JP2018155542A - Four point bending corrosion test method, four point bending corrosion test device, and test piece - Google Patents

Four point bending corrosion test method, four point bending corrosion test device, and test piece Download PDF

Info

Publication number
JP2018155542A
JP2018155542A JP2017051254A JP2017051254A JP2018155542A JP 2018155542 A JP2018155542 A JP 2018155542A JP 2017051254 A JP2017051254 A JP 2017051254A JP 2017051254 A JP2017051254 A JP 2017051254A JP 2018155542 A JP2018155542 A JP 2018155542A
Authority
JP
Japan
Prior art keywords
test piece
contact
pair
thickness
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017051254A
Other languages
Japanese (ja)
Inventor
良太 樋口
Ryota Higuchi
良太 樋口
秀樹 高部
Hideki Takabe
秀樹 高部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017051254A priority Critical patent/JP2018155542A/en
Publication of JP2018155542A publication Critical patent/JP2018155542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a strain of a load surface of a test piece to be made close to uniform in a 4 point bending corrosion test.SOLUTION: A four point bending corrosion test method includes: a step of supporting a test piece SJ via a pair of first contact tools and a pair of second contact tools; a step of attaching a restraining tool 7 for limiting the replacement in a width direction of a both side surface SJc of a test piece SJ which contacts a portion lower than a center in a thickness direction of the test piece SJ which is a both side surface SJc in a width direction of the test piece SJ between the pair of second contact tools; and a step of allowing the test piece SJ to be supported in a state that the pair of first contact tools contacts a first surface SJa and the pair of second contact tools contacts a second surface SJb and adding a load in a thickness direction of the test piece to the test piece SJ attached with the restraining tool 7.SELECTED DRAWING: Figure 9

Description

本発明は、4点曲げ腐食試験方法、4点曲げ腐食試験装置及び、4点曲げ腐食試験に用いる試験片に関する。   The present invention relates to a four-point bending corrosion test method, a four-point bending corrosion test apparatus, and a test piece used for a four-point bending corrosion test.

従来、4点曲げ試験は、材料の強度試験や腐食試験に用いられてきた。例えば、特開平6―207895号公報(特許文献1)には、セラミックスの4点曲げ試験用治具が開示されている。この試験治具は、試験片を支持する一対の支持ピンと、この一対の支持ピンの少なくとも1個の支持ピンを支持する基台と、一対の支持ピン間距離を一定に保持する保持手段と、一対の支持ピンにより支持される試験片に荷重を負荷する負荷ピンとを備える。基台は、前記少なくとも1個の支持ピンを、試験片の長手方向軸線と垂直な平面内において揺動可能に支持する。これにより、治具形状や試験片形状により発生する偏荷重による測定誤差を解消する。   Conventionally, the four-point bending test has been used for a material strength test and a corrosion test. For example, JP-A-6-207895 (Patent Document 1) discloses a ceramic four-point bending test jig. The test jig includes a pair of support pins that support the test piece, a base that supports at least one support pin of the pair of support pins, a holding unit that holds a distance between the pair of support pins constant, A load pin for applying a load to the test piece supported by the pair of support pins. The base supports the at least one support pin in a swingable manner in a plane perpendicular to the longitudinal axis of the test piece. This eliminates measurement errors due to unbalanced loads caused by the jig shape and test piece shape.

また、特開2004−279083(特許文献2)には、FRPの試験片に軸圧縮荷重を加え、曲げ変形させ、破壊させる曲げ試験方法が開示されている。この曲げ試験方法では、試験片の長さと厚みの比に係数をかけた値が、曲げ弾性率で表される所定の範囲内にある試験片が用いられる。試験片は、両端部を試験片の曲げ変形の方向に回動自在な治具で支持される。治具は、試験片の一端部を、軸圧縮荷重の軸中心で支持し、他端部を軸圧縮荷重の軸中心からオフセットした位置で支持する。この試験方法によれば、FRP板の曲げ強度等を高精度で測定できる。   Japanese Patent Application Laid-Open No. 2004-279083 (Patent Document 2) discloses a bending test method in which an axial compression load is applied to a test piece of FRP to cause bending deformation and destruction. In this bending test method, a test piece is used in which a value obtained by multiplying the ratio of the length and thickness of the test piece by a coefficient is within a predetermined range represented by a bending elastic modulus. The test piece is supported at both ends by a jig that is rotatable in the direction of bending deformation of the test piece. The jig supports one end of the test piece at the axial center of the axial compression load and supports the other end at a position offset from the axial center of the axial compression load. According to this test method, the bending strength and the like of the FRP plate can be measured with high accuracy.

特開平6―207895号公報JP-A-6-207895 特開2004−279083号公報JP 2004-279083 A

上記特開2004−279083では、FRPの試験片に軸圧縮荷重を加える試験において、高測定精度を得るための試験片の細長比についての開示はあるものの、4点曲げ腐食試験において、より適正な評価をするための試験片の構成についての開示はない。一方で、4点曲げ腐食試験において、低コストで適正な評価を行うためには、荷重の大きさを抑えながら、試験片の荷重面のひずみを均一にするのが好ましいことが、発明者らによって認識されている。上記特開平6−207895号公報には、試験片の荷重面のひずみを均一にするための手段については開示されていない。   In the above Japanese Patent Application Laid-Open No. 2004-279083, although there is a disclosure about the elongated ratio of a test piece for obtaining high measurement accuracy in a test in which an axial compression load is applied to an FRP test piece, it is more appropriate in a four-point bending corrosion test. There is no disclosure of the configuration of the test piece for evaluation. On the other hand, in order to perform an appropriate evaluation at a low cost in a four-point bending corrosion test, it is preferable that the strain on the load surface of the test piece be uniform while suppressing the magnitude of the load. Has been recognized by. JP-A-6-207895 does not disclose means for making the strain on the load surface of the test piece uniform.

そこで、本願は、4点曲げ腐食試験において、試験片の荷重面のひずみを均一に近づけることができる4点曲げ試験方法、4点曲げ試験装置、及び試験片を開示する。   Therefore, the present application discloses a four-point bending test method, a four-point bending test apparatus, and a test piece that can make the strain on the load surface of the test piece uniform in a four-point bending corrosion test.

本発明の第1の観点における4点曲げ腐食試験方法は、試験片の第1の面に、前記試験片の長手方向に第1の距離だけ離間した一対の第1接触具を接し、前記試験片の前記第1の面と反対側の第2の面における前記一対の第1接触具の間の領域に、前記試験片の長手方向に前記第1の距離より短い第2の距離だけ離間した一対の第2接触具を接した状態で、前記試験片を支持する工程と、前記長手方向に第2の距離だけ離間する前記一対の第2接触具の間において、前記試験片の前記長手方向及び前記第1の面と前記第2の面の間の厚み方向の双方に垂直な方向である幅方向の両側面であって、前記試験片の厚み方向中央より前記第2の面に近い部分に接し、前記試験片の前記両側面の前記幅方向の変位を制限する拘束治具を取り付ける工程と、前記一対の第1接触具が前記第1の面に接し前記一対の第2接触具が前記第2の面に接した状態で支持され、かつ前記拘束治具が取り付けられた前記試験片に、前記第1の面に接する前記一対の第1接触具及び前記第2の面に接する前記一対の第2接触具を介して、前記厚み方向に荷重を加える工程と、を有する。   In the four-point bending corrosion test method according to the first aspect of the present invention, a pair of first contact tools separated by a first distance in the longitudinal direction of the test piece are in contact with the first surface of the test piece, and the test is performed. A second distance that is shorter than the first distance in the longitudinal direction of the test piece is spaced apart in a region between the pair of first contact tools on the second surface opposite to the first surface of the piece. The longitudinal direction of the test piece between the step of supporting the test piece in a state of contacting a pair of second contact tools and the pair of second contact tools spaced apart by a second distance in the longitudinal direction. And both sides in the width direction that are perpendicular to both the thickness direction between the first surface and the second surface, and closer to the second surface than the center in the thickness direction of the test piece And attaching a restraining jig for restricting the displacement in the width direction of the both side surfaces of the test piece. The pair of first contact tools are supported in a state where the first contact tools are in contact with the first surface and the pair of second contact tools are in contact with the second surface, and the restraint jig is attached to the test piece. And applying a load in the thickness direction via the pair of first contact tools in contact with the first surface and the pair of second contact tools in contact with the second surface.

本願開示によれば、4点曲げ腐食試験において、試験片の荷重面のひずみを均一に近づけることができる。   According to the present disclosure, in the four-point bending corrosion test, the strain on the load surface of the test piece can be made close to uniform.

図1は、4点曲げ腐食試験装置の構成例を示す側面図である。FIG. 1 is a side view showing a configuration example of a four-point bending corrosion test apparatus. 図2は、ひずみゲージを試験片に貼った状態を示す図である。FIG. 2 is a diagram illustrating a state in which a strain gauge is attached to a test piece. 図3は、ひずみゲージを試験片に貼った状態を示す図である。FIG. 3 is a view showing a state in which a strain gauge is attached to a test piece. 図4は、試験片の形状を説明するための図である。FIG. 4 is a diagram for explaining the shape of the test piece. 図5は、試験片の形状を説明するための図である。FIG. 5 is a diagram for explaining the shape of the test piece. 図1に示す試験片、第1接触具、第2接触具及び拘束治具を上から見た構成を示す平面図である。It is a top view which shows the structure which looked at the test piece, the 1st contact tool, the 2nd contact tool, and a restraint jig which are shown in FIG. 図7は、図6に示す構成を横方向(x方向)から見た側面図である。FIG. 7 is a side view of the configuration shown in FIG. 6 viewed from the lateral direction (x direction). 図8は、図6及び図7におけるA−A線における断面を示す断面図である。FIG. 8 is a cross-sectional view showing a cross section taken along line AA in FIGS. 6 and 7. 図9は、試験片SJの断面形状の変形例を示す断面図である。FIG. 9 is a cross-sectional view showing a modification of the cross-sectional shape of the test piece SJ. 図10は、シミュレーションの解析モデルを示す図である。FIG. 10 is a diagram illustrating an analysis model for simulation. 図11は、シミュレーションで用いた材料の応力−ひずみ曲線を示すグラフである。FIG. 11 is a graph showing a stress-strain curve of the material used in the simulation. 図12は、内面As試験片のxy平面におけるメッシュ(有限要素)を示す。FIG. 12 shows a mesh (finite element) in the xy plane of the inner surface As test piece. 図13は、内面As試験片のFEM解析で得られたひずみ分布(実線)と実測値(三角プロット)を示すグラフである。FIG. 13 is a graph showing a strain distribution (solid line) and an actual measurement value (triangular plot) obtained by FEM analysis of the inner surface As test piece. 図14は、平滑試験片のxy平面におけるメッシュ(有限要素)及び拘束条件を示す図である。FIG. 14 is a diagram showing a mesh (finite element) and constraint conditions in the xy plane of a smooth test piece. 図15は、内面As試験片のxy平面におけるメッシュ(有限要素)及び拘束条件を示す図である。FIG. 15 is a diagram illustrating a mesh (finite element) and constraint conditions in the xy plane of the inner surface As test piece. 図16は、図14に示す平滑試験片の解析モデルを用いたFEM解析の結果を示すグラフである。FIG. 16 is a graph showing the results of FEM analysis using the analysis model of the smooth test piece shown in FIG. 図17は、図15に示す内面As試験片の解析モデルを用いたFEM解析の結果を示すグラフである。FIG. 17 is a graph showing the results of FEM analysis using the analysis model of the inner surface As test piece shown in FIG. 図18は、試験片の脚長さを変えた場合のひずみ分布の計算結果を示すグラフである。FIG. 18 is a graph showing the calculation result of the strain distribution when the leg length of the test piece is changed. 図19は、脚を付けない平滑試験片の側面を拘束した場合のひずみ分布の解析結果を示すグラフである。FIG. 19 is a graph showing the analysis result of the strain distribution when the side surface of the smooth test piece without a leg is constrained. 図20は、脚を付けない内面As試験片の側面を拘束した場合のひずみ分布の解析結果を示すグラフである。FIG. 20 is a graph showing the analysis result of the strain distribution when the side surface of the inner surface As test piece without a leg is constrained.

