JP2018110205A - Protective glass for solar cell module and manufacturing method thereof - Google Patents

Protective glass for solar cell module and manufacturing method thereof Download PDF

Info

Publication number
JP2018110205A
JP2018110205A JP2017091780A JP2017091780A JP2018110205A JP 2018110205 A JP2018110205 A JP 2018110205A JP 2017091780 A JP2017091780 A JP 2017091780A JP 2017091780 A JP2017091780 A JP 2017091780A JP 2018110205 A JP2018110205 A JP 2018110205A
Authority
JP
Japan
Prior art keywords
glass
solar cell
glass beads
sealing material
protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017091780A
Other languages
Japanese (ja)
Other versions
JP6425764B2 (en
Inventor
イル−ファ・イ
Yil-Hwa Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Electric Co Ltd
Original Assignee
LSIS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSIS Co Ltd filed Critical LSIS Co Ltd
Publication of JP2018110205A publication Critical patent/JP2018110205A/en
Application granted granted Critical
Publication of JP6425764B2 publication Critical patent/JP6425764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide protective glass for a solar cell module which improves the power generation efficiency of a solar cell by minimizing reflection of light incident on the protective glass, and a manufacturing method thereof.SOLUTION: Protective glass for a solar cell module includes a plurality of glass beads which are formed in the spherical shape or hemispherical shape and arrayed in the horizontal direction. The plurality of glass beads are arranged in at least any of the upper part and lower part of a sealing material. A manufacturing method of the protective glass for the solar cell module includes: a step of providing the plurality of glass beads formed in the spherical shape or hemispherical shape; a step of arraying the glass beads in the horizontal direction; and a step of forming the protective glass by injecting the melted glass solution into the glass beads.SELECTED DRAWING: Figure 3

Description

本発明は、入光効率の増大した太陽電池モジュール用保護ガラス及びその製造方法に関する。   The present invention relates to a protective glass for a solar cell module having an increased light incident efficiency and a method for producing the same.

最近、エネルギーの節減及び効率、地球温暖化防止の側面で、自然エネルギーを利用する技術、例えば、光を利用した電気発生、風力を利用した電気発生等の代替エネルギーを開発するに多くの努力がなされている。   Recently, many efforts have been made to develop alternative energy such as energy generation using light and electricity generation using wind power in terms of energy saving and efficiency and prevention of global warming. Has been made.

この中でも、太陽電池モジュールは、石炭や石油のような化石燃料を使わず、無公害で無限のエネルギー源である太陽熱を利用するため、未来の新代替エネルギー源として脚光を浴びており、現在は、自動車又は建築物等の発電電力を得ることに利用されている。   Among them, solar cell modules are attracting attention as a new alternative energy source in the future because they use solar heat, a pollution-free and infinite energy source, without using fossil fuels such as coal and oil. It is used to obtain power generated by automobiles or buildings.

図1に示されたように、このような太陽電池モジュール1は下部基板10と、下部基板10の上部に配置される太陽電池セル20と、下部基板10の上部に配置されるものの、太陽電池セル20の周りを囲むように形成されたフレーム30と、太陽電池セル20の上部及び下部にそれぞれ配置されて太陽電池セル20を密封する封止材40と、封止材40の上部に配置されて太陽電池セル20を保護する保護ガラス50を含む。   As shown in FIG. 1, such a solar cell module 1 includes a lower substrate 10, solar cells 20 disposed on the upper portion of the lower substrate 10, and solar cells that are disposed on the upper portion of the lower substrate 10. A frame 30 formed so as to surround the cell 20, a sealing material 40 that is respectively disposed above and below the solar battery cell 20 to seal the solar battery cell 20, and disposed above the sealing material 40. The protective glass 50 which protects the photovoltaic cell 20 is included.

一方、前記保護ガラス50は、一般的に平板ガラスが主に使われる。しかし、光の入射する保護ガラス50が平板形態に形成されると、入射光の約8%が保護ガラス50の表面により反射する問題があった。   On the other hand, the protective glass 50 is generally made of flat glass. However, when the protective glass 50 on which light is incident is formed in a flat plate shape, there is a problem that about 8% of the incident light is reflected by the surface of the protective glass 50.

また、平板形態の保護ガラス50は、衝撃を吸収する空間がなく、外部から衝撃が加わる場合には破損する部位が大きいという問題があった。   Further, the flat protective glass 50 has a problem that there is no space for absorbing an impact, and a portion that is damaged when an impact is applied from the outside is large.

本発明の課題は、保護ガラスを球状または半球状に形成することで、保護ガラスに入射する光の反射を最小限にし、太陽電池セルの発電効率の向上した太陽電池モジュール用保護ガラス及びその製造方法を提供することにある。   An object of the present invention is to form a protective glass into a spherical or hemispherical shape, thereby minimizing the reflection of light incident on the protective glass and improving the power generation efficiency of the solar cells, and the production thereof. It is to provide a method.

前記課題を達するために本発明による太陽電池モジュール用保護ガラスは、球状または半球状からなり、水平方向に配列された複数のガラスビーズを含む。そして、複数のガラスビーズは、封止材の上部及び下部のうち少なくともいずれかに配置される。   In order to achieve the above object, the protective glass for a solar cell module according to the present invention comprises a plurality of glass beads which are spherical or hemispherical and arranged in a horizontal direction. The plurality of glass beads are disposed at least one of the upper part and the lower part of the sealing material.

