JP2018098108A - Method for manufacturing electrolyte membrane-electrode assembly for fuel battery - Google Patents

Method for manufacturing electrolyte membrane-electrode assembly for fuel battery Download PDF

Info

Publication number
JP2018098108A
JP2018098108A JP2016243910A JP2016243910A JP2018098108A JP 2018098108 A JP2018098108 A JP 2018098108A JP 2016243910 A JP2016243910 A JP 2016243910A JP 2016243910 A JP2016243910 A JP 2016243910A JP 2018098108 A JP2018098108 A JP 2018098108A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrode assembly
base material
cut
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016243910A
Other languages
Japanese (ja)
Inventor
光生 吉村
Mitsuo Yoshimura
光生 吉村
良文 田口
Yoshifumi Taguchi
良文 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016243910A priority Critical patent/JP2018098108A/en
Publication of JP2018098108A publication Critical patent/JP2018098108A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To enable easy delamination of an electrolyte membrane-electrode assembly and a support base to increase productivity of an electrolyte membrane-electrode assembly.SOLUTION: A method for manufacturing an electrolyte membrane-electrode assembly for a fuel battery comprises: a preparation step S10 of preparing a support base-attached electrolyte membrane-electrode assembly; a half-cut step S11 of partially cutting only the electrolyte membrane of the electrolyte membrane and the support base so that a binding portion connecting to a discard of the electrolyte membrane, which is not completely cut, is formed in a part of the electrolyte membrane extending along the electrolyte membrane-electrode assembly; a first delamination step S12a of pulling the discard of the electrolyte membrane toward a direction of delamination from the support base to delaminate the electrolyte membrane from a start of delamination to the binding part; a second delamination step S12b of pulling the discard of the electrolyte membrane until the discard of the electrolyte membrane and the binding part are broken; a third delamination step S12c in which the binding part with the electrolyte membrane is broken, and the discard of the electrolyte membrane is delaminated from the support base; and a separation step S13 of separating the support base-attached electrolyte membrane-electrode assembly from the support base by delamination.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池用の電解質膜−電極接合体の製造方法に関するものである。   The present invention relates to a method for producing an electrolyte membrane-electrode assembly for a fuel cell.

高分子電解質型燃料電池(以下、PEFCと称す)は、水素を含有する燃料ガスと、空気など酸素を含有する酸化剤ガスとを電気化学的に反応させることにより、電力と熱を同時に発生させる。   A polymer electrolyte fuel cell (hereinafter referred to as PEFC) generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen with an oxidant gas containing oxygen such as air. .

PEFCは、基本的構成要素として、水素イオンを選択的に輸送する電解質膜と、その電解質膜の両面に形成された電極であるアノ−ドとカソードとを含む。これらの電極は、電解質膜の表面に形成される触媒層と、その触媒層の外側に配置されたガス拡散層(GDL)を有する。GDLは通気性と電子導電性を併せ持つ。   The PEFC includes, as basic components, an electrolyte membrane that selectively transports hydrogen ions, and an anode and a cathode that are electrodes formed on both sides of the electrolyte membrane. These electrodes have a catalyst layer formed on the surface of the electrolyte membrane and a gas diffusion layer (GDL) disposed outside the catalyst layer. GDL has both air permeability and electronic conductivity.

このように電解質膜と電極とが一体的に接合されて組み立てられて、電解質膜−電極接合体(MEA:Membrane Electrode Assembly)が構成されている。この電解質膜―電極接合体は、一般に、搬送用フィルムとして支持基材上に、電解質膜部分を密着させた状態で形成される。   Thus, an electrolyte membrane and an electrode are integrally joined and assembled to form an electrolyte membrane-electrode assembly (MEA: Membrane Electrode Assembly). This electrolyte membrane-electrode assembly is generally formed as a transport film with the electrolyte membrane portion in close contact with a support substrate.

支持基材付き電解質膜−電極接合体から、電解質膜−電極接合体を得る製造方法としては、支持基材付き電解質膜−電極接合体を、裁断刃やレーザーにて外形をカットして、支持基材と電解質膜−電極接合体が密着した状態で切り離した後、支持基材と電解質膜−電極接合体を剥離して、燃料電池用の電解質膜−電極接合体を得る燃料電池用の電解質膜−電極接合体の製造方法が提案されている(例えば、特許文献1)。   As a manufacturing method for obtaining an electrolyte membrane-electrode assembly from an electrolyte membrane-electrode assembly with a supporting substrate, the outer shape of the electrolyte membrane-electrode assembly with a supporting substrate is cut by a cutting blade or a laser and supported. After separating the base material and the electrolyte membrane-electrode assembly in close contact with each other, the support base material and the electrolyte membrane-electrode assembly are peeled off to obtain an electrolyte membrane-electrode assembly for the fuel cell. A method for manufacturing a membrane-electrode assembly has been proposed (for example, Patent Document 1).

図10(a)は、従来の支持基材付き電解質膜−電極接合体の平面図であり、図10(b)は、図10(a)に示した支持基材付き電解質膜−電極接合体のH−H線断面図である。   10 (a) is a plan view of a conventional electrolyte membrane-electrode assembly with a supporting substrate, and FIG. 10 (b) is an electrolyte membrane-electrode assembly with a supporting substrate shown in FIG. 10 (a). It is a HH sectional view taken on the line.

図11(a)は、従来の支持基材付き電解質膜−電極接合体を支持基材と共にカットした後にできる電解質膜と支持基材の端材部分の平面図であり、図11(b)は、図11(a)に示した電解質膜と支持基材の端材部分のI−I線断面図である。   FIG. 11A is a plan view of an electrolyte membrane formed after cutting a conventional electrolyte membrane-electrode assembly with a supporting substrate together with the supporting substrate, and an end material portion of the supporting substrate, and FIG. FIG. 12 is a cross-sectional view taken along line II of the electrolyte membrane shown in FIG.

図12(a)は、従来の支持基材付き電解質膜−電極接合体を支持基材と共にカットした後にできる支持基材付き電解質膜−電極接合体の平面図であり、図12(b)は、図12(a)に示した支持基材付き電解質膜−電極接合体のJ−J線断面図である。   FIG. 12 (a) is a plan view of an electrolyte membrane-electrode assembly with a supporting substrate formed after cutting the electrolyte membrane-electrode assembly with a supporting substrate together with the supporting substrate, and FIG. It is the JJ sectional view taken on the line of the electrolyte membrane-electrode assembly with a supporting base material shown to Fig.12 (a).

図13(a)は、従来の支持基材付き電解質膜−電極接合体から支持基材を分離した電解質膜−電極接合体の側面図であり、図13(b)は、図13(a)に示した支持基材付き電解質膜−電極接合体から電解質膜−電極接合体を分離した支持基材の側面図である。   FIG. 13A is a side view of an electrolyte membrane-electrode assembly in which a supporting base material is separated from a conventional electrolyte membrane-electrode assembly with a supporting base material, and FIG. 13B is a side view of FIG. It is a side view of the support base material which isolate | separated the electrolyte membrane-electrode assembly from the electrolyte membrane-electrode assembly with a support base shown in FIG.

図10から図13で、支持基材付き電解質膜−電極接合体から電解質膜−電極接合体を得るまでの状態を示している。   FIG. 10 to FIG. 13 show a state from obtaining an electrolyte membrane-electrode assembly with a supporting base material to obtaining an electrolyte membrane-electrode assembly.

図10(a)、図10(b)において、2点鎖線の裁断予定ライン30よりも全周にわたって大きい電解質膜10の上面にカソード2A、下面にアノード2Bが、それぞれ形成され、電解質膜10と同じ大きさの剥離可能な支持基材20がアノード2Bの外側の密着部3にて密着して貼り合わされている。   10 (a) and 10 (b), the cathode 2A is formed on the upper surface of the electrolyte membrane 10 and the anode 2B is formed on the lower surface, which is larger than the two-dot chain line cutting scheduled line 30 over the entire circumference. A releasable support base material 20 having the same size is adhered and bonded together at the close contact portion 3 outside the anode 2B.

図11(a)、図11(b)、図12(a)、図12(b)において、孔60は、裁断刃で抜き取られてできたものである。こうして得られた切断された支持基材付き電解質膜−電極接合体1Tの電解質膜10と支持基材20の外形寸法は同じであり、アノード2Bの外側の電解質膜10と支持基材20の間の密着部3は、外周に向かって隙間なく密着している。   In FIG. 11A, FIG. 11B, FIG. 12A, and FIG. 12B, the hole 60 is formed by being extracted with a cutting blade. The outer dimensions of the electrolyte membrane 10 and the support substrate 20 of the cut electrolyte membrane-electrode assembly 1T with the support substrate thus obtained are the same, and between the electrolyte membrane 10 outside the anode 2B and the support substrate 20. The close contact portion 3 is in close contact with the outer periphery without a gap.

図13(a)、図13(b)において、電解質膜−電極接合体100は、切断された支持基材付き電解質膜−電極接合体1Tから支持基材20を何らかの方法で剥離して得られる。   13 (a) and 13 (b), the electrolyte membrane-electrode assembly 100 is obtained by peeling the support substrate 20 from the cut electrolyte membrane-electrode assembly 1T with a support substrate by some method. .

