JP5949060B2 - Ion exchange apparatus and operation method thereof - Google Patents

Ion exchange apparatus and operation method thereof Download PDF

Info

Publication number
JP5949060B2
JP5949060B2 JP2012080581A JP2012080581A JP5949060B2 JP 5949060 B2 JP5949060 B2 JP 5949060B2 JP 2012080581 A JP2012080581 A JP 2012080581A JP 2012080581 A JP2012080581 A JP 2012080581A JP 5949060 B2 JP5949060 B2 JP 5949060B2
Authority
JP
Japan
Prior art keywords
regeneration
regenerant
water
waste liquid
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012080581A
Other languages
Japanese (ja)
Other versions
JP2013208565A (en
Inventor
真吾 宮本
真吾 宮本
重希 堀井
重希 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012080581A priority Critical patent/JP5949060B2/en
Publication of JP2013208565A publication Critical patent/JP2013208565A/en
Application granted granted Critical
Publication of JP5949060B2 publication Critical patent/JP5949060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明はイオン交換装置及びその運転方法に係り、特にイオン交換体の再生条件を最適化可能な装置及び方法に関する。イオン交換装置の形態としては、単層・複層をとわず、再生型のイオン交換装置であれば、純水・超純水装置、復水脱塩装置、軟化器等に適用可能である。   The present invention relates to an ion exchange apparatus and an operation method thereof, and more particularly to an apparatus and a method capable of optimizing regeneration conditions of an ion exchanger. As a form of the ion exchange device, it is applicable to a pure water / ultra pure water device, a condensate demineralizer, a softener, etc., as long as it is a regenerative ion exchange device without using a single layer or multiple layers. .

イオン交換体の再生においては、イオン交換装置の設計時に決定した再生レベル(イオン交換体の容量当たりの再生剤のグラム数)をそのまま適用するのが通常であり、再生剤濃度、再生LV、再生時間といった個々の再生条件については最適化が図られていないことが多い。   In the regeneration of the ion exchanger, the regeneration level (grams of regenerant per ion exchanger capacity) determined at the time of designing the ion exchanger is usually applied as it is, and the regenerant concentration, regeneration LV, regeneration is applied. In many cases, individual reproduction conditions such as time are not optimized.

特許文献1には、あらかじめ測定した被処理水の金属陽イオン総量に基づいてイオン交換樹脂の再生レベルを決定し、再生レベルに見合う量の再生剤(塩水)が供給されるように再生ポンプの作動時間を設定することが記載されている。   In Patent Document 1, the regeneration level of the ion exchange resin is determined based on the total amount of metal cations of water to be treated measured in advance, and the regeneration pump is supplied so that an amount of regeneration agent (salt water) corresponding to the regeneration level is supplied. It describes that the operating time is set.

特許第4161127号公報Japanese Patent No. 4161127

しかしながら、上記特許文献1のように被処理水中のイオン総量のみで再生条件を最適化することは困難である。これは、再生条件を最適化するためには、通水後再生直前におけるイオン交換体の充填層内のイオンの吸着状態を把握する必要があり、給水条件(給水中の各イオンの濃度、通水量、通水LV等)、装置条件(塔径、イオン交換体充填層高さ等)、イオン交換体の性状(交換容量、イオン選択性、嵩密度等)などにより当該吸着状態が変わるため、吸着状態の正確な予測が難しいためである。   However, it is difficult to optimize the regeneration conditions only with the total amount of ions in the water to be treated as in Patent Document 1. In order to optimize the regeneration conditions, it is necessary to grasp the adsorption state of ions in the packed bed of the ion exchanger immediately after regeneration after the water flow. Since the adsorption state changes depending on the amount of water, water flow LV, etc.), apparatus conditions (column diameter, ion exchanger packed bed height, etc.), ion exchanger properties (exchange capacity, ion selectivity, bulk density, etc.) This is because it is difficult to accurately predict the adsorption state.

本発明は、上記の諸条件を加味した通水・再生のシミュレーション計算を行うことにより、最適な再生条件にてイオン交換体を再生可能なイオン交換装置およびその運転方法を提供することを目的とする。   An object of the present invention is to provide an ion exchange apparatus capable of regenerating an ion exchanger under optimum regeneration conditions and a method for operating the same by performing simulation calculation of water flow and regeneration in consideration of the various conditions described above. To do.

本発明のイオン交換装置は、イオン交換体が充填されたイオン交換体充填層を有するイオン交換装置に被処理水を通水して被処理水中のイオンを分離し、通水停止後に、あらかじめ演算手段により算定された再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件に従って再生剤を通液して該イオン交換体を再生するイオン交換装置において、該演算手段は、被処理水の水質、通水速度及び通水時間から、通水停止後再生前における該イオン交換体充填層内のイオンの吸着量分布を演算し、該通水停止後再生前の吸着量分布に対して複数の再生条件にて再生させた後の吸着量分布を演算することにより、該再生条件を算定するイオン交換装置であって、前記通水停止後再生前の吸着量分布の演算と前記再生後の吸着量分布の演算を2回以上繰り返し、最後の再生後の吸着量分布に対して、前記被処理水の水質、通水速度及び通水時間にて通水させた場合における、処理水濃度が所定のイオン濃度に達するまでの採水時間を算出し、該採水時間が所定時間よりも長くなり、かつ、再生剤量又は再生コストが最小となるように前記再生条件を算定することを特徴とするものである。 The ion exchange device of the present invention separates ions in water to be treated by passing the water to be treated into an ion exchange device having an ion exchanger packed layer filled with an ion exchanger, and calculates in advance after the water flow is stopped. In an ion exchange apparatus that regenerates the ion exchanger by passing a regenerant in accordance with one or more regeneration conditions selected from the regenerant concentration calculated by the means, the regenerant feed speed, and the regenerant feed time. The means calculates the adsorption amount distribution of ions in the packed bed of the ion exchanger after the stoppage of the water flow from the quality, flow rate and flow time of the water to be treated, and after the stoppage of the water flow and before the regeneration. An ion exchange apparatus for calculating the regeneration condition by calculating the adsorption amount distribution after regenerating under a plurality of regeneration conditions with respect to the adsorption amount distribution, the adsorption amount distribution before regeneration after the water flow stoppage And the amount of adsorption after regeneration The calculation of the cloth is repeated twice or more, and the treated water concentration in the case where water is passed at the treated water quality, the water flow speed and the water passing time with respect to the adsorption amount distribution after the last regeneration is a predetermined value. A water sampling time until the ion concentration is reached is calculated, and the regeneration condition is calculated so that the water sampling time is longer than a predetermined time and the amount of the regenerant or the regeneration cost is minimized. Is.

