JP2018101686A - Soft magnetic alloy powder - Google Patents
Soft magnetic alloy powder Download PDFInfo
- Publication number
- JP2018101686A JP2018101686A JP2016246568A JP2016246568A JP2018101686A JP 2018101686 A JP2018101686 A JP 2018101686A JP 2016246568 A JP2016246568 A JP 2016246568A JP 2016246568 A JP2016246568 A JP 2016246568A JP 2018101686 A JP2018101686 A JP 2018101686A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- magnetic
- stress relaxation
- alloy powder
- soft magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は軟磁性合金粉末と軟磁性合金粉末を用いて作成した圧粉体、ペースト、シート、およびこれらを用いて構成されるチョークコイル、インダクタ、リアクトル、トランス等磁気デバイスの磁芯に関するものである。 The present invention relates to a soft magnetic alloy powder, a green compact made using the soft magnetic alloy powder, a paste, a sheet, and a magnetic core of a magnetic device such as a choke coil, an inductor, a reactor, and a transformer formed using the same. is there.
軟磁性合金粉末は加圧成型や樹脂との混練により所望の形状に成型することが容易であることから、幅広い形態の磁気デバイスの磁芯として用いられている。また、樹脂等の高抵抗成分と混練してコンポジットとすることにより体積抵抗が高く渦電流損失が小さい磁芯を作成できるという特徴もあり、磁気デバイスの高効率化に貢献してきた。近年では高周波用途でのさらなる低損失化の要求を満たすために低保磁力かつ高い抵抗率と飽和磁化を有する磁性粉が報告されている。 Soft magnetic alloy powders are used as magnetic cores for a wide variety of magnetic devices because they can be easily molded into a desired shape by pressure molding or kneading with a resin. In addition, there is a feature that a magnetic core having a high volume resistance and a small eddy current loss can be produced by kneading with a high resistance component such as a resin to make a composite, which has contributed to an increase in efficiency of the magnetic device. In recent years, a magnetic powder having a low coercive force, a high resistivity, and a saturation magnetization has been reported in order to satisfy the demand for further reduction in loss in high frequency applications.
たとえば特許文献1にはFe、Co、Niの磁性金属元素に加えてアモルファス形成効果のあるB、Zr、Nb、Ta、Hf、Mo、Ti、Vを含有し、さらに耐食性効果のあるCr、W、Ru、Rh、Pd、Os、Ir、Pt、Al、Si、Ge、C、Pを含有するアモルファス軟磁性合金粉末が開示されている。また、特許文献2ではFe、B、Si、S、C、P、Al、Ge、Ga、Be、Au、Cuなどを含み結晶粒径60nm以下の微結晶相とアモルファス相の混相構造を有するナノ結晶軟磁性合金粉末を用いて磁気デバイスを作成する技術が開示されている。高抵抗化の方法としては例えば特許文献3にガラスにより軟磁性合金粉末を被覆する技術が開示されている。また、特許文献4にはFeを主組成とした軟磁性合金にSn,In,Znを添加し機械的加工性を改善する技術も開示されている。
For example,
ところで、上記アモルファス相を含む軟磁性合金粉末のアモルファス相部分は結晶の遠距離秩序を持たないがゆえに機械的に硬い性質を持つ。したがって機械的外力に対して比較的歪が生じにくいが、その反面外力と拮抗する応力を粉体内部に蓄えることとなる。したがって加圧成型にて磁芯を作成すると加圧成型時に生じた応力が粉体内部に残留することとなる。また、磁芯が樹脂・溶剤等のコンポジットである場合は、混練樹脂の硬化、溶剤の乾燥等、プロセス中での体積変化に対応して粉体内部に応力が蓄積されることとなる。 By the way, the amorphous phase portion of the soft magnetic alloy powder containing the amorphous phase has a mechanically hard property because it does not have a long-range order of crystals. Therefore, although distortion is relatively unlikely to occur with respect to the mechanical external force, stress that antagonizes the external force is stored inside the powder. Therefore, when the magnetic core is prepared by pressure molding, the stress generated during the pressure molding remains in the powder. Further, when the magnetic core is a composite of resin / solvent, stress is accumulated inside the powder in response to volume changes in the process such as curing of the kneaded resin and drying of the solvent.