また、太陽電池モジュール用保護ガラスの製造方法は、球状または半球状からなる複数のガラスビーズを設ける段階と、ガラスビーズを水平方向に配列する段階、及びガラスビーズに溶融されたガラス溶液を注入して保護ガラスを形成する段階を含む。   The method for producing protective glass for a solar cell module includes a step of providing a plurality of spherical or hemispherical glass beads, a step of arranging glass beads in a horizontal direction, and injecting a molten glass solution into the glass beads. Forming a protective glass.

本発明によれば、球状または半球状からなるガラスビーズを利用して、太陽電池モジュール用保護ガラスを形成することで、外部から衝撃が加わるときにガラスビーズらの間の空間へ衝撃が吸収される。よって、平板型保護ガラスに比べて衝撃のバラツキ現象が減るため、外部の衝撃により破損する部位を減らすことができる。   According to the present invention, by using glass beads made of spherical or hemispherical shapes to form a protective glass for a solar cell module, the impact is absorbed into the space between the glass beads when an impact is applied from the outside. The Therefore, since the variation phenomenon of the impact is reduced as compared with the flat type protective glass, it is possible to reduce the portion damaged by the external impact.

また、球状または半球状のガラスビーズは、多様な方向から入射する光を屈折させるため、入射する光が外部から反射することを抑制することができる。これにより、平板型保護ガラスを具備した太陽電池モジュールより太陽電池セルが多量の光を受光できるため、太陽電池セルの発電効率を増大することができる。   In addition, since spherical or hemispherical glass beads refract light incident from various directions, the incident light can be prevented from being reflected from the outside. Thereby, since the photovoltaic cell can receive a large amount of light from the photovoltaic module provided with the flat type protective glass, the power generation efficiency of the photovoltaic cell can be increased.

さらに、熱処理において、ガラスビーズを封止材の上部及び下部のうち少なくともいずれかに付着するため、別途の接着剤なくても封止材にガラスビーズを堅固に接着することができる。   Further, since the glass beads are attached to at least one of the upper part and the lower part of the sealing material in the heat treatment, the glass beads can be firmly adhered to the sealing material without using an additional adhesive.

従来技術による太陽電池モジュールの断面図。Sectional drawing of the solar cell module by a prior art. 本発明の一実施例による太陽電池モジュール用保護ガラスを示した斜視図。The perspective view which showed the protective glass for solar cell modules by one Example of this invention. 図2に示された保護ガラスが設けられた太陽電池モジュールを示した断面図。Sectional drawing which showed the solar cell module provided with the protective glass shown by FIG. 図2に示された保護ガラスに入射する光の進行方向を示した図面。The drawing which showed the advancing direction of the light which injects into the protective glass shown by FIG. 本発明の別の実施例による太陽電池モジュール用保護ガラスを示した斜視図。The perspective view which showed the protective glass for solar cell modules by another Example of this invention. 図5に示された保護ガラスが設けられた太陽電池モジュールを示した断面図。Sectional drawing which showed the solar cell module provided with the protective glass shown by FIG. 本発明の一実施例による保護ガラスを製造するための太陽電池モジュール用保護ガラスの製造方法に関するブロック線図。The block diagram regarding the manufacturing method of the protection glass for solar cell modules for manufacturing the protection glass by one Example of this invention. 本発明の別の実施例による保護ガラスを製造するための太陽電池モジュール用保護ガラスの製造方法に関するブロック線図。The block diagram regarding the manufacturing method of the protection glass for solar cell modules for manufacturing the protection glass by another Example of this invention.

以下、添付図面を参照しながら望ましい実施例による太陽電池モジュール用保護ガラス及びその製造方法について詳しく説明すると、次のとおりである。ここで、同様な構成に対しては同じ符号を使って、繰り返される説明、発明の要旨を曖昧にする公知の機能及び構成に対する詳細な説明は省略する。発明の実施形態は、当業者において平均的な知識を有する者に本発明をより完全に説明するために提供するものである。よって、図面における要素らの形状及び大きさ等は、より明確な説明のために誇張されることがある。   Hereinafter, a protective glass for a solar cell module and a method for manufacturing the same according to a preferred embodiment will be described in detail with reference to the accompanying drawings. Here, the same reference numerals are used for similar configurations, and repeated descriptions and detailed descriptions of known functions and configurations that obscure the gist of the invention are omitted. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. Accordingly, the shape and size of elements in the drawings may be exaggerated for a clearer description.

図2は、本発明の一実施例による太陽電池モジュール用保護ガラスを示した斜視図であり、図3は、図2に示された保護ガラスが設けられた太陽電池モジュールを示した断面図である。そして、図4は、図2に示された保護ガラスに入射する光の進行方向を示した図面である。   FIG. 2 is a perspective view showing a protective glass for a solar cell module according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view showing the solar cell module provided with the protective glass shown in FIG. is there. FIG. 4 is a view showing the traveling direction of light incident on the protective glass shown in FIG.

図2ないし図4に示されたように、太陽電池モジュール用保護ガラス100Aは、フレーム30内に設けられた太陽電池セル20を密封する封止材40に配置されて、太陽電池セル20を保護する役割をするものである。そして、太陽電池モジュール用保護ガラス100Aは、球状または半球状からなる複数のガラスビーズ110を含む。   As shown in FIGS. 2 to 4, the solar cell module protective glass 100 </ b> A is disposed on the sealing material 40 that seals the solar cells 20 provided in the frame 30 to protect the solar cells 20. It plays a role. And the protective glass 100A for solar cell modules contains the some glass bead 110 which consists of spherical shape or a hemispherical shape.

