JP5625944B2 - Non-regenerative ion exchange resin equipment breakthrough time prediction method and maintenance method - Google Patents

Non-regenerative ion exchange resin equipment breakthrough time prediction method and maintenance method Download PDF

Info

Publication number
JP5625944B2
JP5625944B2 JP2011011063A JP2011011063A JP5625944B2 JP 5625944 B2 JP5625944 B2 JP 5625944B2 JP 2011011063 A JP2011011063 A JP 2011011063A JP 2011011063 A JP2011011063 A JP 2011011063A JP 5625944 B2 JP5625944 B2 JP 5625944B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
resin
column
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011011063A
Other languages
Japanese (ja)
Other versions
JP2012154634A (en
Inventor
石塚 諭
諭 石塚
長雄 福井
長雄 福井
重希 堀井
重希 堀井
真吾 宮本
真吾 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011011063A priority Critical patent/JP5625944B2/en
Publication of JP2012154634A publication Critical patent/JP2012154634A/en
Application granted granted Critical
Publication of JP5625944B2 publication Critical patent/JP5625944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、非再生型イオン交換樹脂装置の破過時期を予測する方法と、この方法で予測された破過時期前に該非再生型イオン交換樹脂装置又はそのイオン交換樹脂を交換する保守方法に関する。   The present invention relates to a method for predicting the breakthrough time of a non-regenerative ion exchange resin apparatus, and a maintenance method for exchanging the non-regenerative ion exchange resin apparatus or its ion exchange resin before the breakthrough time predicted by this method. .

高純度の純水、超純水が要求される液晶・半導体等の電子産業分野では、一次純水製造装置の末尾や二次純水製造装置において、極微量のイオンを除去するために非再生型イオン交換樹脂装置が設置されることが多い。非再生型イオン交換樹脂装置としては、混床式イオン交換樹脂装置が多く用いられるが、単床式や複床式のイオン交換樹脂装置も使用される。   In the field of electronic industries such as liquid crystal and semiconductors that require high-purity pure water and ultrapure water, non-regeneration is required to remove trace amounts of ions at the end of primary pure water production equipment and secondary pure water production equipment. A type ion exchange resin apparatus is often installed. As the non-regenerative ion exchange resin apparatus, a mixed bed type ion exchange resin apparatus is often used, but a single bed type or multiple bed type ion exchange resin apparatus is also used.

非再生型イオン交換樹脂装置は、ユースポイントの前段に設置されるため、非再生型イオン交換樹脂装置から万一イオンリークが発生すると生産設備の操業が停止される恐れがある。そのため、従来は非再生型イオン交換樹脂装置の交換を早目に行っており、非再生型イオン交換樹脂装置のイオン交換能を最大限に利用することが難しかった。   Since the non-regenerative ion exchange resin apparatus is installed in front of the use point, if an ion leak occurs from the non-regenerative ion exchange resin apparatus, the operation of the production facility may be stopped. For this reason, conventionally, the non-regenerative ion exchange resin apparatus is replaced quickly, and it has been difficult to make maximum use of the ion exchange capacity of the non-regenerative ion exchange resin apparatus.

特許文献1には、二次純水製造装置におけるイオン交換装置の前段で一次純水中のTOCが紫外線酸化装置において炭酸に分解されることから、非再生型イオン交換装置のイオン負荷の大部分が炭酸であるとみなし、イオン交換装置の炭酸負荷量を連続的に監視し、予め設定しておいたイオン交換装置の炭酸交換容量とこの炭酸負荷量とからイオン交換装置の交換時期を予測する方法が記載されている。   In Patent Document 1, since the TOC in the primary pure water is decomposed into carbonic acid in the ultraviolet oxidation device before the ion exchange device in the secondary pure water production device, most of the ion load of the non-regenerative ion exchange device is disclosed. Is considered to be carbonic acid, continuously monitoring the carbonic acid load of the ion exchange device, and predicting the replacement time of the ion exchange device from the carbonic acid exchange capacity of the ion exchange device set in advance and the carbonic acid load amount A method is described.

特開平11−101761号公報JP 11-101761 A

上記特許文献1においては、対象とするイオン交換装置の炭酸交換容量を予め定めるものとしている。しかしながら、炭酸交換容量は樹脂の種類や給水条件によって異なるという問題がある。非再生型イオン交換樹脂装置は、イオン負荷が極めて低い領域で使用されるため、予め実機の非再生型イオン交換樹脂装置と同等の条件で炭酸交換容量を求める試験を行うことは難しく、実機と異なる条件下での試験により求めた炭酸交換容量の値をそのまま適用すると実機との誤差が生じる恐れがあった。そうした場合、通常数年単位での樹脂交換頻度となる非再生型イオン交換装置において、イオン交換能を最大限に利用しうる樹脂交換時期の予測誤差が大きくなる。   In the said patent document 1, the carbonic acid exchange capacity | capacitance of the target ion exchange apparatus shall be predetermined. However, there is a problem that the carbonic acid exchange capacity varies depending on the type of resin and the water supply conditions. Since the non-regenerative ion exchange resin device is used in a region where the ion load is extremely low, it is difficult to conduct a test for obtaining the carbonic acid exchange capacity in advance under the same conditions as the non-regenerative ion exchange resin device of the actual machine. If the value of carbonic acid exchange capacity obtained by tests under different conditions is applied as it is, there is a risk that an error from the actual machine may occur. In such a case, in a non-regenerative ion exchange apparatus that normally has a resin exchange frequency in units of several years, a prediction error of the resin exchange time at which the ion exchange capacity can be utilized to the maximum becomes large.

本発明は、予測精度の高い非再生型イオン交換樹脂装置の破過時期予測方法と、この方法に基づくイオン交換樹脂装置の保守方法を提供することを目的とする。   It is an object of the present invention to provide a breakthrough time prediction method for a non-regenerative ion exchange resin device with high prediction accuracy and a maintenance method for an ion exchange resin device based on this method.

請求項1の非再生型イオン交換樹脂装置の破過時期の予測方法は、カラム内にイオン交換樹脂を充填した非再生型イオン交換樹脂装置の破過時期を予測する方法において、該カラムよりも小型の小型カラム内に該イオン交換樹脂と同じイオン交換樹脂を充填した小型樹脂カラムを該非再生型イオン交換樹脂装置と並列に設置し、該非再生型イオン交換樹脂装置に通水される被処理水と同一の被処理水を該小型樹脂カラムに通水し、該小型樹脂カラムの処理水データに基づいて該非再生型イオン交換樹脂装置の破過時期を予測し、該非再生型イオン交換樹脂装置は、一次純水製造装置の最終部又は二次純水製造装置に設置され、該小型樹脂カラムは、塔径、樹脂層高、及び通水SVのうち1以上を異ならせた複数本が並列に設置され、該非再生型イオン交換樹脂装置の通水SVの10〜200倍の通水SVで該小型樹脂カラムに通水することを特徴とするものである。 Method of predicting breakthrough time of non-regenerative ion-exchange resin according to claim 1 is a method for predicting the breakthrough time of the non-regenerative type ion exchange resin system filled with ion exchange resin in a column, than the column A small resin column filled with the same ion exchange resin as the ion exchange resin in a small small column is installed in parallel with the non-regenerative ion exchange resin device, and water to be treated is passed through the non-regenerative ion exchange resin device The same treated water is passed through the small resin column, the breakthrough time of the non-regenerative ion exchange resin device is predicted based on the treated water data of the small resin column, and the non-regenerative ion exchange resin device is The small resin column is installed in the final part of the primary pure water production apparatus or the secondary pure water production apparatus, and the small resin column has a plurality of columns different in one or more of the tower diameter, the resin layer height, and the water flow SV in parallel. Installed and non-regenerative 10 to 200 times the water passing SV of water passing SV ion exchange resin device is characterized in that Rohm the small resin column.