本発明のイオン交換装置の運転方法は、イオン交換体が充填されたイオン交換体充填層を有するイオン交換装置に被処理水を通水して被処理水中のイオンを分離し、通水停止後に、あらかじめ演算手段により算定された再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件に従って再生剤を通液して該イオン交換体を再生するイオン交換装置の運転方法において、該演算手段は、被処理水の水質、通水速度及び通水時間から、通水停止後再生前における該イオン交換体充填層内のイオンの吸着量分布を演算し、該通水停止後再生前の吸着量分布に対して複数の再生条件にて再生させた後の吸着量分布を演算することにより、該再生条件を算定するイオン交換装置の運転方法であって、前記通水停止後再生前の吸着量分布の演算と前記再生後の吸着量分布の演算を2回以上繰り返し、最後の再生後の吸着量分布に対して、前記被処理水の水質、通水速度及び通水時間にて通水させた場合における、処理水濃度が所定のイオン濃度に達するまでの採水時間を算出し、該採水時間が所定時間よりも長くなり、かつ、再生剤量又は再生コストが最小となるように前記再生条件を算定することを特徴とするものである。 The operation method of the ion exchange apparatus of the present invention is to pass water to be treated to an ion exchange apparatus having an ion exchanger packed bed filled with an ion exchanger to separate ions in the water to be treated, and after stopping the water flow An ion exchange apparatus for regenerating the ion exchanger by passing a regenerant according to one or more regeneration conditions selected from a regenerant concentration, a regenerant flow rate and a regenerant flow time calculated in advance by a calculation means. In the operation method, the calculating means calculates the adsorption amount distribution of ions in the ion exchanger packed bed before the regeneration after the stoppage of the water flow from the quality of the water to be treated, the water flow speed and the water flow time. An operation method of an ion exchange apparatus for calculating the regeneration condition by calculating the adsorption amount distribution after regenerating under a plurality of regeneration conditions with respect to the adsorption amount distribution after the water stop and before regeneration. Adsorption amount after water stop and before regeneration Repeat the calculation of the cloth and the adsorption amount distribution after the regeneration twice or more, and let the treated amount of water, the water flow speed and the water passage time pass through the adsorption amount distribution after the last regeneration. In this case, the sampling time until the treated water concentration reaches a predetermined ion concentration is calculated, and the sampling time is longer than the predetermined time, and the amount of the regenerant or the regeneration cost is minimized. It is characterized by calculating regeneration conditions .

本発明では、前記再生後の吸着量分布により、イオン交換体充填層内のイオン残留量が所定値よりも小さくなり、かつ、再生剤量又は再生コストが最小となるように前記再生条件を算定することが好ましい。   In the present invention, the regeneration conditions are calculated so that the residual amount of ions in the ion exchanger packed bed is smaller than a predetermined value and the amount of regenerant or the regeneration cost is minimized by the adsorption amount distribution after regeneration. It is preferable to do.

本発明では、前記イオン交換装置がカチオン塔とアニオン塔を備えており、演算手段によりカチオン塔とアニオン塔の両方について再生条件を算定した後、該再生条件での再生によりカチオン塔から排出される酸性の再生廃液のpH及び廃液量とアニオン塔から排出される塩基性の再生廃液のpH及び廃液量とを算定し、カチオン塔からの再生廃液とアニオン塔から排出される再生廃液とを混合したときの混合廃液のpHの算出結果が酸性の場合には、アニオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくし、該混合廃液のpHの算出結果が塩基性の場合には、カチオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくすることが好ましい。   In the present invention, the ion exchange apparatus includes a cation tower and an anion tower, and after calculating the regeneration conditions for both the cation tower and the anion tower by a calculation means, the cation tower is discharged from the cation tower by regeneration under the regeneration conditions. The pH and the amount of the basic regeneration waste liquid discharged from the anion tower and the pH and the amount of the waste liquid discharged from the anion tower were calculated, and the regeneration waste liquid from the cation tower and the regeneration waste liquid discharged from the anion tower were mixed. When the calculation result of the pH of the mixed waste liquid is acidic, one or more regeneration conditions selected from the regenerant concentration of the anion tower, the regenerant flow speed and the regenerant flow time are increased, and the mixed waste liquid When the calculation result of the pH is basic, it is preferable to increase one or more regeneration conditions selected from the regenerant concentration of the cation tower, the regenerant flow rate, and the regenerant flow time.

この場合、前記混合廃液のpHの算出結果が所定のpHよりも小さい場合には、該混合溶液が所定のpH域に収まるようにアニオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくし、該混合廃液のpHの算出結果が所定のpHより大きい場合には、該混合廃液が所定のpH域に収まるようにカチオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくすることが好ましい。   In this case, when the calculation result of the pH of the mixed waste liquid is smaller than the predetermined pH, the regenerant concentration of the anion tower, the regenerant flow rate and the regenerant flow rate are adjusted so that the mixed solution falls within the predetermined pH range. When one or more regeneration conditions selected from the liquid time are increased and the calculation result of the pH of the mixed waste liquid is larger than a predetermined pH, the regenerant concentration of the cation tower is adjusted so that the mixed waste liquid falls within a predetermined pH range. It is preferable to increase one or more regeneration conditions selected from the regenerant flow rate and the regenerant flow time.