軟磁性材料の透磁率は内部応力と磁歪定数の積に依存して低下すること、および内部応力を緩和することにより軟磁性材料の透磁率を向上させることが可能であることが知られており、高い透磁率を有する磁芯を作成するためには内部応力を蓄積しにくい軟磁性合金粉末が必要とされている。Sn,In,Znなどのヤング率の低い金属元素を添加して軟磁性合金粉末を機械的にやわらかくする試みもなされているが、上述のようなアモルファス構造を有する軟磁性金属合金粉末の軟磁気特性と機械的に硬い性質は共にその非晶質構造に起因しているため、高い軟磁気特性と機械的にやわらかく応力を蓄積しにくい物性を両立させる技術は未だ実現されていない。 It is known that the magnetic permeability of soft magnetic materials decreases depending on the product of internal stress and magnetostriction constant, and that the magnetic permeability of soft magnetic materials can be improved by relaxing internal stress. In order to produce a magnetic core having a high magnetic permeability, a soft magnetic alloy powder that hardly accumulates internal stress is required. Attempts have been made to mechanically soften the soft magnetic alloy powder by adding a metal element having a low Young's modulus such as Sn, In, Zn, etc., but the soft magnetism of the soft magnetic metal alloy powder having the amorphous structure as described above Since both properties and mechanically hard properties are attributed to the amorphous structure, a technology that achieves both high soft magnetic properties and mechanically soft physical properties that are difficult to accumulate stress has not yet been realized.
アモルファス相を含む軟磁性合金粉末を用いて磁芯を作成する際に、内部応力を如何にして低減し、透磁率を向上させるかが本発明の解決しようとする課題である。 The problem to be solved by the present invention is how to reduce the internal stress and improve the magnetic permeability when producing a magnetic core using a soft magnetic alloy powder containing an amorphous phase.
上記課題を解決するため、本発明の軟磁性合金粉末は磁性相と応力緩和相の少なくとも2種類の相より構成され、前記磁性相はFeを含有する粒子であり、前記応力緩和相はヤング率が70GPa以下であり、複数の前記磁性相が前記応力緩和相を介して結着し、混相粒を形成している。また、前記磁性相は粒子径が100μm以下であることが好ましく、前記応力緩和相の厚みは5〜100nmであることが好ましい。 In order to solve the above problems, the soft magnetic alloy powder of the present invention is composed of at least two kinds of phases, a magnetic phase and a stress relaxation phase, the magnetic phase is particles containing Fe, and the stress relaxation phase has a Young's modulus. Is 70 GPa or less, and a plurality of the magnetic phases are bound via the stress relaxation phase to form mixed phase grains. The magnetic phase preferably has a particle size of 100 μm or less, and the stress relaxation phase preferably has a thickness of 5 to 100 nm.
本発明の軟磁性合金粉末を用いることにより、高い透磁率を有する磁気デバイス用磁芯を得ることができる。 By using the soft magnetic alloy powder of the present invention, a magnetic core for a magnetic device having a high magnetic permeability can be obtained.
本発明の軟磁性合金粉末は磁性相Aと応力緩和相Bの少なくとも2種類の相より構成され、磁性相AはFeを含有し、応力緩和相Bはヤング率が70GPa以下であり、複数の磁性相Aが応力緩和相Bを介して結着し、混相粒Cが形成されている。 The soft magnetic alloy powder of the present invention is composed of at least two kinds of phases of a magnetic phase A and a stress relaxation phase B, the magnetic phase A contains Fe, the stress relaxation phase B has a Young's modulus of 70 GPa or less, The magnetic phase A is bound through the stress relaxation phase B, and mixed phase grains C are formed.
