JP2018109524A - Method for measuring flexural rigidity of bead part - Google Patents

Method for measuring flexural rigidity of bead part Download PDF

Info

Publication number
JP2018109524A
JP2018109524A JP2016256343A JP2016256343A JP2018109524A JP 2018109524 A JP2018109524 A JP 2018109524A JP 2016256343 A JP2016256343 A JP 2016256343A JP 2016256343 A JP2016256343 A JP 2016256343A JP 2018109524 A JP2018109524 A JP 2018109524A
Authority
JP
Japan
Prior art keywords
tire
load
bead
positions
support plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016256343A
Other languages
Japanese (ja)
Other versions
JP6753308B2 (en
Inventor
憲治 村田
Kenji Murata
憲治 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016256343A priority Critical patent/JP6753308B2/en
Publication of JP2018109524A publication Critical patent/JP2018109524A/en
Application granted granted Critical
Publication of JP6753308B2 publication Critical patent/JP6753308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring the flexural rigidity of a bead part, capable of digitizing the flexural rigidity of the bead part to improve the accuracy of evaluation of rim assemblability.SOLUTION: A method for measuring the flexural rigidity of a bead part comprises: the step K1 of maintaining two positions Px facing each other in a first tire diameter direction on the inner surface Si of an upper bead part Tb by a bead support plate 7 and the step K2 of gradually loading a load W at two positions Py facing each other in a second tire diameter direction on the outer surface So of the upper side bead part Tb by a load action plate 8 to displace the two positions. The flexural rigidity of the bead part is required on the basis of the measurement data of the load W and the amount δ of displacement.SELECTED DRAWING: Figure 3

Description

本発明は、タイヤのリム組み性の評価に好適に採用しうるビード部の曲げ剛性測定方法に関する。   The present invention relates to a method for measuring the bending stiffness of a bead portion that can be suitably used for evaluating the rim assembly property of a tire.

タイヤのリム組み(リムへの装着及びリムからの取り外しを含む。)に際しては、ビード部を、半径方向及びタイヤ軸方向に部分的に変形させ、ビード部を、リムフランジの外側へ引き出す作業、及びリムフランジの内側に引き入れる作業が必要になる。この作業は、通常、タイヤチェンジャー等のリム組み機によって行われる。   When assembling the tire rim (including attaching to the rim and removing from the rim), the bead portion is partially deformed in the radial direction and the tire axial direction, and the bead portion is pulled out to the outside of the rim flange; In addition, it is necessary to draw the inside of the rim flange. This operation is usually performed by a rim assembly machine such as a tire changer.

しかし、ビード部の剛性が非常に高い場合、前記変形が難しくなってリム組み作業が困難になる可能性が生じる。   However, when the rigidity of the bead portion is very high, there is a possibility that the deformation becomes difficult and the rim assembling work becomes difficult.

そのため、タイヤ開発に際しては、開発されたタイヤのリム組み性を、指数化して評価することが要求される。従来においては、リム組み性の評価の指標としてビード締付力が採用されている。このビード締付力は、例えば下記の特許文献1、2に記載の測定装置によって測定しうる。   Therefore, when developing a tire, it is required to evaluate the rim assembly property of the developed tire as an index. Conventionally, a bead fastening force has been adopted as an index for evaluating rim assembly. This bead fastening force can be measured, for example, by a measuring device described in Patent Documents 1 and 2 below.

しかし前述したように、リム組みに際しては、ビード部が半径方向及びタイヤ軸方向に変形するため、リム組み性の評価の指標としてビード締付力だけでは不充分である。しかも本発明者の研究の結果、リム組み性は、ビード締付力よりは、むしろビード部の曲げ剛性の影響が大きいことが判明した。   However, as described above, when the rim is assembled, the bead portion is deformed in the radial direction and the tire axial direction, so that the bead fastening force alone is not sufficient as an index for evaluating the rim assembling property. Moreover, as a result of the inventors' research, it has been found that the rim assembly property is more influenced by the bending rigidity of the bead portion than by the bead fastening force.

特開平01−313729号公報Japanese Patent Laid-Open No. 01-313729 特開平03−148036号公報Japanese Patent Laid-Open No. 03-148036

そこで本発明は、ビード部の曲げ剛性を容易に数値化でき、リム組み性の評価の精度を向上させうるビード部の曲げ剛性測定方法を提供することを課題としている。   Therefore, an object of the present invention is to provide a method for measuring the bending rigidity of a bead part that can easily quantify the bending rigidity of the bead part and can improve the accuracy of evaluation of the rim assembly property.

