JP2018096876A - Shape estimation method, steel sheet shape correction method, and manufacturing method of steel sheet - Google Patents

Shape estimation method, steel sheet shape correction method, and manufacturing method of steel sheet Download PDF

Info

Publication number
JP2018096876A
JP2018096876A JP2016242450A JP2016242450A JP2018096876A JP 2018096876 A JP2018096876 A JP 2018096876A JP 2016242450 A JP2016242450 A JP 2016242450A JP 2016242450 A JP2016242450 A JP 2016242450A JP 2018096876 A JP2018096876 A JP 2018096876A
Authority
JP
Japan
Prior art keywords
shape
difference
steel sheet
gap
shape evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016242450A
Other languages
Japanese (ja)
Other versions
JP6531752B2 (en
Inventor
青江 信一郎
Shinichiro Aoe
信一郎 青江
順 衞藤
Jun Eto
順 衞藤
岳則 湯浅
Takenori Yuasa
岳則 湯浅
三宅 勝
Masaru Miyake
勝 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016242450A priority Critical patent/JP6531752B2/en
Publication of JP2018096876A publication Critical patent/JP2018096876A/en
Application granted granted Critical
Publication of JP6531752B2 publication Critical patent/JP6531752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a shape estimation method, a steel sheet shape correction method, and a manufacturing method of a steel sheet capable of properly estimating the shape by suppressing a difference between balance gaps at a measurement end part of the shape estimation object.SOLUTION: A shape evaluation method is configured such that, when the shape evaluation of a shape measurement surface of a shape evaluation object is performed using a calculator having arithmetic processing functions, the balance of a predetermined length is allotted with a shape measurement surface of the shape estimation object, and a phase correction band-pass filter having a frequency response characteristic when measuring a gap between the balance and the shape measurement surface is caused to act on a point group data at a position of a measurement point on the shape measurement surface of the shape estimation object, thereby obtaining the gap. Particularly, the gap between the balance at the sheet end and the shape measurement surface can be correctly obtained by elongating projective coordinates by setting, for example, an inverse of elongation in the adjustment area from at least one measurement end of the shape estimation object to the predetermined inner side.SELECTED DRAWING: Figure 13

Description

本発明は、例えば鋼板などの形状評価対象体の形状評価方法、鋼板の形状矯正方法、鋼板の製造方法に関し、例えば圧延工程或いは加熱冷却工程で鋼板に発生した反り、耳波、歪みなどの形状を圧延ライン横で矯正するのに好適なものである。   The present invention relates to, for example, a shape evaluation method for a shape evaluation object such as a steel plate, a shape correction method for a steel plate, and a method for manufacturing a steel plate, for example, a shape such as warpage, ear wave, distortion, etc. Is suitable for correcting the side of the rolling line.

鋼板などの形状評価対象体の形状評価方法としては、例えば下記特許文献1に記載されるように、予め設定された長さの差金を形状評価対象体の形状測定面にあてがい、差金と形状側定面との間の隙間を計測するときの周波数応答特性を有するバンドパスフィルタを用い、形状評価対象体の形状測定面上の測定点の位置の点群データにバンドパスフィルタを作用させて隙間を求めるものがある。   As a shape evaluation method of a shape evaluation object such as a steel plate, for example, as described in Patent Document 1 below, a predetermined length of difference is applied to the shape measurement surface of the shape evaluation object, and the difference and shape side Using a band-pass filter that has frequency response characteristics when measuring the gap between the measurement surface and the fixed surface, the band-pass filter is applied to the point cloud data at the position of the measurement point on the shape measurement surface of the object to be evaluated. There is something to ask for.

特開2014−104483号公報JP 2014-104483 A

特許文献1のような形状評価方法は、オペレータ(作業者)が鋼板表面上に予め設定された長さの差金をあてがい、差金と鋼板との間の隙間を観察することで鋼板形状を認識する場合と同等の形状評価を短時間で正確に行なうことができる。
しかしながら、オペレータが実際に差金を鋼板表面上にあてがう場合には、鋼板の先端及び尾端で差金隙間が零に拘束される。すなわち、図12に示すように、鋼板の先端又は尾端の端部付近では、差金隙間の差金有効長が短くなり、板端では差金隙間が原理的に零となる。この端部付近での差金有効長が短くなることに合わせて、差金長さを短くしていく必要があるが、バンドパスフィルタとして作用させる場合、場所毎で差金長を変更することはできない。
In the shape evaluation method as in Patent Document 1, an operator (operator) applies a difference of a preset length on the surface of the steel sheet, and recognizes the shape of the steel sheet by observing a gap between the difference and the steel sheet. The shape evaluation equivalent to the case can be performed accurately in a short time.
However, when the operator actually places the difference on the steel plate surface, the difference gap is constrained to zero at the tip and tail ends of the steel plate. That is, as shown in FIG. 12, the difference effective length of the difference gap becomes short near the end of the steel plate or the tail end, and the difference gap becomes zero in principle at the plate end. It is necessary to shorten the difference length in accordance with the reduction of the difference effective length in the vicinity of the end, but when acting as a bandpass filter, the difference length cannot be changed for each place.