前磁性相Aについてさらに詳細に説明する。磁性相AはFeを含有する限りにおいては、Fe以外の元素を含有してもよく、含有することが好ましいFe以外の元素としてはSi、B、P、C、Cr、Zr、Nb、Hf、Cu、Agなどが挙げられる。また、磁性相Aの微細構造はアモルファスまたは金属ガラスの部分を含み、アモルファスまたは金属ガラスの部分と結晶部分の混相であってもよい。この場合の結晶部分の結晶粒径は60nm以下の微細結晶であることが特に好ましい。磁性相AにSi,B,C,P,を含むことにより非晶質状態が形成しやすくなり、また、Zr,Hf,Nbを含むことにより結晶部分が微細化しやすくなるため、結晶磁気異方性由来の保磁力が小さくなり高透磁率かつ低損失な軟磁性合金粉末を得ることができる。また、Cu、Agを含むことにより結晶部分の結晶核となり、微細結晶が形成しやすくなる。 The premagnetic phase A will be described in more detail. As long as the magnetic phase A contains Fe, elements other than Fe may be contained, and elements other than Fe that are preferably contained include Si, B, P, C, Cr, Zr, Nb, Hf, Cu, Ag, etc. are mentioned. The fine structure of the magnetic phase A includes an amorphous or metallic glass portion, and may be a mixed phase of an amorphous or metallic glass portion and a crystalline portion. In this case, the crystal grain size of the crystal part is particularly preferably a fine crystal of 60 nm or less. The inclusion of Si, B, C, P in the magnetic phase A facilitates the formation of an amorphous state, and the inclusion of Zr, Hf, Nb facilitates miniaturization of the crystal portion, which makes the crystal magnetic anisotropic The coercive force derived from the nature becomes small, and a soft magnetic alloy powder with high magnetic permeability and low loss can be obtained. Further, the inclusion of Cu and Ag becomes a crystal nucleus of the crystal portion, and it becomes easy to form a fine crystal.
磁性相Aの粒子の大きさについては粒子径が100μm以下であることが好ましい。磁性相Aの粒子の大きさが100μmを超える場合は磁性相Aの粒内渦電流が増大し、渦電流損失由来の損失成分が増大するため好ましくない。また、粒子径が100μm以下であれば粒度分布が複数の頻度極大を持つ場合も好ましい。尚、前記磁性相Aの粒度分布は混相粒Cまたは混相粒Cを用いて作成した磁芯の切断面もしくは破断面を顕微鏡観察した際の投影面積円相当径の分布とし、前記粒子径は前記粒度分布の平均値とする。 The particle size of the magnetic phase A is preferably 100 μm or less. When the particle size of the magnetic phase A exceeds 100 μm, the intragranular eddy current of the magnetic phase A increases, and the loss component derived from eddy current loss increases. Further, if the particle size is 100 μm or less, it is also preferable that the particle size distribution has a plurality of frequency maxima. The particle size distribution of the magnetic phase A is a distribution of the equivalent circle diameter of the projected area when the cut surface or fracture surface of the magnetic core prepared using the mixed phase particle C or the mixed phase particle C is observed with a microscope. The average value of the particle size distribution.
応力緩和相Bはヤング率の低い金属、合金、金属酸化物を含有するガラス組成物(以下ガラスと表記する)またはこれらの混合物で構成される。ヤング率の低い金属、合金の例としてはIn、Sn、Al、Biおよびこれらの合金が挙げられる。ガラスとしては例えば珪酸ガラス、硼酸ガラス、硼珪酸ガラス、アルミノ珪酸ガラス、リン酸ガラス、テルレート、ゲルマネート等の中からヤング率が70GPa以下となる組成を選択して使用することができる。 The stress relaxation phase B is made of a glass composition (hereinafter referred to as glass) containing a metal, alloy, metal oxide having a low Young's modulus, or a mixture thereof. Examples of metals and alloys having a low Young's modulus include In, Sn, Al, Bi, and alloys thereof. As the glass, for example, a composition having a Young's modulus of 70 GPa or less can be selected from silicate glass, borate glass, borosilicate glass, aluminosilicate glass, phosphate glass, tellurate, germanate and the like.