本発明は、第1のタイヤ直径方向にのびるビード支持板を用い、平置き姿勢のタイヤにおける上側ビード部のタイヤ軸方向内面かつ前記第1のタイヤ直径方向で対向する2位置Pxを載置して保持するタイヤ保持工程、
前記第1のタイヤ直径方向とは直交する第2のタイヤ直径方向にのびる荷重作用板を用い、前記ビード支持板によって保持される前記上側ビード部のタイヤ軸方向外面かつ前記第2のタイヤ直径方向で対向する2位置Pyをタイヤ軸方向内側に押し付けて荷重を徐々に負荷することにより、前記2位置Pyをタイヤ軸方向内側に徐々に変位させる荷重負荷工程、
及び前記荷重負荷工程における前記荷重と変位量とを測定する測定工程を具え、
前記荷重と変位量との測定データに基づいてビード部の曲げ剛性を求めることを特徴としている。
The present invention uses a bead support plate extending in the first tire diametrical direction, and places two positions Px opposite to each other in the first tire diametrical direction on the inner surface in the tire axial direction of the upper bead portion in a horizontally placed tire. Tire holding process,
A load acting plate extending in a second tire diameter direction orthogonal to the first tire diameter direction is used, the outer surface in the tire axial direction of the upper bead portion held by the bead support plate, and the second tire diameter direction A load loading step of gradually displacing the two positions Py inward in the tire axial direction by pressing the opposite two positions Py inward in the tire axial direction and gradually applying a load;
And a measurement process for measuring the load and the displacement amount in the load application process,
The bending rigidity of the bead portion is obtained based on the measurement data of the load and the displacement amount.

本発明に係るビード部の曲げ剛性測定では、前記ビード部の曲げ剛性は、前記測定データに基づく荷重−変位曲線の傾きから求められることが好ましい。   In the bending rigidity measurement of the bead part according to the present invention, it is preferable that the bending rigidity of the bead part is obtained from the slope of the load-displacement curve based on the measurement data.

本発明に係るビード部の曲げ剛性測定では、前記ビード支持板は、基面から立ち上がる設置台上に取り付くとともに、前記タイヤは、前記基面とは非接触で前記ビード支持板上に載置されることが好ましい。   In the bending stiffness measurement of the bead portion according to the present invention, the bead support plate is mounted on an installation stand rising from a base surface, and the tire is placed on the bead support plate in a non-contact manner with the base surface. It is preferable.

本発明に係るビード部の曲げ剛性測定では、前記ビード支持板の上面は、平面をなすとともに、前記荷重作用板の下面は、前記2位置Pyを押し付ける押付け面部の間に、段差部を介して上方側に凹む中央面部を有することが好ましい。   In the bending rigidity measurement of the bead portion according to the present invention, the upper surface of the bead support plate forms a flat surface, and the lower surface of the load acting plate passes through a step portion between the pressing surface portions that press the two positions Py. It is preferable to have a central surface portion that is recessed upward.

本発明に係るビード部の曲げ剛性測定では、前記荷重作用板の下面は、平面をなすとともに、前記ビード支持板の上面は、前記2位置Pxを載置する保持面部の間に、段差部を介して下方側に凹む中央面部を有することが好ましい。   In the bending rigidity measurement of the bead portion according to the present invention, the lower surface of the load acting plate forms a flat surface, and the upper surface of the bead support plate has a stepped portion between the holding surface portions on which the two positions Px are placed. It is preferable to have a central surface portion that is recessed downward through the center.

本発明は叙上の如く構成しているため、上側ビード部を、周方向で隣り合う位置Px、Py間でタイヤ軸方向に容易に曲げ変形でき、その時の荷重と変位量との測定データに基づいてビード部の曲げ剛性を数値化できる。   Since the present invention is configured as described above, the upper bead portion can be easily bent and deformed in the tire axial direction between the adjacent positions Px and Py in the circumferential direction, and the measurement data of the load and the displacement amount at that time can be used. Based on this, the bending rigidity of the bead portion can be quantified.

この数値化されたビード部の曲げ剛性は、リム組み性の評価の指数として好適に採用しうる。   The digitized bending rigidity of the bead portion can be suitably used as an index for evaluating the rim assembly property.

なおタイヤは、上側ビード部のタイヤ軸方向内面が、ビード支持板上で載置される。そのため、前記2位置Pxで保持される場合にも、安定してタイヤを保持することができる。又、タイヤを、ビード支持板以外、接触させないで保持しうるため、ビード部の曲げ変形への悪影響を排除でき、測定精度を向上しうる。   In the tire, the inner surface in the tire axial direction of the upper bead portion is placed on the bead support plate. Therefore, even when held at the two positions Px, the tire can be stably held. In addition, since the tire can be held without contacting other than the bead support plate, the adverse effect on the bending deformation of the bead portion can be eliminated, and the measurement accuracy can be improved.