したがって、バンドパスフィルタを使用して差金隙間を演算処理によって計測する場合には、例えば図10に示すように、鋼板の先端及び尾端の差金隙間が零とはならず、比較的大きな値となってしまい、実際にオペレータが差金を鋼板端部にあてがう場合に比較して差金隙間の誤差が大きくなってしまうという未解決の課題がある。
本発明は、上記のような未解決の課題に着目してなされたものであり、形状評価対象体の測定端部での差金隙間の誤差を抑制して形状を適正に評価することができ、もって形状評価対象体の形状を適正に矯正することが可能な形状評価方法、鋼板形状矯正方法、鋼板製造方法を提供することを目的とするものである。
Therefore, when the difference gap is measured by a calculation process using a bandpass filter, for example, as shown in FIG. 10, the difference gap between the tip and tail ends of the steel sheet is not zero, and a relatively large value. Therefore, there is an unsolved problem that the error of the difference gap becomes larger than when the operator actually applies the difference to the end of the steel plate.
The present invention has been made paying attention to the above-described unsolved problems, and can appropriately evaluate the shape by suppressing the error of the difference gap at the measurement end of the shape evaluation object, Accordingly, it is an object of the present invention to provide a shape evaluation method, a steel plate shape correction method, and a steel plate manufacturing method capable of appropriately correcting the shape of a shape evaluation object.

上記課題を解決するために、本発明に係る形状評価方法は、演算処理機能を有する計算機を用いて形状評価対象体の形状測定面の形状評価を行うに際し、予め設定された長さの差金を前記形状評価対象体の形状測定面にあてがい、前記差金と前記形状測定面との間の隙間を計測するときの周波数応答特性を有する位相補償バンドパスフィルタを前記形状評価対象体の形状測定面上の測定点の位置の点群データに作用させて前記隙間を求める形状評価方法であって、前記形状評価対象体の少なくとも一方の測定端から所定長さ内側までの調整領域で射影座標を伸長させるようにしている。   In order to solve the above-described problems, the shape evaluation method according to the present invention uses a calculator having a calculation processing function to calculate a shape length of a shape measuring surface of a target object for shape evaluation using a predetermined length difference. A phase compensation bandpass filter having a frequency response characteristic when measuring the gap between the difference metal and the shape measurement surface is applied to the shape measurement surface of the shape evaluation object on the shape measurement surface of the shape evaluation object. A shape evaluation method for obtaining the gap by acting on point cloud data at the position of the measurement point, wherein projective coordinates are extended in an adjustment area from at least one measurement end of the shape evaluation object to a predetermined length inside. I am doing so.

また、本発明に係る鋼板形状矯正方法は、前記形状評価対象体が鋼板である場合、前記形状評価方法で求めた前記隙間の絶対値が予め設定された規定値以上である位置を加圧ラムによるプレス矯正位置として提示するようにしている。
また、本発明に係る鋼板製造方法は、前記鋼板形状矯正方法を鋼板製造工程に用いるようにしたものである。
In the steel plate shape correction method according to the present invention, when the shape evaluation object is a steel plate, a position where the absolute value of the gap obtained by the shape evaluation method is equal to or more than a predetermined value set in advance is determined. It is presented as a press correction position.
Moreover, the steel plate manufacturing method which concerns on this invention uses the said steel plate shape correction method for a steel plate manufacturing process.

本発明に係る形状評価方法の一態様によれば、形状評価対象体の端部側の調整領域で射影座標を伸長させてから形状測定面上の測定点の位置の点群データに位相補償用バンドパスフィルタを作用させるようにしている。このため、調整領域での射影座標を伸長させることにより、相対的に差金長さを短くして評価対象体の測定端部の差金隙間を正確に評価することが可能となる。   According to one aspect of the shape evaluation method according to the present invention, the projection coordinates are extended in the adjustment region on the end side of the shape evaluation object, and then the phase compensation data is applied to the point cloud data at the position of the measurement point on the shape measurement surface. A band pass filter is activated. For this reason, by extending the projection coordinates in the adjustment region, it is possible to accurately evaluate the difference gap at the measurement end portion of the evaluation object by relatively shortening the difference length.