4点曲げ腐食試験は、例えば、油井管やラインパイプの耐腐食性能評価のための試験に用いられる。4点曲げ腐食試験では、試験片に引張の負荷を与えた状態で腐食環境に所定期間(例えば、1ヶ月間)曝して、き裂発生の有無を調べる。この場合、負荷荷重は、試験片上で引張応力が付与される面、すなわち評価面の所定の位置(例えば、中央)でのひずみの長手方向成分が所定値となるように設定される。そのため、本来は、ひずみの値が設定される試験片の所定の位置でのき裂発生有無を評価することが好ましい。   The 4-point bending corrosion test is used, for example, for a test for evaluating the corrosion resistance performance of oil well pipes and line pipes. In the four-point bending corrosion test, the specimen is exposed to a corrosive environment for a predetermined period (for example, for one month) with a tensile load applied, and the presence or absence of cracks is examined. In this case, the applied load is set so that the longitudinal component of the strain at a predetermined position (for example, the center) of the surface to which the tensile stress is applied on the test piece, that is, the evaluation surface, becomes a predetermined value. Therefore, originally, it is preferable to evaluate the presence or absence of crack generation at a predetermined position of the test piece for which the strain value is set.

しかし、ひずみの値が設定される所定の位置以外の部位、特に試験片端部で割れが発生する場合があることが発明者によって発見されている。このように、ひずみの値を設定した位置以外の部位で割れが発生すると、適正に鋼管の耐腐食性能を評価できているかが問題となり得る。そこで、発明者らは、試験片端部で割れが発生する原因について検討した。   However, the inventor has discovered that cracks may occur at sites other than the predetermined position where the strain value is set, particularly at the end of the test piece. As described above, when cracks occur in a portion other than the position where the strain value is set, it may be a problem whether the corrosion resistance performance of the steel pipe can be properly evaluated. Then, inventors examined the cause which a crack generate | occur | produces in a test piece edge part.

検討において、発明者らは、試験片の端部で割れが発生する原因は、試験片に一様なひずみが付与されていないことにあると考えた。すなわち、試験片中央に比べ端部でのひずみが大きくなっていることが考えられる。そこで、発明者らは、中央部と端部のひずみ差を低減する方法についてFEM解析により検討した。その結果、試験片厚さを大きくすればひずみ差を低減できることが示唆された。   In the examination, the inventors considered that the cause of the occurrence of cracks at the end of the test piece was that a uniform strain was not applied to the test piece. That is, it is considered that the strain at the end is larger than that at the center of the test piece. Then, the inventors examined the method of reducing the strain difference between the central portion and the end portion by FEM analysis. As a result, it was suggested that the strain difference could be reduced by increasing the specimen thickness.

この検討結果に基づいて、発明者らは、鋼管サイズ(内径)に応じた中央部と端部のひずみ差を予測し、ひずみ差がない状態で4点曲げ腐食試験を実施できる試験片厚を決定する方法を発明した。   Based on the results of this study, the inventors predict the strain difference between the center and the end in accordance with the steel pipe size (inner diameter), and determine the thickness of the specimen that can be used to perform a four-point bending corrosion test without any strain difference. Invented a method to determine.

また、試験片厚を大きくすると所定のひずみを得るための4点曲げ荷重も増大する。そこで、発明者らは、荷重を低減できる試験片として、試験片の厚みを確保しつつ、長手方向に貫通孔を設ける試験片を発明した。これにより、試験片の厚みを確保して荷重面のひずみを均一に近づけることができる。   Further, when the test piece thickness is increased, the four-point bending load for obtaining a predetermined strain also increases. Therefore, the inventors have invented a test piece in which a through hole is provided in the longitudinal direction while ensuring the thickness of the test piece as a test piece capable of reducing the load. Thereby, the thickness of a test piece is ensured and the distortion of a load surface can be closely approximated.

さらに、試験片長手方向に貫通孔を加工する方法以外の方法を検討した。発明者らは、4点曲げ荷重によって、試験片の評価面側とその反対面側とで幅方向の変位に差が生じるように試験片が変形することに着目し、下記の検討を行った。   Furthermore, methods other than the method of processing a through hole in the test piece longitudinal direction were examined. Inventors paid attention to the fact that the test piece is deformed so that the displacement in the width direction is different between the evaluation surface side and the opposite surface side of the test piece due to the four-point bending load, and the following examination was performed. .

試験片に4点曲げの荷重をかけた際の応力と変位についてさらに詳しく検討した。4点曲げ試験では、試験片の長手方向に離間する一対のローラが試験片の評価面を押し、評価面の一対のローラの間の領域において、評価面と反対側の面を一対のローラが押すことで試験片に荷重がかけられる。これにより、試験片の評価面において試験片の長手方向の引張の負荷が付与される。一例として、上面が評価面となる場合について説明する。   The stress and displacement when a four-point bending load was applied to the specimen were examined in more detail. In the four-point bending test, a pair of rollers spaced apart in the longitudinal direction of the test piece presses the evaluation surface of the test piece, and a pair of rollers forms a surface opposite to the evaluation surface in the region between the pair of rollers on the evaluation surface. A load is applied to the test piece by pushing. As a result, a tensile load in the longitudinal direction of the test piece is applied to the evaluation surface of the test piece. As an example, a case where the upper surface becomes an evaluation surface will be described.

試験片の厚み方向の中央より上の部分すなわち厚み方向の中央より評価面に近い部分には試験片の長手方向に引張応力が作用する。試験片の厚み方向の中央より下の部分すなわち試験片の厚み方向の中央より評価面と反対側の面に近い部分には圧縮応力が作用する。このため、ポアソン効果により試験片の厚み方向の中央より上の部分は試験片の幅方向に縮む。すなわち幅方向に圧縮する方向の変位が発生する。試験片の厚み方向の中央より下の部分は、試験片の幅方向に伸びる。すなわち、幅方向に引っ張る方向の変位が発生する。   Tensile stress acts in the longitudinal direction of the test piece on the part above the center in the thickness direction of the test piece, that is, on the part closer to the evaluation surface than the center in the thickness direction. A compressive stress acts on a portion below the center in the thickness direction of the test piece, that is, a portion closer to the surface opposite to the evaluation surface than the center in the thickness direction of the test piece. For this reason, the part above the center of the thickness direction of a test piece shrinks in the width direction of a test piece by the Poisson effect. That is, displacement in the direction of compression occurs in the width direction. The portion below the center in the thickness direction of the test piece extends in the width direction of the test piece. That is, displacement in the direction of pulling in the width direction occurs.

発明者らは、4点曲げ試験において試験片に作用する幅方向の応力及び変位に着目した。試験片に荷重をかけたときの試験片の評価面幅方向の変位と、評価面の反対側の面の幅方向の変位との差を抑えることを検討した。試験片の幅方向に圧縮する方向の変位を拘束することは困難なので、幅方向に引っ張る方向の変位を拘束することで、試験片の評価面の幅方向の変位と評価面の反対側の面の幅方向の変位との差を小さくできるかを検討した。その結果、試験片の幅方向における変位を拘束することで、試験片の評価面の幅方向の変位と評価面と反対側の面の幅方向の変位との差を低減できることがわかった。   The inventors paid attention to stress and displacement in the width direction acting on the test piece in the four-point bending test. It was studied to suppress the difference between the displacement in the evaluation surface width direction of the test piece when a load was applied to the test piece and the displacement in the width direction of the surface opposite to the evaluation surface. Since it is difficult to constrain the displacement in the direction of compression in the width direction of the test piece, by constraining the displacement in the direction of pulling in the width direction, the displacement in the width direction of the evaluation surface of the test piece and the surface opposite to the evaluation surface It was investigated whether the difference with the displacement in the width direction could be reduced. As a result, it was found that restraining the displacement in the width direction of the test piece can reduce the difference between the displacement in the width direction of the evaluation surface of the test piece and the displacement in the width direction of the surface opposite to the evaluation surface.

さらに、試験片幅方向の外側の側面の幅方向の変位を拘束した状態で4点曲げの荷重をかけた場合の試験片におけるひずみ分布を解析した。その結果、評価面の幅方向の変位と、評価面の反対側の面の幅方向の変位との差を小さくすることで、評価面の幅方向の端部における長手方向のひずみと、評価面の幅方向の中央部における長手方向のひずみとの差を低減できることを見出した。この知見に基づき、下記の本発明の実施形態に想到した。   Furthermore, the strain distribution in the test piece was analyzed when a four-point bending load was applied while restraining the displacement in the width direction of the outer side surface in the width direction of the test piece. As a result, by reducing the difference between the displacement in the width direction of the evaluation surface and the displacement in the width direction of the surface opposite to the evaluation surface, the longitudinal strain at the end of the evaluation surface in the width direction and the evaluation surface It has been found that the difference from the strain in the longitudinal direction at the center in the width direction can be reduced. Based on this knowledge, the following embodiments of the present invention have been conceived.

(方法1)
本発明の実施形態における4点曲げ腐食試験方法は、試験片の第1の面に、前記試験片の長手方向に第1の距離だけ離間した一対の第1接触具を接し、前記試験片の前記第1の面と反対側の第2の面における前記一対の第1接触具の間の領域に、前記試験片の長手方向に前記第1の距離より短い第2の距離だけ離間した一対の第2接触具を接した状態で、前記試験片を支持する工程と、前記長手方向に第2の距離だけ離間する前記一対の第2接触具の間において、前記試験片の前記長手方向及び前記第1の面と前記第2の面の間の厚み方向の双方に垂直な方向である幅方向の両側面であって、前記試験片の厚み方向中央より前記第2の面に近い部分に接し、前記試験片の前記両側面の前記幅方向の変位を制限する拘束治具を取り付ける工程と、前記一対の第1接触具が前記第1の面に接し前記一対の第2接触具が前記第2の面に接した状態で支持され、かつ前記拘束治具が取り付けられた前記試験片に、前記第1の面に接する前記一対の第1接触具及び前記第2の面に接する前記一対の第2接触具を介して、前記厚み方向に荷重を加える工程と、を有する(方法1)。
(Method 1)
In the four-point bending corrosion test method according to the embodiment of the present invention, a pair of first contact tools that are separated from each other by a first distance in the longitudinal direction of the test piece are in contact with the first surface of the test piece. A pair of first surfaces spaced apart by a second distance shorter than the first distance in the longitudinal direction of the test piece in a region between the pair of first contact tools on the second surface opposite to the first surface. Between the step of supporting the test piece with the second contact tool in contact with the pair of second contact tools spaced apart by a second distance in the longitudinal direction, and the longitudinal direction of the test piece and the Both side surfaces in the width direction that are perpendicular to both the thickness directions between the first surface and the second surface, and are in contact with a portion closer to the second surface than the center in the thickness direction of the test piece. Attaching a restraining jig for restricting displacement in the width direction of the both side surfaces of the test piece; The pair of first contact tools are in contact with the first surface and the pair of second contact tools are supported in contact with the second surface, and the test piece to which the restraining jig is attached, Applying a load in the thickness direction via the pair of first contact tools in contact with the first surface and the pair of second contact tools in contact with the second surface (Method 1).