本発明のビード部の曲げ剛性測定方法におけるタイヤ保持工程を、それを実施する測定装置とともに示す側面図である。It is a side view which shows the tire holding process in the bending rigidity measuring method of the bead part of this invention with the measuring apparatus which enforces it. 荷重負荷工程を概念的に示す斜視図である。It is a perspective view which shows a load loading process notionally. (A)、(B)は荷重負荷工程を概念的に示す平面図及び断面図である。(A), (B) is the top view and sectional drawing which show a load loading process notionally. 荷重作用板の外端部を示す拡大断面図である。It is an expanded sectional view which shows the outer end part of a load action board. 測定データに基づく荷重−変位曲線の一例を示すグラフである。It is a graph which shows an example of the load-displacement curve based on measurement data. ビード支持板及び荷重作用板の他の例を示す斜視図である。It is a perspective view which shows the other example of a bead support plate and a load action board.

以下、本発明の実施の形態について、詳細に説明する。図1は、本発明のビード部の曲げ剛性測定方法を実施するための測定装置1の一例を示す。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 shows an example of a measuring apparatus 1 for carrying out the method for measuring the bending stiffness of a bead portion according to the present invention.

図1に示すように、本例の測定装置1は、タイヤ保持具2と、荷重負荷具3と、測定手段(図示省略)とを具える。前記タイヤ保持具2は、タイヤTを平置き姿勢で保持する。前記荷重負荷具3は、タイヤ保持具2によって保持されたタイヤTに、タイヤ軸方向の荷重Wを徐々に負荷する。前記測定手段は、荷重負荷具3よって負荷された荷重Wとそれによるタイヤ軸方向の変位量δを測定する。   As shown in FIG. 1, the measuring apparatus 1 of this example includes a tire holder 2, a load applying tool 3, and a measuring means (not shown). The tire holder 2 holds the tire T in a flat position. The load loader 3 gradually applies a load W in the tire axial direction to the tire T held by the tire holder 2. The measuring means measures the load W loaded by the load loader 3 and the displacement amount δ in the tire axial direction due thereto.

本例のタイヤ保持具2は、例えば圧縮試験機のテーブルである基面5から立ち上がる設置台6と、この設置台6の上端に取り付くビード支持板7とを具える。   The tire holder 2 of this example includes, for example, an installation base 6 that rises from a base surface 5 that is a table of a compression tester, and a bead support plate 7 that is attached to the upper end of the installation base 6.

図1、2に示すように、ビード支持板7は、任意のタイヤ直径方向である第1のタイヤ直径方向Fxにのびる板状をなす。このビード支持板7は、平置き姿勢のタイヤTにおける上側ビード部Tbのタイヤ軸方向内面Siのうち、第1のタイヤ直径方向Fxで対向する2位置Px、Pxを載置して保持する。この保持された状態において、タイヤTが前記基面5と接触しないように、前記設置台6の高さが設定される。なお図2、3には、簡略化のために、上側ビード部Tbは、リング状に描かれている。   As shown in FIGS. 1 and 2, the bead support plate 7 has a plate shape extending in the first tire diameter direction Fx, which is an arbitrary tire diameter direction. This bead support plate 7 places and holds two positions Px and Px facing each other in the first tire diameter direction Fx, of the inner surface Si in the tire axial direction of the upper bead portion Tb of the tire T in a flat position. In this held state, the height of the installation base 6 is set so that the tire T does not come into contact with the base surface 5. 2 and 3, the upper bead portion Tb is drawn in a ring shape for the sake of simplicity.

このようなタイヤ保持具2では、タイヤTの重心が保持位置よりも下方となるため、2位置Pxで保持される場合にも、タイヤTを安定化しうる。又タイヤTがビード支持板7以外とは接触しないため、ビード部の曲げ変形への悪影響を排除できる。   In such a tire holder 2, since the center of gravity of the tire T is below the holding position, the tire T can be stabilized even when held at the two positions Px. Further, since the tire T is not in contact with anything other than the bead support plate 7, the adverse effect on the bending deformation of the bead portion can be eliminated.

荷重負荷具3は、前記上側ビード部Tbに、タイヤ軸方向内側に荷重Wを負荷する荷重作用板8を具える。この荷重作用板8は、本例では、前記圧縮試験機における昇降台(図示省略)に支持される。   The load application tool 3 includes a load application plate 8 that applies a load W to the inner side in the tire axial direction on the upper bead portion Tb. In this example, the load acting plate 8 is supported by a lifting platform (not shown) in the compression tester.