複数のガラスビーズ110は、水平方向に配列されて、封止材40の上部及び下部のうち少なくともいずれかに配置されてもよい。   The plurality of glass beads 110 may be arranged in the horizontal direction and arranged in at least one of the upper part and the lower part of the sealing material 40.

すなわち、複数のガラスビーズ110は、図3に示されたように、封止材40の上部に配置されてもよい。そして、図示しないが、複数のガラスビーズ110は、封止材40の下部に配置されるか、封止材40の上部及び下部にそれぞれ配置されてもよい。ここで、複数のガラスビーズ110は、隣り合うガラスビーズ各々の外周面が互いに接触されるように形成することが望ましいが、互いに離隔して配置されてもよい。   That is, the plurality of glass beads 110 may be disposed on the upper portion of the sealing material 40 as shown in FIG. And although not shown in figure, the some glass bead 110 may be arrange | positioned at the lower part of the sealing material 40, or may be arrange | positioned at the upper part and the lower part of the sealing material 40, respectively. Here, the plurality of glass beads 110 are preferably formed so that the outer peripheral surfaces of the adjacent glass beads are in contact with each other, but may be arranged apart from each other.

具体的に、ガラスビーズ110は、封止材40の上部及び下部のうち少なくともいずれかに配置された状態で熱処理されて、封止材40に付着されてもよい。つまり、封止材40の上部及び下部のうち少なくともいずれかにガラスビーズ110を配置した後に熱処理する。これにより、封止材40とガラスビーズ110のうちいずれかが溶融されて、封止材40にガラスビーズ110が付着することができる。ここで、封止材40は、一般的にEVA、エポキシ、アクリル等のように透明樹脂の素材からなるため、ガラスビーズ110より封止材40の融点が低く、熱処理すれば封止材40が溶融される。   Specifically, the glass beads 110 may be attached to the sealing material 40 by heat treatment in a state where the glass beads 110 are disposed in at least one of the upper part and the lower part of the sealing material 40. That is, heat treatment is performed after the glass beads 110 are disposed on at least one of the upper part and the lower part of the sealing material 40. Thereby, either the sealing material 40 or the glass beads 110 is melted, and the glass beads 110 can adhere to the sealing material 40. Here, since the sealing material 40 is generally made of a transparent resin material such as EVA, epoxy, acrylic, etc., the melting point of the sealing material 40 is lower than that of the glass beads 110, and the sealing material 40 can be obtained by heat treatment. Melted.

前述のように、太陽電池モジュール用保護ガラス100Aを球状または半球状からなるガラスビーズ110を利用して形成すれば、図3に示されたように、各ガラスビーズ110らの接触面の間には空間が形成される。   As described above, if the protective glass 100A for the solar cell module is formed by using the spherical or hemispherical glass beads 110, as shown in FIG. A space is formed.

これにより、外部から衝撃が加わると、ガラスビーズ110らの間の空間へ衝撃が吸収されるため、平板型保護ガラスに比べて衝撃のバラツキ現象が減り、外部の衝撃により破損する部位を減らすことができる。   As a result, when an impact is applied from the outside, the impact is absorbed into the space between the glass beads 110 and the like, so that the variation phenomenon of the impact is reduced compared to the flat type protective glass, and the portion damaged by the external impact is reduced. Can do.

また、図4に示されたように、球状または半球状のガラスビーズ110は、多様な方向で入射する光を屈折して、外部に反射することを抑制することができる。特に、0°の角度に入射する光まで反射することを防止し、太陽電池セル20を受光することができるため、太陽電池セル20の発電効率を増大することができる。   Further, as shown in FIG. 4, the spherical or hemispherical glass beads 110 can refract light incident in various directions and suppress reflection to the outside. In particular, since it is possible to prevent the light incident at an angle of 0 ° from being reflected and to receive the solar battery cell 20, the power generation efficiency of the solar battery cell 20 can be increased.

さらに、熱処理において、ガラスビーズ110を封止材40の上部及び下部のうち少なくともいずれかに付着するため、別途の接着剤なくても封止材40にガラスビーズ110を堅固に接着することができる。   Further, since the glass beads 110 are attached to at least one of the upper part and the lower part of the sealing material 40 in the heat treatment, the glass beads 110 can be firmly adhered to the sealing material 40 without using an additional adhesive. .

一方、ガラスビーズ110は、低鉄分強化ガラス(Tempered low-iron glass)で形成されてもよい。これにより、外部の衝撃等から太陽電池セル20を保護することができ、入射する光の反射を防止して光透過率を高めることができる。   Meanwhile, the glass beads 110 may be formed of a low iron tempered glass (Tempered low-iron glass). Thereby, the photovoltaic cell 20 can be protected from an external impact or the like, and reflection of incident light can be prevented and light transmittance can be increased.

そして、入射する光の反射を最小限にするためにガラスビーズ110は、無反射コーティング(Anti-Reflection Coating)処理されてもよい。   In order to minimize reflection of incident light, the glass beads 110 may be subjected to an anti-reflection coating process.

このように、ガラスビーズ110が低鉄分強化ガラスで形成されて、無反射コーティング処理されることで、光反射率が低下し、太陽電池セル20の発電効率はさらに増大することができる。   As described above, the glass beads 110 are formed of the low iron content tempered glass and are subjected to the antireflection coating treatment, so that the light reflectance is lowered and the power generation efficiency of the solar battery cell 20 can be further increased.