本実施の形態に示す軟磁性合金粉末を作成する方法については特に限定されるものではないが、例えば、磁性相Aの組成、微細構造、粒子径を有する原料粉A1と応力緩和相Bの組成を有する原料粉B1をそれぞれ作成した後、原料粉A1と原料粉B1を混合し、メカニカルアロイング法、メカノフュージョン法などの機械的混相法により混相化処理をすることによって混相粒Cを作成することができる。混相処理を行う際の温度は原料粉B1が金属である場合には原料粉B1の融点以上であり、原料粉B1がガラスである場合には原料粉B1のガラス転移点以上であることが好ましい。 The method for producing the soft magnetic alloy powder shown in the present embodiment is not particularly limited. For example, the composition of the magnetic phase A, the microstructure, the composition of the raw material powder A1 having the particle diameter and the stress relaxation phase B After the raw material powder B1 having each of the above is prepared, the raw material powder A1 and the raw material powder B1 are mixed, and mixed phase treatment is performed by a mechanical mixed phase method such as a mechanical alloying method or a mechanofusion method, thereby generating mixed phase particles C. be able to. When the raw material powder B1 is a metal, the temperature during the mixed phase treatment is preferably equal to or higher than the melting point of the raw material powder B1, and when the raw material powder B1 is glass, the temperature is preferably equal to or higher than the glass transition point of the raw material powder B1. .
原料粉A1を作成する方法は特に限定されないが、アトマイズ等の溶射紛体化法、固相還元法、水熱合成法などを用いることができ、作成した原料粉を適宜粉砕、分級することにより所望の粒子径に調整することができる。 Although the method for producing the raw material powder A1 is not particularly limited, a spraying powder forming method such as atomization, a solid phase reduction method, a hydrothermal synthesis method, or the like can be used. Desired by pulverizing and classifying the prepared raw material powder as appropriate. The particle size can be adjusted.
原料粉B1を作成する方法は特に限定されないが、原料粉B1が金属の場合はアトマイズ等の溶射紛体化法、固相還元法、水熱合成法などを用いて作成することができ、原料粉B1がガラスの場合は原料粉B1の組成に合わせて金属酸化物粉を調合し、溶融後に急冷することにより作成することができる。作成した原料粉は適宜粉砕、分級することにより所望の粒子径に調整することができる。 The method for producing the raw material powder B1 is not particularly limited. However, when the raw material powder B1 is a metal, it can be produced using a spraying powder forming method such as atomization, a solid phase reduction method, a hydrothermal synthesis method, etc. When B1 is glass, it can be prepared by preparing a metal oxide powder in accordance with the composition of the raw material powder B1 and rapidly cooling after melting. The prepared raw material powder can be adjusted to a desired particle size by appropriately pulverizing and classifying.
応力緩和相Bは低いヤング率を有しているため、応力緩和相Bを介して磁性相Aが結着した形状を有する混相粒Cは所望の形状に成型して磁芯を作成する際に外力が印加された場合でも応力緩和相Bが歪むことにより応力が緩和され、磁性相Aに内部応力が残留することがない。したがって磁性相Aが比較的大きな磁歪定数を有する場合でも磁歪由来の磁気異方性が発現することがなく、高い透磁率を有する磁芯を得ることができる。 Since the stress relaxation phase B has a low Young's modulus, the mixed phase grains C having a shape in which the magnetic phase A is bound via the stress relaxation phase B are formed into a desired shape to form a magnetic core. Even when an external force is applied, the stress relaxation phase B is distorted so that the stress is relaxed, and no internal stress remains in the magnetic phase A. Therefore, even when the magnetic phase A has a relatively large magnetostriction constant, magnetic anisotropy derived from magnetostriction does not appear, and a magnetic core having a high magnetic permeability can be obtained.
