JP2018102092A - 無線電力伝送システム - Google Patents

無線電力伝送システム Download PDF

Info

Publication number
JP2018102092A
JP2018102092A JP2016248194A JP2016248194A JP2018102092A JP 2018102092 A JP2018102092 A JP 2018102092A JP 2016248194 A JP2016248194 A JP 2016248194A JP 2016248194 A JP2016248194 A JP 2016248194A JP 2018102092 A JP2018102092 A JP 2018102092A
Authority
JP
Japan
Prior art keywords
power
circuit
reactance
power transmission
side resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016248194A
Other languages
English (en)
Other versions
JP6758630B2 (ja
Inventor
山根 俊博
Toshihiro Yamane
俊博 山根
慧 古川
Kei Furukawa
慧 古川
西方 敦博
Atsuhiro Nishikata
敦博 西方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Tokyo Institute of Technology NUC
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Tokyo Institute of Technology NUC
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Tokyo Institute of Technology NUC, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2016248194A priority Critical patent/JP6758630B2/ja
Publication of JP2018102092A publication Critical patent/JP2018102092A/ja
Application granted granted Critical
Publication of JP6758630B2 publication Critical patent/JP6758630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】送電装置と受電装置の任意の位置関係で高効率な電力伝送を実現する。【解決手段】本実施形態の無線電力伝送システムは、コイルとリアクタンス回路からなる送電側共振回路と各送電側共振回路に電力を供給する交流電源とを有する送電装置と、コイルとリアクタンス回路からなる受電側共振回路を1または複数と受電側共振回路の負荷回路とを有する受電装置とを備え、送電側共振回路と受電側共振回路とを共鳴結合することで交流電源から負荷回路へ電力を無線伝送するシステムであって、各リアクタンス回路の各リアクタンスが、送電装置と受電装置とを所定の位置関係に配置した場合に得られる各コイルの各自己インダクタンスおよび各コイル間の各相互インダクタンスを定数とし、各リアクタンスを変数とする送電装置および受電装置を表す回路方程式を用いて算出された電力の伝送効率に基づき決定された各値を有する。【選択図】図1