特許第5857937号公報Japanese Patent No. 5857937

しかしながら、上記従来の構成では、電解質膜に電極が両面に形成された電解質膜−電極接合体と支持基材とを密着させた状態で、裁断刃を用いて支持基材ごと切り取ってしまうと、支持基材付き電解質膜−電極接合体の電解質膜と支持基材の外形は同寸法であることから、密着部が隙間のない状態となり、密着部を外側から剥離するための切っ掛け部分がなく支持基材と電解質膜−電極接合体とを短時間で安定して剥離することが困難となって、電解質膜−電極接合体の生産性が低いという課題があった。   However, in the above conventional configuration, when the electrolyte membrane-electrode assembly in which the electrode is formed on both surfaces of the electrolyte membrane and the support substrate are in close contact with each other, and the support substrate is cut off using the cutting blade, Electrolyte membrane with support base material-The outer dimensions of the electrolyte membrane and the support base material of the electrode assembly are the same size, so that there is no gap between the close contact parts, and there is no stagnation part for peeling the close contact part from the outside. There was a problem that it was difficult to stably peel the base material and the electrolyte membrane-electrode assembly in a short time, and the productivity of the electrolyte membrane-electrode assembly was low.

本発明は、上記従来の課題を解決するもので、電解質膜−電極接合体と支持基材とを容易に剥離できるようにして、電解質膜−電極接合体の生産性を向上させる燃料電池用の電解質膜−電極接合体の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and enables an electrolyte membrane-electrode assembly and a supporting substrate to be easily peeled off, thereby improving the productivity of the electrolyte membrane-electrode assembly. It aims at providing the manufacturing method of an electrolyte membrane electrode assembly.

上記従来の課題を解決するために、本発明の燃料電池用の電解質膜−電極接合体の製造方法は、ハーフカット工程において、電解質膜における電解質膜−電極接合体に沿う部分の一部に完全にカットされずに電解質膜の端材と繋がる繋ぎ部分ができるように、電解質膜と支持基材のうちの電解質膜のみを部分的にカットし、剥離工程において、電解質膜の端材を支持基材から剥離する方向に引っ張る力で繋ぎ部分を支持基材から引き剥がして、繋ぎ部分を引き千切ると共に、少なくとも電解質膜と支持基材とで密閉されていた空間に外部の空気を導入したものである。   In order to solve the above-mentioned conventional problems, the method for producing an electrolyte membrane-electrode assembly for a fuel cell according to the present invention is completely applied to a part of the electrolyte membrane along the electrolyte membrane-electrode assembly in the half-cut process. The electrolyte membrane and the supporting base material are only partially cut so that there is a connecting part that is connected to the electrolyte membrane end material without being cut, and in the peeling step, the electrolyte membrane end material is supported The connecting part is peeled off from the supporting base material with the force of pulling in the direction of peeling from the material, the connecting part is torn off, and external air is introduced into the space sealed at least by the electrolyte membrane and the supporting base material It is.

これによって、支持基材付き電解質膜−電極接合体から電解質膜−電極接合体を得る時に、支持基材剥離開始部分において、少なくとも電解質膜と支持基材とで密閉されていた空間に外部の空気が導入されており、支持基材を剥離する切っ掛けができる。   Thus, when the electrolyte membrane-electrode assembly is obtained from the electrolyte membrane-electrode assembly with a supporting base material, external air is introduced into the space sealed at least by the electrolyte membrane and the supporting base material at the support base peeling start portion. Has been introduced, and can be used to peel off the supporting substrate.

本発明の燃料電池用の電解質膜−電極接合体の製造方法は、ハーフカット工程で、電解質膜における電解質膜−電極接合体に沿う部分の一部に完全にカットされずに電解質膜の端材と繋がる繋ぎ部分ができるように、電解質膜と支持基材のうちの電解質膜のみを部分的にカットし、剥離工程において、電解質膜の端材を支持基材から剥離する方向に引っ張る力で繋ぎ部分を支持基材から引き剥がして、繋ぎ部分を引き千切ると共に、少なくとも電解質膜と支持基材とで密閉されていた空間に外部の空気を導入するので、電解質膜−電極接合体と支持基材とを容易に剥離でき、電解質膜−電極接合体の生産性を向上させることができる。   The method for producing an electrolyte membrane-electrode assembly for a fuel cell according to the present invention is a half-cut process, in which the electrolyte membrane end material is not completely cut into a part of the electrolyte membrane along the electrolyte membrane-electrode assembly. Only the electrolyte membrane of the electrolyte membrane and the supporting substrate is partially cut so that a connecting portion that connects to the substrate is formed, and in the peeling process, it is connected by a force that pulls the end material of the electrolyte membrane in the direction of peeling from the supporting substrate. The part is peeled off from the supporting base material, the connecting part is torn off, and external air is introduced into the space sealed at least by the electrolyte membrane and the supporting base material. Therefore, the electrolyte membrane-electrode assembly and the supporting base The material can be easily peeled off, and the productivity of the electrolyte membrane-electrode assembly can be improved.

本発明の実施の形態1における燃料電池用の電解質膜−電極接合体の製造方法の主要な製造工程を示すフローチャートThe flowchart which shows the main manufacturing processes of the manufacturing method of the electrolyte membrane-electrode assembly for fuel cells in Embodiment 1 of this invention. 本発明の実施の形態1の帯状の支持基材付き電解質膜−電極接合体から電解質膜−電極接合体を連続して製造する工程の説明図Explanatory drawing of the process of manufacturing an electrolyte membrane-electrode assembly continuously from the electrolyte membrane-electrode assembly with a strip | belt-shaped support base material of Embodiment 1 of this invention. (a)は本発明の実施の形態1の支持基材付き電解質膜−電極接合体の平面図、(b)は(a)に示した支持基材付き電解質膜−電極接合体のA−A線断面図(A) is a top view of the electrolyte membrane-electrode assembly with a supporting base material of Embodiment 1 of this invention, (b) is AA of the electrolyte membrane-electrode assembly with a supporting base material shown to (a). Line cross section (a)は本発明の実施の形態1の支持基材付き電解質膜−電極接合体をハーフカット工程後の平面図、(b)は(a)に示した支持基材付き電解質膜−電極接合体のB−B線断面図、(c)は(b)に示した支持基材付き電解質膜−電極接合体の○で囲んだ部分の部分拡大図(A) is the top view after the half cut process of the electrolyte membrane-electrode assembly with a supporting base material of Embodiment 1 of this invention, (b) is the electrolyte membrane-electrode joining with a supporting base material shown to (a). BB sectional drawing of a body, (c) is the elements on larger scale of the part enclosed with (circle) of the electrolyte membrane-electrode assembly with a support base material shown to (b) (a)は本発明の実施の形態1の基材付き電解質膜−電極接合体の第1剥離工程での平面図、(b)は(a)に示した基材付き電解質膜−電極接合体のC−C線断面図(A) is a top view in the 1st peeling process of the electrolyte membrane-electrode assembly with a base material of Embodiment 1 of this invention, (b) is the electrolyte membrane-electrode assembly with a base material shown to (a). Sectional view of line CC (a)は本発明の実施の形態1の基材付き電解質膜−電極接合体の第2剥離工程での平面図、(b)は(a)に示した基材付き電解質膜−電極接合体のD−D線断面図(A) is a top view in the 2nd peeling process of the electrolyte membrane-electrode assembly with a base material of Embodiment 1 of this invention, (b) is the electrolyte membrane-electrode assembly with a base material shown to (a). DD line sectional view of (a)は本発明の実施の形態1の基材付き電解質膜−電極接合体の第3剥離工程での平面図、(b)は(a)に示した基材付き電解質膜−電極接合体のE−E線断面図(A) is a top view in the 3rd peeling process of the electrolyte membrane-electrode assembly with a base material of Embodiment 1 of this invention, (b) is the electrolyte membrane-electrode assembly with a base material shown to (a). EE line cross section (a)は本発明の実施の形態1の基材付き電解質膜−電極接合体の剥離工程完了での平面図、(b)は(a)に示した基材付き電解質膜−電極接合体のF−F線断面図(A) is the top view in the completion of the peeling process of the electrolyte membrane-electrode assembly with a substrate of Embodiment 1 of the present invention, (b) is the electrolyte membrane-electrode assembly with a substrate shown in (a). FF sectional view (a)は本発明の実施の形態1の基材付き電解質膜−電極接合体から支持基材を分離した分離工程後の電解質膜−電極接合体の平面図、(b)は(a)に示した電解質膜−電極接合体のG−G線断面図(A) is a plan view of the electrolyte membrane-electrode assembly after the separation step in which the supporting substrate is separated from the electrolyte membrane-electrode assembly with a substrate of Embodiment 1 of the present invention, and (b) is a diagram (a). GG sectional view of the electrolyte membrane-electrode assembly shown (a)は従来の支持基材付き電解質膜−電極接合体の平面図、(b)は(a)に示した支持基材付き電解質膜−電極接合体のH−H線断面図(A) is a plan view of a conventional electrolyte membrane-electrode assembly with a supporting substrate, and (b) is a cross-sectional view taken along the line HH of the electrolyte membrane-electrode assembly with a supporting substrate shown in (a). (a)は従来の支持基材付き電解質膜−電極接合体を支持基材と共にカットした後にできる電解質膜と支持基材の端材部分の平面図、(b)は(a)に示した電解質膜と支持基材の端材部分のI−I線断面図(A) is a plan view of an electrolyte membrane formed after cutting a conventional electrolyte membrane-electrode assembly with a supporting substrate together with the supporting substrate, and an end material portion of the supporting substrate, and (b) is the electrolyte shown in (a). II sectional view of the end material part of the membrane and the supporting base material (a)は従来の支持基材付き電解質膜−電極接合体を支持基材と共にカットした後にできる支持基材付き電解質膜−電極接合体の平面図、(b)は(a)に示した支持基材付き電解質膜−電極接合体のJ−J断面図(A) is a plan view of an electrolyte membrane-electrode assembly with a supporting substrate formed after the conventional electrolyte membrane-electrode assembly with a supporting substrate is cut together with the supporting substrate, and (b) is the support shown in (a). JJ cross section of electrolyte membrane-electrode assembly with substrate (a)は従来の支持基材付き電解質膜−電極接合体から支持基材を分離した電解質膜−電極接合体の側面図、(b)は(a)に示した支持基材付き電解質膜−電極接合体から電解質膜−電極接合体を分離した支持基材の側面図(A) is a conventional electrolyte membrane with a supporting substrate-electrolyte membrane in which a supporting substrate is separated from an electrode assembly-a side view of the electrode assembly, and (b) is an electrolyte membrane with a supporting substrate shown in (a)- Side view of the support substrate with the electrolyte membrane-electrode assembly separated from the electrode assembly