また、形状評価対象体を鋼板とし、形状評価方法で求めた差金と形状測定面との間の隙間の絶対値が予め設定された規定値以上である位置を加圧ラムによるプレス矯正位置として提示する。これにより、鋼板形状を適正に矯正することができる。
さらに、鋼板形状矯正方法を鋼板製造工程に用いることにより、鋼板形状を正確に矯正した鋼板を製造することができる。
Moreover, the shape evaluation object is a steel plate, and the position where the absolute value of the gap between the difference obtained by the shape evaluation method and the shape measurement surface is equal to or greater than a preset specified value is presented as the press correction position by the pressure ram. To do. Thereby, a steel plate shape can be corrected appropriately.
Furthermore, the steel plate which correct | amended the steel plate shape correctly can be manufactured by using a steel plate shape correction method for a steel plate manufacturing process.

本発明の形状評価方法及び鋼板形状矯正方法を適用した鋼板形状矯正装置の概略構成の一実施形態を示す平面図である。It is a top view which shows one Embodiment of schematic structure of the steel plate shape correction apparatus to which the shape evaluation method and steel plate shape correction method of this invention are applied. 図1の形状計測装置中のレーザ距離計を構成するレーザ照射装置の概略構成図である。It is a schematic block diagram of the laser irradiation apparatus which comprises the laser distance meter in the shape measuring apparatus of FIG. 図1の制御装置内で行われる鋼板形状矯正のための演算処理を示すフローチャートである。It is a flowchart which shows the arithmetic processing for the steel plate shape correction performed within the control apparatus of FIG. 点群データの一例を示す説明図である。It is explanatory drawing which shows an example of point cloud data. 差金隙間測定モデルの模式図である。It is a schematic diagram of a difference clearance measurement model. 差金隙間測定モデルの周波数応答関数の波長応答特性図である。It is a wavelength response characteristic figure of a frequency response function of a difference crevice measurement model. 周波数特性の異なる曲面の差から差金隙間を求める場合の波長特性の説明図である。It is explanatory drawing of the wavelength characteristic in the case of calculating | requiring a difference gap from the difference of the curved surface from which a frequency characteristic differs. 図4の点群高さデータを測定誤差除去のための平滑化スプライン処理で得られた高さ曲面である。5 is a height curved surface obtained by smoothing spline processing for removing measurement errors from the point cloud height data of FIG. 図7の平滑化スプライン曲面を用いて周波数特性の異なる曲面の差から求めた差金隙間の説明図である。It is explanatory drawing of the difference | interval gap calculated | required from the difference of the curved surface from which a frequency characteristic differs using the smoothing spline curved surface of FIG. 図9の差金隙間の側面図である。FIG. 10 is a side view of the difference gap in FIG. 9. 図9の差金隙間の上面図である。FIG. 10 is a top view of the difference gap in FIG. 9. 板端における差金測定方法を示す説明図である。It is explanatory drawing which shows the difference measuring method in a board end. 伸長率の逆数を表す特性線図である。It is a characteristic diagram showing the reciprocal number of an expansion rate. 形状測定装置で実行するフィルタ処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the filter processing procedure performed with a shape measuring apparatus. 図14の処理を行なった結果を示す図10と同様の差金隙間の説明図である。FIG. 15 is an explanatory diagram of a difference gap similar to FIG. 10 showing a result of performing the process of FIG. 14. 周波数特性の異なる曲面の差から差金隙間を求める形状評価方法の説明図である。It is explanatory drawing of the shape evaluation method which calculates | requires a difference | clearance clearance gap from the difference of the curved surface from which frequency characteristics differ.


図16の形状評価方法に従って計算によって求めた差金隙間の説明図である。It is explanatory drawing of the difference | interval gap calculated | required by calculation according to the shape evaluation method of FIG. 計算によって求めた差金隙間とオペレータが測定した差金隙間の相関図である。It is a correlation diagram of the difference | interval gap calculated | required by calculation, and the difference | interval gap measured by the operator.

以下、本発明の実施形態に係る形状評価方法及び鋼板形状矯正方法を適用した鋼板形状矯正装置について図面を参照しながら説明する。
図1は、本実施形態の鋼板形状矯正装置の概略構成を示す平面図である。この鋼板形状矯正装置は、鋼板Sをオフラインで形状矯正するものである。図中の符号1は、鋼板Sの形状を矯正するプレス機であり、プレス機1の入側には入側ベッド3、プレス機1の出側には出側ベッド4が配設されている。
Hereinafter, a steel plate shape correction apparatus to which a shape evaluation method and a steel plate shape correction method according to an embodiment of the present invention are applied will be described with reference to the drawings.
FIG. 1 is a plan view showing a schematic configuration of the steel sheet shape correcting device of the present embodiment. This steel plate shape correction apparatus corrects the shape of the steel plate S offline. Reference numeral 1 in the drawing denotes a press machine that corrects the shape of the steel sheet S. An entrance bed 3 is disposed on the entry side of the press machine 1, and an exit bed 4 is disposed on the exit side of the press machine 1. .