本発明においては、通水条件によって異なる通水後再生前におけるイオン交換体充填層内のイオン吸着量分布を予測し、その分布を初期条件として再生条件の最適化を行うため、イオン交換装置の再生における再生剤量又は再生コストを最小限にすることができる。   In the present invention, in order to predict the ion adsorption amount distribution in the ion exchanger packed bed before regeneration after water flow that differs depending on the water flow conditions and optimize the regeneration conditions using the distribution as an initial condition, The amount of regenerant or regeneration cost in regeneration can be minimized.

イオン交換塔のモデル図である。It is a model figure of an ion exchange tower. 試験結果を示すグラフである。It is a graph which shows a test result. 試験結果を示すグラフである。It is a graph which shows a test result.

本発明においては、再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件の最適化を行うために、後述のイオン交換シミュレータを使用するのが好ましい。   In the present invention, it is preferable to use an ion exchange simulator which will be described later in order to optimize one or more regeneration conditions selected from the regenerant concentration, the regenerant flow rate and the regenerant flow time.

<イオン交換シミュレータ>
イオン交換装置への通水シミュレーションにおいては、式(1)の物質収支式及び式(2)の吸着速度式を連立させることにより、イオン交換体充填層内における対象イオンのイオン交換体内濃度q及び液中濃度Cの経時変化を算定する一次元固定層のモデルを用いることができる(参考:化学工学便覧(改訂第六版)丸善株式会社P.702〜703)。
<Ion exchange simulator>
In the simulation of water flow to the ion exchange device, the concentration of the target ions in the ion exchanger in the ion exchanger packed layer q and the adsorption rate expression of the equation (1) and the adsorption rate equation of the equation (2) are combined. A model of a one-dimensional fixed layer that calculates the change with time in the concentration C in the liquid can be used (reference: Chemical Engineering Handbook (6th revised edition) Maruzen P.702-703).

Figure 0005949060
ε:充填されたイオン交換体の空隙率[−]
C:液中濃度[mol/L]
t:時間[h]
u:通水LV[m/h]
z:充填層入口からの距離[m]
γ:イオン交換体の嵩密度([カラム内のイオン交換体重量]/[カラム充填層容積])[kg/L]
q:イオン交換体内濃度[mol/kg]
Figure 0005949060
ε: Porosity of packed ion exchanger [−]
C: concentration in liquid [mol / L]
t: Time [h]
u: Water flow LV [m / h]
z: Distance from packed bed entrance [m]
γ: Bulk density of ion exchanger ([ion exchanger weight in column] / [column packed bed volume]) [kg / L]
q: Concentration in ion exchanger [mol / kg]

Figure 0005949060
:総括物質移動容量係数[l/h]
:qと平衡な液中濃度[mol/L]
Figure 0005949060
K F a v : Overall mass transfer capacity coefficient [l / h]
C * : concentration in liquid in equilibrium with q [mol / L]

このモデルを図1に示す。図1の通り、イオン交換塔内に充填されたイオン交換体を充填層最上面から充填層最下面に向かって、F,F,F……………Fのn個の層状のフラクションよりなるものとする。フラクションの数nは多ければ多いほど精度が上がるが、nは50〜10000程度であればよい。 This model is shown in FIG. As Figure 1, towards the filling layer lowermost surface an ion exchanger filled in the ion-exchange tower from the filling layer uppermost surface, F 1, F 2, F 3 n pieces of layered ............... F n It shall consist of As the number n of fractions increases, the accuracy increases, but n may be about 50 to 10,000.

上記式(1)は、任意のフラクションFにおける単位時間当りのイオンの流入量が該フラクションFからのイオンの流出量と該フラクションFに属するイオン交換体へのイオン吸着量との和に等しいという物質収支を表わすものである。 The sum of the ion adsorption amount of the formula (1) is, to any fraction F inflow of ions per unit time in the k outflow of ions from the fraction F k and ion exchanger belonging to the fraction F k Represents the material balance of

式(2)は、該フラクションFに属するイオン交換体のイオン吸着量qの単位時間当りの増加量は、フラクションFに流入する水中のイオン濃度Cと、該qと平衡な液中イオン濃度Cとの差に比例することを表わす。 Equation (2), an increase amount per unit time of the ion adsorption amount q of the ion exchanger belonging to the fraction F k is an ion concentration C in water flowing into fraction F k, the q equilibrium liquid in ion It is proportional to the difference from the concentration C * .

対象イオンがAイオン単成分とした場合、qとCとの関係は次式(3)にて表される。 When the target ion is an A ion single component, the relationship between q and C * is expressed by the following equation (3).

Figure 0005949060
最下段のフラクションFの流出水は、イオン交換塔からの流出水である。従って、(2)式を(1)式に代入し、Cをtで解くことにより、フラクションFのイオン濃度Cと通水開始からの経過時間tとの関係を表わす式がK,ε,γ,Q,K OH(上記(3)式の選択係数。以下、同様。),C,C,z,uを用いて表わされる。このうち、ε,γ,Q,C,z(充填層高)は既知である。K OHは、平衡吸着試験で求めておくか、又はカラム試験結果とシミュレーションをフィッティングすることにより求めることができる。
Figure 0005949060
Effluent lowermost fraction F n is the effluent from the ion exchange column. Therefore, (2) substituted formula of (1), by solving C in t, the fraction F n of ion concentration C and the formula representing the relationship between the elapsed time t from the water flow start K F a v , Ε, γ, Q, K A OH (selection coefficient in the above equation (3), the same applies hereinafter), C O , C * , z, u. Of these, [epsilon], [gamma], Q, CO , and z (filled bed height) are known. K A OH can be obtained by an equilibrium adsorption test or by fitting a column test result and a simulation.