上記方法1では、試験片に対して、一対の第1接触具及び一対の第2接触具を介して厚み方向に荷重をかけた場合、試験片の厚み方向の中央より第1の面に近い部分には長手方向に引張応力が発生し、試験片の厚み方向の中央より第2の面に近い部分には長手方向に圧縮応力が発生する。すなわち、第1の面が、引張応力が付与される面すなわち評価面となる。そのため、試験片の第1の面は、長手方向に伸びるよう変形しようとし、試験片の第2の面は、長手方向に縮むように変形しようとする。そのため、試験片の第1の面は、幅方向に縮むよう変形しようとし、第2の面は、幅方向に伸びるよう変形しようとする。ここで、試験片に荷重が加えられる時に、一対の第2接触具の間の領域において、拘束治具が、試験片の厚み方向中央より第2の面に近い部分に接し、試験片の幅方向外側の両側面の幅方向の変位を制限している。拘束治具により、一対の第2接触具の間において、試験片の厚み方向中央より第2に面に近い部分が幅方向に伸びようとする変形が抑えられる。これにより、試験片の第1の面の幅方向の変位と第2の面の幅方向の変位との差が低減する。その結果、一対の第2接触具の間の領域において、幅方向中央部と幅方向端部の長手方向のひずみの差が小さくなる。すなわち、4点曲げ腐食試験において、試験片の荷重面のひずみを均一に近づけることができる。   In the method 1, when a load is applied to the test piece in the thickness direction via the pair of first contact tools and the pair of second contact tools, the test piece is closer to the first surface than the center in the thickness direction of the test piece. Tensile stress is generated in the longitudinal direction in the portion, and compressive stress is generated in the longitudinal direction in the portion closer to the second surface than the center in the thickness direction of the test piece. That is, the first surface is a surface to which tensile stress is applied, that is, an evaluation surface. Therefore, the first surface of the test piece tends to deform so as to extend in the longitudinal direction, and the second surface of the test piece tends to deform so as to shrink in the longitudinal direction. Therefore, the first surface of the test piece tends to deform so as to contract in the width direction, and the second surface tends to deform so as to extend in the width direction. Here, when a load is applied to the test piece, the restraining jig is in contact with a portion closer to the second surface than the center in the thickness direction of the test piece in the region between the pair of second contact tools, and the width of the test piece. The displacement in the width direction of both side surfaces outside the direction is limited. The restraining jig suppresses deformation between the pair of second contact tools, in which a portion near the surface second from the center in the thickness direction of the test piece extends in the width direction. Thereby, the difference between the displacement in the width direction of the first surface of the test piece and the displacement in the width direction of the second surface is reduced. As a result, in the region between the pair of second contact tools, the difference in the strain in the longitudinal direction between the center portion in the width direction and the end portion in the width direction is reduced. That is, in the four-point bending corrosion test, the strain on the load surface of the test piece can be made close to uniform.

(方法2)
上記方法2において、前記試験片は、前記幅方向における中央部の両側に、前記中央部より厚みが大きい厚肉部を有してもよい。この場合、試験片は、前記一対の第2接触具が前記第2の面における前記厚肉部の部分に接した状態で、前記拘束治具が取り付けられる。この試験片に対して、前記第1の面に接する前記一対の第1接触具及び前記第2の面に接する前記一対の第2接触具を介して、試験片の厚み方向に荷重が加えられる。
(Method 2)
In the said method 2, the said test piece may have a thick part thicker than the said center part in the both sides of the center part in the said width direction. In this case, the restraining jig is attached to the test piece in a state in which the pair of second contact tools are in contact with the portion of the thick portion on the second surface. A load is applied to the test piece in the thickness direction of the test piece through the pair of first contact tools in contact with the first surface and the pair of second contact tools in contact with the second surface. .

このように、試験片の幅方向中央部の厚みを幅方向の両端部に比べて薄くすることで、4点曲げ試験における必要な荷重をより抑えながら、試験片の荷重面のひずみを均一に近づけることができる。   In this way, by making the thickness of the central part in the width direction of the test piece thinner than both end parts in the width direction, the strain on the load surface of the test piece is made uniform while suppressing the necessary load in the 4-point bending test. You can get closer.

(方法3)
上記方法2において、前記試験片の前記厚肉部の厚みと前記中央部の厚みの差は、前記中央部の厚みの4分の1以上とすることが好ましい。これにより、4点曲げ試験における必要な荷重をさらに抑えながら、試験片の荷重面のひずみを均一に近づけることができる。
(Method 3)
In the method 2, it is preferable that the difference between the thickness of the thick portion and the thickness of the central portion of the test piece is not less than one quarter of the thickness of the central portion. As a result, the strain on the load surface of the test piece can be made close to uniform while further suppressing the necessary load in the four-point bending test.

(構成1)
本発明の実施形態における4点曲げ腐食試験装置は、試験片の上側の第1の面に接触させる一対の第1接触具と、前記試験片の下側かつ前記第1の面と反対側の第2の面に接触させる一対の第2接触具と、前記一対の第1接触具を、前記試験片の前記第1の面に上から押し付けて上下方向に垂直な縦方向に第1の距離だけ離間した位置で支持する第1支持部と、前記一対の第2接触具を、前記一対の第1接触具の間の領域において、前記試験片の前記第2の面の下から押し付けて前記縦方向に前記第1の距離より短い第2の距離だけ離間した位置で支持する第2支持部と、前記縦方向に第2の距離だけ離間する前記一対の第2接触具の間において、前記試験片の前記縦方向及び前記上下方向の双方に垂直な方向である幅方向の両側面であって、前記試験片の前記上下方向中央より下の部分に接し、前記試験片の前記両側面の前記幅方向の変位を制限する拘束治具と、前記第1支持部及び前記第2支持部の間に設けられ、前記第1支持部及び前記第2支持部との前記上下方向の相対距離を変化させることで、前記第1支持部に支持された前記一対の第1接触具及び前記第2支持部に支持された前記一対の第2接触具を介して、前記拘束治具が取り付けられた前記試験片に前記上下方向の荷重をかける荷重印加機構とを備える。
(Configuration 1)
A four-point bending corrosion test apparatus according to an embodiment of the present invention includes a pair of first contact tools that are brought into contact with an upper first surface of a test piece, a lower side of the test piece, and an opposite side of the first surface. A pair of second contact tools to be brought into contact with the second surface, and the pair of first contact tools are pressed against the first surface of the test piece from above to form a first distance in a vertical direction perpendicular to the vertical direction. The first support portion that is supported at a position spaced apart from the first contact tool and the pair of second contact tools are pressed from below the second surface of the test piece in the region between the pair of first contact tools. Between the second support portion that is supported at a position spaced apart by a second distance shorter than the first distance in the longitudinal direction, and the pair of second contactors that are separated by a second distance in the longitudinal direction, Both side surfaces in the width direction, which are directions perpendicular to both the vertical direction and the vertical direction of the test piece, Between the first support part and the second support part, which is in contact with the part below the center in the vertical direction of the test piece and restricts the displacement in the width direction of the both side surfaces of the test piece, The pair of first contact tools and the second support member provided and supported by the first support member by changing a relative distance between the first support member and the second support member in the vertical direction. And a load applying mechanism that applies the load in the vertical direction to the test piece to which the restraining jig is attached via the pair of second contact tools supported by the robot.

上記構成1によれば、荷重印加機構により試験片に荷重が加えられる時に、一対の第2接触具の間の領域において、拘束治具が、試験片の厚み方向中央より下の部分に接し、試験片の幅方向外側の両側面の幅方向の変位を制限している。拘束治具により、一対の第2接触具の間において、試験片の厚み方向中央より下の部分が幅方向に伸びようとする変形が抑えられる。これにより、試験片の第1の面の幅方向の変位と第2の面の幅方向の変位との差が低減する。その結果、一対の第2接触具の間の領域において、幅方向中央部と幅方向端部の長手方向のひずみの差が小さくなる。すなわち、4点曲げ腐食試験において、試験片の荷重面のひずみを均一に近づけることができる。   According to the configuration 1, when a load is applied to the test piece by the load application mechanism, the restraining jig is in contact with the portion below the center in the thickness direction of the test piece in the region between the pair of second contact tools, The displacement in the width direction of both side surfaces on the outer side in the width direction of the test piece is limited. The restraining jig suppresses deformation between the pair of second contact tools in which the portion below the center in the thickness direction of the test piece tends to extend in the width direction. Thereby, the difference between the displacement in the width direction of the first surface of the test piece and the displacement in the width direction of the second surface is reduced. As a result, in the region between the pair of second contact tools, the difference in the strain in the longitudinal direction between the center portion in the width direction and the end portion in the width direction is reduced. That is, in the four-point bending corrosion test, the strain on the load surface of the test piece can be made close to uniform.

(構成2)
本発明の実施形態における4点曲げ腐食試験に用いる試験片は、前記4点曲げ腐食試験において荷重がかけられる第1の面と、前記第1の面と反対側の面であって、前記4点曲げ腐食試験において荷重がかけられる第2の面とを有する。前記試験片の前記第1の面と前記第2の面の間の厚みは、前記試験片の長手方向及び厚み方向の双方に垂直な幅方向における前記試験片の中央部より、前記中央部の前記幅方向の両側の部分の方が厚くなっている。
(Configuration 2)
The test piece used for the four-point bending corrosion test in the embodiment of the present invention includes a first surface to which a load is applied in the four-point bending corrosion test, and a surface opposite to the first surface, And a second surface to which a load is applied in the point bending corrosion test. The thickness between the first surface and the second surface of the test piece is greater than the central portion of the test piece in the width direction perpendicular to both the longitudinal direction and the thickness direction of the test piece. The portions on both sides in the width direction are thicker.

このように、試験片の幅方向中央部の厚みを幅方向の両端部に比べて薄くすることで、4点曲げ試験において必要な試験片への荷重をより抑えながら、試験片の荷重面のひずみを均一に近づけることができる。   In this way, by reducing the thickness of the central part in the width direction of the test piece as compared with both end parts in the width direction, the load on the test piece is reduced while suppressing the load on the test piece necessary in the four-point bending test. Strain can be made uniform.