ガラスビーズ110の直径は、3.2mm〜8.0mmからなる。これは、ガラスビーズ110の直径が3.2mm未満であると、ガラスビーズ110の平坦度が大きくなって屈折率が減り、ガラスビーズ110の直径が8.0mmを超えると、保護ガラスの高さが高くなり、太陽電池モジュールの全体嵩が大きくなるためである。   The glass beads 110 have a diameter of 3.2 mm to 8.0 mm. This is because if the diameter of the glass beads 110 is less than 3.2 mm, the flatness of the glass beads 110 increases and the refractive index decreases, and if the diameter of the glass beads 110 exceeds 8.0 mm, the height of the protective glass is increased. This is because the total volume of the solar cell module increases.

図5は、本発明の別の実施例による太陽電池モジュール用保護ガラスを示した斜視図であり、図6は、図5に示された保護ガラスが設けられた太陽電池モジュールを示した断面図である。本実施例では、前述した実施例との差異内容を中心に説明する。   FIG. 5 is a perspective view showing a protective glass for a solar cell module according to another embodiment of the present invention, and FIG. 6 is a cross-sectional view showing the solar cell module provided with the protective glass shown in FIG. It is. In the present embodiment, the description will focus on the content of differences from the above-described embodiment.

図5ないし図6に示されたように、太陽電池モジュール用保護ガラス100Bは、封止材40の上部及び下部のうち少なくともいずれかに付着するガラス基板120をさらに含み、ガラスビーズ110は、ガラス基板120の一面に配置されてもよい。この場合、ガラスビーズ110は、付着面積を向上させるために半球状からなってもよい。   5 to 6, the solar cell module protective glass 100B further includes a glass substrate 120 attached to at least one of an upper part and a lower part of the sealing material 40, and the glass beads 110 are made of glass. It may be disposed on one surface of the substrate 120. In this case, the glass beads 110 may be hemispherical in order to improve the adhesion area.

ガラスビーズ110は、ガラス基板120の上部に配置されることが望ましいが、ガラス基板120の下部に配置されてもよい。そして、ガラスビーズ110は、ガラス基板120の上部及び下部にそれぞれ配置されてもよい。   The glass beads 110 are desirably disposed on the upper portion of the glass substrate 120, but may be disposed on the lower portion of the glass substrate 120. The glass beads 110 may be disposed on the upper and lower portions of the glass substrate 120, respectively.

このように、太陽電池モジュール用保護ガラス100Bがガラス基板120をさらに備えることで、太陽電池モジュール用保護ガラス100Bを封止材40に付着すると、フレーム30の内部に異物が侵透することを防ぐことができる。   Thus, when the protective glass 100B for solar cell modules further includes the glass substrate 120, when the protective glass 100B for solar cell modules adheres to the sealing material 40, foreign matter is prevented from penetrating into the frame 30. be able to.

図7は、本発明の一実施例による保護ガラスを製造するための太陽電池モジュール用保護ガラスの製造方法に関するブロック線図である。   FIG. 7 is a block diagram relating to a method of manufacturing a protective glass for a solar cell module for manufacturing a protective glass according to an embodiment of the present invention.

図7に示されたように、太陽電池モジュール用保護ガラスの製造方法200は、複数のガラスビーズを設ける段階210と、封止材にガラスビーズを水平方向に配列する段階220、及び熱処理して封止材にガラスビーズを付着する段階230を含む。   As shown in FIG. 7, the method 200 for manufacturing a protective glass for a solar cell module includes a step 210 of providing a plurality of glass beads, a step 220 of horizontally arranging glass beads on a sealing material, and a heat treatment. Attaching 230 glass beads to the encapsulant.

複数のガラスビーズを設ける段階210は、球状または半球状からなる複数のガラスビーズ110を設ける。ここで、ガラスビーズ110の直径は、3.2mm〜8.0mmからなってもよい。   In the step 210 of providing a plurality of glass beads, a plurality of glass beads 110 having a spherical shape or a hemispherical shape are provided. Here, the glass beads 110 may have a diameter of 3.2 mm to 8.0 mm.

そして、ガラスビーズ110は、外部の衝撃等から太陽電池セル20を保護して、入射する光の反射を防ぎ、光透過率を向上させるために低鉄分強化ガラスで形成されてもよい。また、ガラスビーズ110の表面を無反射コーティング(Anti-Reflection Coating)処理して、入射する光の反射を最小限にすることができる。   The glass beads 110 may be formed of low iron tempered glass in order to protect the solar battery cell 20 from external impacts, prevent reflection of incident light, and improve light transmittance. Further, the reflection of incident light can be minimized by performing anti-reflection coating on the surface of the glass beads 110.

封止材にガラスビーズを水平方向に配列する段階220は、封止材40の上部及び下部のうち少なくともいずれかにガラスビーズ110を水平方向に配列する。ここで、ガラスビーズ110は、互いに離隔して配置されてもよいが、屈折率を向上させるためにガラスビーズ110の外周面が互いに接触されるように形成することが望ましい。   In the step 220 of arranging the glass beads in the sealing material in the horizontal direction, the glass beads 110 are arranged in the horizontal direction in at least one of the upper part and the lower part of the sealing material 40. Here, the glass beads 110 may be spaced apart from each other, but it is desirable to form the glass beads 110 such that the outer peripheral surfaces of the glass beads 110 are in contact with each other in order to improve the refractive index.

熱処理して封止材にガラスビーズを付着する段階230は、封止材40及びガラスビーズ110を熱処理して、封止材40にガラスビーズ110を付着する。このとき、封止材40は、ガラスビーズ110より融点の低い透明樹脂の素材からなっているため、封止材40が溶融されて封止材40にガラスビーズ110が付着することができる。   In the step 230 of heat-treating the glass beads to the sealing material 230, the glass beads 110 are attached to the sealing material 40 by heat-treating the sealing material 40 and the glass beads 110. At this time, since the sealing material 40 is made of a transparent resin material having a melting point lower than that of the glass beads 110, the sealing material 40 is melted and the glass beads 110 can adhere to the sealing material 40.