Description

本発明は、無線電力伝送システムに関する。
スマートフォンやタブレットPC(パーソナルコンピュータ)などのモバイル端末、電気自動車の普及段階に入っているが、これらに必須な蓄電池は現状では必要十分な容量を有しているとは言い難い。至る所に充電インフラを揃える事で、常に蓄電池はフル充電という状況を作り出せる。その一つの方策として、無線電力伝送がにわかに注目を浴びている。無線電力伝送には、電磁誘導方式、電界共鳴方式(電界共振方式等ともいう)、磁界共鳴方式(磁界共振方式等ともいう)、電波放射方式など各種方式が提案されている。特に電磁誘導方式や電界・磁界共鳴方式では、送電装置と受電装置の相対的な位置関係によっては、電力の伝送効率が著しく低下するという課題がある。
一般的な無線電力伝送システムでは、送電装置と受電装置が正対する(真正面の)位置関係にある場合に伝送効率が最大となるように設計される。送電装置と受電装置が正対する方向からずれると、電力伝送効率が著しく低下する(図4(a))。図4(a)は、送電装置501と受電装置502〜504の位置関係を模式的に示す側面図である。図4(a)に示す送電装置501は、床面511と天井面512の間の空間513に水平に設置されている。受電装置502〜504は、天井面512と床面514の間の室内空間515において床面514上に水平に置かれている。受電装置502〜504のうち、受電装置503が送電装置501に正対し、受電装置502および504が正対していない。この場合、送電装置501から受電装置503への電力伝送効率が高く、送電装置501から受電装置502および504への電力伝送効率は低い。例えば、送受電装置が正対する方向から数cmずれると、電力伝送効率が半分以下に低下することが報告されている。伝送効率の低下を防止するためには、送電装置を物理的に回転する方法が考えられるが、送電装置の設置が難しいことや設置スペースの高コスト化の問題がある(図4(b))。図4(b)は、送電装置505と受電装置506の位置関係を模式的に示す側面図である。なお図4(b)において図4(a)に示すものと同一の構成には同一の符号を付けている。送電装置505は、床面511と天井面512の間の空間513から一部はみ出す形で天井面512に対して斜めに回転された状態で設置されている。受電装置506は、床面514上で送電装置505の真下から送電装置505の回転方向にずれた位置に水平に置かれている。この場合、送電装置505から受電装置506への電力伝送効率は、受電装置506が送電装置505の真下に位置している場合よりも高い。
ずれの影響を軽減する従来技術としては、例えば特許文献1に記載されている磁界共鳴式給電システムのように、伝送効率を最大化する位置関係からのずれの影響を小さくなるシステムは存在する。しかしながら、このシステムにおいても正対する位置からのずれが大きくなると電力伝送効率は低下する。
特開2013−208012号公報
本発明は、上記の事情を考慮してなされたものであり、送電装置と受電装置の任意の位置関係において高効率な電力伝送を実現することができる無線電力伝送システムを提供することを目的とする。
上記課題を解決するため本発明の一態様は、コイルとリアクタンス回路からなる送電側共振回路を複数有するとともに前記各送電側共振回路に電力を供給する交流電源を有する送電装置と、コイルとリアクタンス回路からなる受電側共振回路を1または複数有するとともに前記各受電側共振回路の負荷回路を有する受電装置とを備え、前記複数の送電側共振回路と前記1または複数の受電側共振回路とを共鳴結合することで前記交流電源から前記負荷回路へ電力を無線伝送するシステムであって、前記各リアクタンス回路の各リアクタンスが、前記送電装置と前記受電装置とを所定の位置関係に配置した場合に得られる前記各コイルの各自己インダクタンスおよび前記各コイル間の各相互インダクタンスを定数とし、前記各リアクタンスを変数とする前記送電装置および前記受電装置を表す回路方程式を用いて算出された前記電力の伝送効率に基づき決定された各値を有する無線電力伝送システムである。
また、本発明の一態様は、コイルとリアクタンス回路からなる送電側共振回路を複数有するとともに前記各送電側共振回路に第1リアクタンス回路を介して電力を供給する交流電源を有する送電装置と、コイルとリアクタンス回路からなる受電側共振回路を複数有するとともに前記各受電側共振回路に第2リアクタンス回路を介して接続された負荷回路を有する受電装置とを備え、前記複数の送電側共振回路と前記複数の受電側共振回路とを共鳴結合することで前記交流電源から前記負荷回路へ電力を無線伝送するシステムであって、前記各リアクタンス回路、前記第1リアクタンス回路および前記第2リアクタンス回路の各リアクタンスが、前記送電装置と前記受電装置とを所定の位置関係に配置した場合に得られる前記各コイルの各自己インダクタンスおよび前記各コイル間の各相互インダクタンスを定数とし、前記各リアクタンスを変数とする前記送電装置および前記受電装置を表す回路方程式を用いて算出された前記電力の伝送効率に基づき決定された各値を有する無線電力伝送システムである。
