaining life of an ion exchange resin apparatus is described.

特開2012−154634号公報JP 2012-154634 A

小型のイオン交換樹脂充填容器による寿命予測においては、SV、LVなどを実機に極力近づけ、かつやや厳しい条件での通水とすることが一般的であるが、実機への負荷状況を正確に反映することは困難であり、ここでもある程度の余裕シロを考慮に入れた扱いが必要となっている。   When predicting the life of a small ion exchange resin-filled container, it is common to make SV, LV, etc. as close as possible to the actual machine and water flow under somewhat severe conditions, but accurately reflects the load situation on the actual machine It is difficult to do this, and here too, it is necessary to take into account a certain amount of margin.

本発明の要旨は次の通りである。
[1] 並列設置された複数の同種かつ同処理容量の水処理器を有する水処理装置を運転する方法であって、各水処理器に同一の被処理水を通水して処理水を採水する水処理装置の運転方法において、一部の水処理器Aへの通水を他の水処理器Bよりも高負荷とし、該水処理器Aの処理水の水質悪化が生じた場合、それまでの水処理器Aへの積算負荷から水処理器Bの寿命を予測し、この予測結果に基づいて、その後の各水処理器への通水量及び通水時間を制御することを特徴とする水処理装置の運転方法。
The gist of the present invention is as follows.
[1] A method of operating a water treatment apparatus having a plurality of water treatment devices of the same type and the same treatment capacity installed in parallel, and the treated water is collected by passing the same treated water through each water treatment device. In the operation method of the water treatment apparatus that performs water treatment, when water passing through some of the water treatment devices A has a higher load than other water treatment devices B, and the water quality of the treated water of the water treatment devices A deteriorates, It is characterized by predicting the life of the water treatment device B from the accumulated load on the water treatment device A so far, and controlling the water flow amount and the water flow time to each subsequent water treatment device based on the prediction result. To operate the water treatment device.

[2] [1]において、前記水処理器の水質悪化が生じるまでは、前記水処理器Aへの通水速度を水処理器Bの通水速度の1.05〜1.3倍とすることを特徴とする水処理装置の運転方法。 [2] In [1], the water flow rate to the water treatment device A is set to 1.05 to 1.3 times the water flow rate of the water treatment device B until the water quality of the water treatment device is deteriorated. A method for operating a water treatment apparatus.

[3] [1]又は[2]において、水処理器Aの処理水の水質が所定値にまで悪化した時点までの水処理器Aへの積算負荷を寿命負荷とし、当該時点までの水処理器Bへの積算負荷と該寿命負荷との差(以下、負荷差という。)を求め、当該時点から採水終了までの間に水処理器Bに加えられる負荷が該負荷差となるように、該時点以降の水処理器Bへの通水速度と通水時間を設定することを特徴とする水処理装置の運転方法。 [3] In [1] or [2], the accumulated load on the water treatment device A up to the time when the quality of the treated water in the water treatment device A deteriorates to a predetermined value is defined as the life load, and the water treatment up to that time The difference between the integrated load on the water container B and the life load (hereinafter referred to as a load difference) is obtained, and the load applied to the water treatment device B from the time point to the end of sampling is the load difference. The operation method of the water treatment apparatus characterized by setting the water flow speed and water flow time to the water treatment device B after the time.

[4] [1]ないし[3]のいずれかにおいて、前記時点以降は水処理器Aへの通水を停止し、水処理装置全体における単位時間当りの必要処理水量を水処理器Bの数で除算した単位時間当り通水量を各水処理器Bへの通水速度とし、
この通水速度と、前記時点から採水終了までの通水時間との積から求まる負荷が前記負荷差となるように、該通水時間を設定することを特徴とする水処理装置の運転方法。
[4] In any one of [1] to [3], water supply to the water treatment device A is stopped after the time point, and the required amount of treated water per unit time in the entire water treatment device is determined by the number of water treatment devices B. The water flow rate per unit time divided by the water flow rate to each water treatment device B,
A method for operating a water treatment apparatus, wherein the water passage time is set so that a load obtained from the product of the water passage speed and the water passage time from the time point to the end of sampling is the load difference. .