また、対象イオンがN種の成分とした場合、NイオンにおけるqとCの関係は次式(4)にて表される。 In addition, when the target ion is an N-type component, the relationship between q and C * in the N ion is expressed by the following equation (4).

Figure 0005949060
Figure 0005949060

KA OH、KB OH、…KN OHについては、N種のイオンについて、それぞれ単成分系での平衡吸着試験により求めるか、又はカラム試験結果とシミュレーション結果をフィッティングすることにより求めることができる。 K A OH , K B OH , ... K N OH can be obtained for each of the N ions by an equilibrium adsorption test in a single component system, or by fitting the column test results and simulation results. .

次に、イオン交換塔からの流出水のイオン濃度を経時的に測定し、フラクションFからの流出水濃度経時変化が実測値と合致するようにK,KN OHを定める。このようにして求めた式からイオン交換装置のイオン吸着量の分布と流出水のイオン濃度の経時変化が求められる。 Then, over time by measuring the ion concentration of the effluent from the ion exchange column, K as runoff concentration time course from fraction F n matches the measured value F a v, determine the K N OH. From the equation thus obtained, the distribution of the ion adsorption amount of the ion exchange device and the change over time in the ion concentration of the effluent water are obtained.

一方、再生のシミュレーションの場合には、通水後のイオン吸着量分布を初期値として、再生剤のみを通水した場合の通水シミュレーションを行えばよい。さらに再生後のイオン吸着量分布を初期値として被処理水を通水した場合のシミュレーションを行えば、実装置における通水−再生を繰り返した場合における通水状態を再現することができる。   On the other hand, in the case of the simulation of regeneration, a water flow simulation when only the regenerant is passed may be performed with the ion adsorption amount distribution after passing water as an initial value. Furthermore, if the simulation is performed when the treated water is passed with the ion adsorption amount distribution after regeneration as an initial value, the water flow state in the case where water flow-regeneration in the actual apparatus is repeated can be reproduced.

なお、イオン交換シミュレータとしては、適用するモデルにより予測精度は異なるが、上述のシミュレーションモデル以外に、各種のシミュレーションモデルを利用することができる。たとえば、下記の文献i)〜iii)に開示されるシミュレーションモデルを採用することが可能である。
i) 片岡,武藤,西機;ケミカルエンジニアリングVol.40 No.2 Page.144-147 (1995.02)
ii) Journal of Hazardous Materials 152(2008)241-249 “Prediction of ion-exchange column breakthrough curves by constant-pattern wave approach”
iii) Reactive & Functional Polymers 60(2004)121-135
As an ion exchange simulator, although the prediction accuracy differs depending on the model to be applied, various simulation models can be used in addition to the simulation model described above. For example, it is possible to employ the simulation model disclosed in the following documents i) to iii).
i) Kataoka, Muto, Nishiki; Chemical Engineering Vol.40 No.2 Page.144-147 (1995.02)
ii) Journal of Hazardous Materials 152 (2008) 241-249 “Prediction of ion-exchange column breakthrough curves by constant-pattern wave approach”
iii) Reactive & Functional Polymers 60 (2004) 121-135

本発明においては、再生条件の最適化を行うために、再生剤濃度、再生LV、再生時間をそれぞれ変化させ、再生剤量又は再生コスト(再生剤原価×再生剤量)が最小となる条件を算出することが可能である。その際には、
(1) イオン交換体充填層内のイオン残留量を所定値よりも小さくする、
(2) 通水時に所定の採水量を確保できるようにする
といった制約条件を与える必要がある。
In the present invention, in order to optimize the regeneration conditions, the regenerant concentration, the regeneration LV, and the regeneration time are changed, respectively, and the condition that the amount of the regenerant or the regeneration cost (regeneration agent cost × regeneration agent amount) is minimized. It is possible to calculate. In that case,
(1) The amount of residual ions in the ion exchanger packed bed is made smaller than a predetermined value.
(2) It is necessary to give constraints such as ensuring that a predetermined amount of water can be secured during water flow.

イオン交換装置は完全な再生状態、すなわちカチオン交換体であれば完全なH形(軟水器の場合は通常Na形)、アニオン交換体であれば完全なOH形の状態から通水−再生を繰り返すと、少しずつイオン交換体充填層内のイオン残留量が増え、数回の通水−再生によりイオン残留量が落ち着いてくる(図2)。   The ion exchanger repeats water-regeneration from a completely regenerated state, that is, a complete H form for a cation exchanger (usually Na form for a water softener) and a complete OH form for an anion exchanger. Then, the residual amount of ions in the ion exchanger packed bed gradually increases, and the residual amount of ions settles down by several water-regenerations (FIG. 2).