そうすると、図3に示されたように、封止材40の上部に付着した太陽電池モジュール用保護ガラス100Aを獲得することができる。   Then, as shown in FIG. 3, the solar cell module protective glass 100 </ b> A attached to the upper portion of the sealing material 40 can be obtained.

図8は、本発明の別の実施例による保護ガラスを製造するための太陽電池モジュール用保護ガラスの製造方法に関するブロック線図である。図8に示されたように、太陽電池モジュール用保護ガラスの製造方法300は、複数のガラスビーズを設ける段階310と、ガラスビーズを水平方向に配列する段階320と、ガラスビーズにガラス溶液を注入して保護ガラスを形成する段階330を含む。   FIG. 8 is a block diagram relating to a method of manufacturing a protective glass for a solar cell module for manufacturing a protective glass according to another embodiment of the present invention. As shown in FIG. 8, a method 300 for manufacturing a protective glass for a solar cell module includes a step 310 of providing a plurality of glass beads, a step 320 of arranging glass beads in a horizontal direction, and injecting a glass solution into the glass beads. Forming a protective glass 330.

複数のガラスビーズを設ける段階310は、球状または半球状からなる複数のガラスビーズ110を設ける。具体的に、ガラスビーズ110は、3.2mm〜8.0mmの直径を有する球状からなることが望ましい。   In step 310 of providing a plurality of glass beads, a plurality of glass beads 110 having a spherical or hemispherical shape are provided. Specifically, the glass beads 110 are preferably formed of a spherical shape having a diameter of 3.2 mm to 8.0 mm.

ガラスビーズを水平方向に配列する段階320は、ガラスビーズ110が安着する面が平らに形成された保護ガラス製造フレーム内に、ガラスビーズ110を水平方向に配列する。ここで、保護ガラス製造フレームは、ガラスビーズ110の離脱を防ぐために上部の開口したボックス形態からなってもよい。   In step 320, the glass beads 110 are horizontally arranged in a protective glass manufacturing frame having a flat surface on which the glass beads 110 are seated. Here, the protective glass manufacturing frame may be in the form of a box with an upper opening in order to prevent the glass beads 110 from being detached.

ガラスビーズ110は、互いに離隔して配置されてもよいが、屈折率を向上させるためにガラスビーズ110の外周面が接触されるように形成することが望ましい。ガラス溶液を注入して保護ガラスを形成する段階330は、ガラスビーズ110の配置された保護ガラス製造フレームの内部に、溶融されたガラス溶液を注入して保護ガラスを形成する。つまり、ガラスビーズ110らの間の隙間にガラス溶液を注入して硬化することで、複数のガラスビーズ110らを接合することである。   The glass beads 110 may be spaced apart from each other, but it is desirable to form the glass beads 110 so that the outer peripheral surfaces of the glass beads 110 are in contact with each other in order to improve the refractive index. In the step 330 of injecting the glass solution to form the protective glass, the molten glass solution is injected into the protective glass manufacturing frame in which the glass beads 110 are arranged to form the protective glass. That is, a plurality of glass beads 110 are joined by injecting a glass solution into a gap between the glass beads 110 and curing.

保護ガラス製造フレームの内部に、ガラス溶液を注入して保護ガラスを形成する段階330は、ガラス溶液をガラスビーズ110の高さの1/2未満に注入する過程を含んでもよい。これにより、ガラス溶液を注入しても、ガラスビーズ110の上部は、半球状を維持することができるため、ガラスビーズ110の内部に入射する光の反射率を下げることができる。   The step 330 of injecting the glass solution into the protective glass manufacturing frame to form the protective glass 330 may include injecting the glass solution to less than half of the height of the glass beads 110. Thereby, even if the glass solution is injected, the upper part of the glass beads 110 can maintain a hemispherical shape, so that the reflectance of light incident on the inside of the glass beads 110 can be lowered.

一方、太陽電池モジュール用保護ガラスの製造方法300は、ガラス溶液を注入して保護ガラスを形成する段階330以降に、保護ガラス製造フレームから保護ガラスを分離する過程をさらに含んでもよい。そうすると、図5に示された形態の太陽電池モジュール用保護ガラス100Bを獲得することができる。   Meanwhile, the solar cell module protective glass manufacturing method 300 may further include a process of separating the protective glass from the protective glass manufacturing frame after the step 330 of injecting the glass solution to form the protective glass. If it does so, the protection glass 100B for solar cell modules of the form shown by FIG. 5 can be acquired.

一方、太陽電池モジュール用保護ガラス100Bは、外部の衝撃等から太陽電池セル20を保護して、入射する光の反射を防ぎ、光透過率を向上させるために低鉄分強化ガラスで形成されてもよい。また、獲得した太陽電池モジュール用保護ガラス100Bの表面を無反射コーティング(Anti-Reflection Coating)処理することで、入射する光の反射を最小限にすることができる。   On the other hand, the solar cell module protective glass 100B may be formed of a low iron content tempered glass in order to protect the solar cells 20 from external impacts, prevent reflection of incident light, and improve light transmittance. Good. Moreover, the reflection of the incident light can be minimized by subjecting the obtained surface of the protective glass 100B for the solar cell module to a non-reflection coating process.