本発明によれば、送電装置と受電装置の任意の位置関係において高効率な電力伝送を実現することができる。
本発明の実施形態の構成例を説明するための模式図である。 本発明の実施形態の構成例を説明するための回路図である。 図1に示す無線電力伝送システム10の適用例を説明するための模式図である。 本発明の背景技術を説明するための模式図である。
以下、図面を参照して本発明の実施形態について説明する。図1は、本発明による無線電力伝送システムの一実施形態の構成例を概略的に示す模式図である。図1に示す無線電力伝送システム10は、磁界共鳴方式の無線電力伝送システムであり、送電装置1と、受電装置2とを備える。
送電装置1は、コイル(インダクタ)とリアクタンス回路からなる複数の共振回路(送電側共振回路)11、12、13および14を有するとともに、共振回路11、12、13および14に電力を供給する交流電源15を有する。また、送電装置1は、リアクタンス回路(第1リアクタンス回路)16を有する。本願においてリアクタンス回路とは、容量性リアクタンスを有するコンデンサや誘導性リアクタンスを有するコイルから構成される回路である。例えば、各リアクタンス回路は各1個のコンデンサで構成することができる。また、コイルとリアクタンス回路からなる共振回路の共振周波数は、共振回路の誘導性リアクタンスと容量性リアクタンスが等しくなる周波数である。
共振回路11は直列接続されたコイル111およびリアクタンス回路112を有する。共振回路12は直列接続されたコイル121およびリアクタンス回路122を有する。共振回路13は直列接続されたコイル131およびリアクタンス回路132を有する。共振回路14は直列接続されたコイル141およびリアクタンス回路142を有する。なお、コイル111、121、131および141は、軸方向が、床面514に対して鉛直方向となるように配列されている。また、送電装置1は、リアクタンス回路16を有し、リアクタンス回路16を介して交流電源15から共振回路11、12、13および14へ電力を供給する。交流電源15の出力周波数と、共振回路11、12、13および14の共振周波数とは同一である。
コイル111、121、131および141の各一端は、交流電源15の出力の一方に共通に接続されている。コイル111の他端はリアクタンス回路112の一端に接続されている。コイル121の他端はリアクタンス回路122の一端に接続されている。コイル131の他端はリアクタンス回路132の一端に接続されている。コイル141の他端はリアクタンス回路142の一端に接続されている。リアクタンス回路112、122、132および142の各他端は、リアクタンス回路16の一端に共通に接続されている。リアクタンス回路16の他端は交流電源15の出力の他方に接続されている。
一方、受電装置2は、コイルとリアクタンス回路からなる共振回路(受電側共振回路)21を有するとともに共振回路21の負荷回路22を有する。共振回路21は、直列接続されたコイル211およびリアクタンス回路212を有する。共振回路21の共振周波数は、共振回路11、12、13および14の共振周波数と同一である。コイル211の一端は負荷回路22の一端に接続されている。コイル211の他端はリアクタンス回路212の一端に接続されている。リアクタンス回路212の他端は負荷回路22の他端に接続されている。負荷回路22は、例えば図示しているように1個の電球であってもよいし、整流回路、電圧変換回路、蓄電池、その他の電気・電子回路等を含むものであってもよい。
本実施形態の無線電力伝送システム10は、送電側の複数の共振回路11〜14と受電側の共振回路21を共鳴結合することで交流電源15から負荷回路22へ電力を無線伝送する。また、無線電力伝送システム10では、送電装置1と受電装置2が予め定めた位置関係を有するように配置されている。なお、本実施形態において送電装置1と受電装置2の位置関係は、例えば、3次元(あるいは2次元)の送電装置1の座標および受電装置2の座標と、共振回路11、12、13および14ならびに共振回路21が有する各コイルの軸方向とによって定義することができる。例えば、受電装置2の位置が同一であってもコイル211の向きが異なる場合には異なる位置関係となる。
さらに、本実施形態では、送電装置1と受電装置2の予め定めた位置関係においてコイル111、121、131および141ならびにコイル211の各自己インダクタンスと各コイル間の各相互インダクタンスを、実際に計測したり、あるいは計算処理によって求めたり、あるいは計測と計算処理を組み合わせて求めたりすることで、予め取得する。予め取得するとは、リアクタンス回路112、122、132および142とリアクタンス回路212(あるいはさらにリアクタンス回路16)の各リアクタンスを設定する前に取得するということである。そして、電力の伝送効率が高効率となるように、リアクタンス回路112、122、132および142とリアクタンス回路212(あるいはさらにリアクタンス回路16)の各リアクタンスを最適化した値に設定する。すなわち、本実施形態の無線電力伝送システム10では、送電装置1と受電装置2の位置関係に応じて、各コイルの自己および相互インダクタンスを取得し、次に各リアクタンス回路の各リアクタンスを例えば一定の範囲で変化させて、電力の伝送効率が最大(あるいは一定以上の高効率)となる各リアクタンスの組み合わせを選択し、選択した値を有するリアクタンス回路を送電装置1と受電装置2に搭載する。このように各リアクタンス回路の各リアクタンスを設定することで、本実施形態では、磁界共鳴方式の無線電力伝送システムにおいて特定の方向への給電に際して(すなわち任意の位置関係に配置した場合でも)送電装置の物理的回転をすることなく高い電力伝送効率を実現することができる。