ベッド3,4は、何れも鋼板Sを搬送するための多数のローラが配設されており、このローラの回転状態を制御することで鋼板Sの搬送状態を制御することができる。また、入側ベッド3及び出側ベッド4の側方には、鋼板Sの位置を検出する位置検出装置7が設けられている。位置検出装置7は、後述する形状計測装置と同様にレーザ光を鋼板Sの搬送方向に走査して鋼板Sの搬送方向への形状を計測し、その形状計測結果から鋼板Sがどの位置にあるかを検出する。   Each of the beds 3 and 4 is provided with a large number of rollers for transporting the steel sheet S, and the transport state of the steel sheet S can be controlled by controlling the rotation state of the rollers. In addition, a position detection device 7 that detects the position of the steel sheet S is provided on the sides of the entrance bed 3 and the exit bed 4. The position detection device 7 scans the laser beam in the conveyance direction of the steel plate S to measure the shape in the conveyance direction of the steel plate S, as in the shape measurement device described later, and from which position the steel plate S is located based on the shape measurement result. To detect.

本実施形態のプレス機1の場合、加圧ラム2で鋼板Sを上から加圧し、主として鋼板Sに曲げモーメント(3点曲げ)を付与して鋼板の形状を矯正する。鋼板Sの形状は、後述する鋼板形状計測装置によって計測する。
鋼板形状矯正のパラメータとしては、例えば鋼板Sの形状から求めた差金隙間、加圧ラム2による加圧力、シムと呼ばれる敷板の位置と間隔、鋼板Sの位置、即ちベッド3,4による鋼板Sの搬送状態などが挙げられる。
In the case of the press machine 1 of the present embodiment, the steel plate S is pressurized from above with the pressurizing ram 2 and a bending moment (three-point bending) is mainly applied to the steel plate S to correct the shape of the steel plate. The shape of the steel plate S is measured by a steel plate shape measuring device described later.
Parameters for correcting the shape of the steel sheet include, for example, a differential gap obtained from the shape of the steel sheet S, a pressure applied by the pressure ram 2, a position and interval of a floor plate called a shim, a position of the steel sheet S, that is, Examples include a transport state.

本実施形態のプレス機1による鋼板形状矯正は、後述するように、シムを用いて鋼板Sを加圧ラム2で加圧する。例えばプレス機1に搭載された鋼板Sが上に凸状に曲がっている場合、凸部を挟んだ鋼板Sの下に2本のシムを敷き、そのシムの間の凸部を加圧ラム2で加圧する。逆に、例えば鋼板Sが下に凸状に曲がっている場合、凸部の下に1本のシムを敷き、凸部を挟んだ鋼板Sの両側にシムを介在して加圧ラム2で加圧する。   In the steel plate shape correction by the press machine 1 of the present embodiment, the steel plate S is pressed with the pressure ram 2 using a shim, as will be described later. For example, when the steel plate S mounted on the press machine 1 is bent upwardly, two shims are laid under the steel plate S sandwiching the convex portion, and the convex portion between the shims is pressed with the pressure ram 2. Pressurize with. On the other hand, for example, when the steel sheet S is bent downward, a single shim is laid under the convex part, and the shim is interposed on both sides of the steel sheet S sandwiching the convex part. Press.

加圧ラム2による曲げモーメントは、主にシムの間の部分の鋼板Sにのみ生じる。この曲げモーメントによる鋼板Sの変形量と加圧開放時の戻り量、所謂スプリングバック量を加味して、前述した種々のパラメータを調整する。
入側ベッド3の入側及び出側ベッド4の出側には形状計測装置5を、出側ベッド4の側方には制御装置6を設置した。このうち、形状計測装置5は、レーザ光によって検出点までの距離を検出するレーザ距離計と、レーザ距離計で検出された距離データから鋼板Sの形状を計測するコンピュータシステムを備えて構成される。
The bending moment due to the pressure ram 2 is mainly generated only in the steel sheet S in the portion between the shims. The above-described various parameters are adjusted in consideration of the deformation amount of the steel sheet S due to this bending moment and the return amount when pressure is released, the so-called springback amount.
A shape measuring device 5 was installed on the entry side of the entry bed 3 and the exit side of the exit bed 4, and a control device 6 was installed on the side of the exit bed 4. Among these, the shape measuring device 5 includes a laser distance meter that detects the distance to the detection point with a laser beam, and a computer system that measures the shape of the steel sheet S from the distance data detected by the laser distance meter. .