請求項2の非再生型イオン交換樹脂装置の破過時期の予測方法は、請求項1において、前記小型樹脂カラムのイオン交換樹脂層高は、前記非再生型イオン交換樹脂装置のイオン交換樹脂層高の1/20〜1/2であることを特徴するものである。   The method for predicting the breakthrough time of the non-regenerative ion exchange resin apparatus according to claim 2 is the method according to claim 1, wherein the ion exchange resin layer height of the small resin column is the ion exchange resin layer of the non-regenerative ion exchange resin apparatus. It is characterized by being 1/20 to 1/2 of the height.

請求項の非再生型イオン交換樹脂装置の破過時期の予測方法は、請求項1又は2において、前記処理水データは、前記小型樹脂カラムの処理水の比抵抗値、導電率、イオンクロマトグラフィー分析結果又はICP分析結果であることを特徴とするものである。 Method of predicting breakthrough time of non-regenerative ion-exchange resin according to claim 3, in claim 1 or 2, wherein the treated water data, the specific resistance value of the treated water of the small resin column, conductivity, ion chromatography It is a graphic analysis result or an ICP analysis result.

請求項の非再生型イオン交換樹脂装置の破過時期の予測方法は、請求項1ないしのいずれか1項において、小型樹脂カラムからの流出水中のイオン濃度の経時変化を表わす式を小型樹脂カラムの仕様及びパラメータを用いて表わしておき、このパラメータを小型樹脂カラムからの流出水のイオン濃度の経時変化の実測値に基づいて決定し、このパラメータと、非再生型イオン交換樹脂装置の仕様とに基づいて非再生型イオン交換樹脂装置からの流出水中のイオン濃度の経時変化を演算し、この演算値が基準値を超える時間を予測破過時間とすることを特徴とするものである。 According to a fourth aspect of the present invention, there is provided a method for predicting the breakthrough time of a non-regenerative ion exchange resin apparatus according to any one of the first to third aspects, wherein the equation representing the time-dependent change in ion concentration in the effluent from the small resin column is reduced It is expressed using the specifications and parameters of the resin column, and this parameter is determined based on the actual measurement value of the ionic concentration of the effluent water from the small resin column, and this parameter and the non-regenerative ion exchange resin device Based on the specifications, the time-dependent change of the ion concentration in the effluent from the non-regenerative ion exchange resin apparatus is calculated, and the time when the calculated value exceeds the reference value is used as the predicted breakthrough time. .

請求項の非再生型イオン交換樹脂装置の保守方法は、請求項1ないしのいずれか1項の非再生型イオン交換樹脂装置の破過時期の予測方法によって予測された破過時期の経過前に、前記非再生型イオン交換樹脂装置内のイオン交換樹脂又は前記非再生型イオン交換樹脂装置を交換することを特徴とするものである。
The maintenance method for the non-regenerative ion exchange resin apparatus according to claim 5 is the passage of breakthrough time predicted by the method for predicting breakthrough time of the non-regenerative ion exchange resin apparatus according to any one of claims 1 to 4. Before, the ion exchange resin in the non-regenerative ion exchange resin apparatus or the non-regenerative ion exchange resin apparatus is replaced.

本発明では、非再生型イオン交換樹脂装置と並列に、該非再生型イオン交換樹脂装置のイオン交換樹脂と同一のイオン交換樹脂を充填した小型樹脂カラムを設置する。そして、該非再生型イオン交換樹脂装置に通水される被処理水と同一の被処理水を小型樹脂カラムに通水し、この小型樹脂カラムの処理水データを取得し、この処理水データに基づいて非再生型イオン交換樹脂装置の破過時期を予測する。   In the present invention, a small resin column filled with the same ion exchange resin as the ion exchange resin of the non-regenerative ion exchange resin apparatus is installed in parallel with the non-regenerative ion exchange resin apparatus. Then, the same treated water as the treated water passed through the non-regenerative ion exchange resin apparatus is passed through the small resin column, the treated water data of the small resin column is obtained, and based on the treated water data Predict the breakthrough timing of non-regenerative ion exchange resin equipment.

小型樹脂カラムへの通水条件を非再生型イオン交換樹脂装置よりも破過が早く発生する条件とすることにより、非再生型イオン交換樹脂装置の破過に先行して小型樹脂カラムに破過が発生する。小型樹脂カラムの処理水データに基づいて非再生型イオン交換樹脂装置の破過時期を予測する。   By setting the water flow condition to the small resin column so that breakthrough occurs faster than the non-regenerative ion exchange resin device, the small resin column breaks through the non-regenerative ion exchange resin device. Will occur. The breakthrough time of the non-regenerative ion exchange resin apparatus is predicted based on the treated water data of the small resin column.

具体的には、イオン交換カラムにおけるこのイオン交換樹脂と被処理水との吸着特性を表わすモデルを小型樹脂カラムの処理水データに基づいて設定し、このモデルを該非再生型イオン交換樹脂装置に適用する。これにより、この非再生型イオン交換樹脂装置に上記被処理水を通水した場合の破過時期を予測することができる。   Specifically, a model representing the adsorption characteristics of the ion exchange resin and treated water in the ion exchange column is set based on the treated water data of the small resin column, and this model is applied to the non-regenerative ion exchange resin apparatus. To do. Thereby, the breakthrough time when the water to be treated is passed through the non-regenerative ion exchange resin apparatus can be predicted.

小型樹脂カラムとして、破過時期が異なるように構成された複数個のものに該被処理水を通水し、各小型樹脂カラムの処理水データからそれぞれモデルを設定し、各モデルから非再生型イオン交換樹脂装置の破過時期を予測してもよい。このようにすれば、複数の予測データが得られるので予測破過時期の信頼性が向上する。   As the small resin column, water to be treated is passed through a plurality of columns that have different breakthrough times, and models are set from the treated water data of each small resin column. The breakthrough time of the ion exchange resin device may be predicted. In this way, since a plurality of prediction data can be obtained, the reliability of the predicted breakthrough time is improved.

非再生型イオン交換樹脂装置について予測された破過時期が到来する前に、非再生型イオン交換樹脂装置の交換又は非再生型イオン交換樹脂装置内のイオン交換樹脂の交換を行う。破過時期の予測精度が高いので、破過を生じさせることなく、非再生型イオン交換樹脂装置のイオン交換容量を最大限に利用することができる。   Before the breakthrough time predicted for the non-regenerative ion exchange resin apparatus arrives, the non-regenerative ion exchange resin apparatus is replaced or the ion exchange resin in the non-regenerative ion exchange resin apparatus is replaced. Since the prediction accuracy of the breakthrough time is high, the ion exchange capacity of the non-regenerative ion exchange resin apparatus can be utilized to the maximum without causing breakthrough.