なお、本発明の実施形態は、図1に示す構成に限定されない。例えば送電装置1が有する共振回路11〜14は、4個に限らず、2以上の複数個とすることができる。ただし、立体的に給電方向を調整する場合には3以上の複数個であることが望ましい。また、受電装置2が有する共振回路21は、1個に限らず、2以上の複数個であってもよい。また、共振回路を2以上の複数個とする場合には、各共振回路と負荷回路22の間にリアクタンス回路(第2リアクタンス回路)を設けてもよい。
次に、図2を参照して、本発明の実施形態における各リアクタンス回路の各リアクタンスの決定手順について説明する。図2は、本発明による無線電力伝送システムの一実施形態の構成例を示す回路図である。図2に示す無線電力伝送システム10aは、送電装置1aと、受電装置2aとを備える。送電装置1aは、共振回路31と共振回路32と交流電圧源301と抵抗(レジスタ)302とリアクタンス回路(第1リアクタンス回路)303を有する。ここで、交流電圧源301は内部抵抗が零の理想的な電圧源であり、抵抗302は現実の電圧源の内部抵抗に相当する。共振回路31は、直列接続されたリアクタンス回路304とコイル305を有する。共振回路32は、直列接続されたリアクタンス回路306とコイル307を有する。受電装置2aは、共振回路41と共振回路42とリアクタンス回路(第2リアクタンス回路)405と抵抗406を有する。共振回路41は、直列接続されたリアクタンス回路401とコイル402を有する。共振回路42は、直列接続されたリアクタンス回路403とコイル404を有する。
送電装置1aにおいて、交流電圧源301の出力の一方は接地されていて、他方は抵抗302の一端に接続されている。抵抗302の他端はリアクタンス回路303の一端に接続されている。リアクタンス回路303の他端は、リアクタンス回路304およびリアクタンス回路306の各一端に接続されている。リアクタンス回路304の他端はコイル305の一端に接続されている。リアクタンス回路306の他端はコイル307の一端に接続されている。コイル305およびコイル307の各他端は接地されている。
受電装置2aにおいて、コイル402の一端はリアクタンス回路401の一端に接続されていて、他端は接地されている。コイル404の一端はリアクタンス回路403の一端に接続されていて、他端は接地されている。リアクタンス回路401およびリアクタンス回路403の各他端は、リアクタンス回路405の一端に接続されている。リアクタンス回路405の他端は抵抗406の一端に接続されている。抵抗406の他端は接地されている。
図1に示す無線電力伝送システム10では、送電装置1が4つの共振回路11〜14を有するとともに、受電装置2が1つの共振回路21を有していた。これに対し、図2に示す無線電力伝送システム10aでは、送電装置1aが2つの共振回路31および32を有するとともに、受電装置2aが2つの共振回路41および42を有している。図2に示す無線電力伝送システム10aでは共振回路31および32が、例えば図1に示す共振回路11および12に対応する。図2のリアクタンス回路303が図1のリアクタンス回路16に対応する。図2の交流電圧源301と抵抗302が図1の交流電源15に対応する。例えば図2の共振回路41が図1の共振回路21に対応する。図2の抵抗406が図1の負荷回路22に対応する。また、図2の受電装置2aには、共振回路42とリアクタンス回路405が新たに設けられている。
また、交流電圧源301の出力電圧は電圧Vinである。コイル305、307、402および404の自己インダクタンスはそれぞれインダクタンスL11、L22、L33およびL44である。コイル305とコイル307の間の相互インダクタンスはインダクタンスL12またはL21である。コイル305とコイル402の間の相互インダクタンスはインダクタンスL13またはL31である。コイル305とコイル404の間の相互インダクタンスはインダクタンスL14またはL41である。コイル307とコイル402の間の相互インダクタンスはインダクタンスL23またはL32である。コイル307とコイル404の間の相互インダクタンスはインダクタンスL24またはL42である。コイル402とコイル404の間の相互インダクタンスはインダクタンスL34またはL43である。抵抗302(現実の交流電圧源の内部抵抗)の抵抗値(レジスタンス)は抵抗値Rである。抵抗406の抵抗値は抵抗値Rである。