(構成3)
上記構成2の試験片において、前記中央部の厚みと、前記中央部の前記幅方向の両側の部分の厚みとの差は、前記中央部の厚みの4分の1以上とすることが好ましい。これにより、4点曲げ試験における必要な試験片への荷重をさらに抑えながら、試験片の荷重面のひずみを均一に近づけることができる。
(Configuration 3)
In the test piece of Configuration 2, it is preferable that the difference between the thickness of the central portion and the thickness of both sides of the central portion in the width direction is equal to or more than a quarter of the thickness of the central portion. Thereby, the strain on the load surface of the test piece can be made close to uniform while further suppressing the load on the test piece necessary for the four-point bending test.

なお、本発明において、上下方向は、鉛直方向すなわち重力方向に一致してもよいし、一致しなくてもよい。また、上下方向は、天地方向と一致しもよいし、一致しなくてもよい。すなわち、重力の向きを下向き、重力と反対の向きを上向きとしてもよいし、重力の向きを上向き、重力と反対の向きを下向きとしてもよい。すなわち、4点曲げ腐食試験において、評価面である第1の面が地面を向き、第2の面が天を向いた状態で、試験片に荷重が加えられてもよいし、第1の面が天を向き、第2の面が地面を向いた状態で、試験片に荷重が加えられてもよい。   In the present invention, the vertical direction may or may not coincide with the vertical direction, that is, the gravity direction. Further, the vertical direction may or may not coincide with the vertical direction. That is, the direction of gravity may be downward, the direction opposite to gravity may be upward, the direction of gravity may be upward, and the direction opposite to gravity may be downward. That is, in the four-point bending corrosion test, a load may be applied to the test piece with the first surface as the evaluation surface facing the ground and the second surface facing the top, or the first surface A load may be applied to the test piece in a state where is facing the top and the second surface is facing the ground.

[実施形態]
(4点曲げ腐食試験装置の構成例)
図1は、本実施形態における4点曲げ腐食試験装置の構成例を示す側面図である。図1に示す4点曲げ腐食試験装置は、一対の第1接触具8a、一対の第2接触具8b、第1支持部9a、第2支持部9b、拘束治具7、及び荷重印加機構6を備える。
[Embodiment]
(Configuration example of 4-point bending corrosion test equipment)
FIG. 1 is a side view illustrating a configuration example of a four-point bending corrosion test apparatus according to the present embodiment. The four-point bending corrosion test apparatus shown in FIG. 1 includes a pair of first contact tools 8a, a pair of second contact tools 8b, a first support portion 9a, a second support portion 9b, a restraining jig 7, and a load application mechanism 6. Is provided.

一対の第1接触具8aは、試験片SJの上側の第1の面SJaに接触する。一対の第1接触具8aは、例えば、中実の円柱すなわちローラである。一対の第2接触具8bは、試験片SJの下側の第2の面SJbに接触する。一対の第2接触具8bは、例えば、中実の円柱すなわちローラである。第2の面SJbは、試験片SJにおいて、第1の面SJaの反対側の面である。   The pair of first contact tools 8a is in contact with the first surface SJa on the upper side of the test piece SJ. The pair of first contact tools 8a are, for example, solid cylinders or rollers. The pair of second contact tools 8b are in contact with the lower second surface SJb of the test piece SJ. The pair of second contact tools 8b are, for example, solid cylinders or rollers. The second surface SJb is a surface on the opposite side of the first surface SJa in the test piece SJ.

第1支持部9aは、一対の第1接触具8aを、試験片SJの第1の面SJaに上から押し付けて上下方向(y方向)に垂直な縦方向(z方向)に第1の距離だけ離間した位置で支持する。第2支持部9bは、試験片SJの第2の面SJbに下から押し付けて縦方向(z方向)に第1の距離より短い第2の距離だけ離間した位置で支持する。第2支持部9bは、一対の第1接触具8aの間の領域において、一対の第2接触具8bを支持する。   The first support portion 9a presses the pair of first contact tools 8a against the first surface SJa of the test piece SJ from above, and a first distance in the vertical direction (z direction) perpendicular to the vertical direction (y direction). Support at a position separated by only. The second support portion 9b presses against the second surface SJb of the test piece SJ from below and supports it at a position spaced apart by a second distance shorter than the first distance in the longitudinal direction (z direction). The second support portion 9b supports the pair of second contact tools 8b in the region between the pair of first contact tools 8a.

試験片SJの第2の面SJbは、第1の面SJaの反対側の面である。試験片SJの長手方向は、4点曲げ腐食試験装置の縦方向に相当し、図1ではz方向である。試験片SJの厚み方向は、4点曲げ腐食試験装置の上下方向に相当し、図1ではy方向である。試験片SJの幅方向は、4点曲げ腐食試験装置の横方向に相当し、図1ではx方向である。   The second surface SJb of the test piece SJ is a surface on the opposite side of the first surface SJa. The longitudinal direction of the test piece SJ corresponds to the longitudinal direction of the four-point bending corrosion test apparatus, and is the z direction in FIG. The thickness direction of the test piece SJ corresponds to the vertical direction of the four-point bending corrosion test apparatus, and is the y direction in FIG. The width direction of the test piece SJ corresponds to the lateral direction of the four-point bending corrosion test apparatus, and is the x direction in FIG.

拘束治具7は、一対の第2接触具8bの間において、試験片SJの幅方向の両側面であって、試験片SJの厚み方向中央より下の部分に接する。拘束治具7は、試験片SJの両側面の幅方向の変位を制限する。   The restraining jig 7 is in contact with a portion below both sides of the test piece SJ in the width direction between the pair of second contact tools 8b and below the center in the thickness direction of the test piece SJ. The restraining jig 7 limits the displacement in the width direction of both side surfaces of the test piece SJ.

第1支持部9aは、一対の第1接触具8aを上から抑える上部9a1と、この上部9a1から第2支持部9bの下に回り込んで伸びる下部9a2とを含む。   The first support portion 9a includes an upper portion 9a1 that holds the pair of first contact tools 8a from above, and a lower portion 9a2 that extends from the upper portion 9a1 to the bottom of the second support portion 9b.

荷重印加機構6は、第1支持部9aの下部9a2と第2支持部9bとの間の長さを変更できる構成となっている。この例では、荷重印加機構6は、第1支持部9aの下部9a2のネジ穴を貫くネジで構成される。ネジが回転すると、第1支持部9aの下部9a2に対する第2支持部9bの相対位置が変化する。   The load application mechanism 6 is configured to be able to change the length between the lower portion 9a2 of the first support portion 9a and the second support portion 9b. In this example, the load application mechanism 6 is configured by a screw that penetrates the screw hole of the lower portion 9a2 of the first support portion 9a. When the screw rotates, the relative position of the second support portion 9b with respect to the lower portion 9a2 of the first support portion 9a changes.

試験片SJの第1の面SJaは、第1支持部9aの上部9a1によって、一対の第1接触具8aを介して上から支持されている。第2支持部9bが上に移動すると、第2接触具8bが試験片SJの長手方向中央部を下から押す。そのため、試験片SJに厚み方向の曲げ荷重が負荷される。   The first surface SJa of the test piece SJ is supported from above by the upper portion 9a1 of the first support portion 9a via the pair of first contact tools 8a. If the 2nd support part 9b moves up, the 2nd contact tool 8b will push the longitudinal direction center part of test piece SJ from the bottom. Therefore, a bending load in the thickness direction is applied to the test piece SJ.

なお、第1支持部、第2支持部及び荷重機構の構成は、図1に示す例に限られない。上記例では、荷重機構が、第1支持部と第2支持部を互いに連結し、かつ、連結された第1支持部と第2支持部の間の距離を可変にする構成である。荷重機構は、上記構成と異なる構成で、第1支持部と第2支持部の相対位置が変化させるものであってもよい。   In addition, the structure of a 1st support part, a 2nd support part, and a load mechanism is not restricted to the example shown in FIG. In the above example, the load mechanism is configured to connect the first support part and the second support part to each other and to change the distance between the connected first support part and the second support part. The load mechanism may have a configuration different from the above configuration, and the relative position of the first support portion and the second support portion may be changed.

腐食試験では、このようにして曲げ荷重を負荷した試験片SJを、腐食溶液(例えば、HS溶液)に720時間曝し、き裂発生の有無を調べる。試験片SJに所定の引張応力を発生させるために、負荷する荷重が制御される。負荷荷重を設定する方法のひとつとして、図2又は図3に示すように、ひずみゲージ21を試験片SJに貼り、ひずみ値を調節する。ひずみゲージ21の検出値が所定のひずみ(例えば、対象材の降伏強度(YS)100%相当のひずみ)となるまで、試験片SJに荷重を負荷して、撓ませる。図2では、ひずみゲージ21を試験片SJの長手方向中央に貼っている。この構成は、試験片SJが、溶接部分を含まない場合、例えば、鋼管の母材部分から採取された試験片である場合等に適用される。図3では、試験片SJ中央部の溶接金属SJwの両側にひずみゲージ21が貼られる。この構成は、試験片SJが、溶接金属を含む場合、例えば、溶接継手部分から採取された試験片である場合等に適用される。 In the corrosion test, the test piece SJ loaded with the bending load in this way is exposed to a corrosion solution (for example, H 2 S solution) for 720 hours, and the presence or absence of crack generation is examined. In order to generate a predetermined tensile stress on the test piece SJ, a load to be applied is controlled. As one method of setting the load, as shown in FIG. 2 or FIG. 3, a strain gauge 21 is attached to the test piece SJ, and the strain value is adjusted. The test piece SJ is bent under a load until the detected value of the strain gauge 21 reaches a predetermined strain (for example, a strain equivalent to 100% yield strength (YS) of the target material). In FIG. 2, the strain gauge 21 is stuck on the center of the test piece SJ in the longitudinal direction. This configuration is applied when the test piece SJ does not include a welded portion, for example, when the test piece SJ is a test piece taken from a base material portion of a steel pipe. In FIG. 3, the strain gauges 21 are affixed on both sides of the weld metal SJw at the center of the test piece SJ. This configuration is applied when the test piece SJ includes a weld metal, for example, when the test piece SJ is a test piece taken from a welded joint portion.

図4及び図5は、試験片SJの形状を説明するための図である。図4に示す試験片SJ1は、直方体であり、平滑試験片と称される。図5に示す試験片SJ2は、対象材である鋼管80の内面SJsの一部が、そのまま試験片の一面となっており、内面As試験片と称される。   4 and 5 are diagrams for explaining the shape of the test piece SJ. The test piece SJ1 shown in FIG. 4 is a rectangular parallelepiped and is referred to as a smooth test piece. In the test piece SJ2 shown in FIG. 5, a part of the inner surface SJs of the steel pipe 80 that is a target material is directly one surface of the test piece, and is referred to as an inner surface As test piece.