なお、特許文献1では、炭酸が破過の律速となる場合にのみイオン交換装置の破過予測が可能であるが、本発明では炭酸以外のイオン(ナトリウム、ホウ素、シリカ等)が律速であっても破過予測が可能である。   In Patent Document 1, it is possible to predict breakthrough of an ion exchange device only when carbonic acid becomes the rate-determining rate of breakthrough. However, in the present invention, ions other than carbonic acid (sodium, boron, silica, etc.) are rate-limiting. But breakthrough prediction is possible.

非再生型イオン交換樹脂装置の通水系統図である。It is a water flow system diagram of a non-regenerative ion exchange resin device. 小型樹脂カラムにおけるイオン交換モデルを説明する模式図である。It is a schematic diagram explaining the ion exchange model in a small resin column. シミュレーションの結果を示すグラフである。It is a graph which shows the result of simulation. 破過曲線を示すグラフである。It is a graph which shows a breakthrough curve.

以下、図面を参照して本発明についてさらに詳細に説明する。図1は実施の形態に係る非再生型イオン交換樹脂装置の破過時期の予測方法を示すフロー図である。被処理水は、水質計1を通って非再生型イオン交換樹脂装置2に通水され、処理水として流出する。非再生型イオン交換樹脂装置2は、カラムと、該カラムに充填されたイオン交換樹脂とを有する。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a flowchart showing a method for predicting breakthrough time of a non-regenerative ion exchange resin apparatus according to an embodiment. The treated water is passed through the water quality meter 1 to the non-regenerative ion exchange resin apparatus 2 and flows out as treated water. The non-regenerative ion exchange resin apparatus 2 includes a column and an ion exchange resin packed in the column.

水質計1を通った被処理水の一部は、小型樹脂カラム3A、流量計4A、流量調節バルブ5A、水質計6Aの第1予測系統と、小型樹脂カラム3B、流量計4B、流量調節バルブ5B、水質計6Bの第2予測系統とにそれぞれ通水される。なお、この系統数は1又は3以上であってもよい。   A part of the treated water that has passed through the water quality meter 1 includes a small resin column 3A, a flow meter 4A, a flow control valve 5A, a first prediction system of the water quality meter 6A, a small resin column 3B, a flow meter 4B, and a flow control valve. 5B and the water quality meter 6B are respectively passed through the second prediction system. The number of systems may be 1 or 3 or more.

小型樹脂カラム3A,3Bは、非再生型イオン交換樹脂装置2のカラムよりも小さいカラム内に非再生型イオン交換樹脂装置2のイオン交換樹脂と同一のイオン交換樹脂を充填したものである。なお、小型樹脂カラム3A,3Bは、塔径、樹脂層高、及び通水SVのうち1以上を異ならせてある。   The small resin columns 3 </ b> A and 3 </ b> B are obtained by filling the same ion exchange resin as the ion exchange resin of the non-regenerative ion exchange resin device 2 in a column smaller than the column of the non-regenerative ion exchange resin device 2. In the small resin columns 3A and 3B, one or more of the tower diameter, the resin layer height, and the water flow SV is different.

この非再生型イオン交換樹脂装置2と小型樹脂カラム3A,3Bとに同一の被処理水を通水し、小型樹脂カラム3A,3Bの処理水(流出水)中の対象イオンの濃度を水質計6A,6Bで検出する。そして、被処理水の水質と小型樹脂カラム3A,3Bの流出水の水質の経時変化とから、この被処理水とイオン交換樹脂カラムとの破過特性を表わすモデル(破過予測シミュレーションモデル)を決定し、このモデルを非再生型イオン交換樹脂装置2に適用して非再生型イオン交換樹脂装置2の破過時期を予測する。   The same treated water is passed through the non-regenerative ion exchange resin apparatus 2 and the small resin columns 3A and 3B, and the concentration of target ions in the treated water (outflow water) of the small resin columns 3A and 3B is measured by a water quality meter. Detection is performed at 6A and 6B. A model (breakthrough prediction simulation model) representing breakthrough characteristics between the treated water and the ion exchange resin column is obtained from the quality of the water to be treated and the temporal change in the quality of the outflow water of the small resin columns 3A and 3B. Then, the model is applied to the non-regenerative ion exchange resin apparatus 2 to predict the breakthrough timing of the non-regenerative ion exchange resin apparatus 2.

非再生型イオン交換樹脂装置2及び小型樹脂カラム3A,3Bの好適な構成と、破過時期の計算方法及びシミュレーションモデルについて次に説明する。   Next, a preferred configuration of the non-regenerative ion exchange resin apparatus 2 and the small resin columns 3A and 3B, a breakthrough time calculation method, and a simulation model will be described.

<非再生型イオン交換樹脂装置>
非再生型イオン交換樹脂装置2は、一次純水製造装置の最終部や二次純水製造装置に設置され、その被処理水の水質は通常、炭酸イオン30μg/L as C以下、塩化物イオン1μg/L以下、ナトリウムイオン1μg/L以下、アンモニウムイオン0.1μg/L以下、ホウ素10μg/L as B以下、シリカ50μg/L as SiO以下のレベルである。
<Non-regenerative ion exchange resin device>
The non-regenerative ion exchange resin apparatus 2 is installed in the final part of the primary pure water production apparatus or the secondary pure water production apparatus, and the water quality of the treated water is usually 30 μg / L as C or less of carbonate ions, chloride ions 1 μg / L or less, sodium ion 1 μg / L or less, ammonium ion 0.1 μg / L or less, boron 10 μg / L as B or less, silica 50 μg / L as SiO 2 or less.

非再生型イオン交換樹脂装置としては、H型の強カチオン交換樹脂とOH型の強アニオン交換樹脂を混合した混床式イオン交換樹脂装置が多く用いられる。混床式イオン交換樹脂装置のカチオン交換樹脂とアニオン交換樹脂の混合割合は、被処理水質によっても異なるが、カチオン交換樹脂/アニオン交換樹脂=0.2〜1.0であることが好ましい。通常の場合、本発明が対象とする混床式イオン交換樹脂装置の樹脂層高は0.3〜2m程度、塔径は0.3〜2m程度、樹脂量は0.02〜6m程度である。非再生型イオン交換樹脂装置の通水SVは30〜150程度である。 As the non-regenerative ion exchange resin apparatus, a mixed bed type ion exchange resin apparatus in which an H type strong cation exchange resin and an OH type strong anion exchange resin are mixed is often used. The mixing ratio of the cation exchange resin and the anion exchange resin in the mixed bed type ion exchange resin apparatus varies depending on the water to be treated, but is preferably cation exchange resin / anion exchange resin = 0.2 to 1.0. Usually, the resin layer height of the mixed bed type ion exchange resin apparatus targeted by the present invention is about 0.3 to 2 m, the tower diameter is about 0.3 to 2 m, and the resin amount is about 0.02 to 6 m 3 . is there. The water flow SV of the non-regenerative ion exchange resin apparatus is about 30 to 150.

<小型樹脂カラム>
小型樹脂カラム3A,3Bは円筒形のものが好ましい。カラムの両端は、イオン交換樹脂が漏れないように樹脂の粒子径よりも小さい径のメッシュを設けたものを用いるのが好ましい。
<Small resin column>
The small resin columns 3A and 3B are preferably cylindrical. It is preferable to use what provided the mesh of the diameter smaller than the particle diameter of resin so that the ion exchange resin may not leak at both ends of a column.