応力緩和相Bの厚みは厚くなるほど上記の応力緩和の効果が大きくなるという観点では好ましいが、応力緩和相Bを介して互いに隣接する複数の磁性相Aの間の非磁性ギャップが厚くなることにもなり、磁芯を形成した場合の透磁率の低下と飽和磁束密度の低下を招くこととなるため、厚すぎる場合も好ましくない。本実施の形態における前記応力緩和相Bの厚みは5〜100nmであることが好ましい。 Although it is preferable from the viewpoint that the stress relaxation effect becomes larger as the thickness of the stress relaxation phase B increases, the nonmagnetic gap between the plurality of magnetic phases A adjacent to each other through the stress relaxation phase B increases. In addition, when the magnetic core is formed, the magnetic permeability is decreased and the saturation magnetic flux density is decreased. The thickness of the stress relaxation phase B in the present embodiment is preferably 5 to 100 nm.
尚、上記成型する際に印加される外力は単に圧縮成型時の圧力のみに限られるものではなく、混練された樹脂が硬化する際や有機溶剤、水分等が乾燥する際に生じる体積変化によっても磁性相Aに外力が加わることとなるため、本発明の混相粒Cを用いることにより比較的低圧で成型する場合においても高透磁率化の効果を得ることができる。 The external force applied at the time of molding is not limited only to the pressure at the time of compression molding, but also due to volume changes that occur when the kneaded resin is cured or when organic solvents, moisture, etc. are dried. Since an external force is applied to the magnetic phase A, the effect of increasing the magnetic permeability can be obtained even when molding at a relatively low pressure by using the mixed phase grains C of the present invention.
上記実施の形態について、実施例を比較例とともに示しさらに詳細に説明する。 The above embodiment will be described in more detail with reference to an example together with a comparative example.
(実施例1〜13、比較例1)
Fe、B、CrおよびSiをそれぞれ所定量秤量し、減圧Ar雰囲気下においてこれらの原料を高周波誘導加熱装置で溶解し、インゴットを作製した。このインゴットを溶湯るつぼ内に入れて溶解し、溶湯るつぼの溶湯ノズルから合金溶湯を噴射するとともに、別に設けたガス噴霧器からアルゴンガス流を噴射して合金溶湯を霧状にし、この霧状の合金溶湯を急冷することにより金属ガラス合金の粉末を得た。得られた粉末をメッシュ透過法、遠心分離法、沈降法等により所望の粒子径に分級した後、所定温度で熱処理することにより磁性相Aの原料粉A1を得た。次にAl、In、Sn、およびBiを原料としてそれぞれ所定量秤量し原料粉A1と同様の方法により粉体化、分級を行い応力緩和相Bの原料粉B1を得た。原料粉A1と原料粉B1をメカニカルアロイング装置に装填し所定温度に加熱し、所定時間混相化処理を行い混相粒Cを得た。原料粉B1の平均粒子径および原料粉A1と原料粉B1の混合比率、処理温度を変化させることにより応力緩和相Bの厚みを変化させた。さらに原料粉A1およびB1作成時の各元素の仕込み比率を変化させることにより原料粉A1およびB1の組成を変化させた。得られた混相粒Cの磁性相Aおよび応力緩和相Bの組成、磁性相Aの粒子径、応力緩和相Bの厚みを粒子断面SEMおよび粒子断面EDSにより観察した。得られた値を表1に示す。さらに、得られた混相粒Cに熱硬化性エポキシ樹脂、硬化開始剤、アセトンを加えホモジナイザーにより混練した後、50℃で3時間加熱しアセトンを蒸発させた後解砕して顆粒状とした。得られた顆粒を内径9mm、外形11mm、厚み3〜4mmのトロイダル形状に成型した後180℃で2時間加熱し樹脂の硬化を行いトロイダルコアを得た。得られたトロイダルコアに30Turnの巻線を施し、LCRメーターにてインダクタンスを計測し、得られたインダクタンスから透磁率を求めた。また、交流BHアナライザーによりコアロスを測定した。
(比較例2、3)
原料粉A1を上記(実施例1〜13、比較例1)と同様の方法で作成し、原料粉A1とB1の混相化処理を行わず原料粉A1のみを用いて上記(実施例1〜13、比較例1)と同様の方法でトロイダルコアを作成し評価した。
実施例1〜13、比較例1〜3で作成したトロイダルコアの100kHzにおける透磁率の値と3MHz、10mTにおけるコアロスの値を表1に示す。
Fe, B, Cr, and Si were weighed in predetermined amounts, and these raw materials were dissolved in a high-frequency induction heating apparatus in a reduced pressure Ar atmosphere to produce an ingot. This ingot is melted by putting it in a molten crucible, and molten alloy is injected from the molten metal nozzle of the molten metal crucible, and an argon gas flow is injected from a separate gas sprayer to atomize the molten alloy. The molten metal was quenched to obtain a metal glass alloy powder. The obtained powder was classified into a desired particle size by a mesh permeation method, a centrifugal separation method, a sedimentation method, or the like, and then heat treated at a predetermined temperature to obtain a raw material powder A1 of magnetic phase A. Next, a predetermined amount of each of