形状計測装置5の具体的な鋼板形状計測方法は、本出願人が先に提案した特開2010−155272号公報に記載されているものと同様である。すなわち、本実施形態の形状計測装置5は、3次元にレーザ光を走査して距離を計測するレーザ距離計を備えている。なお、鋼板Sは、一般に搬送方向に長手で、搬送方向と直交方向に短い。つまり、鋼板Sには長辺と短辺があり、本実施形態では、長辺方向を長手方向(x方向ともいう)とし、短辺方向を幅方向(y方向ともいう)と定義する。また、高さ方向をz方向ともいう。   The concrete steel plate shape measuring method of the shape measuring apparatus 5 is the same as that described in Japanese Patent Application Laid-Open No. 2010-155272 previously proposed by the present applicant. That is, the shape measuring apparatus 5 of the present embodiment includes a laser rangefinder that measures the distance by scanning the laser beam three-dimensionally. The steel sheet S is generally long in the transport direction and short in the direction orthogonal to the transport direction. That is, the steel sheet S has a long side and a short side, and in the present embodiment, the long side direction is defined as the longitudinal direction (also referred to as the x direction), and the short side direction is defined as the width direction (also referred to as the y direction). The height direction is also referred to as the z direction.

本実施形態のレーザ距離計は、図2に示すように、レーザ光源11を回転台12の上に搭載し、レーザ光源11のレーザ出射口に周知のガルバノミラー13を配設した。ガルバノミラー13の回転軸はレーザ光源11のレーザ出射口からのレーザ光に一致し、ガルバノミラー13の回転軸は回転台12の回転軸と直交する。
本実施形態では、ガルバノミラー13を回転させることにより、レーザ光源11からのレーザ光を、例えば鋼板Sの長手方向、即ち図1の鋼板Sの搬送方向に偏光し、回転台12を回転させることにより、ガルバノミラー13から偏光されるレーザ光を、主として鋼板Sの幅方向、即ち図1の鋼板Sの搬送方向と直交方向に走査する。そのため、例えば鋼板Sの表面に向けて出射したレーザ光の再帰反射光を受光することにより、その表面の測定点までの距離を求めることができる。この距離は、測定点の長手方向(x方向)の位置及び幅方向(y方向)の位置を規定すると、誤差を含む高さ方向(z方向)の位置情報に変換することができる。従って、鋼板Sの表面を形状測定面とすると、形状測定面上のx、y座標上の高さ(z)位置を形状測定面の形状として認識することができる。
As shown in FIG. 2, the laser distance meter of the present embodiment has a laser light source 11 mounted on a turntable 12, and a known galvanometer mirror 13 is disposed at the laser emission port of the laser light source 11. The rotation axis of the galvanometer mirror 13 coincides with the laser beam from the laser emission port of the laser light source 11, and the rotation axis of the galvanometer mirror 13 is orthogonal to the rotation axis of the turntable 12.
In this embodiment, by rotating the galvanometer mirror 13, the laser light from the laser light source 11 is polarized in the longitudinal direction of the steel sheet S, that is, in the conveying direction of the steel sheet S in FIG. 1, and the turntable 12 is rotated. Thus, the laser beam polarized from the galvanometer mirror 13 is scanned mainly in the width direction of the steel sheet S, that is, in the direction orthogonal to the conveying direction of the steel sheet S in FIG. Therefore, for example, by receiving retroreflected light of laser light emitted toward the surface of the steel sheet S, the distance to the measurement point on the surface can be obtained. This distance can be converted into position information in the height direction (z direction) including an error if the position in the longitudinal direction (x direction) and the position in the width direction (y direction) of the measurement point are defined. Accordingly, when the surface of the steel sheet S is the shape measurement surface, the height (z) position on the x and y coordinates on the shape measurement surface can be recognized as the shape of the shape measurement surface.

なお、本実施形態の形状計測装置5は、入側ベッド3上や出側ベッド4上だけでなく、プレス機1の加圧ラム2下でも鋼板Sの形状を計測することが可能である。また、前記位置検出装置7も、同様にして鋼板Sの形状を検出し、その形状がどこにあるのかで鋼板Sの位置を検出する。
さらに、形状計測装置5としては、鋼板Sの搬送を停止した状態で形状計測を行なう場合に限らず、鋼板Sを例えば長手方向に搬送させながら幅方向にレーザ光を走査することにより、x、y座標上の高さ(z)位置を形状測定面の形状として認識するようにしてもよい。
In addition, the shape measuring apparatus 5 of this embodiment can measure the shape of the steel sheet S not only on the entry bed 3 and the exit bed 4 but also under the pressurization ram 2 of the press 1. Further, the position detection device 7 similarly detects the shape of the steel sheet S, and detects the position of the steel sheet S depending on where the shape is.
Furthermore, the shape measuring device 5 is not limited to performing shape measurement in a state where conveyance of the steel sheet S is stopped. For example, by scanning the laser beam in the width direction while conveying the steel sheet S in the longitudinal direction, x, You may make it recognize the height (z) position on ay coordinate as a shape of a shape measurement surface.