[5] [1]ないし[4]のいずれかにおいて、前記水処理器は、容器にイオン交換樹脂、活性炭、イオン交換フィルター、キレート樹脂又は触媒を充填したものであることを特徴とする水処理装置の運転方法。 [5] The water treatment according to any one of [1] to [4], wherein the water treatment device is a container filled with an ion exchange resin, activated carbon, an ion exchange filter, a chelate resin, or a catalyst. How to operate the device.

本発明では、一部(1個又は少数個)の水処理器を、処理水質低下を検出するためのパイロット用とし、他の水処理器よりも若干高負荷(例えば高通水速度)通水し、このパイロット用の水処理器の処理水の水質の悪化の兆候から水処理器の寿命を予測する。そして、各水処理器を寿命ぎりぎりまで使い尽すように、その後の通水条件を設定する。   In the present invention, a part (one or a small number) of water treatment devices is used for pilots for detecting deterioration of treated water, and the water treatment device passes water slightly higher (for example, a high water flow rate) than other water treatment devices. The life of the water treatment device is predicted from the signs of deterioration of the quality of the treated water of the pilot water treatment device. Then, subsequent water flow conditions are set so that each water treatment device is used up to the end of its lifetime.

これにより、通常の水処理システムに対して特段の測定機器、制御機器等を追加設置することなく、所望水質を維持しつつ、各水処理器を寿命ぎりぎりまで使い尽くすことができる。高負荷通水した一部の水処理器で水質悪化兆候を察知した場合でも、直ちには水処理装置全体の寿命には至らないので、水処理器の再生・更新の準備を整えた上での対応が無理なく行うことができる。   Accordingly, each water treatment device can be used up to the end of its lifetime while maintaining the desired water quality without additionally installing special measurement devices, control devices, and the like with respect to a normal water treatment system. Even if some water treatment devices that have passed through a high load detect signs of deterioration in water quality, the life of the entire water treatment device will not be reached immediately. It can be done without difficulty.

本発明方法が適用される水処理装置の構成図である。It is a block diagram of the water treatment apparatus to which this invention method is applied.

以下、図1を参照して実施の形態について説明する。なお、この実施の形態の説明では、水処理器はイオン交換樹脂塔とされているが、活性炭塔、キレート樹脂塔、触媒塔、イオン交換フィルター、MF膜装置、UF膜装置、RO膜装置などであってもよい。好適には寿命が明確なイオン交換樹脂塔、イオン交換フィルター、キレート樹脂塔、活性炭塔、触媒塔などが挙げられる。また、超純水製造のために、水中不純物を除去する水処理のほか、純水製造以外の、液中不純物除去にも適用することができる。   Hereinafter, an embodiment will be described with reference to FIG. In the description of this embodiment, the water treatment device is an ion exchange resin tower, but the activated carbon tower, chelate resin tower, catalyst tower, ion exchange filter, MF membrane device, UF membrane device, RO membrane device, etc. It may be. Preferable examples include an ion exchange resin tower, an ion exchange filter, a chelate resin tower, an activated carbon tower, and a catalyst tower with a clear lifetime. In addition to water treatment for removing impurities in water for the production of ultrapure water, it can also be applied to removal of impurities in liquid other than the production of pure water.

図1の通り、複数のイオン交換樹脂塔3が並列に設置されている。各イオン交換樹脂塔3へは、配管1及びバルブ2を介して被処理水が通水可能とされ、処理水がバルブ4及び配管5を介して流出可能とされている。各イオン交換樹脂塔3への通水量を流量計(図示略)で測定すると共に、各イオン交換樹脂塔3の処理水の水質を水質測定器6により測定する。水質測定器としては、導電率計、濁度計、残留塩素濃度計、pH計、比抵抗計などを用いることができるが、これらに限定されない。水処理器の種類に適した水質測定器が適宜選択される。   As shown in FIG. 1, a plurality of ion exchange resin towers 3 are installed in parallel. To each ion exchange resin tower 3, the water to be treated can be passed through the pipe 1 and the valve 2, and the treated water can flow out through the valve 4 and the pipe 5. The amount of water flow to each ion exchange resin tower 3 is measured by a flow meter (not shown), and the quality of treated water in each ion exchange resin tower 3 is measured by a water quality measuring device 6. As the water quality measuring device, a conductivity meter, a turbidity meter, a residual chlorine concentration meter, a pH meter, a specific resistance meter and the like can be used, but not limited to these. A water quality measuring device suitable for the type of water treatment device is appropriately selected.