上記の4点曲げ腐食試験では、一例として、試験片SJ中央付近におけるき裂発生の有無が評価される。荷重を負荷した試験片SJの表面におけるひずみが一様でない場合、試験片SJ中央から離れた位置でき裂が発生し得る。中央から離れた位置でき裂が発生した場合は、適正な評価が難しくなる。そこで、本実施形態では、拘束治具7を、試験片SJに取り付けた状態で、試験片SJに荷重を負荷することで、試験片SJの厚みを増すことなく、表面におけるひずみを均一に近づける。   In the above four-point bending corrosion test, as an example, the presence or absence of crack generation near the center of the specimen SJ is evaluated. If the strain on the surface of the test piece SJ to which a load is applied is not uniform, a crack may occur at a position away from the center of the test piece SJ. When a crack occurs at a position away from the center, proper evaluation becomes difficult. Therefore, in this embodiment, with the restraining jig 7 attached to the test piece SJ, by applying a load to the test piece SJ, the strain on the surface is made closer to uniform without increasing the thickness of the test piece SJ. .

(拘束治具)
図6は、図1に示す試験片SJ、第1接触具8a、第2接触具8b及び拘束治具7を上から見た構成を示す平面図である。図7は、図6に示す構成を横方向(x方向)から見た側面図である。図8は、図6及び図7におけるA−A線における断面を示す断面図である。
(Restraining jig)
FIG. 6 is a plan view showing the configuration of the test piece SJ, the first contact tool 8a, the second contact tool 8b, and the restraining jig 7 shown in FIG. FIG. 7 is a side view of the configuration shown in FIG. 6 viewed from the lateral direction (x direction). FIG. 8 is a cross-sectional view showing a cross section taken along line AA in FIGS. 6 and 7.

図6に示すように、拘束治具7は、試験片SJの幅方向の両端の側面SJcに接する一対の両端部71と、一対の両端部71をつなぐ架橋部72を含む。架橋部72は、一対の第2接触具8bの間において、試験片の幅方向に、一対の両端部71の一方から他方へ伸びて形成される。一対の両端部71とそれらの間の架橋部72は、互いに固定される。そのため、一対の両端部71が、試験片SJの幅方向の両端の側面SJcに接した状態において、拘束治具7は、試験片SJの側面SJcが幅方向外側に変位するのを制限する。これにより、試験片SJの下面である第2の面SJbが幅方向に広がる変形が抑制される。   As shown in FIG. 6, the restraining jig 7 includes a pair of both end portions 71 that are in contact with the side surfaces SJc at both ends in the width direction of the test piece SJ, and a bridging portion 72 that connects the pair of both end portions 71. The bridging portion 72 is formed to extend from one of the pair of both end portions 71 to the other in the width direction of the test piece between the pair of second contact tools 8b. The pair of both end portions 71 and the bridging portion 72 between them are fixed to each other. Therefore, in a state in which the pair of both end portions 71 are in contact with the side surfaces SJc at both ends in the width direction of the test piece SJ, the restraining jig 7 restricts the side surface SJc of the test piece SJ from being displaced outward in the width direction. Thereby, the deformation | transformation which 2nd surface SJb which is the lower surface of test piece SJ spreads in the width direction is suppressed.

図7に示すように、両端部71は、試験片SJの幅方向両端の側面SJcの厚み方向の中央C1より下の部分に接する。両端部71は、試験片SJの幅方向両端の側面SJcの厚み方向の中央C1より上の部分に接しないことが好ましい。試験片SJの上面である第1の面SJaが評価面である場合、両端部71が側面SJcの厚み方向の中央C1より上の部分に接すると、試験結果に影響を与える可能性があるためである。   As shown in FIG. 7, both end portions 71 are in contact with portions below the center C1 in the thickness direction of the side surfaces SJc at both ends in the width direction of the test piece SJ. It is preferable that the both end portions 71 do not contact portions above the center C1 in the thickness direction of the side surfaces SJc at both ends in the width direction of the test piece SJ. When the first surface SJa that is the upper surface of the test piece SJ is an evaluation surface, if both end portions 71 are in contact with a portion above the center C1 in the thickness direction of the side surface SJc, the test result may be affected. It is.

図7に示す例では、拘束治具7の両端部71の試験片SJの長手方向の長さは、一対の第2接触具8bの間の長手方向の距離Lbと略同じになっている。また、図7及び図8に示すように、拘束治具7の両端部71の上面は、幅方向から見て、すなわち側面視で、試験片SJの厚み方向の中央C1より第2の面SJbに近い位置にある。拘束治具7の両端部71は、一対の第2接触治具8bの間の試験片SJの側面SJcにおいて、厚み方向中央C1から第2の面SJbまでの領域の一部に接している。   In the example shown in FIG. 7, the length in the longitudinal direction of the test piece SJ at both ends 71 of the restraining jig 7 is substantially the same as the distance Lb in the longitudinal direction between the pair of second contact tools 8b. As shown in FIGS. 7 and 8, the upper surfaces of both end portions 71 of the restraining jig 7 are second surfaces SJb from the center C1 in the thickness direction of the test piece SJ when viewed from the width direction, that is, in a side view. Close to the location. Both end portions 71 of the restraining jig 7 are in contact with a part of the region from the thickness direction center C1 to the second surface SJb on the side surface SJc of the test piece SJ between the pair of second contact jigs 8b.

また、図7に示すように、両端部71は、試験片の長手方向(z方向)において、一対の第2接触具8bの間の領域で、試験片SJの幅方向両端の側面SJcに接する。これにより、最も試験結果に影響を与える、一対の第2接触具8bの間の試験片SJの部分において、幅方向のひずみの分布を均一に近づけることができる。   Further, as shown in FIG. 7, both end portions 71 are in contact with the side surfaces SJc at both ends in the width direction of the test piece SJ in the region between the pair of second contact tools 8b in the longitudinal direction (z direction) of the test piece. . Thereby, in the part of the test piece SJ between a pair of 2nd contact tools 8b which most influences a test result, distribution of the distortion of the width direction can be closely approximated.

架橋部72の長手方向の寸法は、両端部71の長手方向の寸法より小さい。また、架橋部72の長手方向の寸法は、一対の第2接触具8bの間の距離Lbより小さい。架橋部72の上下方向の寸法すなわち厚みは、第2接触具8bの上下方向の寸法(例えば、第2接触具8bを構成するローラの直径)より小さい。架橋部72は、試験片SJの下であって、一対の第2接触具8bの間において、一対の両端部71の間に架け渡される。   The longitudinal dimension of the bridging portion 72 is smaller than the longitudinal dimension of both end portions 71. Moreover, the dimension of the longitudinal direction of the bridge | crosslinking part 72 is smaller than the distance Lb between a pair of 2nd contact tools 8b. The vertical dimension or thickness of the bridging portion 72 is smaller than the vertical dimension of the second contact tool 8b (for example, the diameter of the roller constituting the second contact tool 8b). The bridging portion 72 is bridged between the pair of both end portions 71 under the test piece SJ and between the pair of second contact tools 8b.

拘束治具7において、一対の両端部71と架橋部72は、一体的に形成されてもよい。又は、一対の両端部71の少なくとも一方と架橋部72とは、ネジやボルト等の締結部材により、締結されてもよい。すなわち、一対の両端部71の少なくとも一方と架橋部72を、締結部材を介して連結することができる。締結部材で締結することにより、両端部71と試験片SJとをより密着させることができる。また、一対の両端部71の間の寸法精度が緩和される。このように、拘束治具7は、一対の両端部71の間の距離を調整可能な構成であってもよい。   In the restraining jig 7, the pair of both end portions 71 and the bridging portion 72 may be integrally formed. Alternatively, at least one of the pair of both end portions 71 and the bridging portion 72 may be fastened by a fastening member such as a screw or a bolt. That is, at least one of the pair of both end portions 71 and the bridging portion 72 can be connected via the fastening member. By fastening with a fastening member, the both ends 71 and the test piece SJ can be more closely attached. Further, the dimensional accuracy between the pair of both end portions 71 is relaxed. As described above, the restraining jig 7 may be configured such that the distance between the pair of both end portions 71 can be adjusted.

拘束治具7は、枠材として、試験片SJの外側に嵌められる。すなわち、拘束治具7の一対の両端部71の間に試験片SJが挿入される。拘束治具7は、両端部71の間に試験片SJが挿入される際に、弾性変形するよう形成されてもよい。これにより、両端部71が弾性力で試験片SJに押し付けられた状態で、拘束治具7を試験片SJに取り付けることができる。なお、拘束治具7の材料は、特に限定されない。例えば、金属、樹脂、又はセラミックで拘束治具7を形成することができる。   The restraining jig 7 is fitted on the outside of the test piece SJ as a frame material. That is, the test piece SJ is inserted between the pair of both end portions 71 of the restraining jig 7. The restraining jig 7 may be formed to be elastically deformed when the test piece SJ is inserted between the both end portions 71. Thereby, the restraining jig 7 can be attached to the test piece SJ in a state in which both end portions 71 are pressed against the test piece SJ by elastic force. The material of the restraining jig 7 is not particularly limited. For example, the restraining jig 7 can be formed of metal, resin, or ceramic.

上記例における拘束治具7は、第2接触具8bの間の領域において、試験片の側面の幅方向の変位を拘束する構成である。これに対して、拘束治具7は、一対の第2接触具8bの間の領域から外方に伸びて形成されてもよいし、試験片の長手方向の全体にわたって、試験片の側面の上下方向中央より下の部分を拘束してもよい。   The restraining jig 7 in the above example is configured to restrain the displacement in the width direction of the side surface of the test piece in the region between the second contact tools 8b. On the other hand, the restraining jig 7 may be formed to extend outward from the region between the pair of second contact tools 8b, and the upper and lower sides of the side surface of the test piece may extend over the entire length of the test piece. A portion below the center in the direction may be constrained.

また、上記例では、架橋部72は、一対の第2接触具8bの間であって、試験片1の下に配置されるが、架橋部72の位置はこの例に限られない。例えば、架橋部72は、一対の第2接触具8bの長手方向外側において、幅方向に伸び、一対の両端部71をつなぐ構成であってもよい。   Moreover, in the said example, although the bridge | crosslinking part 72 is between the pair of 2nd contact tools 8b and is arrange | positioned under the test piece 1, the position of the bridge | crosslinking part 72 is not restricted to this example. For example, the bridge portion 72 may be configured to extend in the width direction and connect the pair of both end portions 71 on the outer side in the longitudinal direction of the pair of second contact tools 8b.

図6及び図7に示す例では、両端部71の長手方向の長さは、一対の第2接触具8bの間の長手方向の距離Lbより長くてもよい。この場合、両端部71は、長手方向において、一対の第2接触具8bの間の領域から外方に伸びて形成される。また、拘束治具7の両端部71は、一対の第2接触治具8bの間の試験片SJの側面SJcにおいて、厚み方向中央C1から第2の面SJbまでの領域の全域で接していてもよい。   In the example shown in FIG.6 and FIG.7, the length of the longitudinal direction of the both ends 71 may be longer than the distance Lb of the longitudinal direction between a pair of 2nd contact tools 8b. In this case, both end portions 71 are formed to extend outward from the region between the pair of second contact tools 8b in the longitudinal direction. Further, both end portions 71 of the restraining jig 7 are in contact with each other in the entire region from the center C1 in the thickness direction to the second surface SJb on the side surface SJc of the test piece SJ between the pair of second contact jigs 8b. Also good.