制御装置6は、ホストコンピュータなどのコンピュータシステムを備えて構築され、形状計測装置5によって鋼板S表面、即ち形状測定面の形状評価を行うと共に、プレス機1及びベッド3,4の稼動状態を制御して鋼板Sの形状矯正を行う。この演算処理は、図3に示すように、例えば鋼板形状矯正開始指令と同時に行われ、まずステップS1で、入側ベッド3や出側ベッド4により鋼板Sをプレス機1の加圧ラム2の下に搬入する。次にステップS2に移行して、前記形状計測装置5によって鋼板Sの形状測定面である表面の形状評価を行う。次にステップS3に移行して、前記ステップS2で得られた鋼板Sの形状評価に基づき、プレス機1及びベッド3,4の稼働状態を制御して鋼板Sの形状矯正制御を行う。次にステップS4に移行して、鋼板Sの形状矯正が完了したことを判定する。次にステップS5に移行して、入側ベッド3や出側ベッド4により鋼板Sを加圧ラム2下から払い出し、制御を終了する。   The control device 6 is constructed with a computer system such as a host computer, and the shape measuring device 5 performs the shape evaluation of the surface of the steel sheet S, that is, the shape measuring surface, and controls the operating state of the press machine 1 and the beds 3 and 4. Then, the shape correction of the steel sheet S is performed. As shown in FIG. 3, this calculation process is performed simultaneously with, for example, a steel plate shape correction start command. First, in step S <b> 1, the steel plate S is moved to the pressurization ram 2 of the press 1 by the entrance bed 3 and the exit bed 4. Bring it down. Next, it transfers to step S2 and the shape evaluation of the surface which is a shape measurement surface of the steel plate S is performed by the said shape measuring apparatus 5. FIG. Next, the process proceeds to step S3, and the shape correction control of the steel sheet S is performed by controlling the operating state of the press machine 1 and the beds 3 and 4 based on the shape evaluation of the steel sheet S obtained in the step S2. Next, it transfers to step S4 and it determines with the shape correction of the steel plate S having been completed. Next, the process proceeds to step S5, where the steel sheet S is discharged from below the pressurization ram 2 by the entry side bed 3 and the exit side bed 4, and the control is finished.

次に、形状計測装置5による鋼板Sの形状測定面、即ち表面の形状評価方法について説明する。この形状計測装置5では、前述したレーザ光の出射・受光によって、例えば図4に示すような位置データの点群データを取得することができる。位置データは、長手方向(x方向)、幅方向(y方向)が規定されており、高さ方向(z方向)に誤差を有する。このような点群データに対しては、例えば本出願人が先に提案した特開2012−37313号公報に記載の平滑化スプライン曲面を応用することができる。   Next, a shape measuring surface of the steel sheet S by the shape measuring device 5, that is, a surface shape evaluation method will be described. In the shape measuring device 5, for example, point cloud data of position data as shown in FIG. 4 can be acquired by emitting and receiving the laser beam described above. The position data has a longitudinal direction (x direction) and a width direction (y direction) defined, and has an error in the height direction (z direction). For such point cloud data, for example, the smoothed spline curved surface described in JP 2012-37313 A previously proposed by the present applicant can be applied.

平滑化スプライン曲面は、スプライン次数l、平滑化パラメータγで点群データを平滑化したスプライン状の曲面であり、その周波数応答関数h(ω,ω)は下記式(1)で表される。

Figure 2018096876
The smoothed spline curved surface is a spline-shaped curved surface obtained by smoothing the point cloud data with the spline degree l and the smoothing parameter γ, and the frequency response function h (ω 1 , ω 2 ) is expressed by the following equation (1). The
Figure 2018096876

式(1)中のωは長手方向(鋼板Sの長手方向とは必ずしも一致しない)に対応する角周波数、ωは幅方向(鋼板Sの幅方向とは必ずしも一致しない)に対応する角周波数である。式(1)から、平滑化スプライン曲面が位相補償ローパスフィルタとして機能することが分かる。
この平滑化スプライン曲面を活用して、差金で形状評価することを考える。差金は、凡そその差渡し方向のみ形状評価するもので、この差金の差渡し方向を長手方向と考えると、長手方向と直行する幅方向は評価しない。更にスプライン次数lを1として、差金隙間推定方法を考える。
In formula (1), ω 1 is an angular frequency corresponding to the longitudinal direction (not necessarily coincident with the longitudinal direction of the steel sheet S), and ω 2 is an angle corresponding to the width direction (not necessarily coincident with the width direction of the steel sheet S). Is the frequency. From equation (1), it can be seen that the smoothed spline curved surface functions as a phase compensation low-pass filter.
Consider using the smoothed spline curved surface to evaluate the shape with a difference. The difference of the difference is evaluated only in the direction of the difference, and when the difference is considered as the longitudinal direction, the width direction perpendicular to the longitudinal direction is not evaluated. Further, the difference clearance estimation method is considered with the spline order l being 1.