第1の発明は、燃料電池用の電解質膜−電極接合体の製造方法であって、支持基材の片面に密着させた、両面に電極が形成された電解質膜を、電解質膜−電極接合体に沿って、電極を囲むように部分的にハーフカットするハーフカット工程と、ハーフカット後の電解質膜の端材を、支持基材から剥離する剥離工程と、電解質膜から切り離された電解質膜−電極接合体と、支持基材とを分離する分離工程とを有し、ハーフカット工程では、電解質膜における電解質膜−電極接合体に沿う部分の一部に、完全にカットされずに電解質膜の端材と繋がる繋ぎ部分ができるように、電解質膜と支持基材のうちの電解質膜のみを部分的にカットし、剥離工程において、電解質膜の端材を支持基材から剥離する方向に引っ張る力で繋ぎ部分を支持基材から引き剥がして、繋ぎ部分を引き千切ると共に、少なくとも電解質膜と支持基材とで密閉されていた空間に、外部の空気を導入する製造方法である。   1st invention is a manufacturing method of the electrolyte membrane-electrode assembly for fuel cells, Comprising: The electrolyte membrane with which the electrode was formed in both surfaces closely_contact | adhered to the single side | surface of a support base material was electrolyte membrane-electrode assembly A half-cut step for partially half-cutting the electrode so as to surround the electrode, a peeling step for peeling off the end material of the electrolyte membrane after the half-cut from the support substrate, and an electrolyte membrane separated from the electrolyte membrane- A separation step of separating the electrode assembly and the support substrate, and in the half-cut step, the electrolyte membrane is not completely cut into a part of the portion along the electrolyte membrane-electrode assembly in the electrolyte membrane. A force that cuts only the electrolyte membrane of the electrolyte membrane and the supporting base material in order to create a connecting portion that connects to the end material, and pulls the end material of the electrolyte membrane from the supporting base material in the peeling process. From the support base Peeled come, the connecting portion with torn off, the space being sealed by at least an electrolyte membrane and the supporting substrate, a manufacturing method of introducing external air.

この製造方法では、電解質膜と支持基材とで密閉されていた空間に空気を導入することで、電解質膜−電極接合体の外周部に支持基材と密着していない部分ができる。これにより、電解質膜−電極接合体の外周部に支持基材と密着していない部分を剥離する切っ掛けにして、容易に剥離することができる。   In this manufacturing method, by introducing air into a space sealed between the electrolyte membrane and the support substrate, a portion that is not in close contact with the support substrate is formed on the outer periphery of the electrolyte membrane-electrode assembly. Thereby, it can peel easily by making the part which is not closely_contact | adhered to a support base material to the outer peripheral part of an electrolyte membrane electrode assembly.

第2の発明は、特に第1の発明の剥離工程において、電解質膜の端材が、繋ぎ部分を引っ張るときに、繋ぎ部分を通して電解質膜を支持基材から剥離しようとする力が剥離を妨げる力を上回って剥離し、少なくとも電解質膜と支持基材とで密閉されていた空間に外部の空気が導入されることで、電解質膜と支持基材間の密着部の周長が増加すると共に剥離を妨げる力が、繋ぎ部分が破断する力を上回って破断する製造方法である。   In the second invention, particularly in the peeling step of the first invention, when the end material of the electrolyte membrane pulls the connecting portion, the force to peel the electrolyte membrane from the support substrate through the connecting portion prevents the peeling. When the outside air is introduced into the space that is sealed at least between the electrolyte membrane and the support substrate, the peripheral length of the adhesion portion between the electrolyte membrane and the support substrate is increased and the separation is performed. In the manufacturing method, the hindering force breaks beyond the force at which the joint portion breaks.

この製造方法において、電解質膜の端材を剥離する工程により電解質膜の端材が繋ぎ部分を引っ張るときに、繋ぎ部分を通して電解質膜を支持基材から剥離しようとする力が、剥離を妨げる力を上回るため、繋ぎ部分が電解質膜−電極接合体の電解質膜と支持基材の密着部から剥離を始める。   In this manufacturing method, when the end of the electrolyte membrane pulls the joining portion by the step of peeling off the end of the electrolyte membrane, the force to peel the electrolyte membrane from the supporting substrate through the joining portion has a force that prevents the separation. Therefore, the connecting portion begins to peel from the adhesion portion of the electrolyte membrane-electrode assembly of the electrolyte membrane-electrode assembly.

さらに電解質膜の端材を引っ張るにつれて電解質膜と支持基材間の密着部の周長が増加し、剥離を妨げる力が繋ぎ部分を破断する力を上回るため、電解質膜−電極接合体が電解質膜の端材と共に剥離され、外れてしまう前に繋ぎ部が破断する。   Further, as the end material of the electrolyte membrane is pulled, the circumference of the close contact portion between the electrolyte membrane and the support base increases, and the force that prevents peeling exceeds the force that breaks the connecting portion, so that the electrolyte membrane-electrode assembly becomes an electrolyte membrane. The joint part is broken before it is peeled off and detached.

このとき電解質膜と支持基材とで密閉されていた空間に空気が導入され、電解質膜−電極接合体の外周部に支持基材と密着していない部分ができた状態で、電解質膜−電極接合体が支持基材に貼り付いた状態となる。これにより支持基材上から電解質膜−電極接合体が外れることなく、外周部にある支持基材と密着していない部分を切っ掛けにして、安定して容易に支持基材を剥離することができる。   At this time, air is introduced into the space sealed between the electrolyte membrane and the support substrate, and the electrolyte membrane-electrode is formed in a state where the outer periphery of the electrolyte membrane-electrode assembly is not in close contact with the support substrate. The joined body is attached to the support base material. As a result, the electrolyte membrane-electrode assembly is not detached from the support substrate, and the support substrate can be stably and easily peeled off by using a portion that is not in close contact with the support substrate on the outer periphery. .

第3の発明は、特に第2の発明の支持基材が帯状の搬送用フィルムであり、ハーフカット工程では、支持基材に密着させた電解質膜を、電解質膜−電極接合体に沿って電極を囲むように略C字形状に部分的にハーフカットし、繋ぎ部分は、電極よりも搬送用フィルムの搬送方向側に位置する製造方法である。   In the third aspect of the invention, the supporting base material of the second aspect of the invention is a belt-like transport film, and in the half-cut process, the electrolyte membrane adhered to the supporting base material is electroded along the electrolyte membrane-electrode assembly. Is a half-cut in a substantially C shape so as to surround, and the connecting portion is a manufacturing method located on the transport direction side of the transport film rather than the electrode.

この製造方法では、帯状の搬送用フィルムと、ある間隔で電解質膜に電極が形成された帯状の電解質膜−電極接合体が密着され、搬送方向に送られる場合に、ハーフカット工程で、支持基材に密着させた電解質膜を、電解質膜−電極接合体に沿って電極を囲むように略C字形状に部分的にハーフカットし、繋ぎ部分を搬送用フィルムの搬送方向側に設けることで、電解質膜の端材を搬送用フィルムの搬送方向側から連続して剥離しながら、電解質膜と支持基材とで密閉されていた空間に空気を導入することができ、支持基材付き電解質膜−電極接合体から連続して電解質膜−電極接合体を得ることができる。   In this manufacturing method, when the belt-shaped transport film and the belt-shaped electrolyte membrane-electrode assembly in which electrodes are formed on the electrolyte membrane at a certain interval are in close contact and sent in the transport direction, The electrolyte membrane closely adhered to the material is partially half-cut into a substantially C shape so as to surround the electrode along the electrolyte membrane-electrode assembly, and a connecting portion is provided on the conveyance direction side of the conveyance film, Air can be introduced into the space sealed between the electrolyte membrane and the supporting substrate while continuously peeling the end material of the electrolyte membrane from the conveying direction side of the conveying film. An electrolyte membrane-electrode assembly can be obtained continuously from the electrode assembly.

第4の発明は、特に第3の発明の繋ぎ部分が、複数箇所に形成される製造方法であり、この製造方法では、ハーフカット工程で、支持基材に密着させた電解質膜を、電解質膜−電極接合体に沿って、電極を囲むように搬送用フィルムの搬送方向側に繋ぎ部分を適切な位置に複数設けて、部分的に電解質膜をカットすることで、梯子状の電解質膜の端材を搬送用フィルムの搬送方向側から連続して剥離するとき、偏りなく剥離できるので、端材剥離時にバランスが崩れ、捻れて途中で切れることによる端材の巻き取り不良がなく、安定して繋ぎ部分を切断しながら剥離することができる。   The fourth invention is a manufacturing method in which the connecting portions of the third invention are formed in a plurality of locations, and in this manufacturing method, an electrolyte membrane adhered to a supporting substrate in a half-cut step is used as an electrolyte membrane. -Along the electrode assembly, a plurality of connecting portions are provided at appropriate positions on the transport direction side of the transport film so as to surround the electrodes, and the electrolyte membrane is partially cut, so that the end of the ladder-shaped electrolyte membrane When stripping the material continuously from the transport direction side of the transport film, it can be stripped evenly, so the balance is lost when stripping the end material, and there is no winding failure of the end material due to twisting and cutting in the middle, and stable It can be peeled while cutting the connecting portion.