小型樹脂カラム3A,3Bの樹脂層高は、低すぎると実機の非再生型イオン交換樹脂装置との構造差が大きくなりすぎるとともに、短期間の通水により破過が起こるため、非再生型イオン交換樹脂装置の破過時期の予測精度が悪くなる。また、樹脂層高が高すぎると破過までの時間が長くなりすぎて非再生型イオン交換樹脂装置の破過時期の予測に時間を要することとなる。従って、できるだけ短時間で精度良く破過時期を予測するためには、小型樹脂カラムの樹脂層高を、実機の非再生型イオン交換樹脂装置の樹脂層高の1/20〜1/2とするのが好ましく、1/15〜1/3とするのがより好ましく、1/10〜1/5とするのがさらに好ましい。   If the resin layer height of the small resin columns 3A and 3B is too low, the structural difference from the actual non-regenerative ion exchange resin device becomes too large, and breakthrough occurs due to short-term water flow. The prediction accuracy of the breakthrough time of the exchange resin device is deteriorated. If the resin layer height is too high, the time until breakthrough becomes too long, and it takes time to predict the breakthrough time of the non-regenerative ion exchange resin apparatus. Therefore, in order to accurately predict the breakthrough time in the shortest possible time, the resin layer height of the small resin column is set to 1/20 to 1/2 of the resin layer height of the actual non-regenerative ion exchange resin apparatus. Is preferable, 1/15 to 1/3 is more preferable, and 1/10 to 1/5 is further preferable.

小型樹脂カラムの塔径(内径)は、小さすぎるとカラム内壁を沿う水の流れの影響が大きくなり、大きすぎると破過までの時間が長くなりすぎて非再生型イオン交換樹脂装置の破過時期の予測に時間を要することとなる。その点で、小型樹脂カラムの塔径は、20〜100mmとするのが好ましく、25〜90mmとするのがより好ましく、30〜60mmとするのがさらに好ましい。   If the column diameter (inner diameter) of the small resin column is too small, the influence of the water flow along the inner wall of the column will increase, and if it is too large, the time until breakthrough will become too long and breakthrough of the non-regenerative ion exchange resin apparatus will occur. Time prediction will take time. In this respect, the tower diameter of the small resin column is preferably 20 to 100 mm, more preferably 25 to 90 mm, and even more preferably 30 to 60 mm.

小型樹脂カラムの通水SVは実機の非再生型イオン交換樹脂装置の2〜200倍とするのが好ましく、5〜100倍とするのがより好ましく、10〜50倍とするのがさらに好ましい。具体的には、900〜9000[1/h]とするのが好ましい。SVが小さすぎると破過までの時間が長くなりすぎて非再生型イオン交換樹脂装置の破過時期の予測に時間を要することとなる。また、大きすぎると短期間の通水により破過が起こるため、破過時期の予測精度が悪くなる。なお、本明細書において、SVは[通水量]/[充填樹脂容量]である。   The water flow SV of the small resin column is preferably 2 to 200 times that of the actual non-regenerative ion exchange resin apparatus, more preferably 5 to 100 times, and even more preferably 10 to 50 times. Specifically, it is preferably 900 to 9000 [1 / h]. If the SV is too small, the time until breakthrough becomes too long, and it takes time to predict the breakthrough time of the non-regenerative ion exchange resin apparatus. On the other hand, if it is too large, breakthrough occurs due to short-term water flow, so the prediction accuracy of the breakthrough time becomes worse. In addition, in this specification, SV is [amount of water flow] / [filled resin capacity].

このように小型樹脂カラムに高SVで通水を行うため、小型樹脂カラムの処理水を回収し、当該非再生型イオン交換樹脂装置の前段の一次純水系又は二次純水系に返送するのが好ましい。   In order to pass water through the small resin column at a high SV, the treated water of the small resin column is collected and returned to the primary pure water system or the secondary pure water system in the previous stage of the non-regenerative ion exchange resin apparatus. preferable.

本発明における小型樹脂カラムは、1本でも非再生型イオン交換樹脂装置の破過時期の予測は可能であるが、複数本設けることにより、より予測精度を向上させることができる。   Even if one small resin column in the present invention is used, the breakthrough time of the non-regenerative ion exchange resin apparatus can be predicted. However, by providing a plurality of small resin columns, the prediction accuracy can be further improved.

<処理水データ>
処理水データとしては、予め破過の律速となるイオン(対象イオン)を求めておき、処理水中のこのイオンの濃度を処理水データとするのが好ましい。
<Treatment water data>
As the treated water data, it is preferable to obtain ions (target ions) that become the rate-determining rate of breakthrough in advance and use the concentration of these ions in the treated water as treated water data.

具体的には、被処理水中の各種イオン濃度をイオンクロマトグラフィーやICPなどの分析手法により分析することにより、どのイオンが破過の律速になるのかを事前に把握しておくのが好ましい。即ち、炭酸、ナトリウム、アンモニア、ホウ素、シリカ等のうちから最も早く破過するイオンを対象イオンとする。通常の場合、HCO が対象イオンとなることが多い。 Specifically, it is preferable to know in advance which ions will be the rate-determining rate of breakthrough by analyzing various ion concentrations in the water to be treated by an analysis technique such as ion chromatography or ICP. That is, the ion that breaks through the earliest among carbonic acid, sodium, ammonia, boron, silica, and the like is set as the target ion. In normal cases, HCO 3 is often the target ion.

なお、処理水データ取得用の小型樹脂カラムとは別に樹脂分析用の樹脂カラムを設け、当該樹脂カラムに所定の通水量だけ通水した後、当該樹脂カラムの塩型分析(H型カチオン樹脂やOH型アニオン樹脂がどのような塩型になっているのかの定量分析)を行うことにより破過の律速となる対象イオンを決定してもよい。被処理水のイオン濃度の変動が大きい場合には、被処理水のサンプリング数が多く必要となるために手間と経費がかさんだり、少数の各サンプリングにより水質の平均値をとると誤差が大きくなったりする虞がある。そのような場合には、樹脂分析用の樹脂カラムにより被処理水中のイオン種及びそれらの平均濃度を容易に測定することができる。   In addition, a resin column for resin analysis is provided separately from the small resin column for processing water data acquisition, and after passing a predetermined amount of water through the resin column, salt type analysis of the resin column (H-cation resin or Quantitative analysis of what kind of salt the OH type anion resin is in) may be performed to determine the target ion that becomes the rate-determining rate of breakthrough. When fluctuations in the ion concentration of the water to be treated are large, a large number of samples of the water to be treated are required, which is troublesome and costly. There is a risk of becoming. In such a case, the ionic species in the water to be treated and their average concentration can be easily measured by the resin column for resin analysis.

炭酸濃度が高く、炭酸が律速となると判断される場合には、処理水の電気伝導率又は比抵抗率を測定し、それを特許文献1の段落0017〜0030に記載の原理で炭酸濃度に換算することができる。その他のイオンが律速になると判断される場合には、市販のイオンクロマトグラフィー装置やICP、ホウ素分析計、シリカ分析計を利用することができる。   When it is judged that the carbonic acid concentration is high and carbonic acid is rate-determining, the electrical conductivity or specific resistivity of the treated water is measured and converted into the carbonic acid concentration according to the principle described in paragraphs 0017 to 0030 of Patent Document 1. can do. When it is determined that other ions are rate-limiting, a commercially available ion chromatography device, ICP, boron analyzer, or silica analyzer can be used.