Al, In, Sn, and Bi was weighed and pulverized and classified by the same method as the raw material powder A1 to obtain a raw material powder B1 of the stress relaxation phase B. Raw material powder A1 and raw material powder B1 were loaded into a mechanical alloying device, heated to a predetermined temperature, and subjected to a phase mixing treatment for a predetermined time to obtain mixed phase particles C. The thickness of the stress relaxation phase B was changed by changing the average particle diameter of the raw material powder B1, the mixing ratio of the raw material powder A1 and the raw material powder B1, and the treatment temperature. Furthermore, the composition of the raw material powders A1 and B1 was changed by changing the charging ratio of each element at the time of preparing the raw material powders A1 and B1. The composition of the magnetic phase A and the stress relaxation phase B of the obtained mixed phase grain C, the particle diameter of the magnetic phase A, and the thickness of the stress relaxation phase B were observed by a particle cross section SEM and a particle cross section EDS. The obtained values are shown in Table 1. Furthermore, after adding a thermosetting epoxy resin, a curing initiator, and acetone to the obtained mixed phase particle C and kneading with a homogenizer, the mixture was heated at 50 ° C. for 3 hours to evaporate the acetone, and then crushed into granules. The obtained granule was molded into a toroidal shape having an inner diameter of 9 mm, an outer diameter of 11 mm, and a thickness of 3 to 4 mm, and then heated at 180 ° C. for 2 hours to cure the resin to obtain a toroidal core. The obtained toroidal core was wound with 30 Turn, the inductance was measured with an LCR meter, and the magnetic permeability was determined from the obtained inductance. Moreover, the core loss was measured with the AC BH analyzer.
(Comparative Examples 2 and 3)
The raw material powder A1 was prepared by the same method as in the above (Examples 1 to 13, Comparative Example 1), and the raw material powder A1 and B1 were not mixed and the raw material powder A1 alone was used (Examples 1 to 13). A toroidal core was prepared and evaluated in the same manner as in Comparative Example 1).
Table 1 shows the permeability values at 100 kHz and the core loss values at 3 MHz and 10 mT of the toroidal cores created in Examples 1 to 13 and Comparative Examples 1 to 3.
実施例3、実施例9〜13、と比較例1〜3を比較するとヤング率が70GPa以下の応力緩和相Bを有する混相粒Cを用いて磁芯を作成することにより透磁率が向上していることが確認できる。また、実施例1〜6より応力緩和相の厚みを5〜100nmとすることにより特に顕著な透磁率向上効果が得られることが確認できる。さらに、実施例3、7,8より磁性相Aの粒子径が100μmを超える場合には高い透磁率は得られるもの、損失が顕著に大きくなることが確認できる。 When Example 3 and Examples 9 to 13 and Comparative Examples 1 to 3 are compared, the magnetic permeability is improved by creating a magnetic core using the mixed phase grains C having the stress relaxation phase B having a Young's modulus of 70 GPa or less. It can be confirmed. Further, it can be confirmed from Examples 1 to 6 that a particularly remarkable effect of improving the magnetic permeability can be obtained by setting the thickness of the stress relaxation phase to 5 to 100 nm. Further, it can be confirmed from Examples 3, 7 and 8 that when the particle diameter of the magnetic phase A exceeds 100 μm, a high magnetic permeability can be obtained, but the loss is remarkably increased.