第5の発明は、特に第1〜第4のいずれか1つの発明の繋ぎ部分が、電解質膜の厚み方向の途中までカットされる製造方法であり、この製造方法では、繋ぎ部分において電解質
膜の厚み方向の途中まで切り込みを入れることで、電解質膜−電極接合体の電解質膜と繋ぎ部分を破断するのに要する力を弱めることができ、端材を剥離するときに、電解質膜−電極接合体の電解質膜から繋ぎ部分が引き千切られず、電解質膜−電極接合体が端材と共に剥離してしまうことがなく、確実に電解質膜−電極接合体の電解質膜から繋ぎ部分を引き千切ることができる。
The fifth invention is a manufacturing method in which the joint portion of any one of the first to fourth inventions is cut to the middle of the thickness direction of the electrolyte membrane, and in this manufacturing method, the electrolyte membrane of the electrolyte membrane is connected at the joint portion. By cutting in the middle of the thickness direction, it is possible to weaken the force required to break the connecting portion of the electrolyte membrane-electrode assembly and the electrolyte membrane-electrode assembly when peeling off the end material. The connecting portion is not torn off from the electrolyte membrane, and the electrolyte membrane-electrode assembly is not peeled off together with the end material, and the connecting portion can be reliably torn off from the electrolyte membrane of the electrolyte membrane-electrode assembly. it can.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。また、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment. Also, in the following, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池用の電解質膜−電極接合体の製造方法の主要な製造工程を示すフローチャートである。図2は、本発明の実施の形態1の帯状の支持基材付き電解質膜−電極接合体から電解質膜−電極接合体を連続して製造する工程の説明図である。
(Embodiment 1)
FIG. 1 is a flowchart showing main manufacturing steps of a method for manufacturing an electrolyte membrane-electrode assembly for a fuel cell according to Embodiment 1 of the present invention. FIG. 2 is an explanatory diagram of a process of continuously producing an electrolyte membrane-electrode assembly from the belt-shaped electrolyte membrane-electrode assembly with a support base material according to Embodiment 1 of the present invention.

図3(a)は、本発明の実施の形態1の支持基材付き電解質膜−電極接合体の平面図であり、図3(b)は、図3(a)に示した支持基材付き電解質膜−電極接合体のA−A線断面図である。   FIG. 3 (a) is a plan view of the electrolyte membrane-electrode assembly with a supporting base material according to Embodiment 1 of the present invention, and FIG. 3 (b) is with the supporting base material shown in FIG. 3 (a). It is an AA line sectional view of an electrolyte membrane electrode assembly.

図4(a)は、本発明の実施の形態1の支持基材付き電解質膜−電極接合体をハーフカット工程後の平面図であり、図4(b)は、図4(a)に示した支持基材付き電解質膜−電極接合体のB−B線断面図であり、図4(c)は、図4(b)に示した支持基材付き電解質膜−電極接合体の○で囲んだ部分の部分拡大図である。   FIG. 4A is a plan view of the electrolyte membrane-electrode assembly with a supporting base material according to Embodiment 1 of the present invention after a half-cut process, and FIG. 4B is shown in FIG. FIG. 4C is a cross-sectional view of the electrolyte membrane-electrode assembly with a supporting substrate taken along line B-B, and FIG. 4C is surrounded by a circle of the electrolyte membrane-electrode assembly with a supporting substrate shown in FIG. It is the elements on larger scale.

図5(a)は、本発明の実施の形態1の基材付き電解質膜−電極接合体の第1剥離工程での平面図であり、図5(b)は、図5(a)に示した基材付き電解質膜−電極接合体のC−C線断面図である。   Fig.5 (a) is a top view in the 1st peeling process of the electrolyte membrane-electrode assembly with a base material of Embodiment 1 of this invention, FIG.5 (b) is shown to Fig.5 (a). It is CC sectional view taken on the line of the electrolyte membrane-electrode assembly with a substrate.

図6(a)は、本発明の実施の形態1の基材付き電解質膜−電極接合体の第2剥離工程での平面図であり、図5(b)は、図5(a)に示した基材付き電解質膜−電極接合体のD−D線断面図である。   FIG. 6 (a) is a plan view of the electrolyte membrane-electrode assembly with a substrate according to Embodiment 1 of the present invention in the second peeling step, and FIG. 5 (b) is shown in FIG. 5 (a). It is the DD sectional view taken on the line of the electrolyte membrane-electrode assembly with a substrate.

図7(a)は、本発明の実施の形態1の基材付き電解質膜−電極接合体の第3剥離工程での平面図であり、図7(b)は、図7(a)に示した基材付き電解質膜−電極接合体のE−E線断面図である。   Fig.7 (a) is a top view in the 3rd peeling process of the electrolyte membrane-electrode assembly with a base material of Embodiment 1 of this invention, FIG.7 (b) is shown to Fig.7 (a). It is the EE sectional view taken on the line of the electrolyte membrane-electrode assembly with a base material.

図8(a)は、本発明の実施の形態1の基材付き電解質膜−電極接合体の剥離工程完了での平面図であり、図8(b)は、図8(a)に示した基材付き電解質膜−電極接合体のF−F線断面図である。   FIG. 8 (a) is a plan view of the electrolyte membrane-electrode assembly with a substrate according to Embodiment 1 of the present invention after the peeling process is completed, and FIG. 8 (b) is shown in FIG. 8 (a). It is the FF sectional view taken on the line of the electrolyte membrane-electrode assembly with a base material.

図9(a)は、本発明の実施の形態1の基材付き電解質膜−電極接合体から支持基材を分離した分離工程後の電解質膜−電極接合体の平面図であり、図9(b)は、図9(a)に示した電解質膜−電極接合体のG−G線断面図である。   FIG. 9A is a plan view of the electrolyte membrane-electrode assembly after the separation step in which the supporting substrate is separated from the electrolyte membrane-electrode assembly with a substrate according to Embodiment 1 of the present invention. FIG. 9B is a cross-sectional view of the electrolyte membrane-electrode assembly shown in FIG.

図1に示すように、本実施の形態における燃料電池用の電解質膜−電極接合体の製造方法の主要な製造工程を示すフローチャートは、支持基材付き電解質膜−電極接合体を準備する準備工程S10と、電解質膜における電解質膜−電極接合体に沿う部分の一部に完全にカットされずに電解質膜の端材と繋がる繋ぎ部分ができるように、電解質膜と支持基材のうちの電解質膜のみを部分的にカットするハーフカット工程S11と、電解質膜の端材
を支持基材付き電解質膜−電極接合体から剥がす剥離工程S12と、支持基材付き電解質膜−電極接合体と支持基材とを剥離して分離する分離工程S13とからなる。
As shown in FIG. 1, the flowchart showing the main manufacturing steps of the method for manufacturing an electrolyte membrane-electrode assembly for a fuel cell in the present embodiment is a preparation step for preparing an electrolyte membrane-electrode assembly with a supporting substrate. S10 and the electrolyte membrane of the electrolyte membrane and the supporting substrate so that a part of the portion of the electrolyte membrane along the electrolyte membrane-electrode assembly is connected to the end material of the electrolyte membrane without being completely cut A half-cut process S11 for partially cutting only, a peeling process S12 for peeling off the end material of the electrolyte membrane from the electrolyte membrane-electrode assembly with a supporting substrate, and an electrolyte membrane-electrode assembly with a supporting substrate and a supporting substrate And separation step S13 for separating and separating.

剥離工程S12は、さらに、電解質膜の端材を支持基材から剥離する方向に引っ張り、剥離開始から繋ぎ部分まで剥離する第1剥離工程S12aと、電解質膜の端材と繋ぎ部分が破断するまでの第2剥離工程S12bと、電解質膜との繋ぎ部分が破断し、電解質膜の端材が支持基材から剥離する第3剥離工程S12cに分かれている。   The peeling step S12 is further performed by pulling the end material of the electrolyte membrane from the supporting base material in a direction to peel off from the start of peeling until the joining portion, and until the joining portion and the end material of the electrolyte membrane are broken. The second peeling step S12b and the connecting portion of the electrolyte membrane are broken, and the end material of the electrolyte membrane is separated into a third peeling step S12c in which the end material is peeled off from the support substrate.

図2において、帯状の支持基材付き電解質膜−電極接合体1Rを連続して加工する工程は、準備工程S10と、ハーフカット工程S11と、剥離工程S12と、分離工程S13を有している。   In FIG. 2, the process of continuously processing the electrolyte membrane-electrode assembly 1R with a belt-like support substrate includes a preparation process S10, a half-cut process S11, a peeling process S12, and a separation process S13. .

帯状の支持基材付き電解質膜−電極接合体1Rは、帯状の支持基材20と帯状の電解質膜10の上面にカソード2A、下面にアノード2Bがある間隔で形成されている。帯状の電解質膜と同じ大きさの剥離可能な帯状の支持基材20がアノード2Bの外側の密着部3にて密着して貼り合わされている。アノード2Bと支持基材20の密着力は、ほとんどない。   The electrolyte membrane-electrode assembly 1 </ b> R with a belt-like support base is formed at intervals with the cathode 2 </ b> A on the upper surface of the belt-like support base 20 and the belt-like electrolyte membrane 10 and the anode 2 </ b> B on the lower surface. A strip-like support base material 20 having the same size as that of the belt-like electrolyte membrane is adhered and bonded together at the close contact portion 3 outside the anode 2B. There is almost no adhesion between the anode 2B and the support substrate 20.