本発明では、比抵抗率計やオンラインイオンクロマトグラフィーを処理水ラインに設置して対象イオン濃度を直接測定してもよい。また、処理水のサンプリングを複数回行い、対象イオンの濃度を測定してもよい。   In the present invention, a specific ion meter may be directly measured by installing a specific resistance meter or online ion chromatography in the treated water line. Further, the concentration of target ions may be measured by sampling the treated water a plurality of times.

<破過時期の予測>
本発明においては、小型樹脂カラムの破過までの時間と、小型樹脂カラムの仕様(樹脂層高、SV等)から非再生型イオン交換樹脂装置の破過までの時間を求める式を定式化することによって、実機の非再生型イオン交換樹脂装置の仕様における破過時期の予測を行ってもよい。例えば、複数の小型樹脂カラムの破過までの時間とSVの関係から、下記のような式を定式化することにより、非再生型イオン交換樹脂装置の破過時期の予測が可能である。
<Prediction of breakthrough time>
In the present invention, formulas for determining the time until breakthrough of the small resin column and the time until breakthrough of the non-regenerative ion exchange resin apparatus from the specifications (resin layer height, SV, etc.) of the small resin column are formulated. Thus, the breakthrough time in the specifications of the actual non-regenerative ion exchange resin apparatus may be predicted. For example, it is possible to predict the breakthrough timing of the non-regenerative ion exchange resin apparatus by formulating the following equation from the relationship between SV and the time until breakthrough of a plurality of small resin columns.

Figure 0005625944
Figure 0005625944

ただし、樹脂層の仕様や通水条件によってイオン交換帯の形状が異なるため、上記式の補正係数Aの精度が正確に求められない場合もある。本発明では、後述の破過予測シミュレータを用いることにより、理論的にイオン交換樹脂充填層内における対象イオンのイオン交換樹脂内濃度qや液中濃度Cを取得し、上記式のような予測式を用いるよりも正確に破過時期を予測することができる。   However, since the shape of the ion exchange zone differs depending on the specifications of the resin layer and the water flow conditions, the accuracy of the correction coefficient A in the above formula may not be accurately obtained. In the present invention, by using a breakthrough prediction simulator described later, the ion exchange resin concentration q or in-liquid concentration C of the target ion in the ion exchange resin packed bed is theoretically acquired, and a prediction formula like the above formula is obtained. It is possible to predict the breakthrough time more accurately than using.

<破過予測シミュレーション>
破過予測シミュレータとしては、式(1)の物質収支式及び式(2)の吸着速度式を連立させることにより、イオン交換樹脂充填層内における対象イオンのイオン交換樹脂内濃度q及び液中濃度Cの経時変化を算定するモデルを用いることができる(参考:化学工学便覧(改訂第六版)丸善株式会社P.702〜703)。
<Breakthrough simulation>
As a breakthrough prediction simulator, the ion balance resin concentration q and the concentration in liquid of the target ion in the ion exchange resin packed bed can be obtained by combining the mass balance equation (1) and the adsorption rate equation (2). A model for calculating the change with time of C can be used (Reference: Chemical Engineering Handbook (6th revised edition) Maruzen P.702-703).

Figure 0005625944
ε:充填されたイオン交換樹脂の空隙率[−]
C:液中濃度[mol/L]
t:時間[h]
u:通水LV[m/h]
z:充填層入口からの距離[m]
γ:イオン交換樹脂の嵩密度([カラム内のイオン交換樹脂重量]/[カラム充填層容積])[kg/L]
q:イオン交換樹脂内濃度[mol/kg]
Figure 0005625944
ε: Porosity of filled ion exchange resin [−]
C: concentration in liquid [mol / L]
t: Time [h]
u: Water flow LV [m / h]
z: Distance from packed bed entrance [m]
γ: Bulk density of ion exchange resin ([ion exchange resin weight in column] / [column packed bed volume]) [kg / L]
q: Concentration in ion exchange resin [mol / kg]

Figure 0005625944
:総括物質移動容量係数[l/h]
C:qと平衡な液中濃度[mol/L]
Figure 0005625944
K F a v : Overall mass transfer capacity coefficient [l / h]
C: Liquid concentration in equilibrium with q [mol / L]

このモデルを図2に示す。図2の通り、小型樹脂カラム4内に充填されたイオン交換樹脂を充填層最上面から充填層最下面に向かって、F,F,F……………Fのn個の層状のフラクションよりなるものとする。フラクションの数nは多ければ多いほど精度が上がるが、nは50〜10000程度であればよい。 This model is shown in FIG. As Figure 2, the ion exchange resin filling a small resin column 4 toward the filling layer lowermost surface from the filling layer uppermost surface, F 1, F 2, F 3 n pieces of ............... F n It shall consist of layered fractions. As the number n of fractions increases, the accuracy increases, but n may be about 50 to 10,000.

上記式(1)は、任意のフラクションFにおける単位時間当りのイオンの流入量が該フラクションFからのイオンの流出量と該フラクションFに属するイオン交換樹脂へのイオン吸着量との和に等しいという物質収支を表わすものである。 The sum of the ion adsorption amount of the formula (1) is, to any fraction F inflow of ions per unit time in the k outflow of ions from the fraction F k and the fraction F k belonging ion exchange resin Represents the material balance of

式(2)は、該フラクションFに属するイオン交換樹脂のイオン吸着量qの単位時間当りの増加量は、フラクションFに流入する水中のイオン濃度Cと、該qと平衡な液中イオン濃度Cとの差に比例することを表わす。 Equation (2) indicates that the amount of ion adsorption q of the ion exchange resin belonging to the fraction F k per unit time increases as follows: the ion concentration C in water flowing into the fraction F k and the ions in the liquid in equilibrium with the q It is proportional to the difference from the concentration C * .

対象イオン(破過律速イオン)がHCO の場合、qとCとの関係は次式にて表される。 When the target ion (breakthrough rate limiting ion) is HCO 3 , the relationship between q and C * is expressed by the following equation.

Figure 0005625944
Figure 0005625944

最下段のフラクションFの流出水は、小型樹脂カラム4からの流出水である。従って、(2)式を(1)式に代入し、Cをtで解くことにより、フラクションFのイオン濃度Cと通水開始からの経過時間tとの関係を表わす式がK,ε,γ,Q,KHCO3 OH(上記(3)式の選択係数。以下、同様。),C,C,z,uを用いて表わされる。このうち、ε,γ,Q,C,z(充填層高)は既知である。C又はKHCO3 OHは、平衡吸着試験で求めておくか、又はシミュレーションのフィッティングによって定める。 Effluent lowermost fraction F n is the effluent from a small resin column 4. Therefore, (2) substituted formula of (1), by solving C in t, the fraction F n of ion concentration C and the formula representing the relationship between the elapsed time t from the water flow start K F a v , Ε, γ, Q, K HCO 3 OH (selection coefficient in the above equation (3), the same applies hereinafter), C O , C * , z, u. Of these, [epsilon], [gamma], Q, CO , and z (filled bed height) are known. C * or K HCO3 OH is determined by an equilibrium adsorption test or determined by simulation fitting.