複数のイオン交換樹脂塔3のうち一部(図1では、最も左側の1つの塔)Aをパイロット用の塔Aとし、他の塔Bよりやや過酷(この場合は高流速条件)で通水する。そして、イオン交換樹脂塔Aの処理水の水質を連続的又は断続的に監視し、安定状態から悪化の兆候を把握する。なお、この間の塔Aへの通水SVは、塔Bへの通水SVの1.05〜1.3倍程度が好ましい。   A part of the plurality of ion exchange resin towers 3 (the leftmost tower in FIG. 1) A is used as a pilot tower A, and water is passed under a slightly severer condition (in this case, a high flow rate condition) than the other towers B. To do. And the quality of the treated water of the ion exchange resin tower A is monitored continuously or intermittently, and the sign of deterioration is grasped from the stable state. In addition, the water flow SV to the tower A during this period is preferably about 1.05 to 1.3 times the water SV to the tower B.

塔Aへの通水SVが塔Bよりも大きいので、塔Aは塔Bよりも早期に破過(処理水質悪化)する。   Since the water flow SV to the tower A is larger than that of the tower B, the tower A breaks through earlier than the tower B (the quality of treated water deteriorates).

塔Aにおける処理水の水質悪化の兆候を、塔Bの処理水の水質悪化に先んじて把握した後は、塔A,Bの全体の能力をフルに(即ち、寿命ギリギリまで)利用するために、塔Bの残寿命を予測し、採水終了に至るまで、良水質の処理水が最大限得られるように流量調整する。即ち、塔Aについて通水流量を減少させるか、あるいは通水を停止し、この塔Aへの通水量の減少分(又は停止分)を他の塔Bへの通水量に上乗せする。各塔Bへの通水量は均等としてもよいが、塔Bのうちの一部の塔(塔C)の流量の上乗せ分を他より僅かに高くし、塔Cの処理水質の悪化兆候を監視して残りの塔Bの残寿命を予測してもよい(記号Cは図示略)。   After grasping the signs of deterioration in the quality of the treated water in Tower A prior to the deterioration in the quality of the treated water in Tower B, in order to make full use of the entire capacity of Towers A and B (ie, until the end of life) The remaining life of the tower B is predicted, and the flow rate is adjusted so that treated water of good quality is obtained to the maximum until the end of water sampling. That is, the water flow rate is reduced for the tower A, or the water flow is stopped, and the decrease (or stoppage) of the water flow to the tower A is added to the water flow to the other tower B. The amount of water flow to each tower B may be equal, but the additional flow rate of some of the towers B (tower C) is slightly higher than the others, monitoring for signs of deterioration in the treated water quality of tower C Thus, the remaining life of the remaining tower B may be predicted (the symbol C is not shown).

以上の方法により、通常の水処理システムに対して特段の測定機器や制御機器を追加設置することなく、目的とする処理水水質を維持しつつ、すべてのイオン交換樹脂塔について寿命ぎりぎりまで通水することができる。塔A(又は塔C)で水質悪化兆候を察知した場合でも直ちには水処理装置全体の寿命には至らないので、水処理器の再生・更新を、準備を整えた上で無理なく行うことができる。   Through the above method, all ion-exchange resin towers can be passed to the end of their lifetime while maintaining the desired treated water quality without adding special measuring and control equipment to the normal water treatment system. can do. Even if a sign of deterioration in water quality is detected in Tower A (or Tower C), the life of the entire water treatment device will not be reached immediately. it can.

図1では、1つのイオン交換樹脂塔をパイロット用の塔Aとしているが、多数の塔を並列設置したシステムにおいて、残寿命予測の精度をより高くするには、多少過酷な条件で通水するパイロット用の塔Aを複数設け、標準条件に対する苛酷さ(高流速の程度)に差を付けてもよい。   In FIG. 1, one ion-exchange resin tower is used as a pilot tower A. In a system in which a large number of towers are installed in parallel, in order to increase the accuracy of the remaining life prediction, water is passed under somewhat severe conditions. A plurality of pilot towers A may be provided, and the severity of the standard conditions (the degree of high flow rate) may be differentiated.