荷重作用板8は、第1のタイヤ直径方向Fxとは直交する第2のタイヤ直径方向Fyにのびる板状をなす。そして荷重作用板8の下降により、前記上側ビード部Tbのタイヤ軸方向外面Soのうち、第2のタイヤ直径方向Fyで対向する2位置Py、Pyをタイヤ軸方向内側に押し付けて、荷重Wを徐々に負荷する。これにより前記2位置Pyを、タイヤ軸方向内側に徐々に変位させうる。   The load acting plate 8 has a plate shape extending in the second tire diameter direction Fy perpendicular to the first tire diameter direction Fx. Then, by lowering the load acting plate 8, the two positions Py and Py facing each other in the second tire diameter direction Fy in the tire axial direction outer surface So of the upper bead portion Tb are pressed inward in the tire axial direction, and the load W is increased. Load gradually. As a result, the two positions Py can be gradually displaced inward in the tire axial direction.

ここで、荷重作用板8は、その下面8Sが、前記上側ビード部Tbと接触を開始する高さ位置から、ビード支持板7の上面7Sと接触する高さ位置までの間で上側ビード部Tbを変位させうる。本例では、最大の変位量δをより大きく確保するため、図2に示すように、ビード支持板7の上面7Sを平面とするとともに、荷重作用板8の下面8Sを段差付き面で形成している。   Here, the load acting plate 8 has a lower surface 8S between a height position where the lower surface 8S starts to contact the upper bead portion Tb and a height position where the lower surface 8S contacts the upper surface 7S of the bead support plate 7. Can be displaced. In this example, in order to secure a larger maximum displacement amount δ, as shown in FIG. 2, the upper surface 7S of the bead support plate 7 is made flat and the lower surface 8S of the load acting plate 8 is formed with a stepped surface. ing.

具体的には、荷重作用板8の下面8Sは、前記2位置Py、Pyを押し付ける押付け面部8Soと、その間に段差Dを介して配される中央面部8Siとを有する。中央面部8Siは、押付け面部8Soよりも上方側に凹んで形成される。これにより、前記下面8Sが平面の場合に比して、前記段差Dの分だけ最大の変位量δを大きくすることができる。   Specifically, the lower surface 8S of the load acting plate 8 includes a pressing surface portion 8So that presses the two positions Py and Py, and a central surface portion 8Si that is arranged via a step D therebetween. The center surface portion 8Si is formed so as to be recessed above the pressing surface portion 8So. As a result, the maximum displacement amount δ can be increased by the level difference D as compared with the case where the lower surface 8S is a flat surface.

又同目的のために、図6に示すように、荷重作用板8の下面8Sを平面とするともに、ビード支持板7の上面7Sを段差付き面で形成することもできる。この場合、ビード支持板7の上面7Sは、前記2位置Px、Pxを載置する保持面部7Soと、その間に段差Dを介して配される中央面部7Siとを有する。中央面部7Siは、保持面部7Soよりも下方側に凹んで形成される。これにより、前記上面7Sが平面の場合に比して、前記段差Dの分だけ最大の変位量δを大きくすることができる。   For the same purpose, as shown in FIG. 6, the lower surface 8S of the load acting plate 8 can be a flat surface, and the upper surface 7S of the bead support plate 7 can be formed with a stepped surface. In this case, the upper surface 7S of the bead support plate 7 has a holding surface portion 7So on which the two positions Px and Px are placed, and a central surface portion 7Si disposed through a step D therebetween. The central surface portion 7Si is formed to be recessed below the holding surface portion 7So. As a result, the maximum displacement amount δ can be increased by the level difference D as compared with the case where the upper surface 7S is a flat surface.

なお荷重作用板8の下面8Sを、その中央面部8Siが押付け面部8Soよりも上方側に凹んだ段差付き面とし、かつビード支持板7の上面7Sを、その中央面部7Siが保持面部7Soよりも下方側に凹んだ段差付き面とすることも可能である。   Note that the lower surface 8S of the load acting plate 8 is a stepped surface in which the central surface portion 8Si is recessed above the pressing surface portion 8So, and the upper surface 7S of the bead support plate 7 is more than the holding surface portion 7So. It is also possible to use a stepped surface that is recessed downward.

なお最大の変位量δは80mm以上が好ましく、この値は、リム組み時にビード部をタイヤ軸方向に変位させる際の変位量に相当する。   The maximum displacement δ is preferably 80 mm or more, and this value corresponds to the displacement when the bead portion is displaced in the tire axial direction when the rim is assembled.

荷重作用板8は、上側ビード部Tbを押し付ける際、タイヤTのサイドウォール部Tsに接触しないことが、ビード部の曲げ剛性の測定精度を高めるために重要である。そのために、荷重作用板8の長さを、正規リムにおけるリムフランジを含むリム最大外径以下に設定することが好ましい。   It is important for the load acting plate 8 not to contact the sidewall portion Ts of the tire T when the upper bead portion Tb is pressed in order to increase the measurement accuracy of the bending rigidity of the bead portion. Therefore, it is preferable to set the length of the load acting plate 8 to be equal to or smaller than the rim maximum outer diameter including the rim flange in the normal rim.