次に、小型樹脂カラム3A又は3Bからの流出水のイオン濃度を経時的に測定し、フラクションFからの流出水濃度経時変化が実測値と合致するようにK,Cを定める。 Next, a small ion concentration of the effluent water from the resin column 3A or 3B was measured over time, the fraction F K as runoff concentration time course from n matches the measured value F a v, determine the C * .

このようにして求めた式に非再生型イオン交換樹脂装置2のε,γ,z(充填層高),uの値を代入することにより、非再生型イオン交換樹脂装置2の処理水中のイオン濃度の経時変化が求められ、これから該装置2の破過時期が求められる。ε,γは小型樹脂カラムと同一値としてもよい。   By substituting the values of ε, γ, z (packed layer height) and u of the non-regenerative ion exchange resin apparatus 2 into the formula thus obtained, ions in the treated water of the non-regenerative ion exchange resin apparatus 2 are obtained. A change in concentration with time is determined, and the breakthrough time of the device 2 is determined from this. ε and γ may be the same value as the small resin column.

このように、小型樹脂カラムの処理水データに基づいて破過予測式を定め、非再生型イオン交換樹脂装置2にあてはめて非再生型イオン交換樹脂装置2の破過時期を予測することができる。その際に、1本の小型樹脂カラムの処理水データに基づいて破過予測式を定めることが可能であるが、破過時期が異なるように構成された複数本の小型樹脂カラムの処理水データにシミュレーション結果がフィッティングするように破過予測式を定めると、破過予測の精度を向上させることができる。   In this way, a breakthrough prediction formula can be determined based on the treated water data of the small resin column, and applied to the non-regenerative ion exchange resin apparatus 2 to predict the breakthrough timing of the non-regenerative ion exchange resin apparatus 2. . At that time, it is possible to determine the breakthrough prediction formula based on the treated water data of one small resin column, but the treated water data of a plurality of small resin columns configured to have different breakthrough times. If the breakthrough prediction formula is determined so that the simulation result is fitted to the above, the accuracy of the breakthrough prediction can be improved.

なお、破過予測シミュレータとしては、適用するモデルにより予測精度は異なるが、各種のシミュレーションモデルを利用することができる。たとえば、下記の文献i)〜iii)に開示されるシミュレーションモデルを採用することが可能である。
i) 片岡,武藤,西機;ケミカルエンジニアリングVol.40 No.2 Page.144-147 (1995.02)
ii) Journal of Hazardous Materials 152(2008)241-249 “Prediction of ion-exchange column breakthrough curves by constant-pattern wave approach”
iii) Reactive & Functional Polymers 60(2004)121-135
As the breakthrough prediction simulator, various simulation models can be used, although the prediction accuracy differs depending on the model to be applied. For example, it is possible to employ the simulation model disclosed in the following documents i) to iii).
i) Kataoka, Muto, Nishiki; Chemical Engineering Vol.40 No.2 Page.144-147 (1995.02)
ii) Journal of Hazardous Materials 152 (2008) 241-249 “Prediction of ion-exchange column breakthrough curves by constant-pattern wave approach”
iii) Reactive & Functional Polymers 60 (2004) 121-135

<非再生型イオン交換樹脂装置の樹脂交換>
上記破過時期に沿って、もしくは上記破過時期に所定の安全率をかけた時期に樹脂交換を行う。たとえば、破過時期が非再生型イオン交換樹脂装置への通水開始から26ヶ月と予測された場合には、2ヶ月の余裕を持って、24ヶ月経過した時点で樹脂交換を行うといった交換スケジュールの立案が可能となる。
<Resin replacement of non-regenerative ion exchange resin equipment>
Resin replacement is performed along the breakthrough time or at a time when a predetermined safety factor is applied to the breakthrough time. For example, when the breakthrough time is predicted to be 26 months from the start of water flow to the non-regenerative ion exchange resin apparatus, the exchange schedule is such that the resin is replaced when 24 months have passed with a margin of 2 months. Can be planned.

[実施例1]
液晶工場の二次純水製造装置における非再生型イオン交換樹脂装置の交換時期の予測を行った。
[Example 1]
Prediction of the replacement time of the non-regenerative ion exchange resin equipment in the secondary pure water production equipment of the liquid crystal factory was performed.

図1のように、非再生型イオン交換樹脂装置2に並列で小型樹脂カラム3A,3Bを設置し、通水を行った。対象イオンはHCO イオンとし、水質計として比抵抗率計を用い、比抵抗率からHCO 濃度を求めた。 As shown in FIG. 1, small resin columns 3A and 3B were installed in parallel with the non-regenerative ion exchange resin apparatus 2 to conduct water. The target ions were HCO 3 ions, a specific resistance meter was used as a water quality meter, and the HCO 3 concentration was determined from the specific resistance.

被処理水の水質は次の通りである。   The quality of treated water is as follows.

被処理水比抵抗率[MΩ・cm]:17.1
被処理水[HCO]濃度:6.91E−09
被処理水[HCO ]濃度:2.70E−08
被処理水[H]濃度:1.14E−07
被処理水[OH]濃度:8.77E−08
被処理水pH:6.94
Specific resistance of water to be treated [MΩ · cm]: 17.1
Water to be treated [H 2 CO 3 ] concentration: 6.91E-09
Water to be treated [HCO 3 ] concentration: 2.70E-08
Water to be treated [H + ] concentration: 1.14E-07
To-be-treated water [OH ] concentration: 8.77E-08
Water to be treated pH: 6.94

小型樹脂カラムの仕様は次の通りである。
<小型樹脂カラム3A>
塔径[mm]:40
樹脂層高[mm]:100
通水SV[1/h]:4000(LV=400m/h)
樹脂層空隙率ε[−]:0.392
樹脂層嵩密度γ[g/L]:650
<小型樹脂カラム3B>
塔径[mm]:40
樹脂層高[mm]:200
通水SV[1/h]:1000(LV=200m/h)
樹脂層空隙率ε[−]:0.392
樹脂層嵩密度γ[g/L]:650
The specifications of the small resin column are as follows.
<Small resin column 3A>
Tower diameter [mm]: 40
Resin layer height [mm]: 100
Water flow SV [1 / h]: 4000 (LV = 400 m / h)
Resin layer porosity ε [−]: 0.392
Resin layer bulk density γ [g / L]: 650
<Small resin column 3B>
Tower diameter [mm]: 40
Resin layer height [mm]: 200
Water flow SV [1 / h]: 1000 (LV = 200 m / h)
Resin layer porosity ε [−]: 0.392
Resin layer bulk density γ [g / L]: 650

小型樹脂カラム3A,3Bの処理水データ(比抵抗率の経時変化の測定結果)を図3にプロットした。このデータを用い、(1)〜(3)式を連立させてC,tについて解き、各小型樹脂カラムの上記仕様を入力し、下記条件で小型樹脂カラム3A、3Bの破過曲線に近くなるようシミュレーションパラメータを設定し、破過予測シミュレーション結果を図3に破線で示した。なお、図3のシミュレーションでは、KHCO3 OHは8[−]、Kは13500[1/h]である。 The treated water data of small resin columns 3A and 3B (measurement results of changes in resistivity over time) are plotted in FIG. Using this data, equations (1) to (3) are simultaneously solved for C and t, the above specifications for each small resin column are input, and the breakthrough curves of the small resin columns 3A and 3B are approximated under the following conditions. The simulation parameters were set as described above, and the breakthrough prediction simulation results are shown by broken lines in FIG. In the simulation of FIG. 3, K HCO3 OH is 8 [-] X, K F a v is 13500 [1 / h].