本発明の一例をより詳しく述べる。   An example of the present invention will be described in more detail.

一般に、イオン交換樹脂等の水処理機能材の寿命は、流量(SV等)などの通水条件が適正な範囲であれば、負荷量すなわち除去される被処理水中の不純物濃度×積算通水流量でほぼ定まる。   In general, the lifetime of a water treatment functional material such as an ion exchange resin is the load amount, that is, the impurity concentration in the treated water to be removed × the integrated water flow rate if the water flow conditions such as the flow rate (SV, etc.) are in an appropriate range. Is almost fixed.

図1に示すように、イオン交換樹脂塔を10塔並列設置した水処理装置において、通水開始当初は、1台の塔Aに標準より10%高流速で通水し、他の塔Bについては、残部を均等分割した流速で通水する。即ち、水処理装置への単位時間当り総通水量の11%の通水速度で塔Aに通水する。残り9台の塔Bについては、各々、単位時間当り総通水量の89%を均等に分け合った通水速度(単位時間当りの水処理装置全体の総通水量の9.89%ずつの通水速度)で通水する(89÷9=9.89)。   As shown in FIG. 1, in a water treatment apparatus in which 10 ion exchange resin towers are installed in parallel, at the beginning of water flow, water is passed through one tower A at a flow rate 10% higher than the standard, and other towers B The water is passed at a flow rate where the remainder is divided equally. That is, water is passed through the tower A at a water flow rate of 11% of the total water flow rate per unit time to the water treatment apparatus. For the remaining nine towers B, each 89% of the total flow rate per unit time was equally shared (the flow rate was 9.89% of the total flow rate of the entire water treatment device per unit time). Speed)) (89 ÷ 9 = 9.89).

塔Aの流出水の水質が悪化の兆候を示した時点までの通水時間が100日であった場合、100日目までの塔Aへの積算通水量は、標準条件(総通水量の10%を各塔に均等に通水する条件)の積算通水量よりも10%多い。従って、塔3に該標準条件で通水された場合、処理水質が悪化し始めるまでの通水時間(寿命)は110日であると推定できる。   When the water flow time up to the point when the quality of the effluent water of Tower A shows signs of deterioration is 100 days, the cumulative water flow rate to Tower A up to the 100th day is the standard condition (10% of the total water flow rate). 10% more than the accumulated water flow rate (conditions for water flow equally to each tower). Therefore, when water is passed through the tower 3 under the standard conditions, it can be estimated that the water passing time (life) until the quality of the treated water begins to deteriorate is 110 days.

そこで、100日目以降は、1台の塔Aとその他9台の塔Bで10台分の総通水量を確保するように塔Aの通水量を減少(又は停止)させ且つ塔Bの通水量を増加させるとともに、塔A,Bのいずれにおいても積算負荷(通水開始〜採水終了の間の積算負荷)がそれぞれ標準条件通水の場合の110日分の負荷となるように各々への通水日数を設定する。   Therefore, after the 100th day, the flow rate of the tower A is reduced (or stopped) so that the total flow rate of 10 towers in the tower A and the other 9 towers B is secured, and the passage of the tower B While increasing the amount of water, in each of the towers A and B, the integrated load (the integrated load between the start of water flow to the end of water sampling) is set to the load for 110 days in the case of water under standard conditions. Set the number of days.

例えば、処理水の水質要求が厳しく、僅かな兆候以上の不純物も許容されない場合には、上記1台の塔Aについてはこの段階(100日目)で通水終了とする。その他9台の塔Bについては、標準条件10台分の単位時間通水量を9等分した通水速度、具体的には、標準条件通水速度の11.1%増の通水速度とする(100%÷9=11.1%)。   For example, when the water quality requirement of the treated water is strict and impurities exceeding a few signs are not allowed, the flow of the one tower A is terminated at this stage (100th day). For the other nine towers B, the water flow rate obtained by dividing the unit-time water flow rate of 10 standard conditions by 9 equal parts, specifically, the water flow rate increased by 11.1% of the standard condition water flow rate. (100% ÷ 9 = 11.1%).