逆に、完全な負荷状態から再生−通水を繰り返すと、少しずつイオン交換体充填層内のイオン残留量が減り、数回の再生−通水によりイオン残留量が落ち着いてくる(以下、本願において、「通水−再生の繰り返し」には、この「再生−通水の繰り返し」も含むこととする)。したがって、通水時に所定の採水量を確保できることを制約条件として与える場合には、再生条件ごとに通水−再生の繰り返し計算を行い、イオン残留量が落ち着いた状態で、通水の計算をおこなって、採水量を確保可能かどうかを確認する必要がある。通水−再生の繰り返し計算を行う場合には、2回以上、好ましくは3回〜6回の繰り返し計算の後、通水の計算を行うのが好ましい。繰り返し計算を行わないと、イオン残留量がまだ落ち着いておらず、通水後再生前のイオンの吸着量分布が実際と異なるおそれがあり、また、過度に繰り返し計算を行うと、設定された再生条件ごとに繰り返し計算を行うため、計算に多大な時間を要してしまうおそれがある。   On the other hand, when regeneration-water flow is repeated from a completely loaded state, the residual amount of ions in the ion exchanger packed bed gradually decreases, and the residual amount of ions settles down by several regeneration-water flows (hereinafter referred to as the present application). In this case, “repeated water / regeneration” also includes “regeneration / repeated water”). Therefore, if the restriction condition is that a predetermined amount of water can be secured at the time of water flow, the water flow-regeneration is repeatedly calculated for each regeneration condition, and the water flow is calculated with the ion residual amount settled. Therefore, it is necessary to confirm whether the amount of water sampling can be secured. When the repeated calculation of water flow-regeneration is performed, it is preferable to perform water flow calculation after two or more times, preferably 3-6 times. If iterative calculation is not performed, the residual amount of ions is not yet settled, and there is a possibility that the adsorption amount distribution of ions before passing through water and before regeneration may be different from the actual one. Since the calculation is repeatedly performed for each condition, the calculation may take a long time.

<廃液pHによる再生条件の最適化>
カチオン塔とアニオン塔を備えたイオン交換装置においては、カチオン塔とアニオン塔からの再生廃液のpHとそれぞれの廃液量をシミュレーションにより予測し、両方を混合した混合廃液のpHが酸性の場合には、アニオン塔の再生剤(通常NaOH)を増やした再生条件とすることにより、再生廃液の中和処理における中和剤を削減するとともに、アニオン塔内の残留イオン量を減らすことができるため、アニオン塔の運転に余裕をもたせたり、樹脂塔の構成によっては樹脂交換時に樹脂量を低減したりすることができる。混合廃液のpHが塩基性の場合には、逆にカチオン塔の再生剤(通常HCl、軟水器の場合は通常NaCl)を増やして再生することにより同様の効果が得られる。
<Optimization of regeneration conditions by wastewater pH>
In an ion exchange apparatus equipped with a cation tower and an anion tower, the pH of the regenerated waste liquid from the cation tower and the anion tower and the amount of each waste liquid are predicted by simulation, and when the pH of the mixed waste liquid mixed with both is acidic In addition to reducing the neutralization agent in the neutralization treatment of the regeneration waste liquid and reducing the amount of residual ions in the anion tower by setting the regeneration conditions to increase the regeneration agent (usually NaOH) of the anion tower, A margin can be given to the operation of the tower, or the resin amount can be reduced at the time of resin replacement depending on the structure of the resin tower. When the pH of the mixed waste liquid is basic, on the contrary, the same effect can be obtained by increasing the regeneration agent of the cation tower (usually HCl, usually NaCl in the case of a water softener) and regenerating.

その際には、再生条件を複数条件に振ったシミュレーションを行い、混合廃液のpHが好ましくは4〜10、より好ましくは5〜9となる再生条件を採用する。   In that case, a simulation is performed in which the regeneration conditions are changed to a plurality of conditions, and the regeneration conditions in which the pH of the mixed waste liquid is preferably 4 to 10, more preferably 5 to 9 are adopted.

[試験例1〜4]
図2は、強カチオン交換樹脂の充填層の後段に強アニオン交換樹脂の充填層を設けたイオン交換装置(諸元を表1に示す。)に、調製した被処理水(水質を表2に示す。)を90L/hの上向流で通水した結果であり、試験例1〜4がイオン交換塔シミュレータによるシミュレーション結果である。再生は下降流(向流再生)であり、通水−再生を繰り返した(試験例1は完全再生型の樹脂に通水を1度行ったものであり、再生は行っていない)。再生条件は表3の通りである。
[Test Examples 1 to 4]
FIG. 2 shows the water to be treated (water quality shown in Table 2) in an ion exchange apparatus (specifications are shown in Table 1) provided with a strong anion exchange resin packed layer after the strong cation exchange resin packed bed. Is shown as a result of passing water at an upward flow of 90 L / h, and Test Examples 1 to 4 are simulation results of an ion exchange tower simulator. The regeneration was downward flow (countercurrent regeneration), and water flow-regeneration was repeated (Test Example 1 was performed by passing water once through a completely regenerated resin, and regeneration was not performed). The reproduction conditions are as shown in Table 3.

図2の試験例1〜4より、通水−再生を繰り返すと採水時間が短くなっていくことがわかり、この試験例においては、通水−再生を3回以上繰り返しても採水時間の差がほとんどなくなることがわかる。   From Test Examples 1 to 4 in FIG. 2, it can be seen that the water sampling time is shortened when the water flow-regeneration is repeated. It can be seen that the difference is almost eliminated.

図3には、試験例2〜4の再生後、最後の通水前におけるイオン吸着量分布を示す。試験例2(通水−再生1回)に比べ、試験例3(通水−再生3回)は吸着帯が若干処理水側に進行し、イオンの残留量も増えていることがわかるが、試験例4(通水−再生10回)のイオン吸着分布は試験例3とほとんど変わらないことがわかる。したがって、3回以上の通水−再生を複数回繰り返したシミュレーションを行えば、実系における再生後のイオン吸着量分布の再現精度を高めることができることがわかる。   FIG. 3 shows the ion adsorption amount distribution after the regeneration of Test Examples 2 to 4 and before the final water flow. Compared to Test Example 2 (water flow-recycled once), Test Example 3 (water flow-recycled 3 times) shows that the adsorption zone slightly advances to the treated water side, and the residual amount of ions also increases. It can be seen that the ion adsorption distribution of Test Example 4 (water flow-regeneration 10 times) is almost the same as Test Example 3. Therefore, it can be seen that if the simulation is performed by repeating the water flow-regeneration three times or more a plurality of times, the reproduction accuracy of the ion adsorption amount distribution after the regeneration in the real system can be improved.