又図4に示すように、荷重作用板8の下面8Sかつ外端部を、正規リムにおけるリムフランジの形状に近似する湾曲面8Seとして形成することも好ましい。このとき、前記湾曲面8Seが、上側ビード部Tbの外面Soに接触するため、サイドウォール部Tsとの接触を防止できる。湾曲面8Seを形成した場合には、荷重作用板8の長さを、前記リム最大外径より大に設定することも可能となる。   As shown in FIG. 4, it is also preferable that the lower surface 8S and the outer end of the load acting plate 8 are formed as a curved surface 8Se that approximates the shape of the rim flange in the regular rim. At this time, since the curved surface 8Se contacts the outer surface So of the upper bead portion Tb, contact with the sidewall portion Ts can be prevented. When the curved surface 8Se is formed, the length of the load acting plate 8 can be set larger than the rim maximum outer diameter.

なおビード支持板7の長さは、タイヤTの保持を確実に行うために、荷重作用板8の長さより大であるのが好ましい。   The bead support plate 7 is preferably longer than the load acting plate 8 in order to securely hold the tire T.

次に、測定手段は、前記荷重負荷具3よって負荷される荷重Wと、それによる前記2位置Pyのタイヤ軸方向の変位量δを測定する。荷重Wの測定として、特に規定されないが、圧縮試験機に既存のロードセルなどの加重センサが使用できる。又変位量δの測定として、昇降台の下降量を測定する圧縮試験機に既存のロータリエンコーダなどの距離センサが使用できる。   Next, the measuring means measures the load W applied by the load applying tool 3 and the displacement amount δ in the tire axial direction at the two positions Py. Although it is not particularly defined as the measurement of the load W, a load sensor such as an existing load cell can be used in the compression tester. Further, as a measurement of the displacement amount δ, an existing distance sensor such as a rotary encoder can be used in a compression tester that measures the amount of descending of the lifting platform.

又本例の測定装置1は、前記測定手段によって求めた荷重Wと変位量δとの測定データに基づき、ビード部の曲げ剛性を求めるCPU(中央処理装置)等の演算手段を具える。   Further, the measuring apparatus 1 of this example includes arithmetic means such as a CPU (central processing unit) for obtaining the bending rigidity of the bead portion based on the measurement data of the load W and the displacement amount δ obtained by the measuring means.

次に、ビード部の曲げ剛性測定方法を説明する。この測定方法は、タイヤ保持工程K1(図1に示す)、荷重負荷工程K2(図2、3に示す)、測定工程(図示省略)、演算工程(図示省略)を含む。   Next, a method for measuring the bending rigidity of the bead portion will be described. This measurement method includes a tire holding step K1 (shown in FIG. 1), a load application step K2 (shown in FIGS. 2 and 3), a measurement step (not shown), and a calculation step (not shown).

図1に示すように、タイヤ保持工程K1では、前記ビード支持板7上で、上側ビード部Tbの内面Siのうちの前記2位置Px、Pxを載置して保持する。   As shown in FIG. 1, in the tire holding step K <b> 1, the two positions Px and Px of the inner surface Si of the upper bead portion Tb are placed and held on the bead support plate 7.

図2、3に示すように、荷重負荷工程K2では、上側ビード部Tbの外面Soのうちの前記2位置Py、Pyを、荷重作用板8によってタイヤ軸方向内側に押し付け、荷重Wを徐々に負荷する。これにより前記2位置Pyを、タイヤ軸方向内側に徐々に変位させる。   As shown in FIGS. 2 and 3, in the load application step K <b> 2, the two positions Py and Py of the outer surface So of the upper bead portion Tb are pressed against the inner side in the tire axial direction by the load action plate 8, and the load W is gradually increased. To load. As a result, the two positions Py are gradually displaced inward in the tire axial direction.

測定工程では、前記荷重負荷工程K2における前記荷重Wと変位量δとを順次測定する。図3(A)に示すように、荷重負荷時、上側ビード部Tbは、ビード支持板7の両側端の位置7E、及び荷重作用板8の両側端の位置8Eと接触する。即ち、環状のビード部は、8箇所の位置で曲げるような負荷形態となっており、荷重Wを負荷した時、図3(B)に示すように、8箇所の位置のそれぞれの荷重は、W/4となる。   In the measurement process, the load W and the displacement amount δ in the load application process K2 are sequentially measured. As shown in FIG. 3 (A), the upper bead portion Tb is in contact with the positions 7E on both side ends of the bead support plate 7 and the positions 8E on both side ends of the load acting plate 8 when a load is applied. That is, the annular bead portion has a load configuration that bends at 8 positions. When a load W is applied, as shown in FIG. 3B, each load at the 8 positions is W / 4.