また、100日時点での塔Bの積算負荷は、標準条件通水の場合に換算して98.9日分であり、標準条件通水の場合で11.1日分の残存容量がある。そこで、11.1%増した通水速度で、この標準条件11.1日分の積算負荷となるように、100日目以降の通水日数を設定する。この場合は、あと10日通水することにより、この積算負荷となる。従って、塔Bについては、110日目まで採水する。   Further, the accumulated load of the tower B at the time of 100 days is 98.9 days equivalent in the case of standard condition water flow, and there is a remaining capacity of 11.1 days in the case of standard condition water flow. Therefore, the number of days of water flow after the 100th day is set so that the accumulated load for 11.1 days of the standard condition is obtained at a water flow rate increased by 11.1%. In this case, the accumulated load is obtained by passing water for another 10 days. Therefore, water is collected from column B until the 110th day.

以上の要領で寿命予測と通水量制御を行うことにより、各塔A,Bの寿命を最大限活用することができる。   By performing life prediction and water flow control in the above manner, the life of each tower A and B can be utilized to the maximum.

また、1台の塔Aを20%増し高流速通水、別の1台の塔Aを10%増し高流速通水、残り8台の塔Bを均等通水にするような運転としてもよい。   Alternatively, one tower A may be increased by 20% for high flow rate water flow, another tower A may be increased by 10% for high flow rate water flow, and the remaining 8 towers B may be evenly flowed. .

また、塔Aを常に同一の塔とするのではなく、所定期間毎に交代させてもよい。例えば、3台の塔a,b,cを並列設置した水処理装置において、標準通水速度をKとした場合、一例では、塔a,bの通水速度を1.0Kとし、塔cを1.2Kとし、塔cが水質悪化の兆候を示したときには塔a,bの通水速度を1.1K、塔cの通水速度を0.8Kとし、各塔a,b,cの寿命を使い尽す。別の一例では、塔a,bの通水速度を1.0K、塔cの通水速度を1.2Kとし、塔cが水質悪化の兆候を示したときには、塔aの通水速度を1.0K、塔bの通水速度を1.2K、塔cの通水速度を0.8Kとし、塔bを塔aよりも高負荷として塔bの処理水水質を監視するようにしてもよい。   Further, the tower A is not always the same tower, but may be changed every predetermined period. For example, in a water treatment apparatus in which three towers a, b, and c are installed in parallel, when the standard water flow rate is K, in one example, the water flow rate of towers a and b is 1.0 K, and tower c is When the tower c shows signs of deterioration in water quality, the water flow rate of the towers a and b is 1.1 K, the water flow speed of the tower c is 0.8 K, and the lifetime of each tower a, b and c Use up. In another example, when the flow rate of towers a and b is 1.0 K, the flow rate of tower c is 1.2 K, and tower c shows signs of water quality deterioration, the flow rate of tower a is 1 0.0K, the flow rate of the tower b is 1.2K, the flow rate of the tower c is 0.8K, and the treated water quality of the tower b may be monitored by setting the tower b at a higher load than the tower a. .