(試験片)
図8に示す例では、試験片SJの断面は、矩形である。すなわち、試験片SJの幅方向において、試験片SJの厚みは均一である。図9は、試験片SJの断面形状の変形例を示す断面図である。図9に示す例では、試験片SJは、幅方向における中央部SJmの両側に、中央部SJmより厚みが大きい厚肉部SJtを有する。すなわち、試験片SJの幅方向の中央部SJmより、中央部SJmの幅方向の両側の厚肉部SJtの方が、厚くなっている。
(Test pieces)
In the example shown in FIG. 8, the cross section of the test piece SJ is rectangular. That is, the thickness of the test piece SJ is uniform in the width direction of the test piece SJ. FIG. 9 is a cross-sectional view showing a modification of the cross-sectional shape of the test piece SJ. In the example shown in FIG. 9, the test piece SJ has thick portions SJt having a thickness larger than that of the central portion SJm on both sides of the central portion SJm in the width direction. That is, the thick portions SJt on both sides in the width direction of the central portion SJm are thicker than the central portion SJm in the width direction of the test piece SJ.

言い換えれば、図9に示す試験片SJは、幅方向の両端部に下方に突出する一対の脚を有する。さらに言い換えれば、試験片SJの幅方向の中央部SJmの第2の面SJbに凹部が形成される。   In other words, the test piece SJ shown in FIG. 9 has a pair of legs protruding downward at both ends in the width direction. In other words, a recess is formed on the second surface SJb of the central portion SJm in the width direction of the test piece SJ.

このように、試験片SJの幅方向両端に厚肉部SJtを設けることで、試験片SJの荷重負荷時の第1の面SJaの幅方向の中央のひずみと、幅方向の端部のひずみとのひずみ差をより小さくすることができる。   Thus, by providing the thick portions SJt at both ends in the width direction of the test piece SJ, the strain in the center in the width direction of the first surface SJa and the strain in the end in the width direction when the test piece SJ is loaded. And the strain difference can be further reduced.

厚肉部SJtの厚みtaと、中央部SJmの厚みtcとの差Δtは、例えば、中央部SJmの厚みtcの4分の1以上とすることが好ましい(ta−tc=Δt≧tc/4)。これにより、試験片SJの荷重負荷時の評価面となる第1の面SJaのひずみの幅方向の分布をより均一することができる。なお、この差Δtは、試験片SJの脚の高さもしくは脚の長さということもできるし、中央部SJmに形成された凹部の深さということもできる。   The difference Δt between the thickness ta of the thick part SJt and the thickness tc of the central part SJm is preferably, for example, not less than ¼ of the thickness tc of the central part SJm (ta−tc = Δt ≧ tc / 4). ). Thereby, the distribution of the strain in the width direction of the first surface SJa, which is the evaluation surface when the test piece SJ is loaded, can be made more uniform. Note that this difference Δt can also be referred to as the leg height or leg length of the test piece SJ, or the depth of the recess formed in the central portion SJm.

また、試験片SJの厚みが増すと、試験片SJに付与する必要荷重が大きくなる。そのため、試験片SJの厚みは、荷重負荷時の第1の面SJaのひずみを均一化できる程度に厚くしつつも、厚すぎない方がよい。この観点から、厚肉部SJtの厚みtaと、中央部SJmの厚みtcとの差Δtは、例えば、中央部SJmの厚みtc以下(tc≧Δt)とすることが好ましく、差Δtを、中央部SJmの厚みtcの2分の1以下((tc/2)≧Δt)とすることがより好ましい。   Further, as the thickness of the test piece SJ increases, the required load applied to the test piece SJ increases. Therefore, it is preferable that the thickness of the test piece SJ is not too thick while increasing the thickness of the first surface SJa so that the strain of the first surface SJa can be made uniform. From this viewpoint, the difference Δt between the thickness ta of the thick portion SJt and the thickness tc of the central portion SJm is preferably, for example, equal to or less than the thickness tc of the central portion SJm (tc ≧ Δt). It is more preferable to set it to 1/2 or less ((tc / 2) ≧ Δt) of the thickness tc of the portion SJm.

試験片SJの厚肉部SJtの幅方向の寸法w2は、試験片SJ全体の幅方向の寸法w1の10分の1以上(w2≧w1/10)とすることが好ましく、5分の1以上(w2≧w1/5)とすることがより好ましい。厚肉部SJtの幅が小さすぎると厚肉部SJ4(脚)が荷重により変形してしやすくなるためである。また、試験片SJの厚肉部SJtの幅方向の寸法w2は、試験片SJ全体の幅方向の寸法w1の5分の2以下(w2≦w1×2/5)とすることが好ましく、10分の3以下(w2≦w1×3/10)とすることがより好ましい。厚肉部SJtの幅が大きすぎると必要荷重が増大するためである。   The dimension w2 in the width direction of the thick portion SJt of the test piece SJ is preferably 1/10 or more (w2 ≧ w1 / 10) of the dimension w1 in the width direction of the entire test piece SJ (1/5 or more). More preferably (w2 ≧ w1 / 5). This is because if the width of the thick part SJt is too small, the thick part SJ4 (leg) is likely to be deformed by a load. The width w2 of the thick portion SJt of the test piece SJ is preferably 2/5 or less (w2 ≦ w1 × 2/5) of the width w1 of the entire test piece SJ. More preferably, it is 3 or less (w2 ≦ w1 × 3/10). This is because the necessary load increases if the width of the thick portion SJt is too large.

図9に示す例では、試験片SJの幅方向の両端が厚肉部SJtとなっている。中央部SJmより厚みが大きい厚肉部SJtは、試験片SJの幅方向の両端から内側に入った領域に設けられてもよい。また、試験片SJに厚肉部SJtがある場合も、試験片SJの側面SJcであって、試験片SJの厚み方向における中央より第2の面に近い部分に、拘束治具7が接する構成とすることができる。図9に示す例では、試験片SJの厚み方向において、試験片SJの下端すなわち第2の面SJbから、厚肉部SJtの厚みtaの2分の1(ta/2)の位置が、試験片SJの厚み方向の中央となる。   In the example shown in FIG. 9, both ends of the test piece SJ in the width direction are thick portions SJt. The thick part SJt having a thickness larger than that of the central part SJm may be provided in a region that enters inside from both ends in the width direction of the test piece SJ. In addition, even when the test piece SJ has a thick portion SJt, the restraining jig 7 is in contact with the side surface SJc of the test piece SJ and closer to the second surface than the center in the thickness direction of the test piece SJ. It can be. In the example shown in FIG. 9, in the thickness direction of the test piece SJ, the position of one half (ta / 2) of the thickness ta of the thick portion SJt from the lower end of the test piece SJ, that is, the second surface SJb, It becomes the center in the thickness direction of the piece SJ.

発明者らは、荷重を負荷した試験片の上面の幅方向における中央付近と、端部付近とのひずみの長手方向成分の差を測定した。測定は、実測及びシミュレーションで行った。シミュレーションでは、図10に示す解析モデルを用いて、4点曲げ腐食試験を対象としたFEM解析を行った。   The inventors measured the difference in the longitudinal component of the strain between the vicinity of the center in the width direction of the upper surface of the test piece loaded and the vicinity of the end. The measurement was performed by actual measurement and simulation. In the simulation, an FEM analysis for a four-point bending corrosion test was performed using the analysis model shown in FIG.

図10では、試験片SJvの長手方向をz方向、試験片SJvの上下方向すなわち荷重方向をy方向、z方向及びy方向に垂直な方向をx方向としている。図10に示す例では、試験片SJvにおいて、上から荷重がかかる第1の面(評価面)のz方向及びx方向における中央の点を中央点C0とする。x方向の対称境界線TKxを通りxy平面に平行な面は、試験片SJvの長手方向(z方向)の対称境界面である。z方向の対称境界線TKzを通りyz平面に平行な面は、試験片SJvのx方向の対称境界面である。   In FIG. 10, the longitudinal direction of the test piece SJv is the z direction, the vertical direction of the test piece SJv, that is, the load direction is the y direction, and the z direction and the direction perpendicular to the y direction are the x direction. In the example illustrated in FIG. 10, in the test piece SJv, a central point in the z direction and the x direction of the first surface (evaluation surface) to which a load is applied from above is defined as a central point C0. A plane passing through the symmetric boundary line TKx in the x direction and parallel to the xy plane is a symmetric boundary surface in the longitudinal direction (z direction) of the test piece SJv. A plane that passes through the symmetric boundary line TKz in the z direction and is parallel to the yz plane is a symmetric boundary surface in the x direction of the test piece SJv.

第1接触具8av及び第2接触具8bvは、ローラの剛体モデルとした。試験片SJvのサイズは、幅SW=10mm、高さSH=2mm、長さSL=75mmとした。試験片SJvの形状は、平滑試験片の場合と、内面As試験片の場合の2通りについて解析を行った。試験片SJvの対象材は、マルテンサイト系ステンレス鋼管とした。対象材の応力−ひずみ特性のデータとして、図11に示す応力−ひずみ曲線を用いた。   The first contact tool 8av and the second contact tool 8bv were rigid roller models. The size of the test piece SJv was set such that the width SW = 10 mm, the height SH = 2 mm, and the length SL = 75 mm. The shape of the test piece SJv was analyzed in two ways: a smooth test piece and an inner surface As test piece. The target material of the test piece SJv was a martensitic stainless steel pipe. The stress-strain curve shown in FIG. 11 was used as data on the stress-strain characteristics of the target material.

図12に、内面As試験片のxy平面におけるメッシュ(有限要素)を示す。図12は、対称境界線TKzを含む対称境界面TSzの右半分のみ示している。   FIG. 12 shows a mesh (finite element) in the xy plane of the inner surface As test piece. FIG. 12 shows only the right half of the symmetric boundary surface TSz including the symmetric boundary line TKz.

図13は、内面As試験片のFEM解析で得られたひずみの長手方向成分の分布(実線)と実測値(三角プロット)を示すグラフである。図13の横軸は、試験片SJvの上面において中央点C0を通りx方向に伸びる線上の位置を示す。図13に示すように、解析結果と実測値はおおむね一致している。これにより、FEM解析でひずみ分布を精度よく推定可能と考えられる。   FIG. 13 is a graph showing the distribution (solid line) and measured values (triangular plot) of the longitudinal component of the strain obtained by FEM analysis of the inner surface As test piece. The horizontal axis of FIG. 13 shows the position on a line extending in the x direction through the center point C0 on the upper surface of the test piece SJv. As shown in FIG. 13, the analysis result and the actual measurement value are almost the same. Thereby, it is considered that the strain distribution can be accurately estimated by FEM analysis.