又演算工程では、前記荷重Wと変位量δとの測定データに基づき、ビード部の曲げ剛性を求める。具体的には、図5に示すように、前記測定データに基づいて得られる荷重−変位曲線Yの傾きから、ビード部の曲げ剛性を求める。本例では、荷重−変位曲線Yは、測定データを回帰分析して求めた回帰曲線として示される。   In the calculation step, the bending stiffness of the bead portion is obtained based on the measurement data of the load W and the displacement amount δ. Specifically, as shown in FIG. 5, the bending rigidity of the bead portion is obtained from the slope of the load-displacement curve Y obtained based on the measurement data. In this example, the load-displacement curve Y is shown as a regression curve obtained by performing regression analysis on the measurement data.

なお前述の如く、荷重作用板8の下面8S及び/又はビード支持板7の上面7Sを段差付き面とすることで、最大の変位量δを80mm以上に確保することが好ましい。しかし、80mm以上の確保が難しい場合、荷重作用板8及びビード支持板7の各巾を広げ、位置7E、8E間の間隔(図3(A)に示す)を狭くすることにより、ビード部への負担を大きくすることが好ましい。なお図3(A)では、便宜上、(位置7E、7E間の間隔)=(位置8E、8E間の間隔)<(位置7E、8E間の間隔)として図示されるが、基本として、(位置7E、7E間の間隔)=(位置7E、8E間の間隔)=(位置8E、8E間の間隔)であるのが好ましい。   As described above, it is preferable to secure the maximum displacement δ at 80 mm or more by making the lower surface 8S of the load acting plate 8 and / or the upper surface 7S of the bead support plate 7 into a stepped surface. However, when it is difficult to secure 80 mm or more, the width of the load acting plate 8 and the bead support plate 7 is widened, and the distance between the positions 7E and 8E (shown in FIG. 3A) is reduced to the bead portion. It is preferable to increase the burden. In FIG. 3A, for convenience, (interval between positions 7E and 7E) = (interval between positions 8E and 8E) <(interval between positions 7E and 8E), 7E, 7E) = (Distance between positions 7E, 8E) = (Distance between positions 8E, 8E).

このようにして求めたビード部の曲げ剛性は、ビード締付力に比してリム組み性への相関が大であり、リム組み性の評価の指標として好適に採用することができる。   The bending rigidity of the bead portion thus obtained has a large correlation with the rim assemblability as compared with the bead fastening force, and can be suitably used as an index for evaluating the rim assemblage.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図1、2に示す測定装置を用い、かつ本発明のビード部の曲げ剛性測定方法に基づいて、リム組み性に優れるタイヤA(リム組み時に損傷無し)、及びリム組み性に劣るタイヤB(リム組み時に損傷有り)に対して、ビード部の曲げ剛性を測定した。   1 and 2, and based on the method for measuring the bending rigidity of the bead portion of the present invention, tire A having excellent rim assemblability (no damage during rim assembling) and tire B having inferior rim assemblability ( The bending stiffness of the bead portion was measured against damage when the rim was assembled.

各タイヤA、Bは、それぞれタイヤサイズが206/65R16であり、図2に示すように、荷重作用板8の下面8Sを段差付き面とすることにより、最大の変位量δを80mmに確保している。位置7E、7E間の間隔、位置7E、8E間の間隔、及び位置8E、8E間の間隔は、互いに等しい。   Each of the tires A and B has a tire size of 206 / 65R16. As shown in FIG. 2, the lower surface 8S of the load acting plate 8 is a stepped surface, so that the maximum displacement δ is secured to 80 mm. ing. The distance between the positions 7E and 7E, the distance between the positions 7E and 8E, and the distance between the positions 8E and 8E are equal to each other.

図5には、荷重負荷工程によって得られた荷重Wと変位量δとのデータに基づく荷重−変位曲線Yが示される。各タイヤA、Bにおけるビード部の曲げ剛性は、それぞれ、変位量10mmと変位量30mmとの間における荷重−変位曲線Yの傾き(単位:N/mm)として求めた。結果は表1に示される。   FIG. 5 shows a load-displacement curve Y based on the data of the load W and the displacement amount δ obtained by the load loading process. The bending rigidity of the bead portion in each tire A and B was determined as the slope (unit: N / mm) of the load-displacement curve Y between the displacement amount 10 mm and the displacement amount 30 mm. The results are shown in Table 1.

比較として、同タイヤA、Bのビード締付力を測定し、その結果を表1に示す。前記ビード締付力は、前記特許文献2に準拠し、ビード部の内側で、周方向に配置した複数の締付ジョーを半径方向外方に変位させ、その時のビード部から受ける圧縮力を測定している。   As a comparison, the bead fastening force of the tires A and B was measured, and the results are shown in Table 1. The bead tightening force is based on Patent Document 2, and a plurality of tightening jaws arranged in the circumferential direction are displaced radially outwardly inside the bead portion, and the compressive force received from the bead portion at that time is measured. doing.