この周波数応答関数h(ω,ω)は、平滑化パラメータγを前記式(1)とした場合に、差金長さがLであるときのローパスフィルタであるから、これと長さの異なる差金長さのローパスフィルタの出力、即ち平滑化スプライン曲面と前記式(1)で表される平滑化スプライン曲面との差は、即ちバンドパスフィルタの出力となる。例えば、点群データの誤差を遮断するための比較的短い差金長さL、つまり前記差金長さLより短い差金長さLの差金を考え、この差金長さLの差金による平滑化スプライン曲面から前記式(1)で表される差金長さLの差金による平滑化スプライン曲面を差し引くことにより差金隙間が得られる。この差金隙間の周波数応答関数をf(ω,ω)とすると、周波数応答関数f(ω,ω)は下記式(2)で表される。なお、前記式(1)で表される平滑化スプライン曲面の周波数応答関数h(ω,ω)は差金長さがLであるときのローパスフィルタであるから、この周波数応答関数h(ω,ω)の長手方向の角周波数ωをL/L倍すれば、差金長さLの差金による平滑化スプライン曲面の周波数応答関数が得られる。 The frequency response function h (ω 1 , ω 2 ) is a low-pass filter when the difference length is L when the smoothing parameter γ is the above equation (1). The difference between the output of the low-pass filter having the difference length, that is, the smoothed spline curved surface and the smoothed spline curved surface represented by the above formula (1) is the output of the bandpass filter. For example, a relatively short difference length L H for blocking the error of the point cloud data, that is, a difference having a difference length L H shorter than the difference length L is considered, and smoothing by the difference of the difference length L H is performed. A difference gap is obtained by subtracting the smoothed spline curved surface with the difference of the difference length L represented by the above formula (1) from the spline curved surface. Assuming that the frequency response function of the difference gap is f 11 , ω 2 ), the frequency response function f 11 , ω 2 ) is expressed by the following equation (2). The frequency response function h (ω 1 , ω 2 ) of the smoothed spline curved surface represented by the above formula (1) is a low-pass filter when the difference length is L, and therefore this frequency response function h (ω If the angular frequency ω 1 in the longitudinal direction of ( 1 , ω 2 ) is multiplied by L H / L, a frequency response function of the smoothed spline curved surface by the difference of the difference length L H can be obtained.

Figure 2018096876
Figure 2018096876

前記式(2)を展開すると、下記式(3)式が得られる。

Figure 2018096876
When the formula (2) is expanded, the following formula (3) is obtained.
Figure 2018096876

この式(3)で幅方向の角周波数ωを無視してω=0とおくと下記式(4)が得られる。

Figure 2018096876
この式(4)の周波数応答関数f(ω,0)は、位相補償バンドパスフィルタである。上記の演算は、任意のスプライン次数に対して一般化は可能である。 When the angular frequency ω 2 in the width direction is ignored in this formula (3) and ω 2 = 0, the following formula (4) is obtained.
Figure 2018096876
The frequency response function f 11 , 0) of the equation (4) is a phase compensation band pass filter. The above operations can be generalized for any spline order.

また、差金の長さ(差金長さ)をLとし、この差金長さLの差金を鋼板Sの表面(形状測定面)、即ち平滑化スプライン曲面にあてがって差金隙間を測定するときの周波数応答関数は、共振周波数が2π/Lのとき、最大利得が2になると考えることができる。即ち、鋼板の撓みをy(x)、差金隙間測定値をY(x)、差金長さをLとしたとき、図5の差金隙間測定モデルの模式図から、下記式(5)が成立する。

Figure 2018096876
The frequency response when measuring the difference gap by applying the difference length L (difference length) to the surface of the steel sheet S (shape measuring surface), that is, the smoothed spline curved surface. The function can be considered to have a maximum gain of 2 when the resonance frequency is 2π / L. That is, when y (x) is the deflection of the steel sheet, Y (x) is the difference gap measurement value, and L is the difference length, the following expression (5) is established from the schematic diagram of the difference gap measurement model in FIG. .
Figure 2018096876

この式(5)をラプラス変換して下記式(6)を得る。

Figure 2018096876
This formula (5) is Laplace transformed to obtain the following formula (6).
Figure 2018096876

前記式(6)から、差金隙間測定値の伝達関数G(s)は下記式(7)で表される。

Figure 2018096876
更に、差金隙間測定値の伝達関数G(s)の周波数応答関数G(ω)は下記式(8)で表される。 From the equation (6), the transfer function G (s) of the difference gap measurement value is represented by the following equation (7).
Figure 2018096876
Further, the frequency response function G (ω) of the transfer function G (s) of the difference gap measurement value is expressed by the following equation (8).