2,4 バルブ
3 イオン交換樹脂塔
2,4 Valve 3 Ion exchange resin tower

本発明の要旨は次の通りである。
[1] 並列設置された複数の同種かつ同処理容量の水処理器を有する水処理装置を運転する方法であって、各水処理器に同一の被処理水を通水して処理水を採水する水処理装置の運転方法において、一部の水処理器Aへの通水を他の水処理器Bよりも高負荷とし、該水処理器Aの処理水の水質悪化が生じた場合、それまでの水処理器Aへの積算負荷から水処理器Bの寿命を予測し、この予測結果に基づいて、その後の各水処理器への通水量及び通水時間を制御する方法であり、水処理器Aの処理水の水質が所定値にまで悪化した時点までの水処理器Aへの積算負荷を寿命負荷とし、当該時点までの水処理器Bへの積算負荷と該寿命負荷との差(以下、負荷差という。)を求め、前記時点以降は水処理器Aへの通水を停止し、水処理装置全体における単位時間当りの必要処理水量を水処理器Bの数で除算した単位時間当り通水量を各水処理器Bへの通水速度とし、この通水速度と、前記時点から採水終了までの通水時間との積から求まる負荷が前記負荷差となるように、該通水時間を設定することを特徴とする水処理装置の運転方法。
The gist of the present invention is as follows.
[1] A method of operating a water treatment apparatus having a plurality of water treatment devices of the same type and the same treatment capacity installed in parallel, and the treated water is collected by passing the same treated water through each water treatment device. In the operation method of the water treatment apparatus that performs water treatment, when water passing through some of the water treatment devices A has a higher load than other water treatment devices B, and the water quality of the treated water of the water treatment devices A deteriorates, It is a method of predicting the life of the water treatment device B from the accumulated load to the water treatment device A until then, and controlling the amount of water flow and the water passage time to each subsequent water treatment device based on the prediction result , The accumulated load on the water treatment device A up to the time when the quality of the treated water in the water treatment device A deteriorates to a predetermined value is defined as the life load, and the accumulated load on the water treatment device B up to that time and the life load A difference (hereinafter referred to as a load difference) is obtained, and after the time point, water flow to the water treatment device A is stopped, The water flow rate per unit time obtained by dividing the required amount of treated water per unit time by the number of water treatment devices B is defined as the water flow rate to each water treatment device B. A method for operating a water treatment apparatus, wherein the water passage time is set so that a load obtained from a product of the water passage time is the load difference .

] [1]又は2]において、前記水処理器は、容器にイオン交換樹脂、活性炭、イオン交換フィルター、キレート樹脂又は触媒を充填したものであることを特徴とする水処理装置の運転方法。 [3] [1] or Oite in [2], wherein the water treatment device is an ion exchange resin in a container, activated carbon, ion exchange filter, the water treatment apparatus, characterized in that is obtained by filling a chelate resin or catalyst Driving method.

Claims (5)