Figure 0005949060
Figure 0005949060

Figure 0005949060
Figure 0005949060

Figure 0005949060
Figure 0005949060

[試験例5]
試験例3のシミュレーションと同条件で通水及び再生を行った実測値を図2に示す。
[Test Example 5]
FIG. 2 shows actual measurement values obtained by performing water flow and regeneration under the same conditions as in the simulation of Test Example 3.

試験例3と試験例5の破過曲線は非常によく一致しており、一次元固定層モデルによるシミュレーションにより、十分にイオン交換装置内の挙動を再現可能であることがわかる。   The breakthrough curves of Test Example 3 and Test Example 5 agree very well, and it can be seen that the behavior in the ion exchange apparatus can be sufficiently reproduced by simulation using a one-dimensional fixed layer model.

[実施例1]
試験例3及び試験例5と同じ3回の通水−再生繰返しの条件において、最適な再生条件を決定するため、カチオン塔について再生剤濃度1〜10%、再生LV8〜30m/h、再生時間(薬注時間)1〜20minの条件で種々変化させてシミュレーションを行った。試験例3と同じ採水量を確保でき、再生剤の純分量が最も小さくなる再生条件を探索した結果、カチオン塔は再生剤濃度1.8%、再生LV9m/h、再生時間20minの条件が最適であり、再生剤の純分量を10%削減できることがわかった。
[Example 1]
In order to determine the optimal regeneration conditions under the same three water-flow regeneration-regeneration conditions as in Test Example 3 and Test Example 5, a regenerant concentration of 1 to 10%, a regeneration LV of 8 to 30 m / h, a regeneration time for the cation tower (Medication time) Various simulations were performed under conditions of 1 to 20 minutes, and the simulation was performed. As a result of searching for a regeneration condition that can secure the same amount of water sample as in Test Example 3 and minimize the net amount of the regenerant, the optimum conditions for the cation tower are a regenerant concentration of 1.8%, a regeneration LV of 9 m / h, and a regeneration time of 20 min. Thus, it was found that the pure content of the regenerant can be reduced by 10%.

〜F フラクション F 1 ~F n fraction

Claims (8)