本発明は、添付図面に示された一実施例を参照して説明したが、これは例示的なものに過ぎず、当該技術分野で通常の知識を有する者であれば、これより多様な変形及び均等な別の実施例が可能であることは理解できるだろう。よって、本発明の真の保護範囲は、添付の請求範囲のみにより定めるべきである。   Although the present invention has been described with reference to one embodiment shown in the accompanying drawings, this is merely illustrative, and various modifications may be made by those having ordinary skill in the art. It will be understood that other equivalent embodiments are possible. Accordingly, the true protection scope of the present invention should be determined solely by the appended claims.

10…下部基板
20…太陽電池セル
30…フレーム
40…封止材
100A、100B…保護ガラス
110…ガラスビーズ
120…ガラス基板
DESCRIPTION OF SYMBOLS 10 ... Lower substrate 20 ... Solar cell 30 ... Frame 40 ... Sealing material 100A, 100B ... Protective glass 110 ... Glass bead 120 ... Glass substrate

前記課題を達するために本発明による太陽電池モジュール用保護ガラスは、球状または半球状からなり、水平方向に配列された複数のガラスビーズを含む。そして、複数のガラスビーズは、封止材の上部及び下部のうち少なくともいずれかに配置される。また、本発明による太陽電池モジュール用保護ガラスは、以下の(1)〜(4)いずれか一つの特徴を有する。
(1)ガラスビーズの直径は、前記封止材の厚さより大きい。
(2)ガラスビーズは、低鉄分強化ガラス(Tempered low-iron glass)で形成されている。
(3)ガラスビーズは、無反射コーティング(Anti-Reflection Coating)処理されている。
(4)ガラスビーズの直径は、3.2mm〜8.0mmである。
In order to achieve the above object, the protective glass for a solar cell module according to the present invention includes a plurality of glass beads which are spherical or hemispherical and arranged in a horizontal direction. The plurality of glass beads are disposed at least one of the upper part and the lower part of the sealing material. Moreover, the protective glass for solar cell modules according to the present invention has any one of the following features (1) to (4).
(1) The diameter of the glass beads is larger than the thickness of the sealing material.
(2) The glass beads are formed of low iron-reinforced glass (Tempered low-iron glass).
(3) The glass beads are subjected to anti-reflection coating treatment.
(4) The diameter of the glass beads is 3.2 mm to 8.0 mm.

Claims (8)

フレーム内に設けられた太陽電池セルを密封する封止材に配置されて、前記太陽電池セルを保護する太陽電池モジュール用保護ガラスにおいて、
球状または半球状からなり、水平方向に配列された複数のガラスビーズを含むものの、
前記複数のガラスビーズは、前記封止材の上部及び下部のうち少なくともいずれかに配置される太陽電池モジュール用保護ガラス。
In the protective glass for a solar cell module, which is disposed in a sealing material for sealing the solar cell provided in the frame and protects the solar cell,
Although composed of a spherical or hemispherical shape and containing a plurality of glass beads arranged in a horizontal direction,
The plurality of glass beads is a protective glass for a solar cell module that is disposed on at least one of an upper part and a lower part of the sealing material.
前記封止材の上部及び下部のうち少なくともいずれかに付着するガラス基板をさらに含み、前記ガラスビーズは、前記ガラス基板の一面に配置される請求項1に記載の太陽電池モジュール用保護ガラス。   The protective glass for a solar cell module according to claim 1, further comprising a glass substrate attached to at least one of an upper part and a lower part of the sealing material, wherein the glass beads are disposed on one surface of the glass substrate. 前記ガラスビーズは、前記封止材の上部及び下部のうち少なくともいずれかに配置された状態で、熱処理されて前記封止材に付着する請求項1又は請求項2に記載の太陽電池モジュール用保護ガラス。   3. The solar cell module protection according to claim 1, wherein the glass beads are heat-treated and attached to the sealing material in a state of being arranged in at least one of an upper part and a lower part of the sealing material. Glass. 前記ガラスビーズは、低鉄分強化ガラス(Tempered low-iron glass)で形成された請求項1ないし請求項3のいずれかに記載の太陽電池モジュール用保護ガラス。   The said glass bead is protection glass for solar cell modules in any one of Claim 1 thru | or 3 formed with the low iron content tempered glass (Tempered low-iron glass). 前記ガラスビーズは、無反射コーティング(Anti-Reflection Coating)処理された請求項1ないし請求項3のいずれかに記載の太陽電池モジュール用保護ガラス。   The said glass bead is protection glass for solar cell modules in any one of the Claims 1 thru | or 3 by which the antireflective coating (Anti-Reflection Coating) process was carried out. 前記ガラスビーズの直径は、3.2mm〜8.0mmである請求項1ないし請求項5のいずれかに記載の太陽電池モジュール用保護ガラス。   The protective glass for a solar cell module according to any one of claims 1 to 5, wherein the glass beads have a diameter of 3.2 mm to 8.0 mm. フレーム内に設けられた太陽電池セルを密封する封止材の上部及び下部のうち少なくともいずれかに配置されて、前記太陽電池セルを保護する太陽電池モジュール用保護ガラスの製造方法において、
球状または半球状からなる複数のガラスビーズを設ける段階;
前記ガラスビーズを水平方向に配列する段階;及び
前記ガラスビーズに溶融されたガラス溶液を注入して保護ガラスを形成する段階;
を含む太陽電池モジュール用保護ガラスの製造方法。
In the method for producing a protective glass for a solar battery module, which is disposed at least one of an upper part and a lower part of a sealing material for sealing the solar battery cell provided in the frame and protects the solar battery cell,
Providing a plurality of glass beads of spherical or hemispherical shape;
Arranging the glass beads in a horizontal direction; and injecting a molten glass solution into the glass beads to form a protective glass;
The manufacturing method of the protection glass for solar cell modules containing.
前記ガラス溶液を注入して保護ガラスを形成する段階は、
前記ガラス溶液を前記ガラスビーズの高さの1/2未満に注入する過程を含む請求項7に記載の太陽電池モジュール用保護ガラスの製造方法。
The step of injecting the glass solution to form a protective glass comprises:
The manufacturing method of the protective glass for solar cell modules of Claim 7 including the process of inject | pouring the said glass solution into less than 1/2 of the height of the said glass bead.
JP2017091780A 2016-12-29 2017-05-02 Protective glass for solar cell module and method of manufacturing the same Active JP6425764B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160182379A KR20180077733A (en) 2016-12-29 2016-12-29 Protective glass for solar cell module and manufacturing method the same
KR10-2016-0182379 2016-12-29