並列設置された複数の同種かつ同処理容量の水処理器を有する水処理装置を運転する方法であって、
各水処理器に同一の被処理水を通水して処理水を採水する水処理装置の運転方法において、
一部の水処理器Aへの通水を他の水処理器Bよりも高負荷とし、
該水処理器Aの処理水の水質悪化が生じた場合、それまでの水処理器Aへの積算負荷から水処理器Bの寿命を予測し、この予測結果に基づいて、その後の各水処理器への通水量及び通水時間を制御することを特徴とする水処理装置の運転方法。
A method of operating a water treatment device having a plurality of water treatment devices of the same kind and the same treatment capacity installed in parallel,
In the operation method of a water treatment apparatus that collects treated water by passing the same treated water through each water treatment device,
Make water flow to some water treatment devices A higher than other water treatment devices B,
When the water quality of the treated water of the water treatment device A deteriorates, the life of the water treatment device B is predicted from the accumulated load on the water treatment device A so far, and each subsequent water treatment is performed based on the prediction result. A method for operating a water treatment apparatus, characterized by controlling a water flow amount and a water flow time to a vessel.
請求項1において、前記水処理器の水質悪化が生じるまでは、前記水処理器Aへの通水速度を水処理器Bの通水速度の1.05〜1.3倍とすることを特徴とする水処理装置の運転方法。   In Claim 1, Until the water quality deterioration of the said water treatment device arises, the water flow rate to the said water treatment device A shall be 1.05-1.3 times the water flow rate of the water treatment device B, It is characterized by the above-mentioned. The operation method of the water treatment equipment. 請求項1又は2において、
水処理器Aの処理水の水質が所定値にまで悪化した時点までの水処理器Aへの積算負荷を寿命負荷とし、
当該時点までの水処理器Bへの積算負荷と該寿命負荷との差(以下、負荷差という。)を求め、
当該時点から採水終了までの間に水処理器Bに加えられる負荷が該負荷差となるように、該時点以降の水処理器Bへの通水速度と通水時間を設定することを特徴とする水処理装置の運転方法。
In claim 1 or 2,
The accumulated load on the water treatment device A up to the point when the quality of the treated water of the water treatment device A deteriorates to a predetermined value is defined as the life load,
The difference between the accumulated load on the water treatment device B up to the time and the life load (hereinafter referred to as load difference) is obtained,
The water flow rate and the water flow time to the water treatment device B after the time point are set so that the load applied to the water treatment device B between the time point and the end of water sampling becomes the load difference. The operation method of the water treatment equipment.
請求項1ないし3のいずれか1項において、前記時点以降は水処理器Aへの通水を停止し、水処理装置全体における単位時間当りの必要処理水量を水処理器Bの数で除算した単位時間当り通水量を各水処理器Bへの通水速度とし、
この通水速度と、前記時点から採水終了までの通水時間との積から求まる負荷が前記負荷差となるように、該通水時間を設定することを特徴とする水処理装置の運転方法。
In any one of Claims 1 thru | or 3, after the said time, the water flow to the water treatment device A was stopped, and the required amount of treated water per unit time in the whole water treatment device was divided by the number of the water treatment devices B. The water flow rate per unit time is the water flow rate to each water treatment device B,
A method for operating a water treatment apparatus, wherein the water passage time is set so that a load obtained from the product of the water passage speed and the water passage time from the time point to the end of sampling is the load difference. .
請求項1ないし4のいずれか1項において、前記水処理器は、容器にイオン交換樹脂、活性炭、イオン交換フィルター、キレート樹脂又は触媒を充填したものであることを特徴とする水処理装置の運転方法。   The operation of the water treatment device according to any one of claims 1 to 4, wherein the water treatment device has a container filled with an ion exchange resin, activated carbon, an ion exchange filter, a chelate resin, or a catalyst. Method.
JP2017001990A 2017-01-10 2017-01-10 Operation method of water treatment equipment Active JP6288319B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017001990A JP6288319B1 (en) 2017-01-10 2017-01-10 Operation method of water treatment equipment
CN201780082243.6A CN110139835A (en) 2017-01-10 2017-09-08 Method for operating water treatment apparatus
PCT/JP2017/032489 WO2018131209A1 (en) 2017-01-10 2017-09-08 Method for operating water treatment apparatus
KR1020197010622A KR102453719B1 (en) 2017-01-10 2017-09-08 How to operate a water treatment device
TW106132183A TWI732939B (en) 2017-01-10 2017-09-20 Operation method of water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001990A JP6288319B1 (en) 2017-01-10 2017-01-10 Operation method of water treatment equipment

Publications (2)

Publication Number Publication Date
JP6288319B1 JP6288319B1 (en) 2018-03-07
JP2018111058A true JP2018111058A (en) 2018-07-19

Family

ID=61557941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001990A Active JP6288319B1 (en) 2017-01-10 2017-01-10 Operation method of water treatment equipment

Country Status (5)

Country Link
JP (1) JP6288319B1 (en)
KR (1) KR102453719B1 (en)
CN (1) CN110139835A (en)
TW (1) TWI732939B (en)
WO (1) WO2018131209A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022059430A1 (en) * 2020-09-15 2022-03-24

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033011A1 (en) 2018-08-08 2020-02-13 Evoqua Water Technologies Llc System and method of deionization of water
JP7176307B2 (en) 2018-09-07 2022-11-22 いすゞ自動車株式会社 pump gear