帯状の支持基材付き電解質膜−電極接合体1Rは、左から準備工程S10、次にハーフカット工程S11、剥離工程S12、分離工程S13の順で加工される。   The belt-shaped electrolyte membrane-electrode assembly 1R with a supporting substrate is processed from the left in the order of the preparation step S10, then the half-cut step S11, the peeling step S12, and the separation step S13.

準備工程S10は、ローラーA51に巻かれた帯状の支持基材付き電解質膜−電極接合体1Rを、カソード2Aを上にして次工程へ送る工程である。   The preparation step S10 is a step of sending the belt-shaped electrolyte membrane-electrode assembly 1R with a supporting base wound around the roller A51 to the next step with the cathode 2A facing up.

ハーフカット工程S11は、支持基材20と反対側に設置したハーフカット加工を行うレーザー照射装置50を用いて、帯状の支持基材付き電解質膜−電極接合体1Rにレーザーを照射して、ハーフカット加工する工程である。   Half-cut process S11 irradiates laser to 1R of belt-shaped electrolyte membrane-electrode assembly 1R with a support base material using laser irradiation device 50 which performs half cut processing installed in the opposite side to support base material 20, and is half It is a process of cutting.

剥離工程S12は、帯状の支持基材付き電解質膜−電極接合体1Rから電解質膜の端材10Aを剥離するときの引張方向を決めるローラーB52と電解質膜の端材10Aを巻き取るローラーC53を用いて、帯状の支持基材付き電解質膜−電極接合体1Rから電解質膜の端材10Aを連続して剥離する工程であって、図5に示す第1剥離工程S12a、図6に示す第2剥離工程S12b、図7に示す第3剥離工程S12cを有する。   In the peeling step S12, a roller B52 that determines a tensile direction when peeling the end material 10A of the electrolyte membrane from the belt-shaped electrolyte membrane-electrode assembly 1R with a supporting substrate and a roller C53 that winds up the end material 10A of the electrolyte membrane are used. In this step, the end member 10A of the electrolyte membrane is continuously peeled from the electrolyte membrane-electrode assembly 1R with the belt-like support base material, and the first peeling step S12a shown in FIG. 5 and the second peeling shown in FIG. Step S12b has a third peeling step S12c shown in FIG.

分離工程S13は、電解質膜の端材10Aが剥離された支持基材20に密着した電解質膜−電極接合体100をカソード2A側から電解質膜10部分を吸着する吸着治具56、支持基材20を剥離するローラーD54、支持基材20を巻き取るローラーE55を用いて、電解質膜の端材10Aが剥離された帯状の支持基材付き電解質膜−電極接合体1Rから、連続して電解質膜−電極接合体100を得ると共に、帯状の支持基材20をローラーE55に巻き取る工程である。   The separation step S13 includes an adsorption jig 56 for adsorbing the electrolyte membrane 10 portion from the cathode 2A side and the support base material 20 on the electrolyte membrane-electrode assembly 100 in close contact with the support base material 20 from which the end material 10A of the electrolyte membrane has been peeled off. From the belt-shaped electrolyte membrane with a supporting base material-electrode assembly 1R from which the end material 10A of the electrolytic membrane has been peeled off using the roller D54 that peels off and the roller E55 that winds up the supporting base material 20, the electrolyte membrane- In this step, the electrode assembly 100 is obtained and the belt-like support base material 20 is wound around the roller E55.

図3(a)、図3(b)は、準備工程S10における支持基材付き電解質膜−電極接合体1の状態を示している。支持基材付き電解質膜−電極接合体1のA−A線断面(図3(b))は、後工程で設置する予定の繋ぎ部を通る部分の断面である。   FIG. 3A and FIG. 3B show the state of the electrolyte membrane-electrode assembly 1 with a supporting base material in the preparation step S10. The AA line cross section (FIG.3 (b)) of the electrolyte membrane-electrode assembly 1 with a support base material is a cross section of the part which passes along the connection part which is due to be installed by a post process.

2点鎖線の裁断予定ライン30よりも全周にわたって大きい電解質膜10の上面にカソード2A、下面にアノード2Bがそれぞれ形成され、電解質膜10と同じ大きさの剥離可能な支持基材20がアノード2Bの外側の密着部3にて密着して貼り合わされている。アノード2Bと支持基材20の密着力は、ほとんどない。   A cathode 2A is formed on the upper surface of the electrolyte membrane 10 and the anode 2B is formed on the lower surface of the electrolyte membrane 10 that is larger than the two-dot chain line scheduled cutting line 30 over the entire circumference, and a detachable support base 20 having the same size as the electrolyte membrane 10 is formed on the anode 2B. Are closely adhered to each other at the close contact portion 3 outside. There is almost no adhesion between the anode 2B and the support substrate 20.

図4(a)、図4(b)、図4(c)は、ハーフカット工程S11における支持基材付き電解質膜−電極接合体1の状態を示している。ハーフカット部6は電解質膜10のみがカットされており、支持基材20は切断されていない。   FIG. 4A, FIG. 4B, and FIG. 4C show the state of the electrolyte membrane-electrode assembly 1 with the supporting base material in the half-cut step S11. In the half-cut portion 6, only the electrolyte membrane 10 is cut, and the support base material 20 is not cut.

図4(c)の拡大図に示すように、電解質膜10を完全にカットするため、電解質膜10を貫通させて支持基材20の一部まで切り込みが入るが、カットはされていない状態である。   As shown in the enlarged view of FIG. 4 (c), in order to completely cut the electrolyte membrane 10, the electrolyte membrane 10 is penetrated and a part of the support base material 20 is cut, but the cut is not performed. is there.

ハーフカット部6は、裁断予定ライン上にあるが、ラインが閉じないように部分的に繋ぎ部4が設置されており、ここでは、電解質膜10はカットされていない。繋ぎ部分は任意の位置に設定が可能である。ここで、電解質膜10において裁断予定ラインの外側部分を特に電解質膜の端材10Aと称する。   The half-cut portion 6 is on the line to be cut, but the connecting portion 4 is partially installed so that the line is not closed. Here, the electrolyte membrane 10 is not cut. The connecting portion can be set at an arbitrary position. Here, the outer portion of the cutting line in the electrolyte membrane 10 is particularly referred to as an electrolyte membrane end material 10A.

図5(a)、図5(b)は、第1剥離工程S12aにおける支持基材付き電解質膜−電極接合体1の状態を示している。C−C線断面(図5(b))は、繋ぎ部4が設置されていた位置を通る部分の断面を示している。   FIG. 5A and FIG. 5B show the state of the electrolyte membrane-electrode assembly 1 with a supporting base material in the first peeling step S12a. A cross section taken along the line CC (FIG. 5B) shows a cross section of a portion passing through the position where the connecting portion 4 is installed.

第1剥離工程S12aは、支持基材付き電解質膜−電極接合体1から電解質膜の端材10Aを引張方向に引っ張りながら剥離方向に剥離を開始し、支持基材20から剥離した位置が、繋ぎ部4に到達するまでの途中の状態を示している。   The first peeling step S12a starts peeling in the peeling direction while pulling the end material 10A of the electrolyte membrane from the electrolyte membrane-electrode assembly 1 with the supporting base material in the tensile direction, and the position where the peeling from the supporting base material 20 starts is connected. A state in the middle of reaching part 4 is shown.

引張方向に電解質膜の端材10Aを引っ張ることで、電解質膜の端材10Aと支持基材20の間の密閉されていた空間に空気が導入され、繋ぎ部4まで支持基材20から電解質膜の端材10Aが剥離される。このとき電解質膜10と支持基材20の間の密閉されていた空間には空気は導入されない。   By pulling the end material 10A of the electrolyte membrane in the pulling direction, air is introduced into the sealed space between the end material 10A of the electrolyte membrane and the support base material 20 and the electrolyte membrane from the support base material 20 to the joint portion 4. The end material 10A is peeled off. At this time, air is not introduced into the sealed space between the electrolyte membrane 10 and the support substrate 20.

図6(a)、図6(b)は、第2剥離工程S12bにおける支持基材付き電解質膜−電極接合体1の状態を示している。D−D線断面(図6(b))は、繋ぎ部4が設置されていた位置を通る部分の断面を示している。   FIG. 6A and FIG. 6B show the state of the electrolyte membrane-electrode assembly 1 with the supporting base material in the second peeling step S12b. A DD line cross section (FIG. 6B) shows a cross section of a portion passing through a position where the connecting portion 4 is installed.

第2剥離工程S12bは、支持基材付き電解質膜−電極接合体1から電解質膜の端材10Aを剥離した位置が、繋ぎ部4に到達し、電解質膜の端材10Aと繋ぎ部4の間が破断するまでの状態を示している。   As for 2nd peeling process S12b, the position which peeled off the end material 10A of the electrolyte membrane from the electrolyte membrane-electrode assembly 1 with a supporting base material arrives at the connection part 4, and between the end material 10A of the electrolyte membrane and the connection part 4 Shows the state until rupture.

引張方向に電解質膜の端材10Aを引っ張ることで、繋ぎ部4を通して電解質膜10が支持基材20から剥離され、繋ぎ部4の位置から電解質膜10と支持基材20の間の密閉されていた空間に空気が導入され始める。   By pulling the end material 10A of the electrolyte membrane in the tensile direction, the electrolyte membrane 10 is peeled from the support base material 20 through the joint portion 4, and the electrolyte membrane 10 and the support base material 20 are sealed from the position of the joint portion 4. Air begins to be introduced into the open space.