また、リアクタンス回路303、304、306、401、403および405のリアクタンスはそれぞれリアクタンスX、X、X、X、XおよびXであるとする。抵抗302、リアクタンス回路304、リアクタンス回路306、リアクタンス回路401、リアクタンス回路403および抵抗406に流れる電流はそれぞれ電流i、i、i、i、iおよびiであるとする。交流電圧源301と抵抗302の直列回路(すなわち現実の交流電圧源の出力回路)、コイル305、コイル307、コイル402、コイル404、抵抗406の各端子電圧は、それぞれ電圧V、V、V、V、VおよびVであるとする。電圧Vは無線電力伝送システム10aの出力電圧Voutである。
図2に示す無線電力伝送システム10aを示す回路は、次の回路方程式で表すことができる。次の回路方程式は、定常状態の正弦波交流回路を表していて、電流i、i、i、i、iおよびiならびに電圧V、V、V、V、VおよびVはフェーサで表され、回路素子は複素インピーダンスで表されている。
Figure 2018102092
ここで、ωは交流電圧源301の出力の角周波数であり、jは虚数単位である。
本実施形態において、上記回路方程式を用いて各リアクタンス回路の各リアクタンスを決定する際には、決定に先立って、送電装置1aと受電装置2aの予め定めた位置関係において、自己インダクタンスL11、L22、L33およびL44と、相互インダクタンスL12またはL21、L13またはL31、L14またはL41、L23またはL32、L24またはL42、L34またはL43を実測や計算によって取得しておく。また、抵抗値R(現実の交流電圧源の内部抵抗)および抵抗値Rも実測や計算によって取得しておく。また、電圧Vinは所定の値に設定しておく。この場合、電圧Vin、インダクタンスL11、L22、L33およびL44、L12またはL21、L13またはL31、L14またはL41、L23またはL32、L24またはL42、L34またはL43、抵抗値RおよびRは既知の値(すなわち定数)である。一方、リアクタンス回路303、304、306、401、403および405のリアクタンスX、X、X、X、XおよびXは未決定の値(すなわち変数)である。
そして、各リアクタンス回路の各リアクタンスは、以下に示す電力伝送効率ηが最大となるように決定する。
Figure 2018102092
ここで、Pは抵抗406に供給される電力であり、Pinは交流電圧源301から出力される電力であり、次のように表される。
Figure 2018102092
Figure 2018102092
ここで、関数Reは実部を返す関数であり、関数conjは共役複素数を返す関数である。
なお、電力伝送効率ηが最大(あるいは一定以上の高効率)となる各リアクタンス回路の各リアクタンスの値は、例えば各リアクタンスを一定の範囲で変化させて電力伝送効率ηを複数回算出し、算出した複数の電力伝送効率ηのうちで電力伝送効率ηが最大(あるいは一定以上の高効率)となる各リアクタンスの組み合わせを選択することで決定することができる。最大(あるいは一定以上の高効率)となる電力伝送効率ηが複数の組み合わせで算出された場合には、例えば、共振回路のQ値(Quality factor)や結合係数k等の値を考慮していずれかの組み合わせを選択することができる。
以上のように、本実施形態によれば、送受電の位置関係によらず高効率なワイヤレス給電が実現できる。また、送電装置の物理的回転などの必要がないため、設置スペースや設置方法も通常の送電装置と同等である。
図3は、図1に示す無線電力伝送システム10(あるいは図2に示す無線電力伝送システム10a)を病院の電動配膳車3に利用した場合の適用イメージを示す。図3は、送電装置1と電動配膳車3に設置された受電装置2の位置関係を模式的に示す側面図である。図3において各図に示す構成と同一のものには同一の符号を付けて説明を適宜省略する。図3に示す無線電力伝送システム10は、無線電力伝送により、厨房の前などで電動配膳車3の蓄電池(不図示)を充電するシステムである。電動配膳車3の待機場所の天井裏にダクト516や照明設備などがある場合、待機場所の真上に送電装置1を設置することが難しい。この場合、従来システムでは電力伝送効率が低下するが、本システムでは、送電装置1を受電装置2の鉛直方向ではない斜め方向に設置した場合でも、送電装置1を水平に設置する通常の設置の仕方でも高効率な電力伝送が可能となる。
以上のように本発明の各実施形態によれば、送電装置と受電装置の任意の位置関係において高効率な電力伝送を実現することができる。また、その際、送電装置を物理的に回転しなくてもよい。
なお、本発明の実施形態は上記のものに限定されず、発明の要旨を逸脱しない範囲のものを含む。例えば、各リアクタンス回路や各コイルは、複数のリアクタンス回路や複数のコイルを並列や直列に接続した構成を有していてもよい。
1、1a 送電装置
2、2a 受電装置
10、10a 無線電力伝送システム
11、12、13、14、21、31、32、41、42 共振回路
15 交流電源
16、112、122、132、142、212、303、304、306、401、403、405 リアクタンス回路
22 負荷回路
111、121、131、141、211、305、307、402、404 コイル
301 交流電圧源
302、406 抵抗