図13に示す結果から、試験片の上面の幅方向における中央部付近に比べ端部付近でのひずみが大きくなっていることがわかった。試験片の上面の幅方向端部付近で割れが発生する原因としては、試験片の上面に一様なひずみが付与されていないことが考えられる。すなわち、試験片の上面の幅方向の中央付近に比べ、端部付近でのひずみが大きくなっているため、試験片の上面の中央から離れた端部付近で割れが発生すると考えられる。   From the results shown in FIG. 13, it was found that the strain near the end portion was larger than that near the center portion in the width direction of the upper surface of the test piece. As a cause of the occurrence of cracks in the vicinity of the widthwise end of the upper surface of the test piece, it is considered that no uniform strain is applied to the upper surface of the test piece. That is, since the strain near the end portion is larger than that in the vicinity of the center of the upper surface of the test piece in the width direction, it is considered that cracking occurs near the end portion away from the center of the upper surface of the test piece.

発明者らは、さらに、4点曲げ腐食試験における試験片への荷重の負荷において、試験片上面の幅方向の中央部と端部付近のひずみ差を低減する方法についてFEM解析により検討した。発明者らは、試験片の上面側と下面側との幅方向の変位の差を小さくできれば、中央部と端部の長手方向のひずみの差を低減できると予想した。そこで、試験片の幅方向の両端に中央部より厚みが大きい厚肉部を有する試験片で、試験片の幅方向外側の側面を試験片幅方向に拘束した条件で、FEM解析を実施して、ひずみ分布を算出した。   The inventors further studied, by FEM analysis, a method for reducing the strain difference between the central portion and the end portion in the width direction of the upper surface of the test piece when a load was applied to the test piece in the four-point bending corrosion test. The inventors predicted that if the difference in displacement in the width direction between the upper surface side and the lower surface side of the test piece can be reduced, the difference in strain in the longitudinal direction between the center portion and the end portion can be reduced. Therefore, FEM analysis was carried out under the condition that the test piece has a thick portion thicker than the central portion at both ends in the width direction of the test piece, and the side surface outside the width direction of the test piece is restricted in the width direction of the test piece. The strain distribution was calculated.

図14は、平滑試験片のxy平面におけるメッシュ(有限要素)及び拘束条件を示す。図15は、内面As試験片のxy平面におけるメッシュ(有限要素)及び拘束条件を示す。図14及び図15に示す解析モデルにおいて、厚肉部SJvtの幅方向の寸法wf=2mm、中央部SJvmの厚みts=2mm、中央部SJvmの厚みtsと厚肉部SJvtの厚みとの差td=1mmとした。対称境界面TSzから側面までの幅方向の寸法wdは、wd=5mmとした。拘束条件は、厚肉部SJvtにおける脚(試験片SJvの下からtdの部分)の外側の側面の幅方向の変位を拘束するものとした。また、比較として、脚を付けない試験片、すなわち図14及び図15のtd=0mmの試験片にて、幅方向の拘束なしの条件でFEM解析を実施した。対象材の応力−ひずみ特性のデータとして、図11に示す応力−ひずみ曲線を用いた。   FIG. 14 shows a mesh (finite element) and constraint conditions in the xy plane of the smooth test piece. FIG. 15 shows a mesh (finite element) and constraint conditions in the xy plane of the inner surface As test piece. In the analysis model shown in FIGS. 14 and 15, the widthwise dimension wf = 2 mm of the thick portion SJvt, the thickness ts = 2 mm of the central portion SJvm, and the difference td between the thickness ts of the central portion SJvm and the thick portion SJvt. = 1 mm. The dimension wd in the width direction from the symmetric boundary surface TSz to the side surface was wd = 5 mm. The restraint condition is to restrain the displacement in the width direction of the outer side surface of the leg (the portion from the bottom of the test piece SJv to td) in the thick portion SJvt. For comparison, FEM analysis was performed on a test piece without a leg, that is, a test piece with td = 0 mm in FIGS. The stress-strain curve shown in FIG. 11 was used as data on the stress-strain characteristics of the target material.

図16は、図14に示す平滑試験片の解析モデルを用いたFEM解析にて得られたグラフである。比較のため、拘束なし(脚なし)の平滑試験片でのFEM解析結果も示している。図17は、図15に示す内面As試験片の解析モデルを用いたFEM解析にて得られたグラフである。比較のため、拘束なし(脚なし)の内面As試験片でのFEM解析結果も示している。図16及び図17は、試験片の長手方向のひずみの幅方向における分布を示すグラフである。グラフの縦軸は、試験片幅方向の中央部における長手方向ひずみの値を1とした時の各位置でのひずみの比の値である。図16に示す平滑試験片の解析結果では、拘束ありの場合、試験片の幅方向中央のひずみと各位置におけるひずみの比は、ほぼ1となっている。すなわち、幅方向の変位を拘束した場合は、拘束しない場合に比べて、幅方向中央部と端部のひずみの差が低減している。図17に示す内面As試験片の解析結果では、拘束ありの場合、試験片の幅方向中央のひずみと各位置におけるひずみの比は、端部に向かうに従って大きくなる傾向にあるが、拘束がない場合に比べて低減している。すなわち、平滑試験片及び内面As試験片のいずれにおいても、幅方向の変位を拘束した場合は、拘束しない場合に比べて、幅方向中央部と端部のひずみの差が低減している。   FIG. 16 is a graph obtained by FEM analysis using the analysis model of the smooth test piece shown in FIG. For comparison, an FEM analysis result with a smooth test piece without restraint (without legs) is also shown. FIG. 17 is a graph obtained by FEM analysis using the analysis model of the inner surface As test piece shown in FIG. For comparison, an FEM analysis result with an inner surface As test piece without restraint (without legs) is also shown. FIG.16 and FIG.17 is a graph which shows distribution in the width direction of the distortion of the longitudinal direction of a test piece. The vertical axis of the graph represents the value of the strain ratio at each position when the value of the strain in the longitudinal direction at the center in the width direction of the specimen is 1. In the analysis result of the smooth test piece shown in FIG. 16, the ratio of the strain at the center in the width direction of the test piece to the strain at each position is approximately 1 when there is a constraint. That is, when the displacement in the width direction is constrained, the difference in strain between the center portion in the width direction and the end portion is reduced as compared with the case where the displacement is not constrained. In the analysis result of the inner surface As test piece shown in FIG. 17, in the case of restraint, the ratio of the strain at the center in the width direction of the test piece and the strain at each position tends to increase toward the end, but there is no restraint. It is reduced compared to the case. That is, in both the smooth test piece and the inner surface As test piece, when the displacement in the width direction is constrained, the difference in strain between the center portion in the width direction and the end portion is reduced as compared with the case where the displacement is not constrained.

発明者らは、さらに、図14及び図15に示す解析モデルにおいて、試験片SJvの脚長さすなわち、中央部SJvmの厚みtsと厚肉部SJvtの厚みとの差tdを0.5mm、1mm、2mmとした場合の、ひずみ分布を計算した。拘束条件は、厚肉部SJvtにおける脚の外側の側面の幅方向の変位を拘束するものとした。図18に、試験片の脚の長さと、試験片幅方向の中央部と端部との長手方向ひずみの比との関係を示す。比較として、図16及び図17で示した、拘束なし(脚なし)の平滑試験片及び内面As試験片でのFEM解析結果を脚長さtd=0mmの位置にプロットした。図18より、脚長さが長くなるにしたがって中央部と端部とのひずみ差は小さくなることがわかる。平滑試験片及び内面As試験片のいずれでも、0.5mmの脚を付けることで、ひずみ比が大きく低減するが、それ以上の脚長さではひずみ比の値はほとんど変わらない。脚長さを長くすると必要荷重も大きくなるので、必要以上に長くすることはない。つまり、脚長さ0.5mm、すなわち、試験片中央部SJvmの厚みts(=2mm)の4分の1の脚長さを付与すればひずみ差の低減に対する十分な効果があることがわかった。   Further, in the analysis models shown in FIG. 14 and FIG. 15, the inventors set the leg length of the test piece SJv, that is, the difference td between the thickness ts of the central portion SJvm and the thick portion SJvt to 0.5 mm, 1 mm, The strain distribution when 2 mm was calculated. The constraint condition is to restrain the displacement in the width direction of the outer side surface of the leg in the thick portion SJvt. FIG. 18 shows the relationship between the length of the leg of the test piece and the ratio of the strain in the longitudinal direction between the center and the end in the width direction of the test piece. As a comparison, the FEM analysis results of the smooth test piece without constraint (without legs) and the inner surface As test piece shown in FIGS. 16 and 17 were plotted at the position of leg length td = 0 mm. FIG. 18 shows that the strain difference between the central portion and the end portion becomes smaller as the leg length becomes longer. In both the smooth test piece and the inner surface As test piece, the strain ratio is greatly reduced by attaching a leg of 0.5 mm, but the strain ratio value hardly changes at longer leg lengths. The longer the leg length, the greater the required load, so it will not be longer than necessary. In other words, it has been found that if a leg length of 0.5 mm, that is, a leg length that is ¼ of the thickness ts (= 2 mm) of the test piece central portion SJvm, is given, there is a sufficient effect for reducing the strain difference.

発明者らは、脚(厚肉部)を付けない試験片、すなわち図14及び図15のtd=0mmの試験片について、試験片幅方向の拘束ありと拘束なしの場合のひずみ分布を計算した。拘束条件は、試験片の第2の面から1mmの高さまでについて幅方向変位を拘束するものとした。また、比較として、td=1mmで、拘束あり(脚の外側の側面の幅方向変位を拘束)の条件についても計算した。   The inventors calculated the strain distribution with and without restraint in the specimen width direction for the specimen without the legs (thick part), that is, the specimen with td = 0 mm in FIGS. 14 and 15. . The constraint condition was to restrain the displacement in the width direction from the second surface of the test piece to a height of 1 mm. For comparison, the calculation was also performed for td = 1 mm and restraint (constraint displacement in the width direction of the outer side surface of the leg).

図19は、平滑試験片の解析結果を示すグラフであり、図20は、内面As試験片の解析結果を示すグラフである。平滑試験片及び内面As試験片ともに、脚を付けない試験片であっても、幅方向の拘束をすれば、拘束なしかつ脚なしの試験片に比べて、試験片中央部と端部とのひずみ差は低減することが分かる。また、脚を有する試験片の方が、中央部と端部とのひずみ差がさらに低減することが分かる。つまり、試験片は、厚肉部すなわち脚をつけることが好ましいと言える。   FIG. 19 is a graph showing the analysis result of the smooth test piece, and FIG. 20 is a graph showing the analysis result of the inner surface As test piece. Even if both the smooth test piece and the inner surface As test piece are not provided with a leg, if they are restricted in the width direction, compared to a test piece without restriction and without a leg, there is a difference between the central part and the end of the test piece. It can be seen that the strain difference is reduced. Moreover, it turns out that the strain difference of a test piece which has a leg further reduces a center part and an edge part. That is, it can be said that it is preferable that the test piece has a thick portion, that is, a leg.