図7(a)、図7(b)は、第3剥離工程S12cにおける支持基材付き電解質膜−電極接合体1の状態を示している。E−E線断面(図7(b))は、非密着部5の位置を通る部分の断面を示している。   FIG. 7A and FIG. 7B show the state of the electrolyte membrane-electrode assembly 1 with the supporting base material in the third peeling step S12c. The cross section taken along the line EE (FIG. 7B) shows a cross section of a portion passing through the position of the non-contact portion 5.

第3剥離工程S12cは、支持基材付き電解質膜−電極接合体1から電解質膜の端材10Aの剥離により、電解質膜の端材10Aと繋ぎ部4が破断した後、電解質膜10と電解質膜の端材10Aは分離され、電解質膜10と支持基材20の間の密閉されていた空間に空気が導入されることによりできた非密着部5が形成された状態である。   In the third peeling step S12c, the electrolyte membrane end material 10A and the joint portion 4 are broken by peeling the electrolyte membrane end material 10A from the electrolyte membrane-electrode assembly 1 with the supporting base material, and then the electrolyte membrane 10 and the electrolyte membrane The end material 10A is separated, and a non-contact portion 5 formed by introducing air into the sealed space between the electrolyte membrane 10 and the support base material 20 is formed.

図8(a)、図8(b)は、剥離工程S12において電解質膜の端材10Aが完全に剥離したときの支持基材付き電解質膜−電極接合体1の状態を示している。F−F線断面(図8(b))は、非密着部5の位置を通る部分の断面を示している。電解質膜10の端部
からアノード2Bに向かって電解質膜10と支持基材20の間の密閉されていた空間に、非密着部5が形成されている。
FIGS. 8A and 8B show the state of the electrolyte membrane-electrode assembly 1 with the supporting base material when the end member 10A of the electrolyte membrane is completely peeled in the peeling step S12. A cross section taken along line F-F (FIG. 8B) shows a cross section of a portion passing through the position of the non-contact portion 5. A non-contact portion 5 is formed in a sealed space between the electrolyte membrane 10 and the support base material 20 from the end of the electrolyte membrane 10 toward the anode 2B.

図9(a)、図9(b)は、分離工程S13後の電解質膜−電極接合体100の状態を示している。電解質膜10の上面にカソード2Aが形成され、電解質膜10の下面にカソード2Aとほぼ同じ大きさ同じ位置にアノード2Bが形成され、電解質膜−電極接合体100の外形は裁断予定ラインと同寸法である。   FIG. 9A and FIG. 9B show the state of the electrolyte membrane-electrode assembly 100 after the separation step S13. The cathode 2A is formed on the upper surface of the electrolyte membrane 10, and the anode 2B is formed on the lower surface of the electrolyte membrane 10 at the same position and the same size as the cathode 2A. The outer shape of the electrolyte membrane-electrode assembly 100 is the same size as the line to be cut. It is.

また、具体的には両電極は、以下のようにして形成する。ケッチェンブラックECに白金を重量比1:1で担持させた触媒粉末10gに水35g及び水素イオン伝導性高分子電解質のアルコール分散液(旭硝子株式会社製、9%FSS)59gを混合攪拌してインクを作製する。次に、このインクを電解質膜10の両主面にスプレー塗工を用いて20μmの厚みに塗工乾燥し、電極が形成される。   Specifically, both electrodes are formed as follows. 35 g of water and 59 g of an alcohol dispersion of hydrogen ion conductive polymer electrolyte (9% FSS, manufactured by Asahi Glass Co., Ltd.) were mixed and stirred in 10 g of catalyst powder in which platinum was supported on Ketjen Black EC at a weight ratio of 1: 1. Make ink. Next, this ink is applied and dried to a thickness of 20 μm on both main surfaces of the electrolyte membrane 10 using a spray coating to form electrodes.

ここで、電解質膜10は、固体高分子材料、フッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。カソード2Aおよびアノード2Bは、白金触媒を担持した導電性の担体、カーボン粒子(以下、触媒担持カーボン粒子と称する)を、プロトン伝導性を有するアイオノマーで被覆して形成された電極であり、電解質膜10の両面に接合され電解質膜−電極接合体を形成する。   Here, the electrolyte membrane 10 is a proton conductive ion exchange membrane formed of a solid polymer material and a fluorine-based resin, and exhibits good electrical conductivity in a wet state. The cathode 2A and the anode 2B are electrodes formed by coating a conductive carrier carrying a platinum catalyst, carbon particles (hereinafter referred to as catalyst-carrying carbon particles) with an ionomer having proton conductivity, and an electrolyte membrane. 10 are bonded to both surfaces to form an electrolyte membrane-electrode assembly.

ここで、アイオノマーは、電解質膜10と同固体高分子材料である高分子電解質樹脂(フッ素系樹脂)であり、その有するイオン交換基によりプロトン伝導性を有する。   Here, the ionomer is a polymer electrolyte resin (fluorine resin) that is the same solid polymer material as the electrolyte membrane 10 and has proton conductivity due to the ion exchange group that the ionomer has.

電解質膜10には、パーフルオロカーボンスルホン酸膜(デュポン(株)のナフィオン211(登録商標))を用いる。また、支持基材20は、厚さ100umのポリエステル系フィルム(東洋紡のコスモシャインA4100(登録商標))を用いる。   As the electrolyte membrane 10, a perfluorocarbon sulfonic acid membrane (Nafion 211 (registered trademark) of DuPont) is used. The support base 20 is a polyester film having a thickness of 100 μm (Toyobo Cosmo Shine A4100 (registered trademark)).

さらに、レーザー照射装置は、炭酸ガスレーザーであり、キーエンス製のML−Z9520を用いる。照射時の出力は70%、走査速度は400mm/sとする。   Further, the laser irradiation apparatus is a carbon dioxide laser, and ML-Z9520 manufactured by Keyence is used. The output during irradiation is 70%, and the scanning speed is 400 mm / s.

以上の燃料電池用の電解質膜−電極接合体の製造方法について、以下その動作、作用について説明する。   About the manufacturing method of the above electrolyte membrane-electrode assembly for fuel cells, the operation | movement and an effect | action are demonstrated below.

まず、ロール状に巻かれた帯状の支持基材付き電解質膜−電極接合体1Rを用意し、連続して製造する工程の先頭である準備工程S10に支持基材20が搬送方向に対して下面になるように連結し、次のハーフカット工程S11に所定の送り量送る。送り量は、電極が形成されている位置により決まる。   First, an electrolyte membrane-electrode assembly 1R with a belt-like support base material wound in a roll shape is prepared, and the support base material 20 is placed on the lower surface with respect to the transport direction in the preparation step S10 that is the head of the continuous manufacturing step. And a predetermined feed amount is sent to the next half-cut process S11. The feed amount is determined by the position where the electrode is formed.

ハーフカット工程S11では、レーザー照射装置50を用いて、裁断予定ライン30に沿って電解質膜10上に繋ぎ部4を形成しながら照射し、電解質膜10のみをハーフカットし、次工程に送る。   In the half cut step S11, the laser irradiation device 50 is used to irradiate the electrolyte membrane 10 along the cutting line 30 while forming the connecting portion 4, and only the electrolyte membrane 10 is half cut and sent to the next step.

剥離工程S12では、電解質膜の端材10Aを安定して支持基材20から剥離するために搬送方向に対して、捻れないようにローラーB52により引張方向を決めて剥離し、電解質膜の端材10Aを巻き取るローラーC53により平行に巻き取る。   In the peeling step S12, in order to stably peel the end material 10A of the electrolyte membrane from the support base material 20, the tensile direction is determined by the roller B52 so as not to twist in the transport direction, and the end material of the electrolyte membrane is peeled off. 10A is wound in parallel by a roller C53 that winds up 10A.

このとき繋ぎ部4は、その位置や数によっては、剥離時のバランスが崩れ、捻れや破断が発生する可能性があるため、剥離開始側の裁断予定ライン30の少なくとも両角に設ける。繋ぎ部4の幅は、電解質膜10の引っ張り強度や支持基材との密着力、電解質膜の端材10Aを引っ張る速度などを元に決定する。ここでは0.3mmとした。   At this time, depending on the position and number of the connecting portions 4, the balance at the time of peeling may be lost, and twisting or breaking may occur. Therefore, the connecting portions 4 are provided at at least both corners of the cutting scheduled line 30 on the peeling start side. The width of the connecting portion 4 is determined based on the tensile strength of the electrolyte membrane 10, the adhesive strength with the supporting base material, the speed at which the end material 10 </ b> A of the electrolyte membrane is pulled, and the like. Here, it was 0.3 mm.

図では示していないが、電解質膜10の繋ぎ部4の破断に要する力が強く、電解質膜10と支持基材20との間の剥離を妨げる力も弱いため、電解質膜−電極接合体100が電解質膜の端材10Aと共に剥離されてしまうことを防ぐため、生産安定性を考慮して、繋ぎ部4の電解質膜10に、電解質膜10の厚みの半分程度の切り込みを入れている。この切り込みは、レーザーの出力を落とすことで、電解質膜10に与える熱エネルギーを少なくしてできる。   Although not shown in the drawing, the force required to break the connecting portion 4 of the electrolyte membrane 10 is strong, and the force that prevents separation between the electrolyte membrane 10 and the support base material 20 is also weak, so that the electrolyte membrane-electrode assembly 100 is an electrolyte. In order to prevent peeling with the end material 10A of the membrane, in consideration of production stability, the electrolyte membrane 10 of the connecting portion 4 is cut by about half the thickness of the electrolyte membrane 10. This cutting can reduce the thermal energy applied to the electrolyte membrane 10 by reducing the output of the laser.