Claims (2)

  1. コイルとリアクタンス回路からなる送電側共振回路を複数有するとともに前記各送電側共振回路に電力を供給する交流電源を有する送電装置と、
    コイルとリアクタンス回路からなる受電側共振回路を1または複数有するとともに前記各受電側共振回路の負荷回路を有する受電装置と
    を備え、
    前記複数の送電側共振回路と前記1または複数の受電側共振回路とを共鳴結合することで前記交流電源から前記負荷回路へ電力を無線伝送するシステムであって、
    前記各リアクタンス回路の各リアクタンスが、前記送電装置と前記受電装置とを所定の位置関係に配置した場合に得られる前記各コイルの各自己インダクタンスおよび前記各コイル間の各相互インダクタンスを定数とし、前記各リアクタンスを変数とする前記送電装置および前記受電装置を表す回路方程式を用いて算出された前記電力の伝送効率に基づき決定された各値を有する
    無線電力伝送システム。
  2. コイルとリアクタンス回路からなる送電側共振回路を複数有するとともに前記各送電側共振回路に第1リアクタンス回路を介して電力を供給する交流電源を有する送電装置と、
    コイルとリアクタンス回路からなる受電側共振回路を複数有するとともに前記各受電側共振回路に第2リアクタンス回路を介して接続された負荷回路を有する受電装置と
    を備え、
    前記複数の送電側共振回路と前記複数の受電側共振回路とを共鳴結合することで前記交流電源から前記負荷回路へ電力を無線伝送するシステムであって、
    前記各リアクタンス回路、前記第1リアクタンス回路および前記第2リアクタンス回路の各リアクタンスが、前記送電装置と前記受電装置とを所定の位置関係に配置した場合に得られる前記各コイルの各自己インダクタンスおよび前記各コイル間の各相互インダクタンスを定数とし、前記各リアクタンスを変数とする前記送電装置および前記受電装置を表す回路方程式を用いて算出された前記電力の伝送効率に基づき決定された各値を有する
    無線電力伝送システム。
JP2016248194A 2016-12-21 2016-12-21 無線電力伝送システム Active JP6758630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016248194A JP6758630B2 (ja) 2016-12-21 2016-12-21 無線電力伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248194A JP6758630B2 (ja) 2016-12-21 2016-12-21 無線電力伝送システム