イオン交換体が充填されたイオン交換体充填層を有するイオン交換装置に被処理水を通水して被処理水中のイオンを分離し、通水停止後に、あらかじめ演算手段により算定された再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件に従って再生剤を通液して該イオン交換体を再生するイオン交換装置において、
該演算手段は、被処理水の水質、通水速度及び通水時間から、通水停止後再生前における該イオン交換体充填層内のイオンの吸着量分布を演算し、該通水停止後再生前の吸着量分布に対して複数の再生条件にて再生させた後の吸着量分布を演算することにより、該再生条件を算定するイオン交換装置であって、
前記通水停止後再生前の吸着量分布の演算と前記再生後の吸着量分布の演算を2回以上繰り返し、最後の再生後の吸着量分布に対して、前記被処理水の水質、通水速度及び通水時間にて通水させた場合における、処理水濃度が所定のイオン濃度に達するまでの採水時間を算出し、該採水時間が所定時間よりも長くなり、かつ、再生剤量又は再生コストが最小となるように前記再生条件を算定することを特徴とするイオン交換装置。
The regenerant concentration calculated beforehand by the calculation means after passing the water to be treated through an ion exchanger having an ion exchanger packed bed filled with an ion exchanger to separate the ions in the water to be treated and stopping the water flow In the ion exchange apparatus for regenerating the ion exchanger by passing the regenerant according to one or more regeneration conditions selected from the regenerant flow rate and the regenerant flow time,
The calculation means calculates the adsorption distribution of ions in the ion exchanger packed bed before the regeneration after the stoppage of water from the quality of the treated water, the water flow rate and the water passage time, and regenerates after the stop of the water flow. An ion exchange apparatus for calculating the regeneration condition by calculating the adsorption amount distribution after regenerating under a plurality of regeneration conditions with respect to the previous adsorption amount distribution ,
The calculation of the adsorption amount distribution before the regeneration after the water flow stop and the calculation of the adsorption amount distribution after the regeneration are repeated twice or more, and the quality of the treated water and the water flow with respect to the adsorption amount distribution after the last regeneration. When the water is passed at a speed and a water passage time, the water collection time until the treated water concentration reaches a predetermined ion concentration is calculated, the water collection time is longer than the predetermined time, and the amount of the regenerant Alternatively, the regeneration condition is calculated so that the regeneration cost is minimized .
前記再生後の吸着量分布により、イオン交換体充填層内のイオン残留量が所定値よりも小さくなり、かつ、再生剤量又は再生コストが最小となるように前記再生条件を算定することを特徴とする請求項1に記載のイオン交換装置。   The regeneration conditions are calculated so that the residual amount of ions in the ion exchanger packed bed is smaller than a predetermined value and the amount of regenerant or regeneration cost is minimized by the adsorption amount distribution after regeneration. The ion exchange apparatus according to claim 1. 前記イオン交換装置がカチオン塔とアニオン塔を備えており、演算手段によりカチオン塔とアニオン塔の両方について再生条件を算定した後、該再生条件での再生によりカチオン塔から排出される酸性の再生廃液のpH及び廃液量とアニオン塔から排出される塩基性の再生廃液のpH及び廃液量とを算定し、カチオン塔からの再生廃液とアニオン塔から排出される再生廃液とを混合したときの混合廃液のpHの算出結果が酸性の場合には、アニオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくし、該混合廃液のpHの算出結果が塩基性の場合には、カチオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくすることを特徴とする請求項1又は2に記載のイオン交換装置。 The ion exchange apparatus includes a cation tower and an anion tower, and after calculating regeneration conditions for both the cation tower and the anion tower by a calculation means, an acidic regeneration waste liquid discharged from the cation tower by regeneration under the regeneration conditions Of the basic regeneration waste liquid discharged from the anion tower and the pH and waste liquid volume of the basic regeneration waste liquid, and the mixed waste liquid when mixing the regeneration waste liquid from the cation tower and the regeneration waste liquid discharged from the anion tower When the pH calculation result is acidic, one or more regeneration conditions selected from the regenerant concentration of the anion tower, the regenerant flow rate and the regenerant flow time are increased, and the pH calculation result of the mixed waste liquid serial but if basic, regenerant concentrations of cationic column to claim 1 or 2, characterized in that to increase one or more reproduction condition selected from the regenerant liquid passing speed and regenerant liquid passing time Ion exchange apparatus. 前記混合廃液のpHの算出結果が所定のpHよりも小さい場合には、該混合溶液が所定のpH域に収まるようにアニオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくし、該混合廃液のpHの算出結果が所定のpHより大きい場合には、該混合廃液が所定のpH域に収まるようにカチオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくすることを特徴とする請求項に記載のイオン交換装置。 When the calculation result of the pH of the mixed waste liquid is smaller than a predetermined pH, from the regenerant concentration of the anion tower, the regenerant flow rate and the regenerant flow time so that the mixed solution falls within the predetermined pH range. When one or more regeneration conditions selected are increased and the calculation result of the pH of the mixed waste liquid is larger than a predetermined pH, the concentration of the regenerant in the cation tower and the regenerant so that the mixed waste liquid falls within a predetermined pH range. 4. The ion exchange apparatus according to claim 3 , wherein one or more regeneration conditions selected from a liquid flow rate and a regenerant flow time are increased. イオン交換体が充填されたイオン交換体充填層を有するイオン交換装置に被処理水を通水して被処理水中のイオンを分離し、通水停止後に、あらかじめ演算手段により算定された再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件に従って再生剤を通液して該イオン交換体を再生するイオン交換装置の運転方法において、
該演算手段は、被処理水の水質、通水速度及び通水時間から、通水停止後再生前における該イオン交換体充填層内のイオンの吸着量分布を演算し、該通水停止後再生前の吸着量分布に対して複数の再生条件にて再生させた後の吸着量分布を演算することにより、該再生条件を算定するイオン交換装置の運転方法であって、
前記通水停止後再生前の吸着量分布の演算と前記再生後の吸着量分布の演算を2回以上繰り返し、最後の再生後の吸着量分布に対して、前記被処理水の水質、通水速度及び通水時間にて通水させた場合における、処理水濃度が所定のイオン濃度に達するまでの採水時間を算出し、該採水時間が所定時間よりも長くなり、かつ、再生剤量又は再生コストが最小となるように前記再生条件を算定することを特徴とするイオン交換装置の運転方法。
The regenerant concentration calculated beforehand by the calculation means after passing the water to be treated through an ion exchanger having an ion exchanger packed bed filled with an ion exchanger to separate the ions in the water to be treated and stopping the water flow In the operation method of the ion exchange apparatus for regenerating the ion exchanger by passing the regenerant according to one or more regeneration conditions selected from the regenerant flow rate and the regenerant flow time,
The calculation means calculates the adsorption distribution of ions in the ion exchanger packed bed before the regeneration after the stoppage of water from the quality of the treated water, the water flow rate and the water passage time, and regenerates after the stop of the water flow. An operation method of the ion exchange apparatus for calculating the regeneration condition by calculating the adsorption amount distribution after regenerating under a plurality of regeneration conditions with respect to the previous adsorption amount distribution ,
The calculation of the adsorption amount distribution before the regeneration after the water flow stop and the calculation of the adsorption amount distribution after the regeneration are repeated twice or more, and the quality of the treated water and the water flow with respect to the adsorption amount distribution after the last regeneration. When the water is passed at a speed and a water passage time, the water collection time until the treated water concentration reaches a predetermined ion concentration is calculated, the water collection time is longer than the predetermined time, and the amount of the regenerant Alternatively , the ion exchange apparatus operating method is characterized in that the regeneration condition is calculated so that the regeneration cost is minimized .
前記再生後の吸着量分布により、イオン交換体充填層内のイオン残留量が所定値よりも小さくなり、かつ、再生剤量又は再生コストが最小となるように前記再生条件を算定することを特徴とする請求項に記載のイオン交換装置の運転方法。 The regeneration conditions are calculated so that the residual amount of ions in the ion exchanger packed bed is smaller than a predetermined value and the amount of regenerant or regeneration cost is minimized by the adsorption amount distribution after regeneration. The operation method of the ion exchange apparatus of Claim 5 . 前記イオン交換装置がカチオン塔とアニオン塔を備えており、演算手段によりカチオン塔とアニオン塔の両方について再生条件を算定した後、該再生条件での再生によりカチオン塔から排出される酸性の再生廃液のpH及び廃液量とアニオン塔から排出される塩基性の再生廃液のpH及び廃液量とを算定し、カチオン塔からの再生廃液とアニオン塔から排出される再生廃液とを混合したときの混合廃液のpHの算出結果が酸性の場合には、アニオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくし、該混合廃液のpHの算出結果が塩基性の場合には、カチオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくすることを特徴とする請求項5又は6に記載のイオン交換装置の運転方法。 The ion exchange apparatus includes a cation tower and an anion tower, and after calculating regeneration conditions for both the cation tower and the anion tower by a calculation means, an acidic regeneration waste liquid discharged from the cation tower by regeneration under the regeneration conditions Of the basic regeneration waste liquid discharged from the anion tower and the pH and waste liquid volume of the basic regeneration waste liquid, and the mixed waste liquid when mixing the regeneration waste liquid from the cation tower and the regeneration waste liquid discharged from the anion tower When the pH calculation result is acidic, one or more regeneration conditions selected from the regenerant concentration of the anion tower, the regenerant flow rate and the regenerant flow time are increased, and the pH calculation result of the mixed waste liquid serial but if basic, regenerant concentrations of cations tower, to claim 5 or 6, characterized in that to increase one or more reproduction condition selected from the regenerant liquid passing speed and regenerant liquid passing time Operating method of ion exchange equipment. 前記混合廃液のpHの算出結果が所定のpHよりも小さい場合には、該混合溶液が所定のpH域に収まるようにアニオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくし、該混合廃液のpHの算出結果が所定のpHより大きい場合には、該混合廃液が所定のpH域に収まるようにカチオン塔の再生剤濃度、再生剤通液速度及び再生剤通液時間から選ばれる1以上の再生条件を大きくすることを特徴とする請求項に記載のイオン交換装置の運転方法。 When the calculation result of the pH of the mixed waste liquid is smaller than a predetermined pH, from the regenerant concentration of the anion tower, the regenerant flow rate and the regenerant flow time so that the mixed solution falls within the predetermined pH range. When one or more regeneration conditions selected are increased and the calculation result of the pH of the mixed waste liquid is larger than a predetermined pH, the concentration of the regenerant in the cation tower and the regenerant so that the mixed waste liquid falls within a predetermined pH range. The operation method of the ion exchange apparatus according to claim 7 , wherein one or more regeneration conditions selected from a liquid flow rate and a regenerant flow time are increased.
JP2012080581A 2012-03-30 2012-03-30 Ion exchange apparatus and operation method thereof Active JP5949060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080581A JP5949060B2 (en) 2012-03-30 2012-03-30 Ion exchange apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080581A JP5949060B2 (en) 2012-03-30 2012-03-30 Ion exchange apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2013208565A JP2013208565A (en) 2013-10-10
JP5949060B2 true JP5949060B2 (en) 2016-07-06