(実施例14〜24、比較例4)
(実施例1〜13、比較例1)と同様の方法で原料粉A1を作成した。金属酸化物粉末を応力緩和相Bの組成に合わせて調合し、溶融法によりガラス粉末を作成し、所望の粒度分布に粉砕、分級を行い原料粉B1とした。以降(実施例1〜13、比較例1)と同様の方法で原料粉A1と原料粉B1を混相化処理することにより混相粒Cを作成し、混相粒Cを用いてトロイダルコアを作成、評価を行った。実施例14〜24、比較例4で作成したトロイダルコアの100kHzにおける初透磁率の値と3MHz、10mTにおけるコアロスの値を表2に示す。
(Examples 14 to 24, Comparative Example 4)
Raw material powder A1 was prepared in the same manner as in Examples 1 to 13 and Comparative Example 1. A metal oxide powder was prepared according to the composition of the stress relaxation phase B, a glass powder was prepared by a melting method, and pulverized and classified to a desired particle size distribution to obtain a raw material powder B1. Thereafter, mixed powder C1 is produced by subjecting raw material powder A1 and raw material powder B1 to a mixed phase treatment in the same manner as in Examples 1 to 13 and Comparative Example 1, and a toroidal core is created and evaluated using mixed phase particles C. Went. Table 2 shows the initial permeability value at 100 kHz and the core loss value at 3 MHz and 10 mT of the toroidal cores produced in Examples 14 to 24 and Comparative Example 4.
実施例16、22〜24と比較例2〜4を比較するとヤング率が70以下の応力緩和相Bを有する混相粒Cを用いて磁芯を作成することにより透磁率が向上していることが確認できる。また、実施例14〜19より応力緩和相の厚みが5〜100nmの場合に顕著な透磁率向上効果が得られることが確認できる。さらに、実施例16、20、21より磁性相Aの粒子径が100μmを超える場合には高い透磁率は得られるもの、損失が顕著に大きくなることが確認できる。 When Examples 16 and 22 to 24 and Comparative Examples 2 to 4 are compared, the magnetic permeability is improved by forming the magnetic core using the mixed phase grains C having the stress relaxation phase B having a Young's modulus of 70 or less. I can confirm. Moreover, it can be confirmed from Examples 14 to 19 that a remarkable permeability improvement effect is obtained when the thickness of the stress relaxation phase is 5 to 100 nm. Furthermore, it can be confirmed from Examples 16, 20, and 21 that when the particle size of the magnetic phase A exceeds 100 μm, a high magnetic permeability can be obtained, but the loss is remarkably increased.
本発明は、インダクタ、リアクトル、トランス、チョークコイル等の磁芯として有効である。 The present invention is effective as a magnetic core for inductors, reactors, transformers, choke coils and the like.