こうしてハーフカットされた帯状の支持基材付き電解質膜−電極接合体1Rから、電解質膜の端材10Aを、先に述べた剥離開始側から搬送方向と支持基材20から剥離する方向に所定の条件で剥がし始め、繋ぎ部4に差し掛かると、繋ぎ部4を通して電解質膜10を支持基材20から剥離しようとする力が、剥離を妨げる力を上回って剥離し、裁断予定ライン30の内側の少なくとも電解質膜10と支持基材20とで密閉されていた空間に外部の空気が導入され非密着部5ができる。   From the strip-shaped electrolyte membrane-electrode assembly 1R with the support substrate half-cut in this manner, the electrolyte membrane end material 10A is predetermined in the transport direction and the direction of peeling from the support substrate 20 from the aforementioned peeling start side. When the peeling starts under the condition and the joining portion 4 is reached, the force to peel the electrolyte membrane 10 from the support base material 20 through the joining portion 4 peels off more than the force that prevents the peeling, and the inner side of the cutting line 30 External air is introduced into a space sealed with at least the electrolyte membrane 10 and the support base material 20 to form the non-contact portion 5.

さらに、引っ張り続けると、電解質膜10と支持基材20の間の非密着部5の面積が増加すると共に、密着部の周長が増加し剥離を妨げる力が、繋ぎ部4が破断する力を上回って破断し、電解質膜−電極接合体100と支持基材20が外れることなく密着したまま電解質膜の端材10Aと分離される。これにより、繋ぎ部4が設置されていたところから電極側に電解質膜10と支持基材20の間に非密着部5が形成される。   Furthermore, if it continues pulling, while the area of the non-contact part 5 between the electrolyte membrane 10 and the support base material 20 increases, the peripheral length of the close contact part increases, and the force that prevents peeling is the force that the joint part 4 breaks. The electrolyte membrane-electrode assembly 100 and the supporting base material 20 are separated from the end material 10A of the electrolyte membrane while keeping in close contact with each other without coming off. Thereby, the non-contact part 5 is formed between the electrolyte membrane 10 and the support base material 20 on the electrode side from the place where the connecting part 4 is installed.

この電解質膜の端材10Aは、梯子状に繋がっているので、帯状の支持基材付き電解質膜−電極接合体1Rから、電解質膜の端材10Aを連続して剥離することができる。   Since the electrolyte membrane end material 10A is connected in a ladder shape, the electrolyte membrane end material 10A can be continuously peeled from the belt-shaped electrolyte membrane-electrode assembly 1R with a supporting substrate.

剥離工程S12にて形成された非密着部5は、剥離開始側の裁断予定ライン30の少なくとも両角にある。   The non-contact part 5 formed in peeling process S12 exists in at least both corners of the cutting scheduled line 30 on the peeling start side.

分離工程S13で連続的に、電解質膜−電極接合体100を得るために、電解質膜−電極接合体100のカソード2A側の面を吸着治具56で吸着した状態で、ローラーD54を剥離方向に動かしながら支持基材20を剥離し、吸着治具56側に電解質膜−電極接合体100を引き渡し、巻き取りローラーE55で支持基材20を巻き取る。   In order to obtain the electrolyte membrane-electrode assembly 100 continuously in the separation step S13, the roller D54 is moved in the peeling direction while the surface of the electrolyte membrane-electrode assembly 100 on the cathode 2A side is adsorbed by the adsorption jig 56. The support substrate 20 is peeled off while moving, the electrolyte membrane-electrode assembly 100 is delivered to the suction jig 56 side, and the support substrate 20 is wound up by the winding roller E55.

これにより、帯状の支持基材付き電解質膜−電極接合体1Rから、電解質膜−電極接合体100を連続して得ることができる。   Thereby, the electrolyte membrane-electrode assembly 100 can be continuously obtained from the belt-shaped electrolyte membrane-electrode assembly 1R with a supporting substrate.

以上のように、本実施の形態においては、帯状の支持基材付き電解質膜−電極接合体1Rから、電解質膜−電極接合体100を得るために、準備工程S10、ハーフカット工程S11、剥離工程S12、分離工程S13を有する設備構成とし、電解質膜10上に繋ぎ部4を形成して電解質膜10のみをハーフカットし、電解質膜の端材10Aを繋ぎ部4のある側から剥離するとき、繋ぎ部4から電極側に電解質膜10と支持基材20の間に非密着部5を形成することで、安定して連続的に電解質膜−電極接合体100と支持基材20を引き剥がすことができ、電解質膜−電極接合体100の生産性が向上する。   As described above, in the present embodiment, in order to obtain the electrolyte membrane-electrode assembly 100 from the belt-shaped electrolyte membrane-electrode assembly 1R with the supporting base material, the preparation step S10, the half cut step S11, and the peeling step S12, having an equipment configuration having a separation step S13, forming the connecting portion 4 on the electrolyte membrane 10 and half-cutting only the electrolyte membrane 10, and peeling off the electrolyte membrane end material 10A from the side where the connecting portion 4 is present. By forming the non-contact portion 5 between the electrolyte membrane 10 and the support base material 20 from the connecting portion 4 to the electrode side, the electrolyte membrane-electrode assembly 100 and the support base material 20 can be stably and continuously peeled off. Thus, the productivity of the electrolyte membrane-electrode assembly 100 is improved.

なお、図中にあるローラーは、説明に必要なローラーのみであり、実際は、必要な位置に必要に応じてある。   In addition, the roller in a figure is only a roller required for description, and is actually needed as needed in the required position.

なお、上述の実施の形態では、電解質膜として、パーフルオロカーボンスルホン酸膜(デュポン(株)のナフィオン211(登録商標))を用いたが、電解質膜としては、フッ素を含む高分子を骨格とし、スルホン酸基、カルボシキル基、リン酸基などの官能基を有し、水素イオンを含む水素イオン伝導性のフッ素系の樹脂を用いることができ、例えば、
アシプレックス(登録商標)やフレミオン(登録商標)などの他の電解質膜を用いることができる。
In the above-described embodiment, a perfluorocarbon sulfonic acid membrane (Nafion 211 (registered trademark) of DuPont) was used as the electrolyte membrane. However, as the electrolyte membrane, a polymer containing fluorine is used as a skeleton, A functional group such as a sulfonic acid group, a carboxyl group, and a phosphoric acid group, and a hydrogen ion conductive fluorine-based resin containing hydrogen ions can be used.
Other electrolyte membranes such as Aciplex (registered trademark) and Flemion (registered trademark) can be used.

また、電解質膜として、スルホン化ポリフェニレン、スルホン化ポリベンズイミダゾール、スルホン化ポリエーテルエーテルケトンなどを骨格とし、水素イオンを含む水素イオン伝導性の炭化水素系の樹脂を用いても構わない。   Further, as the electrolyte membrane, a sulfonated polyphenylene, a sulfonated polybenzimidazole, a sulfonated polyetheretherketone, or the like as a skeleton and a hydrogen ion conductive hydrocarbon resin containing hydrogen ions may be used.

また支持基材については、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)等のポリエステル系、ポリスチレン等の高分子フィルムによって形成することもできる。   Moreover, about a support base material, it can also form with polymer films, such as polyester systems, such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate), and polystyrene.

また帯状の支持基材付き電解質膜−電極接合体1Rを連続して加工する工程で説明したが、裁断予定ラインより大きめに切り出された支持基材付き電解質膜−電極接合体に対して、準備工程S10、ハーフカット工程S11、剥離工程S12、分離工程S13は、それぞれ単独で行うこともできる。   Moreover, although it demonstrated in the process which processes continuously the electrolyte membrane-electrode assembly 1R with a strip | belt-shaped support base material, it prepares with respect to the electrolyte membrane-electrode assembly with a support base material cut out larger than the cutting plan line. The step S10, the half cut step S11, the peeling step S12, and the separation step S13 can be performed individually.

レーザー照射装置は、矩形形状でのレーザー照射が可能なレーザー装置や、レーザー照射位置を縦横の2次元的に走査可能なレーザー装置であればよい。レーザー物質については、炭酸ガスなどの気体や、YAGなどの固体などがあるが、必要に応じて選択が可能である。また、ハーフカットする手段として、トムソン刃を使用することもできる。   The laser irradiation apparatus may be a laser apparatus capable of laser irradiation in a rectangular shape or a laser apparatus capable of two-dimensionally scanning a laser irradiation position in the vertical and horizontal directions. Laser materials include gases such as carbon dioxide and solids such as YAG, but can be selected as necessary. A Thomson blade can also be used as means for half-cutting.

以上のように、本発明の燃料電池用の電解質膜−電極接合体の製造方法によれば、帯状の支持基材付き電解質膜−電極接合体から短時間で安定して電解質膜−電極接合体を得ることができるため電解質膜−電極接合体の生産性が向上し、コージェネレーションシステムや電気自動車などに用いられる燃料電池の製造方法として有用である。   As described above, according to the method for producing an electrolyte membrane-electrode assembly for a fuel cell of the present invention, the electrolyte membrane-electrode assembly can be stably stabilized in a short time from the belt-shaped electrolyte membrane-electrode assembly with a supporting substrate. Therefore, the productivity of the electrolyte membrane-electrode assembly is improved, which is useful as a method for producing a fuel cell used in a cogeneration system, an electric vehicle, and the like.