以上、本発明の一実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。   As mentioned above, although one Embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

6:荷重機構
7:拘束治具
8a:第1接触具
8b:第2接触具
9a:第1支持部
9b:第2支持部
SJ:試験片
6: Load mechanism 7: Restraint jig 8a: 1st contact tool 8b: 2nd contact tool 9a: 1st support part 9b: 2nd support part SJ: Test piece

Claims (6)

試験片の第1の面に、前記試験片の長手方向に第1の距離だけ離間した一対の第1接触具を接し、前記試験片の前記第1の面と反対側の第2の面における前記一対の第1接触具の間の領域に、前記試験片の長手方向に前記第1の距離より短い第2の距離だけ離間した一対の第2接触具を接した状態で、前記試験片を支持する工程と、
前記長手方向に第2の距離だけ離間する前記一対の第2接触具の間において、前記試験片の前記長手方向及び前記第1の面と前記第2の面の間の厚み方向の双方に垂直な方向である幅方向の両側面であって、前記試験片の厚み方向中央より前記第2の面に近い部分に接し、前記試験片の前記両側面の前記幅方向の変位を制限する拘束治具を取り付ける工程と、
前記一対の第1接触具が前記第1の面に接し前記一対の第2接触具が前記第2の面に接した状態で支持され、かつ前記拘束治具が取り付けられた前記試験片に、前記第1の面に接する前記一対の第1接触具及び前記第2の面に接する前記一対の第2接触具を介して、前記厚み方向に荷重を加える工程と、を有する、4点曲げ腐食試験方法。
The first surface of the test piece is in contact with a pair of first contact tools separated by a first distance in the longitudinal direction of the test piece, and the second surface on the opposite side to the first surface of the test piece In a state where a pair of second contact tools separated by a second distance shorter than the first distance is in contact with a region between the pair of first contact tools in a longitudinal direction of the test piece, A supporting process;
Perpendicular to both the longitudinal direction of the test piece and the thickness direction between the first surface and the second surface between the pair of second contactors spaced apart by a second distance in the longitudinal direction. A restraining treatment that is in contact with a portion closer to the second surface than the center in the thickness direction of the test piece and restricts displacement in the width direction of the both side surfaces of the test piece. Attaching the tool,
The pair of first contact tools are in contact with the first surface and the pair of second contact tools are supported in contact with the second surface, and the test piece to which the restraining jig is attached, And applying a load in the thickness direction via the pair of first contact tools in contact with the first surface and the pair of second contact tools in contact with the second surface. Test method.
前記試験片は、前記幅方向における中央部の両側に、前記中央部より厚みが大きい厚肉部を有し、
前記一対の第1接触具が前記第1の面に接し前記一対の第2接触具が前記第2の面における前記厚肉部の部分に接した状態で支持され、かつ前記拘束治具が取り付けられた試験片に、前記第1の面に接する前記一対の第1接触具及び前記第2の面に接する前記一対の第2接触具を介して、試験片の厚み方向に荷重を加える、請求項1に記載の4点曲げ腐食試験方法。
The test piece has thick portions on both sides of the central portion in the width direction, the thickness being greater than the central portion,
The pair of first contact tools are supported in contact with the first surface, the pair of second contact tools are supported in contact with the thick portion of the second surface, and the restraining jig is attached. A load is applied to the test piece in the thickness direction of the test piece through the pair of first contact tools in contact with the first surface and the pair of second contact tools in contact with the second surface. Item 4. The four-point bending corrosion test method according to Item 1.
前記試験片の前記厚肉部の厚みと前記中央部の厚みの差は、前記中央部の厚みの4分の1以上である、請求項2に記載の4点曲げ腐食試験方法。   3. The four-point bending corrosion test method according to claim 2, wherein a difference between the thickness of the thick part and the thickness of the central part of the test piece is equal to or more than ¼ of the thickness of the central part. 試験片の上側の第1の面に接触させる一対の第1接触具と、
前記試験片の下側かつ前記第1の面と反対側の第2の面に接触させる一対の第2接触具と、
前記一対の第1接触具を、前記試験片の前記第1の面に上から押し付けて上下方向に垂直な縦方向に第1の距離だけ離間した位置で支持する第1支持部と、
前記一対の第2接触具を、前記一対の第1接触具の間の領域において、前記試験片の前記第2の面に下から押し付けて前記縦方向に前記第1の距離より短い第2の距離だけ離間した位置で支持する第2支持部と、
前記縦方向に第2の距離だけ離間する前記一対の第2接触具の間において、前記試験片の前記縦方向及び前記上下方向の双方に垂直な方向である幅方向の両側面であって、前記試験片の前記上下方向中央より下の部分に接し、前記試験片の前記両側面の前記幅方向の変位を制限する拘束治具と、
前記第1支持部及び前記第2支持部の間に設けられ、前記第1支持部及び前記第2支持部との前記上下方向の相対距離を変化させることで、前記第1支持部に支持された前記一対の第1接触具及び前記第2支持部に支持された前記一対の第2接触具を介して、前記拘束治具が取り付けられた前記試験片に前記上下方向の荷重をかける荷重印加機構とを備えた、4点曲げ腐食試験装置。
A pair of first contactors that are brought into contact with the upper first surface of the test piece;
A pair of second contact tools for contacting the lower surface of the test piece and the second surface opposite to the first surface;
A first support portion for supporting the pair of first contact tools from above on the first surface of the test piece and supporting the pair of first contact tools at a position separated by a first distance in a vertical direction perpendicular to the vertical direction;
In the region between the pair of first contact tools, the pair of second contact tools is pressed against the second surface of the test piece from below, and the second distance is shorter than the first distance in the longitudinal direction. A second support part for supporting at a position separated by a distance;
Between the pair of second contactors spaced apart by a second distance in the longitudinal direction, both side surfaces in the width direction that are perpendicular to both the longitudinal direction and the vertical direction of the test piece, A restraining jig that is in contact with a portion below the center of the test piece in the vertical direction and restricts the displacement in the width direction of the both side surfaces of the test piece;
It is provided between the first support part and the second support part, and is supported by the first support part by changing the relative distance in the vertical direction between the first support part and the second support part. The load application that applies the load in the vertical direction to the test piece to which the restraining jig is attached is performed through the pair of first contact tools and the pair of second contact tools supported by the second support portion. A four-point bending corrosion test apparatus equipped with a mechanism.
4点曲げ腐食試験に用いる試験片であって、
前記4点曲げ腐食試験において荷重がかけられる第1の面と、
前記第1の面と反対側の面であって、前記4点曲げ腐食試験において荷重がかけられる第2の面とを有し、
前記第1の面と前記第2の面の間の厚みは、前記試験片の長手方向及び厚み方向の双方に垂直な幅方向における前記試験片の中央部より、前記中央部の前記幅方向の両側の部分の方が厚くなっている、試験片。
A test piece used for a four-point bending corrosion test,
A first surface to which a load is applied in the four-point bending corrosion test;
A surface opposite to the first surface, the second surface being loaded in the four-point bending corrosion test,
The thickness between the first surface and the second surface is greater than the central portion of the test piece in the width direction perpendicular to both the longitudinal direction and the thickness direction of the test piece. A specimen with thicker parts on both sides.
前記中央部の厚みと、前記中央部の前記幅方向の両側の部分の厚みとの差は、前記中央部の厚みの4分の1以上である、請求項5に記載の試験片。   The test piece according to claim 5, wherein a difference between the thickness of the central portion and the thickness of both sides of the central portion in the width direction is equal to or more than one quarter of the thickness of the central portion.
JP2017051254A 2017-03-16 2017-03-16 Four point bending corrosion test method, four point bending corrosion test device, and test piece Pending JP2018155542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017051254A JP2018155542A (en) 2017-03-16 2017-03-16 Four point bending corrosion test method, four point bending corrosion test device, and test piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051254A JP2018155542A (en) 2017-03-16 2017-03-16 Four point bending corrosion test method, four point bending corrosion test device, and test piece

Publications (1)

Publication Number Publication Date
JP2018155542A true JP2018155542A (en) 2018-10-04

Family

ID=63717055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051254A Pending JP2018155542A (en) 2017-03-16 2017-03-16 Four point bending corrosion test method, four point bending corrosion test device, and test piece

Country Status (1)

Country Link
JP (1) JP2018155542A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765122A (en) * 2019-01-07 2019-05-17 崔云兰 A kind of auto parts and components bending resistance cubing and its application method
CN111912773A (en) * 2020-07-15 2020-11-10 中国石油集团工程股份有限公司 Extreme environment corrosion evaluation method under gap and stress coupling effect and clamp
US11125665B2 (en) * 2017-01-13 2021-09-21 Hitachi, Ltd. Test jig and test method
CN113466115A (en) * 2021-06-18 2021-10-01 燕山大学 Steel bar corrosion monitoring device with temperature self-compensation function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125665B2 (en) * 2017-01-13 2021-09-21 Hitachi, Ltd. Test jig and test method
CN109765122A (en) * 2019-01-07 2019-05-17 崔云兰 A kind of auto parts and components bending resistance cubing and its application method
CN111912773A (en) * 2020-07-15 2020-11-10 中国石油集团工程股份有限公司 Extreme environment corrosion evaluation method under gap and stress coupling effect and clamp
CN111912773B (en) * 2020-07-15 2023-10-24 中国石油集团工程股份有限公司 Extreme environment corrosion evaluation method and clamp under gap and stress coupling effect
CN113466115A (en) * 2021-06-18 2021-10-01 燕山大学 Steel bar corrosion monitoring device with temperature self-compensation function

Similar Documents

Publication Publication Date Title
JP2018155542A (en) Four point bending corrosion test method, four point bending corrosion test device, and test piece
KR101769952B1 (en) Triaxial stress analyzing method
JP6070514B2 (en) Fatigue life prediction method of laser lap weld joint
CN109635385A (en) A kind of part life prediction technique comprehensively considering Fatigue Strength Effect factor
Sun et al. Evaluation of errors associated with cutting-induced plasticity in residual stress measurements using the contour method
JP5304683B2 (en) Method for measuring brittle crack arrest fracture toughness
Lopez-Jauregi et al. Fatigue analysis of multipass welded joints considering residual stresses
Kadhim et al. Effective strain damage model associated with finite element modelling and experimental validation
JP6678125B2 (en) Fracture toughness test method
KR20090061800A (en) Compact pipe sample
CN105784238A (en) Method for measuring material surface residual stress and system thereof
JP2013250120A (en) Damage detection method for structure
CN105651608A (en) Indirect strain rate dynamic tensile load testing method applicable to metal materials
CN110749510A (en) Method for detecting bending property of metal material based on finite element simulation
JP2019203765A (en) Stress strain characteristic measurement device under large deformation region or multi-axial stress, and stress strain characteristic analysis device under large deformation region or multi-axial stress
CN106404553B (en) Three-point bending sample ductile fracture toughness JIC auxiliary test device and test method
US11125665B2 (en) Test jig and test method
JP3938757B2 (en) Method and apparatus for precise measurement of tensile or compressive stress during high-speed deformation
JP2001281121A (en) Fretting fatigue test device and fretting fatigue estimation method
JP6607178B2 (en) Test method for stress corrosion cracking of pipes
Pang et al. Elastic–plastic strain conversion of a thin-plate miniaturized tensile test based on crosshead measurement via an analytical method
JP6657724B2 (en) Test pieces
KR20220146642A (en) How to specify the necking limit distortion of a metal plate
Shooshtari et al. Investigation for dimension effect on mechanical behavior of a metallic curved micro-cantilever beam
Chaudhari et al. Influence of loading rate on fracture behaviour of extra deep drawn steel sheets