Publications (2)

Publication Number Publication Date
JP2018102092A true JP2018102092A (ja) 2018-06-28
JP6758630B2 JP6758630B2 (ja) 2020-09-23

Family

ID=62715728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248194A Active JP6758630B2 (ja) 2016-12-21 2016-12-21 無線電力伝送システム

Country Status (1)

Country Link
JP (1) JP6758630B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507482A (ja) * 2007-12-21 2011-03-03 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 誘導電力転送回路
JP2012120288A (ja) * 2010-11-30 2012-06-21 Hitachi Ltd 非接触給電装置のインピーダンス整合方法とそれを用いた非接触給電装置
WO2014030773A1 (ja) * 2012-08-24 2014-02-27 日本電気株式会社 電力供給装置
JP2014050257A (ja) * 2012-08-31 2014-03-17 Sekisui Chem Co Ltd 非接触給電システム
JP2014117049A (ja) * 2012-12-07 2014-06-26 Sekisui Chem Co Ltd 非接触給電システム、送電システム、受電システム、送電方法、受電方法及びプログラム
WO2015170658A1 (ja) * 2014-05-07 2015-11-12 株式会社Ihi 非接触給電システム及び受電装置
WO2016108949A1 (en) * 2014-12-31 2016-07-07 Massachusetts Institute Of Technology Adaptive control of wireless power transfer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507482A (ja) * 2007-12-21 2011-03-03 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 誘導電力転送回路
JP2012120288A (ja) * 2010-11-30 2012-06-21 Hitachi Ltd 非接触給電装置のインピーダンス整合方法とそれを用いた非接触給電装置
WO2014030773A1 (ja) * 2012-08-24 2014-02-27 日本電気株式会社 電力供給装置
JP2014050257A (ja) * 2012-08-31 2014-03-17 Sekisui Chem Co Ltd 非接触給電システム
JP2014117049A (ja) * 2012-12-07 2014-06-26 Sekisui Chem Co Ltd 非接触給電システム、送電システム、受電システム、送電方法、受電方法及びプログラム
WO2015170658A1 (ja) * 2014-05-07 2015-11-12 株式会社Ihi 非接触給電システム及び受電装置
WO2016108949A1 (en) * 2014-12-31 2016-07-07 Massachusetts Institute Of Technology Adaptive control of wireless power transfer

Also Published As

Publication number Publication date
JP6758630B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
US10050479B2 (en) Wireless power transmission system based on cell division
EP3151377B1 (en) Wireless power transmission control method and wireless power transmission system
CN107848434B (zh) 用于优化无线充电对准的系统、装置和方法
EP2949024B1 (en) Wireless power transmission apparatus and wireless power transmission method
US9438315B2 (en) Wireless power adapter
US20120235500A1 (en) Wireless energy distribution system
JP2014527793A (ja) 整調可能無線電力アーキテクチャ
CN105281441A (zh) 无线电力发送器及无线电力传输系统
US10305333B2 (en) Power receiver, wireless power transfer system, and kQ-value calculation method
CN104079079A (zh) 谐振型非接触供电装置、集成电路和恒压控制方法
JP2013543718A (ja) 無線エネルギー分配システム
EP3031129A1 (en) Methods for parameter identification, load monitoring and output power control in wireless power transfer systems
US20150333537A1 (en) Power source, wireless power transfer system and wireless power transfer method
CN104578222A (zh) 一种无线充电装置和系统
CN106972647A (zh) 一种提高动态无线充电平均效率的方法
Zhang et al. Efficiency optimization method of inductive coupling wireless power transfer system with multiple transmitters and single receiver
KR20160070709A (ko) 무선 전력 수신기
JP6578531B2 (ja) 無線電力受信装置及びそれを備える電子機器
KR20160007332A (ko) 무선 전력 송신 장치 및 무선 전력 송신 시스템
CN105515141A (zh) 一种桌面无线群充系统
CN113904460A (zh) 一种无线能量接收装置及多级导轨式无线能量传输系统
JP6758630B2 (ja) 無線電力伝送システム
JP6820513B2 (ja) 無線電力伝送システムおよび無線電力伝送方法
CN105024408A (zh) 串联式无线充电系统及其充电方法
Dewi et al. Wireless electrical source for mobile application

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200826

R150 Certificate of patent or registration of utility model

Ref document number: 6758630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250