Figure 2018109524
Figure 2018109524

実施例に示されるように、リム組み性に優れるタイヤAの方が、リム組み性に劣るタイヤBに比してビード部の曲げ剛性が大であり、リム組み性とビード部の曲げ剛性とが整合していることが確認できる。これに対し、比較例に示されるように、リム組み性とビード締付力とが整合していないことが確認できる。   As shown in the examples, the tire A having excellent rim assemblability has a larger bending rigidity at the bead portion than the tire B having inferior rim assembling properties. Can be confirmed. On the other hand, as shown in the comparative example, it can be confirmed that the rim assembly property and the bead fastening force are not matched.

5 基面
6 設置台
7 ビード支持板
7Si 中央面部
7So 保持面部
7S 上面
8 荷重作用板
8Si 中央面部
8So 押付け面部8So
8S 下面
D 段差
Fx タイヤ直径方向
Fy タイヤ直径方向
K1 タイヤ保持工程
K2 荷重負荷工程
Si タイヤ軸方向内面
So タイヤ軸方向外面
Tb 上側ビード部
T タイヤ
5 Base surface 6 Installation base 7 Bead support plate 7Si Central surface portion 7So Holding surface portion 7S Upper surface 8 Load acting plate 8Si Central surface portion 8So Pressing surface portion 8So
8S Lower surface D Step Fx Tire diameter direction Fy Tire diameter direction K1 Tire holding process K2 Load application process Si Tire axial inner surface So Tire axial outer surface Tb Upper bead portion T Tire

Claims (5)

第1のタイヤ直径方向にのびるビード支持板を用い、平置き姿勢のタイヤにおける上側ビード部のタイヤ軸方向内面かつ前記第1のタイヤ直径方向で対向する2位置Pxを載置して保持するタイヤ保持工程、
前記第1のタイヤ直径方向とは直交する第2のタイヤ直径方向にのびる荷重作用板を用い、前記ビード支持板によって保持される前記上側ビード部のタイヤ軸方向外面かつ前記第2のタイヤ直径方向で対向する2位置Pyをタイヤ軸方向内側に押し付けて荷重を徐々に負荷することにより、前記2位置Pyをタイヤ軸方向内側に徐々に変位させる荷重負荷工程、
及び前記荷重負荷工程における前記荷重と変位量とを測定する測定工程を具え、
前記荷重と変位量との測定データに基づいてビード部の曲げ剛性を求めることを特徴とするビード部の曲げ剛性測定方法。
A tire that uses a bead support plate extending in the first tire diameter direction and places and holds two positions Px facing the inner surface in the tire axial direction of the upper bead portion and the first tire diameter direction in a horizontally placed tire. Holding process,
A load acting plate extending in a second tire diameter direction orthogonal to the first tire diameter direction is used, the outer surface in the tire axial direction of the upper bead portion held by the bead support plate, and the second tire diameter direction A load loading step of gradually displacing the two positions Py inward in the tire axial direction by pressing the opposite two positions Py inward in the tire axial direction and gradually applying a load;
And a measurement process for measuring the load and the displacement amount in the load application process,
A method for measuring the bending stiffness of a bead portion, wherein the bending stiffness of the bead portion is obtained based on measurement data of the load and the amount of displacement.
前記ビード部の曲げ剛性は、前記測定データに基づく荷重−変位曲線の傾きから求められることを特徴とする請求項1記載のビード部の曲げ剛性測定方法。   2. The method for measuring the bending stiffness of a bead portion according to claim 1, wherein the bending stiffness of the bead portion is obtained from an inclination of a load-displacement curve based on the measurement data. 前記ビード支持板は、基面から立ち上がる設置台上に取り付くとともに、前記タイヤは、前記基面とは非接触で前記ビード支持板上に載置されることを特徴とする請求項1又は2記載のビード部の曲げ剛性測定方法。   3. The bead support plate is mounted on an installation stand rising from a base surface, and the tire is placed on the bead support plate in a non-contact manner with the base surface. Of measuring the bending stiffness of the bead part of the machine. 前記ビード支持板の上面は、平面をなすとともに、
前記荷重作用板の下面は、前記2位置Pyを押し付ける押付け面部の間に、段差を介して上方側に凹む中央面部を有することを特徴とする請求項1〜3の何れかに記載のビード部の曲げ剛性測定方法。
The upper surface of the bead support plate forms a plane,
The bead portion according to any one of claims 1 to 3, wherein a bottom surface of the load acting plate has a central surface portion that is recessed upward through a step between pressing surface portions that press the two positions Py. Bending stiffness measurement method.
前記荷重作用板の下面は、平面をなすとともに、
前記ビード支持板の上面は、前記2位置Pxを載置する保持面部の間に、段差を介して下方側に凹む中央面部を有することを特徴とする請求項1〜3の何れかに記載のビード部の曲げ剛性測定方法。
The lower surface of the load acting plate forms a plane,
The upper surface of the bead support plate has a central surface portion that is recessed downward through a step between the holding surface portions on which the two positions Px are placed. Bending stiffness measurement method.
JP2016256343A 2016-12-28 2016-12-28 Flexural rigidity measurement method for bead Active JP6753308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016256343A JP6753308B2 (en) 2016-12-28 2016-12-28 Flexural rigidity measurement method for bead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016256343A JP6753308B2 (en) 2016-12-28 2016-12-28 Flexural rigidity measurement method for bead