A 磁性相
B 応力緩和相
C 混相粒
A Magnetic phase B Stress relaxation phase C Mixed phase grain
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016246568A JP2018101686A (en) | 2016-12-20 | 2016-12-20 | Soft magnetic alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016246568A JP2018101686A (en) | 2016-12-20 | 2016-12-20 | Soft magnetic alloy powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018101686A true JP2018101686A (en) | 2018-06-28 |
Family
ID=62715544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016246568A Pending JP2018101686A (en) | 2016-12-20 | 2016-12-20 | Soft magnetic alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018101686A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115346747A (en) * | 2021-05-12 | 2022-11-15 | 精工爱普生株式会社 | Soft magnetic powder, dust core, magnetic element, electronic device, and moving object |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS613801A (en) * | 1984-06-18 | 1986-01-09 | Kawasaki Steel Corp | Iron-base composite powder containing tin and its manufacture |
JP2013065844A (en) * | 2011-08-31 | 2013-04-11 | Toshiba Corp | Magnetic material, method for producing magnetic material, and inductor element |
JP2014103266A (en) * | 2012-11-20 | 2014-06-05 | Seiko Epson Corp | Composite particle, production method of composite particle, powder magnetic core, magnetic element and portable electronic apparatus |
JP2014209579A (en) * | 2013-03-25 | 2014-11-06 | Ntn株式会社 | Core for electric circuit and device using the same |
JP2015106593A (en) * | 2013-11-28 | 2015-06-08 | アルプス・グリーンデバイス株式会社 | Powder compact core arranged by use of soft magnetic powder, and method for manufacturing powder compact core |
-
2016
- 2016-12-20 JP JP2016246568A patent/JP2018101686A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS613801A (en) * | 1984-06-18 | 1986-01-09 | Kawasaki Steel Corp | Iron-base composite powder containing tin and its manufacture |
JP2013065844A (en) * | 2011-08-31 | 2013-04-11 | Toshiba Corp | Magnetic material, method for producing magnetic material, and inductor element |
JP2014103266A (en) * | 2012-11-20 | 2014-06-05 | Seiko Epson Corp | Composite particle, production method of composite particle, powder magnetic core, magnetic element and portable electronic apparatus |
JP2014209579A (en) * | 2013-03-25 | 2014-11-06 | Ntn株式会社 | Core for electric circuit and device using the same |
JP2015106593A (en) * | 2013-11-28 | 2015-06-08 | アルプス・グリーンデバイス株式会社 | Powder compact core arranged by use of soft magnetic powder, and method for manufacturing powder compact core |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115346747A (en) * | 2021-05-12 | 2022-11-15 | 精工爱普生株式会社 | Soft magnetic powder, dust core, magnetic element, electronic device, and moving object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5912349B2 (en) | Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core | |
JP6651082B2 (en) | Method for manufacturing soft magnetic powder core | |
TWI574287B (en) | Iron - based soft magnetic powder material | |
JP5632608B2 (en) | Soft magnetic alloy, magnetic component using the same, and manufacturing method thereof | |
JP6530164B2 (en) | Nanocrystalline soft magnetic alloy powder and dust core using the same | |
WO2018179812A1 (en) | Dust core | |
JP6448799B2 (en) | Soft magnetic powder | |
JP6088192B2 (en) | Manufacturing method of dust core | |
JP5063861B2 (en) | Composite dust core and manufacturing method thereof | |
JP2009543370A (en) | Method for manufacturing magnetic core, magnetic core and inductive member with magnetic core | |
JP2009541986A (en) | Magnet core and manufacturing method thereof | |
JP2020056107A (en) | CRYSTALLINE Fe-BASED ALLOY POWDER, MANUFACTURING METHOD THEREFOR, AND MAGNETIC CORE | |
JP2007134591A (en) | Composite magnetic material, dust core using the same and magnetic element | |
JP6314020B2 (en) | Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof | |
CN111724964B (en) | Magnetic core and coil component | |
JP2003059710A (en) | Dust core | |
JP6191855B2 (en) | Soft magnetic metal powder and high frequency powder magnetic core | |
JP6359273B2 (en) | Powder magnetic core and method for manufacturing the same | |
JP2010053372A (en) | Iron-nickel alloy powder, method for producing the same, and powder magnetic core for inductor using the alloy powder | |
JP2009147252A (en) | Compound magnetic material and method of manufacturing thereof | |
WO2020196608A1 (en) | Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core | |
JP6103191B2 (en) | A method for producing granulated powder using magnetic powder as a raw material. | |
JP2018101686A (en) | Soft magnetic alloy powder | |
JP2004214418A (en) | Dust core and its alloy powder and method for manufacturing the same | |
WO2020179534A1 (en) | Magnetic core, method for manufacturing same, and coil component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201110 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210601 |