Publications (2)

Publication Number Publication Date
JP2018110205A true JP2018110205A (en) 2018-07-12
JP6425764B2 JP6425764B2 (en) 2018-11-21

Family

ID=59054949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091780A Active JP6425764B2 (en) 2016-12-29 2017-05-02 Protective glass for solar cell module and method of manufacturing the same

Country Status (5)

Country Link
US (1) US10707365B2 (en)
EP (1) EP3342760A1 (en)
JP (1) JP6425764B2 (en)
KR (1) KR20180077733A (en)
CN (1) CN108269871A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645628A (en) * 1992-07-25 1994-02-18 Kanegafuchi Chem Ind Co Ltd Solar-cell module panel
JPH07263727A (en) * 1994-03-23 1995-10-13 Fuji Electric Co Ltd Manufacture of photoelectric conversion device
JPH11330508A (en) * 1998-05-15 1999-11-30 Kanegafuchi Chem Ind Co Ltd Solar cell module and its manufacture
JP2001230441A (en) * 2001-01-18 2001-08-24 Kanegafuchi Chem Ind Co Ltd Solar cell module panel
JP2003110128A (en) * 2001-09-28 2003-04-11 Sharp Corp Thin film solar cell module and its manufacturing method
JP2010087206A (en) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd Solar cell back sheet
US20120028409A1 (en) * 2010-08-27 2012-02-02 Primestar Solar, Inc. Methods of forming an anisotropic conductive layer as a back contact in thin film photovoltaic devices
JP2012047020A (en) * 2010-08-30 2012-03-08 Hideki Sakai Directional reflection material and building material using the same
JP2015177192A (en) * 2014-03-17 2015-10-05 エルジー エレクトロニクス インコーポレイティド Solar cell

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378252A (en) * 1942-06-30 1945-06-12 Eastman Kodak Co Projection screen
US2713286A (en) * 1949-10-22 1955-07-19 Minnesota Mining & Mfg Reflex light reflectors and glass bead elements thereof
US3552822A (en) * 1968-06-07 1971-01-05 Gerald Altman Rear projection screen
US5354385A (en) * 1991-09-30 1994-10-11 Canon Kabushiki Kaisha Solar cell
US5563738A (en) * 1993-09-03 1996-10-08 Jenmar Visual Systems Light transmitting and dispersing filter having low reflectance
US6076933A (en) * 1996-10-08 2000-06-20 Jenmar Visual Systems Light transmitting and dispersing filter having low reflectance
US6519087B2 (en) 1997-04-10 2003-02-11 3M Innovative Properties Company Rear projection screen incorporating diffuser
JP4217925B2 (en) * 1997-10-24 2009-02-04 ソニー株式会社 Planar lens manufacturing method
US6344263B1 (en) * 1998-03-30 2002-02-05 3M Innovative Properties Company Light dispersing film and method of manufacture
US6600599B2 (en) * 1998-06-09 2003-07-29 Avery Dennison Corporation Rear projection screens and light filters with conformable coatings and methods of making the same
JP3822361B2 (en) 1998-07-10 2006-09-20 株式会社日立製作所 Light distribution control element and display device including the same
US6204971B1 (en) * 1999-05-14 2001-03-20 3M Innovative Properties Company Glass microspheres for use in films and projection screen displays and methods
US6466368B1 (en) * 2000-04-26 2002-10-15 3M Innovative Properties Company Rear projection screen with reduced speckle
US6695453B2 (en) * 2001-02-09 2004-02-24 Avery Dennison Corporation Rear projection screens and light filters with conformable coatings and methods of making the same
US6567215B2 (en) * 2001-09-04 2003-05-20 3M Innovative Properties Company Beaded rear projection screen with tunable gain
US6939014B1 (en) * 2001-12-31 2005-09-06 Jenmar Visual Systems, Inc. Liquid transmissive filter having anisotropic properties and method of fabrication
US6867928B2 (en) * 2002-08-01 2005-03-15 Jenmar Visual Systems Method and apparatus for correcting visual aberrations in image projection systems
RU2005131595A (en) * 2003-03-12 2006-02-20 Эвери Деннисон Копэрейшн (Us) LIGHT-PASSING FILTER AND METHOD FOR MANUFACTURING A LIGHT-PASSING FILTER (OPTIONS)
US7248406B2 (en) * 2004-10-15 2007-07-24 Hewlett-Packard Development Company, L.P. Projection screen
US7453634B2 (en) * 2005-03-07 2008-11-18 Avery Dennison Corporation Discontinuous or variable thickness gain modification coating for projection film and method for making same
TWI319095B (en) 2005-09-29 2010-01-01 Skc Haas Display Films Llc Light diffusive sheet for backlight unit and preparation thereof
US20080008873A1 (en) * 2006-07-05 2008-01-10 The Procter & Gamble Company Water-soluble substrate with resistance to dissolution prior to being immersed in water
TWI350383B (en) * 2006-12-29 2011-10-11 Eternal Chemical Co Ltd Scratch-resistant thin film
US20080264479A1 (en) 2007-04-25 2008-10-30 Nanoco Technologies Limited Hybrid Photovoltaic Cells and Related Methods
CN101519508A (en) * 2008-02-28 2009-09-02 王广武 Diffusion scattering transmission safe glass and preparation method thereof
SG177674A1 (en) 2009-07-14 2012-03-29 Agc Flat Glass Na Inc Photovoltaic device with patterned glass concentrator
KR200459976Y1 (en) 2010-07-15 2012-04-25 박근숙 Cover of panel for focusing of solar cell
WO2012023957A1 (en) * 2010-08-19 2012-02-23 Lehigh University Microlens array for solar cells
CN202090782U (en) * 2011-01-11 2011-12-28 上海泰莱钢结构工程有限公司 Vacuum glass window device based on solar cell
US8974899B1 (en) * 2011-05-24 2015-03-10 The United States Of America As Represented By The Secretary Of The Air Force Pseudomorphic glass for space solar cells
JP2013109923A (en) 2011-11-18 2013-06-06 Asahi Glass Co Ltd Method of manufacturing substrate for electronic device
JP5557200B2 (en) 2012-02-21 2014-07-23 株式会社日野樹脂 Solar panel installation structure
CN202772160U (en) 2012-07-06 2013-03-06 夏普 Photovoltaic assembly provided with illuminated area increased by spherical segment arrays
CN102916070A (en) * 2012-11-16 2013-02-06 晶科能源有限公司 Crystalline silicon photovoltaic module and cover plate
DE202012012372U1 (en) * 2012-12-20 2013-01-16 Schott Ag Coated glass or glass-ceramic substrate with haptic properties
KR101516151B1 (en) 2013-01-16 2015-05-04 영창케미칼 주식회사 A macro-porous anti-reflective composition for solar cell cover glass and a solar cell manufactured using it
US9908310B2 (en) * 2013-07-10 2018-03-06 Apple Inc. Electronic device with a reduced friction surface