Publications (2)

Publication Number Publication Date
JP2018109524A true JP2018109524A (en) 2018-07-12
JP6753308B2 JP6753308B2 (en) 2020-09-09

Family

ID=62844501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016256343A Active JP6753308B2 (en) 2016-12-28 2016-12-28 Flexural rigidity measurement method for bead

Country Status (1)

Country Link
JP (1) JP6753308B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031332A (en) * 2019-04-29 2019-07-19 西南大学 A kind of test method of boardness

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350309A (en) * 2001-05-24 2002-12-04 Sharp Corp Plate state body strength test device
US6601446B1 (en) * 2002-09-04 2003-08-05 Bridgestone/Firestone North American Tire, Llc Control fixture for a tire bead compression testing machine
JP2006062554A (en) * 2004-08-27 2006-03-09 Bridgestone Corp Analysis model of bead part of tire, tire model, vehicle body model, analysis method for bead part of tire, behavior simulation method for tire, behavior analysis program of tire, and recording medium recording behavior analysis program
JP2008190981A (en) * 2007-02-05 2008-08-21 Bridgestone Corp Method and device for measuring rigidity of sidewall section of tire
JP2014122814A (en) * 2012-12-20 2014-07-03 Sumitomo Rubber Ind Ltd Method for evaluating rigid feeling of tyre
JP2015151111A (en) * 2014-02-19 2015-08-24 株式会社ブリヂストン tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350309A (en) * 2001-05-24 2002-12-04 Sharp Corp Plate state body strength test device
US6601446B1 (en) * 2002-09-04 2003-08-05 Bridgestone/Firestone North American Tire, Llc Control fixture for a tire bead compression testing machine
JP2006062554A (en) * 2004-08-27 2006-03-09 Bridgestone Corp Analysis model of bead part of tire, tire model, vehicle body model, analysis method for bead part of tire, behavior simulation method for tire, behavior analysis program of tire, and recording medium recording behavior analysis program
JP2008190981A (en) * 2007-02-05 2008-08-21 Bridgestone Corp Method and device for measuring rigidity of sidewall section of tire
JP2014122814A (en) * 2012-12-20 2014-07-03 Sumitomo Rubber Ind Ltd Method for evaluating rigid feeling of tyre
JP2015151111A (en) * 2014-02-19 2015-08-24 株式会社ブリヂストン tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031332A (en) * 2019-04-29 2019-07-19 西南大学 A kind of test method of boardness

Also Published As

Publication number Publication date
JP6753308B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
KR101913355B1 (en) Needle unit for vertical probe card with
US7748133B2 (en) Workpiece inspecting device
JP2018109524A (en) Method for measuring flexural rigidity of bead part
CN106644248B (en) The determination method of circular membrane maximum stress under maximum defluxion constrained state
CN106568536A (en) Connector retention testing device
WO2018086186A1 (en) Follow-up multi-point contact-type device for measuring circumferential strain
JP2018155542A (en) Four point bending corrosion test method, four point bending corrosion test device, and test piece
JP4622721B2 (en) Tire balance measuring device and measuring method
US11181357B2 (en) U-shaped touch gauge
CN110431397A (en) The hardness estimating method of component and hardness-equivalent plastic strain curve acquisition method of steel is cold worked
JP5730617B2 (en) Viscoelasticity measuring device
JP5064866B2 (en) Surface inspection apparatus and surface inspection method
CN203241180U (en) Back-arch type pressure gauge
KR100805030B1 (en) Shape measuring apparatus
CN102384708A (en) Measuring tool for detecting spiral lift of vibration absorber spring seat
JP6096030B2 (en) Flexibility measurement method
KR102051341B1 (en) Apparatus and method for measuring of two osculating flat surface
CN112067454A (en) Extensometer anti-slip device in high-temperature extensometer and high-temperature quasi-static loading test
US20180108560A1 (en) Substrate holder
JP6578729B2 (en) Holding jig
CN210833313U (en) A examine utensil for car water pipe
JP6317188B2 (en) Sensor pressing aid
CN108106596B (en) Device for detecting anti-strain capability of electronic element
CN214794611U (en) Probe storage device and detection equipment
JP6921362B1 (en) Rope tension measuring device and rope tension measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6753308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250