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384688A (en) * 1986-09-29 1988-04-15 Toshiba Corp Operation of for condensate desalting device
JPH09285785A (en) * 1996-04-22 1997-11-04 Kurita Water Ind Ltd Ammonia-type condensate desalter and device for predicting amount of water to be collected
JPH11258219A (en) * 1998-03-09 1999-09-24 Japan Organo Co Ltd Method for monitoring break-through of ion adsorption film for manufacturing extra-pure water
JP2002048776A (en) * 2000-08-07 2002-02-15 Japan Organo Co Ltd Performance evaluation method and device of anion- exchange resin and condensate demineralizer
JP2003190950A (en) * 2001-12-25 2003-07-08 Ishikawajima Harima Heavy Ind Co Ltd Changeover method for ion exchange tank and water treatment apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170367A (en) * 1992-12-01 1994-06-21 Matsushita Electric Works Ltd Ion water producer
KR100989816B1 (en) * 2003-06-10 2010-10-29 가부시키가이샤 제오텟쿠 Contaminated liquid filtration system vehicle
CN101249461B (en) * 2007-12-03 2010-06-02 友达光电股份有限公司 Testing method of resin service lifetime in ion-exchange resin tower
JP5625944B2 (en) 2011-01-21 2014-11-19 栗田工業株式会社 Non-regenerative ion exchange resin equipment breakthrough time prediction method and maintenance method
CN102531103B (en) * 2011-12-06 2013-07-24 宝钢工程技术集团有限公司 Reverse osmosis treatment device and method for recycling wastewater
EP3226003A4 (en) * 2014-11-28 2018-06-20 Toyo Seikan Group Holdings, Ltd. Micro liquid transfer structure and analysis device
CN205084509U (en) * 2015-11-10 2016-03-16 太原创客空间科技有限公司 Purifier intelligence observing and controlling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384688A (en) * 1986-09-29 1988-04-15 Toshiba Corp Operation of for condensate desalting device
JPH09285785A (en) * 1996-04-22 1997-11-04 Kurita Water Ind Ltd Ammonia-type condensate desalter and device for predicting amount of water to be collected
JPH11258219A (en) * 1998-03-09 1999-09-24 Japan Organo Co Ltd Method for monitoring break-through of ion adsorption film for manufacturing extra-pure water
JP2002048776A (en) * 2000-08-07 2002-02-15 Japan Organo Co Ltd Performance evaluation method and device of anion- exchange resin and condensate demineralizer
JP2003190950A (en) * 2001-12-25 2003-07-08 Ishikawajima Harima Heavy Ind Co Ltd Changeover method for ion exchange tank and water treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022059430A1 (en) * 2020-09-15 2022-03-24
WO2022059430A1 (en) * 2020-09-15 2022-03-24 オルガノ株式会社 Ultrapure water supply system, control device, and program
JP7440653B2 (en) 2020-09-15 2024-02-28 オルガノ株式会社 Ultrapure water supply system and control equipment

Also Published As

Publication number Publication date
JP6288319B1 (en) 2018-03-07
WO2018131209A1 (en) 2018-07-19
KR20190100161A (en) 2019-08-28
KR102453719B1 (en) 2022-10-11
CN110139835A (en) 2019-08-16
TW201825406A (en) 2018-07-16
TWI732939B (en) 2021-07-11

Similar Documents

Publication Publication Date Title
AU2020281080B2 (en) Method and apparatus to monitor and control a water system
JP5177538B2 (en) Pure water production method and pure water production system
JP6288319B1 (en) Operation method of water treatment equipment
CN102985170B (en) For optimizing the method and system of film cleaning procedure
CN105152317B (en) The method that early warning is carried out to the film properties of membrane bioreactor
JP5961916B2 (en) Water treatment equipment
US9665852B2 (en) Water purification unit
JP5928070B2 (en) Method for removing ammonia from wastewater containing ammonia
Tiranuntakul et al. Assessments of critical flux in a pilot-scale membrane bioreactor
TW201945293A (en) Water treatment management device and water quality monitoring method
JP6486732B2 (en) Timing adjustment method and timing adjustment device
KR101872109B1 (en) Method for predicting fouling
KR101523676B1 (en) Apparatus and method for automatic converting back washing time, quantity and flux maintenance by differential pressure monitoring of pressured membrane
JP5943196B2 (en) Water treatment facility control method, control program, and water treatment system
JP5230074B2 (en) Flow control method for water treatment equipment
JP5796419B2 (en) Water treatment method and water treatment apparatus
JP2013022543A (en) Membrane treatment device and method of operation of membrane module
JP2016097342A (en) Timing management device, timing management method, timing calculation device, and program
JP2014237072A (en) Water treatment operation support system and method
WO2024185651A1 (en) Control device, control method, and control program
JP6205865B2 (en) Operation management method for pure water production equipment
JPH11123380A (en) Water treatment apparatus
KR101156592B1 (en) Apparatus for water treatment filtration facility operation and method thereof
JP7140217B2 (en) RO system control method
JP2024131070A (en) Analysis device, analysis method, and control program

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6288319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250