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645628A (en) * 1992-07-25 1994-02-18 Kanegafuchi Chem Ind Co Ltd Solar-cell module panel
JPH07263727A (en) * 1994-03-23 1995-10-13 Fuji Electric Co Ltd Manufacture of photoelectric conversion device
JPH11330508A (en) * 1998-05-15 1999-11-30 Kanegafuchi Chem Ind Co Ltd Solar cell module and its manufacture
JP2001230441A (en) * 2001-01-18 2001-08-24 Kanegafuchi Chem Ind Co Ltd Solar cell module panel
JP2003110128A (en) * 2001-09-28 2003-04-11 Sharp Corp Thin film solar cell module and its manufacturing method
JP2010087206A (en) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd Solar cell back sheet
US20120028409A1 (en) * 2010-08-27 2012-02-02 Primestar Solar, Inc. Methods of forming an anisotropic conductive layer as a back contact in thin film photovoltaic devices
JP2012047020A (en) * 2010-08-30 2012-03-08 Hideki Sakai Directional reflection material and building material using the same
JP2015177192A (en) * 2014-03-17 2015-10-05 エルジー エレクトロニクス インコーポレイティド Solar cell

Also Published As

Publication number Publication date
KR20180077733A (en) 2018-07-09
US20180190846A1 (en) 2018-07-05
JP6425764B2 (en) 2018-11-21
EP3342760A1 (en) 2018-07-04
CN108269871A (en) 2018-07-10
US10707365B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
KR101920495B1 (en) Solar cell module and preparing thereof
CN104966752A (en) High-electric energy production crystalline silicon solar cell assembly and manufacturing technology thereof
CN102227820A (en) Optical layer for light-adjusting type solar power-generating module, light-adjusting type solar power-generating module and light-adjusting type solar power-generating panel
CN202049248U (en) Silica gel tooth form surface Fresnel lens
TWI445194B (en) Package structure of solar photovoltaic module and method of manufacturing the same
CN102945880A (en) Photovoltaic module with functions of reducing reflection and increasing efficiency
CN204696131U (en) A kind of high energy output crystal silicon solar batteries assembly
JP2010074057A (en) Solar cell backside sheet and solar cell module using the same
CN102681047B (en) Composite-structure Fresnel lens
CN100541826C (en) Solar battery chip protection structure
KR101120101B1 (en) Solar Cell Module with Structure improved Glass
JP2018110205A (en) Protective glass for solar cell module and manufacturing method thereof
CN202487586U (en) Colored solar module
CN105870230A (en) Solar cell module
CN105097968A (en) Solar cell module
CN204927311U (en) High -efficient photovoltaic module
JP2014132615A (en) Solar cell module
CN206921839U (en) A kind of two-sided photovoltaic module of double glass
KR101603163B1 (en) Lightweight photovoltaic modules with improved efficiency
CN206076257U (en) High-power light-gathering device of solar cell
KR20140114529A (en) Solar cell module with ribbon reflection structure
CN220233203U (en) Optical film and photovoltaic module
TWI540745B (en) A method of packaging a solar receiver with secondary optical elements
CN211700300U (en) High-transmission photovoltaic module
CN207719222U (en) A kind of solar panel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181023

R150 Certificate of patent or registration of utility model

Ref document number: 6425764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250