<小型樹脂カラム3A,3Bの仕様及びシミュレーション条件>
フラクション数n:100
計数ステップ数(時間刻み数):2000
時間刻み幅[h]:1.2
最大計算時間[h]:2400
<Specifications and simulation conditions for small resin columns 3A and 3B>
Number of fractions n: 100
Number of counting steps (number of time steps): 2000
Time step [h]: 1.2
Maximum calculation time [h]: 2400

同じシミュレーションパラメータを用いて、非再生型イオン交換樹脂装置2について下記仕様及び条件で破過予測シミュレーションを行うことにより得られた破過曲線を図4に示す。図示の通り、破過点を18.0MΩ・cmとした場合、破過時期は、通水開始から800日後であると予測された。
<非再生型イオン交換樹脂装置2の仕様及びシミュレーション条件>
塔径[mm]:400
樹脂層高[mm]:500
通水SV[1/h]:200(LV=100m/h)
樹脂層分割数:100
計数ステップ数:2000
時間刻み幅[h]:21
最大計算時間[h]:42000
樹脂層空隙率ε[−]:0.392
樹脂層嵩密度γ[g/L]:650
被処理水比抵抗率[MΩ・cm]:17.1
被処理水[HCO]濃度:6.91E−09
被処理水[HCO ]濃度:2.70E−08
被処理水[H]濃度:1.14E−07
被処理水[OH]濃度:8.77E−08
被処理水pH:6.94
FIG. 4 shows a breakthrough curve obtained by conducting a breakthrough prediction simulation with the following specifications and conditions for the non-regenerative ion exchange resin apparatus 2 using the same simulation parameters. As shown in the figure, when the breakthrough point was 18.0 MΩ · cm, the breakthrough time was predicted to be 800 days after the start of water flow.
<Specifications and simulation conditions of non-regenerative ion exchange resin apparatus 2>
Tower diameter [mm]: 400
Resin layer height [mm]: 500
Water flow SV [1 / h]: 200 (LV = 100 m / h)
Number of resin layer divisions: 100
Counting steps: 2000
Time step [h]: 21
Maximum calculation time [h]: 42000
Resin layer porosity ε [−]: 0.392
Resin layer bulk density γ [g / L]: 650
Specific resistance of water to be treated [MΩ · cm]: 17.1
Water to be treated [H 2 CO 3 ] concentration: 6.91E-09
Water to be treated [HCO 3 ] concentration: 2.70E-08
Water to be treated [H + ] concentration: 1.14E-07
To-be-treated water [OH ] concentration: 8.77E-08
Water to be treated pH: 6.94

1,6A,6B 水質計
2 非再生型イオン交換樹脂装置
3A,3B 小型樹脂カラム
1,6A, 6B Water quality meter 2 Non-regenerative ion exchange resin device 3A, 3B Small resin column

Claims (5)

カラム内にイオン交換樹脂を充填した非再生型イオン交換樹脂装置の破過時期を予測する方法において、
該カラムよりも小型の小型カラム内に該イオン交換樹脂と同じイオン交換樹脂を充填した小型樹脂カラムを該非再生型イオン交換樹脂装置と並列に設置し、
該非再生型イオン交換樹脂装置に通水される被処理水と同一の被処理水を該小型樹脂カラムに通水し、
該小型樹脂カラムの処理水データに基づいて該非再生型イオン交換樹脂装置の破過時期を予測し、
該非再生型イオン交換樹脂装置は、一次純水製造装置の最終部又は二次純水製造装置に設置され、
該小型樹脂カラムは、塔径、樹脂層高、及び通水SVのうち1以上を異ならせた複数本が並列に設置され、
該非再生型イオン交換樹脂装置の通水SVの10〜200倍の通水SVで該小型樹脂カラムに通水することを特徴とする非再生型イオン交換樹脂装置の破過時期の予測方法。
In a method for predicting the breakthrough time of a non-regenerative ion exchange resin apparatus packed with an ion exchange resin in a column,
A small resin column filled with the same ion exchange resin as the ion exchange resin in a small column smaller than the column is installed in parallel with the non-regenerative ion exchange resin device,
The same treated water as the treated water passed through the non-regenerative ion exchange resin apparatus is passed through the small resin column,
Predict the breakthrough time of the non-regenerative ion exchange resin apparatus based on the treated water data of the small resin column ,
The non-regenerative ion exchange resin apparatus is installed in the final part of the primary pure water production apparatus or the secondary pure water production apparatus,
In the small resin column, a plurality of column columns, resin layer heights, and water flow SVs different from each other by one or more are installed in parallel.
A method for predicting the breakthrough time of a non-regenerative ion exchange resin apparatus, characterized in that water flows through the small resin column at a flow SV of 10 to 200 times the water flow SV of the non-regenerative ion exchange resin apparatus.
請求項1において、前記小型樹脂カラムのイオン交換樹脂層高は、前記非再生型イオン交換樹脂装置のイオン交換樹脂層高の1/20〜1/2であることを特徴する非再生型イオン交換樹脂装置の破過時期の予測方法。   2. The non-regenerative ion exchange according to claim 1, wherein the ion exchange resin layer height of the small resin column is 1/20 to 1/2 of the ion exchange resin layer height of the non-regenerative ion exchange resin apparatus. Prediction method for resin equipment breakthrough time. 請求項1又は2において、
前記処理水データは、前記小型樹脂カラムの処理水の比抵抗値、導電率、イオンクロマトグラフィー分析結果又はICP分析結果であることを特徴とする非再生型イオン交換樹脂装置の破過時期の予測方法。
In claim 1 or 2 ,
Prediction of breakthrough time of non-regenerative ion exchange resin apparatus, wherein the treated water data is a specific resistance value, conductivity, ion chromatography analysis result or ICP analysis result of treated water of the small resin column Method.
請求項1ないしのいずれか1項において、
小型樹脂カラムからの流出水中のイオン濃度の経時変化を表わす式を小型樹脂カラムの仕様及びパラメータを用いて表わしておき、このパラメータを小型樹脂カラムからの流出水のイオン濃度の経時変化の実測値に基づいて決定し、
このパラメータと、非再生型イオン交換樹脂装置の仕様とに基づいて非再生型イオン交換樹脂装置からの流出水中のイオン濃度の経時変化を演算し、この演算値が基準値を超える時間を予測破過時間とすることを特徴とする非再生型イオン交換樹脂装置の破過時期の予測方法。
In any one of Claims 1 thru | or 3 ,
The formula representing the time-dependent change in ion concentration in the effluent from the small resin column is expressed using the specifications and parameters of the small resin column, and this parameter is the measured value of the time-dependent change in the ion concentration of the effluent from the small resin column. Based on
Based on this parameter and the specifications of the non-regenerative ion exchange resin device, the time-dependent change in the ion concentration in the effluent from the non-regenerative ion exchange resin device is calculated, and the time when this calculated value exceeds the reference value is predicted to be broken. A method for predicting the breakthrough time of a non-regenerative ion exchange resin apparatus, characterized in that the time is overtime.
請求項1ないしのいずれか1項の非再生型イオン交換樹脂装置の破過時期の予測方法によって予測された破過時期の経過前に、前記非再生型イオン交換樹脂装置内のイオン交換樹脂又は前記非再生型イオン交換樹脂装置を交換することを特徴とする非再生型イオン交換樹脂装置の保守方法。 The ion exchange resin in the non-regenerative ion exchange resin device before the passage of the breakthrough time predicted by the method for predicting the breakthrough time of the non-regenerative ion exchange resin device according to any one of claims 1 to 4. Or the maintenance method of the non-regeneration type ion exchange resin apparatus characterized by exchanging the non-regeneration type ion exchange resin apparatus.
JP2011011063A 2011-01-21 2011-01-21 Non-regenerative ion exchange resin equipment breakthrough time prediction method and maintenance method Active JP5625944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011063A JP5625944B2 (en) 2011-01-21 2011-01-21 Non-regenerative ion exchange resin equipment breakthrough time prediction method and maintenance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011063A JP5625944B2 (en) 2011-01-21 2011-01-21 Non-regenerative ion exchange resin equipment breakthrough time prediction method and maintenance method