1 支持基材付き電解質膜−電極接合体
1R 帯状の支持基材付き電解質膜−電極接合体
1T 切断された支持基材付き電解質膜−電極接合体
2A カソード
2B アノード
3 密着部
4 繋ぎ部
5 非密着部
6 ハーフカット部
10 電解質膜
10A 電解質膜の端材
20 支持基材
30 裁断予定ライン
50 レーザー照射装置
51 ローラーA
52 ローラーB
53 ローラーC
54 ローラーD
55 ローラーE
56 吸着治具
60 孔
100 電解質膜−電極接合体
S10 準備工程
S11 ハーフカット工程
S12 剥離工程
S12a 第1剥離工程
S12b 第2剥離工程
S12c 第3剥離工程
S13 分離工程
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane with support base material-electrode assembly 1R Electrode membrane with electrode support substrate-electrode assembly 1T Cut electrolyte membrane with support base material-electrode assembly 2A Cathode 2B Anode 3 Adhering portion 4 Connecting portion 5 Non Adhering portion 6 Half cut portion 10 Electrolyte membrane 10A End material of electrolyte membrane 20 Support base material 30 Cutting line 50 Laser irradiation device 51 Roller A
52 Roller B
53 Roller C
54 Roller D
55 Roller E
56 Suction Jig 60 Hole 100 Electrolyte Membrane-Electrode Assembly S10 Preparatory Step S11 Half Cut Step S12 Peeling Step S12a First Peeling Step S12b Second Peeling Step S12c Third Peeling Step S13 Separation Step

Claims (5)

燃料電池用の電解質膜−電極接合体の製造方法であって、
支持基材の片面に密着させた、両面に電極が形成された電解質膜を、前記電解質膜−電極接合体に沿って、前記電極を囲むように部分的にハーフカットするハーフカット工程と、前記ハーフカット後の前記電解質膜の端材を、前記支持基材から剥離する剥離工程と、
前記電解質膜から切り離された前記電解質膜−電極接合体と、前記支持基材とを分離する分離工程と、
を有し、
前記ハーフカット工程では、前記電解質膜における前記電解質膜−電極接合体に沿う部分の一部に、完全にカットされずに前記電解質膜の端材と繋がる繋ぎ部分ができるように、前記電解質膜と前記支持基材のうちの前記電解質膜のみを部分的にカットし、
前記剥離工程において、前記電解質膜の端材を前記支持基材から剥離する方向に引っ張る力で前記繋ぎ部分を前記支持基材から引き剥がして、前記繋ぎ部分を引き千切ると共に、少なくとも前記電解質膜と前記支持基材とで密閉されていた空間に、外部の空気を導入する、
燃料電池用の電解質膜−電極接合体の製造方法。
A method for producing an electrolyte membrane-electrode assembly for a fuel cell, comprising:
A half-cut step in which an electrolyte membrane having electrodes formed on both sides thereof in close contact with one side of a supporting substrate is partially half-cut so as to surround the electrode along the electrolyte membrane-electrode assembly; A peeling step of peeling off the end material of the electrolyte membrane after half-cutting from the support substrate;
A separation step of separating the electrolyte membrane-electrode assembly separated from the electrolyte membrane and the support substrate;
Have
In the half cut step, the electrolyte membrane and the electrolyte membrane so that a part of the portion along the electrolyte membrane-electrode assembly in the electrolyte membrane is connected to the end material of the electrolyte membrane without being completely cut. Only the electrolyte membrane of the support substrate is partially cut,
In the peeling step, the joining portion is peeled off from the supporting base material by a force pulling the end material of the electrolyte membrane from the supporting base material, and the joining portion is torn off, and at least the electrolyte membrane And introducing external air into the space sealed with the support substrate,
A method for producing an electrolyte membrane-electrode assembly for a fuel cell.
前記剥離工程において、前記電解質膜の端材は、前記繋ぎ部分を引っ張るときに、前記繋ぎ部分を通して前記電解質膜を前記支持基材から剥離しようとする力が剥離を妨げる力を上回って剥離し、少なくとも前記電解質膜と前記支持基材とで密閉されていた空間に外部の空気が導入されることで、前記電解質膜と前記支持基材間の密着部の周長が増加すると共に剥離を妨げる力が、前記繋ぎ部分が破断する力を上回って破断する、
請求項1に記載の燃料電池用の電解質膜−電極接合体の製造方法。
In the peeling step, the end material of the electrolyte membrane peels off the force that prevents the electrolyte membrane from being peeled from the support base material through the joining portion when pulling the joining portion, A force that prevents separation and increases the peripheral length of the close contact portion between the electrolyte membrane and the support substrate by introducing external air into a space that is sealed at least by the electrolyte membrane and the support substrate. Is broken above the force at which the connecting portion breaks,
The manufacturing method of the electrolyte membrane-electrode assembly for fuel cells of Claim 1.
前記支持基材は、帯状の搬送用フィルムであり、
前記ハーフカット工程では、前記支持基材に密着させた前記電解質膜を、前記電解質膜−電極接合体に沿って、前記電極を囲むように略C字形状に部分的にハーフカットし、
前記繋ぎ部分は、前記電極よりも前記搬送用フィルムの搬送方向側に位置する、
請求項2に記載の燃料電池用の電解質膜−電極接合体の製造方法。
The support base material is a belt-shaped transport film,
In the half-cutting step, the electrolyte membrane adhered to the support substrate is partially half-cut into a substantially C shape so as to surround the electrode along the electrolyte membrane-electrode assembly,
The connecting portion is located closer to the transport direction side of the transport film than the electrode.
The manufacturing method of the electrolyte membrane electrode assembly for fuel cells of Claim 2.
前記繋ぎ部分は、複数箇所に形成される、
請求項3に記載の燃料電池用の電解質膜−電極接合体の製造方法。
The connecting portion is formed at a plurality of locations.
The manufacturing method of the electrolyte membrane electrode assembly for fuel cells of Claim 3.
前記繋ぎ部分は、前記電解質膜の厚み方向の途中までカットされる、
請求項1から4のいずれか1項に記載の燃料電池用の電解質膜−電極接合体の製造方法。
The connecting portion is cut halfway in the thickness direction of the electrolyte membrane,
The manufacturing method of the electrolyte membrane-electrode assembly for fuel cells of any one of Claim 1 to 4.
JP2016243910A 2016-12-16 2016-12-16 Method for manufacturing electrolyte membrane-electrode assembly for fuel battery Pending JP2018098108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243910A JP2018098108A (en) 2016-12-16 2016-12-16 Method for manufacturing electrolyte membrane-electrode assembly for fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243910A JP2018098108A (en) 2016-12-16 2016-12-16 Method for manufacturing electrolyte membrane-electrode assembly for fuel battery

Publications (1)

Publication Number Publication Date
JP2018098108A true JP2018098108A (en) 2018-06-21

Family

ID=62633070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243910A Pending JP2018098108A (en) 2016-12-16 2016-12-16 Method for manufacturing electrolyte membrane-electrode assembly for fuel battery

Country Status (1)

Country Link
JP (1) JP2018098108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010046A1 (en) * 2019-07-17 2021-01-21 株式会社Screenホールディングス Device for manufacturing membrane electrode assembly, and method for manufacturing membrane electrode assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010046A1 (en) * 2019-07-17 2021-01-21 株式会社Screenホールディングス Device for manufacturing membrane electrode assembly, and method for manufacturing membrane electrode assembly
JP2021018831A (en) * 2019-07-17 2021-02-15 株式会社Screenホールディングス Manufacturing apparatus of membrane electrode assembly and manufacturing method of the same
CN114128001A (en) * 2019-07-17 2022-03-01 株式会社斯库林集团 Apparatus for manufacturing membrane electrode assembly and method for manufacturing membrane electrode assembly
JP7197436B2 (en) 2019-07-17 2022-12-27 株式会社Screenホールディングス MEMBRANE ELECTRODE ASSEMBLY MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
CN114128001B (en) * 2019-07-17 2023-11-24 株式会社斯库林集团 Apparatus for producing membrane electrode assembly and method for producing membrane electrode assembly

Similar Documents

Publication Publication Date Title
JP5124273B2 (en) Membrane electrode assembly
US8394551B2 (en) Membrane electrode assembly for use in electrochemical devices
JP5326189B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
US9023552B2 (en) Membrane electrode assembly, manufacturing method thereof, and fuel cells
JP4940575B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
US8999599B2 (en) Method of fabricating membrane electrode assembly and gas diffusion layer
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
JP2002216789A (en) Method of producing polymer electrolyte fuel cell
JP4810841B2 (en) Method and apparatus for producing electrolyte membrane-catalyst layer assembly for polymer electrolyte fuel cell
JP2009026493A (en) Membrane-electrode assembly and its manufacturing method
JP2018098108A (en) Method for manufacturing electrolyte membrane-electrode assembly for fuel battery
JP2012234713A (en) Method for joining electrolyte membrane and film, and method for manufacturing fuel cell
JP2010102857A (en) Method for manufacturing membrane electrode assembly
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
US11196071B2 (en) Method for manufacturing membrane electrode and gas diffusion layer assembly
JP2009009910A (en) Electrolyte membrane with catalyst layer, and method of manufacturing the same
JP2005243622A (en) Method of manufacturing membrane/electrode joint body for solid polymer electrolyte type fuel cell
JP2013098125A (en) Method and apparatus for manufacturing film-catalyst layer bonded body
JP7307109B2 (en) Membrane electrode assembly with gas diffusion layer and manufacturing method thereof
JP2009181949A (en) Catalyst layer and its manufacturing method, and membrane electrode assembly and its manufacturing method
JP2000208151A (en) Gas diffusion electrode and its production
EP4303970A1 (en) Membrane electrode assembly aggregate roll, membrane electrode assembly, and solid polymer fuel cell
JP2010161039A (en) Manufacturing method of membrane-electrode assembly
JP2012084416A (en) Method for manufacturing fuel cell electrode
JP2008053167A (en) Manufacturing method of fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118