Family

ID=49526975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080581A Active JP5949060B2 (en) 2012-03-30 2012-03-30 Ion exchange apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP5949060B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181384A (en) * 1989-12-12 1991-08-07 Tonen Corp Resin regenerating system for pure water producing apparatus
JPH06226252A (en) * 1993-02-08 1994-08-16 Kawasaki Steel Corp Regenerating treatment of ion exchange resin for demineralizer
JP2000354772A (en) * 1999-06-14 2000-12-26 Japan Organo Co Ltd Treatment of regenerable waste from condensate demineralizer
JP4507270B2 (en) * 2001-06-26 2010-07-21 三浦工業株式会社 Water softening device and regeneration control method thereof
JP4161127B2 (en) * 2002-12-16 2008-10-08 三浦工業株式会社 Regeneration control method for water softener
JP2005296774A (en) * 2004-04-09 2005-10-27 Nissan Motor Co Ltd Ion exchange resin filter system
JP5757130B2 (en) * 2011-03-29 2015-07-29 栗田工業株式会社 Ion exchange apparatus operating method and ion exchange system

Also Published As

Publication number Publication date
JP2013208565A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
Hekmatzadeh et al. Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments
Ma et al. Ion exchange homogeneous surface diffusion modelling by binary site resin for the removal of nickel ions from wastewater in fixed beds
Ghorai et al. Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed
JP5757130B2 (en) Ion exchange apparatus operating method and ion exchange system
Zhang et al. Development and validation of a novel modeling framework integrating ion exchange and resin regeneration for water treatment
Graf et al. Removal of dissolved organic carbon from surface water by anion exchange and adsorption: Bench-scale testing to simulate a two-stage countercurrent process
Speth et al. Effect of Preloading on the Scale‐up of GAC Microcolumns
Singha et al. Analysis of the dynamics of a packed column using semi-empirical models: Case studies with the removal of hexavalent chromium from effluent wastewater
Dadwhal et al. Adsorption of arsenic on conditioned layered double hydroxides: column experiments and modeling
Fettig et al. Kinetics of adsorption on activated carbon: III. Natural organic material
JP5949060B2 (en) Ion exchange apparatus and operation method thereof
Baimenov et al. Experimental and modeling studies of Sr2+ and Cs+ sorption on cryogels and comparison to commercial adsorbents
Boyer et al. Modeling the removal of dissolved organic carbon by ion exchange in a completely mixed flow reactor
Saslow et al. Part I: Predicting performance of Purolite A532E resins for remediation of comingled contaminants in groundwater
TW202310926A (en) Method for operating ion exchange device
Tang et al. Prediction of clean-bed head loss in crumb rubber filters
Figueiredo et al. Fixed-bed removal of Cs+ from aqueous solutions by microporous silicate ETS-4: Measurement and modeling of loading-regeneration cycles
Tranter et al. Application of a second order kinetic model for the preliminary design of an adsorption bed system using ammonium molybdophosphate–polyacrylonitrile for the removal of 137Cs from acidic nuclear waste solutions
Saiers et al. Evaluation of continuous distribution models for rate‐limited solute adsorption to geologic media
Hekmatzadeh et al. Evaluation of a selective resin in loading–regeneration cycles for the removal of nitrate from groundwater
Pandey Kinetic study of ion exchange column operation for ultrapure water application
Galeczka et al. Deliverable Report: AD 6.1404 Dissemination
Sappidi et al. Molecular Dynamics Study on the Adsorption of UO22+ from an Aqueous Phase: Effect of Grafting Dibenzo Crown Ether and Dicyclohexano Crown Ether on the Polystyrene Surface
Huang Chromium Removal Using Strong Base Anion Exchange: Impact from Empty Bed Contact Time, Hydraulic Loading Rate, and Water Quality
Genchanok Low Level Chromium Removal: Pilot Scale Strong Base Anion Exchange Treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250