Publications (2)

Publication Number Publication Date
JP2012154634A JP2012154634A (en) 2012-08-16
JP5625944B2 true JP5625944B2 (en) 2014-11-19

Family

ID=46836528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011063A Active JP5625944B2 (en) 2011-01-21 2011-01-21 Non-regenerative ion exchange resin equipment breakthrough time prediction method and maintenance method

Country Status (1)

Country Link
JP (1) JP5625944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101788696B1 (en) * 2015-12-14 2017-11-15 한국수자원공사 Method to predict ion exchange process breakthrough in ultrapure water production

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205865B2 (en) * 2013-06-04 2017-10-04 栗田工業株式会社 Operation management method for pure water production equipment
JP6191289B2 (en) * 2013-07-08 2017-09-06 栗田工業株式会社 Ion-exchange resin performance evaluation method and replacement time judgment method
JP6477487B2 (en) * 2013-10-31 2019-03-06 栗田工業株式会社 Method and apparatus for measuring the number of fine particles in ultrapure water
JP6503727B2 (en) * 2014-12-18 2019-04-24 栗田工業株式会社 Load analysis method for ion exchange resin and proposed improvement method
US11017344B2 (en) 2016-09-12 2021-05-25 Ecolab Usa Inc. Method and apparatus for predicting depletion of deionization tanks and optimizing delivery schedules
JP6288319B1 (en) 2017-01-10 2018-03-07 栗田工業株式会社 Operation method of water treatment equipment
JP2018086657A (en) * 2018-02-21 2018-06-07 野村マイクロ・サイエンス株式会社 Pure water production apparatus, ultrapure water production system, and pure water producing method
JP7305960B2 (en) * 2019-01-08 2023-07-11 栗田工業株式会社 Operation method of ultrapure water production equipment
JP6806202B1 (en) * 2019-08-15 2021-01-06 栗田工業株式会社 Prediction method of fine particle breakage time of non-renewable ion exchange resin device and management method of non-regenerative ion exchange resin device
JP2022180250A (en) * 2021-05-24 2022-12-06 栗田工業株式会社 Method for replacing ion exchange resin in non-regenerative ion exchanger
JP2024017876A (en) * 2022-07-28 2024-02-08 オルガノ株式会社 Operation management method and operation management system for ultrapure water production device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213848A (en) * 1986-03-17 1987-09-19 Toshiba Corp Apparatus for measuring ion exchange zone of condensed water desalting apparatus
JPH02233193A (en) * 1989-03-07 1990-09-14 Asahi Chem Ind Co Ltd Pure water preparation method
JP3817860B2 (en) * 1997-09-29 2006-09-06 栗田工業株式会社 Ultrapure water production apparatus and ultrapure water production method
JP2002035743A (en) * 2000-07-21 2002-02-05 Kurita Water Ind Ltd Water softener
JP4600617B2 (en) * 2000-08-07 2010-12-15 オルガノ株式会社 Anion exchange resin performance evaluation method and apparatus, and condensate demineralizer
JP2009240943A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Conditioning method of ion-exchange resin
JP5604143B2 (en) * 2009-03-18 2014-10-08 オルガノ株式会社 Dissolved oxygen-removed water production method, dissolved oxygen-removed water production device, dissolved oxygen treatment tank, ultrapure water production method, hydrogen-dissolved water production method, hydrogen-dissolved water production device, and electronic component cleaning method
JP5329463B2 (en) * 2009-03-18 2013-10-30 オルガノ株式会社 Production method for hydrogen peroxide decomposition treated water, production apparatus for hydrogen peroxide decomposition treated water, treatment tank, production method for ultra pure water, production apparatus for ultra pure water, production method for hydrogen dissolved water, production apparatus for hydrogen dissolved water , Ozone-dissolved water manufacturing method, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101788696B1 (en) * 2015-12-14 2017-11-15 한국수자원공사 Method to predict ion exchange process breakthrough in ultrapure water production

Also Published As

Publication number Publication date
JP2012154634A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5625944B2 (en) Non-regenerative ion exchange resin equipment breakthrough time prediction method and maintenance method
Harrison et al. Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons
McCleskey et al. A new method of calculating electrical conductivity with applications to natural waters
US9891198B2 (en) Method of analysing gas chromatography data
Rozalen et al. Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution
JP5757130B2 (en) Ion exchange apparatus operating method and ion exchange system
JP6300924B2 (en) Coriolis type device for directly measuring the source and method for measuring the source directly
EP3781942B1 (en) Transition analysis method for chromatography column qualification
KR100875372B1 (en) A device for consecutive measuring residual chlorine in water distribution system
Paudel et al. Modeling inorganic nutrient distributions among hydrologic gradients using multivariate approaches
Jubin et al. Performance of silver-exchanged mordenite and silver-functionalized silica-aerogel under vessel off-gas conditions
Boulange et al. Analysis of parameter uncertainty and sensitivity in PCPF-1 modeling for predicting concentrations of rice herbicides
Schonsky et al. Sulfate transport and release in technogenic soil substrates: experiments and numerical modeling
Pérez-Zárate et al. Geochemometric modeling and geothermal experiments of Water/Rock Interaction for the study of alkali-feldspars dissolution
US5065417A (en) Method and apparatus for monitoring the partial density of metal and acid in pickling baths
Swan et al. An assessment of static and dynamic models to predict water treatment works performance
Pu et al. Estimating uncertainty in streamflow and solute fluxes at the Hubbard Brook Experimental Forest, New Hampshire, USA
Westesen et al. Reduced Temperature Cesium Removal from AP-101 Using Crystalline Silicotitanate
Li et al. Reply to “Comment on upscaling geochemical reaction rates using pore-scale network modeling” by Peter C. Lichtner and Qinjun Kang
JP2015064260A (en) Contaminated water processing system, contaminated water processing method and contaminated water processing program
Jeong et al. Time series analysis for determining ecologically acceptable Cu concentration from species sensitivity distribution with biotic ligand models in soil pore water
CN105548456B (en) A kind of mercury catalyst transformation efficiency detection method and detection device
Reynolds et al. Reconciliation of solute concentration data with water contents and densities of multi-component electrolyte solutions
Rashid et al. Chlorine decay and formation of THM in Malaysia’s water distribution system
JP5949060B2 (en) Ion exchange apparatus and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250