Figure 2018096876
Figure 2018096876

図6には、前記式(8)で表される差金隙間測定値の周波数応答関数G(ω)の波長応答特性を示す。このモデルでは、波長が短い領域では、利得がギザギザになる。オペレータは、波長の短い凹凸をより短い長さの差金で測定しようとするので、この部分は無視してよい。従って、前記式(8)の周波数応答関数の共振周波数ωは下記式(9)で、共振周波数ωにおける最大利得は下記式(10)で表される。

Figure 2018096876
FIG. 6 shows the wavelength response characteristics of the frequency response function G (ω) of the differential gap measurement value expressed by the above equation (8). In this model, the gain is jagged in the region where the wavelength is short. Since the operator intends to measure the short wavelength irregularities with a shorter length difference, this portion can be ignored. Therefore, the resonance frequency ω 0 of the frequency response function of the equation (8) is expressed by the following equation (9), and the maximum gain at the resonance frequency ω 0 is expressed by the following equation (10).
Figure 2018096876

従って、オペレータが差金隙間を測定するときの周波数応答関数は、共振周波数が2π/Lのとき、最大利得が2になると考えられる。前記差金隙間の周波数応答関数と差金を鋼板表面にあてがって差金隙間を測定するときの周波数応答関数の特性を可能な限り一致させるためには、互いの共振周波数及び最大利得を一致させればよい。   Therefore, the frequency response function when the operator measures the difference gap is considered to have a maximum gain of 2 when the resonance frequency is 2π / L. In order to match the frequency response function of the difference gap and the frequency response function when measuring the difference gap to the steel sheet surface as much as possible, the resonance frequency and the maximum gain should be matched. .

この2つの平滑化スプライン曲面の差から求めた差金隙間の周波数応答関数f(ω,ω)の波長応答特性を図7に示す。ここでは、差金長さLを2m、誤差を遮断するための差金長さLを0.2m、平滑化パラメータを0.19mとして計算した。2つの平滑化スプライン曲面の差から差金隙間を求めた場合の周波数応答関数f(ω,ω)は、波長0.2m〜2mの範囲で利得が大きくなっていることから、バンドパスフィルタの帯域幅が広い。つまり、2つの平滑化スプライン曲面の差から差金隙間を求めることにより、より鋭角な(細かい)凹凸(変形)を認識(評価)できることになる。 FIG. 7 shows the wavelength response characteristics of the frequency response function f 11 , ω 2 ) of the difference gap obtained from the difference between the two smoothed spline curved surfaces. Here, the calculation was made assuming that the difference length L was 2 m, the difference length L H for blocking the error was 0.2 m, and the smoothing parameter was 0.19 m 4 . The frequency response function f 11 , ω 2 ) when the difference gap is obtained from the difference between the two smoothed spline curved surfaces has a large gain in the wavelength range of 0.2 m to 2 m. Wide filter bandwidth. That is, by obtaining the difference gap from the difference between the two smoothed spline curved surfaces, it is possible to recognize (evaluate) a sharper (fine) unevenness (deformation).

主として鋼板Sを長手方向に搬送して形状矯正を行う形状矯正装置では、鋼板Sの長手方向の方がより細かい変形まで矯正できるという特性がある。
ところで、形状計測装置5では、前述したレーザ光の出射・受光によって、例えば図4に示すような位置データの点群データを取得することができる。位置データは、長手方向(x方向)、幅方向(y方向)が規定されており、高さ方向(z方向)に誤差を有する。
The shape correction apparatus that mainly corrects the shape by conveying the steel sheet S in the longitudinal direction has a characteristic that the longitudinal direction of the steel sheet S can be corrected to a finer deformation.
By the way, the shape measuring apparatus 5 can acquire point cloud data of position data as shown in FIG. 4, for example, by the above-described emission / light reception of the laser beam. The position data has a longitudinal direction (x direction) and a width direction (y direction) defined, and has an error in the height direction (z direction).

この点群データをローパスフィルタ周波数応答関数で平滑化した鋼板形状は、図8に示すようになる。ここで、誤差遮断波長を0.25mとした。この図8から計測誤差成分の「凸凹」が除去されていることが分かる。
図4の点群データをバンドパスフィルタf1(高周波誤差遮断波長0.25m、低周波遮断波長(差金長さ)2.0m)の周波数応答関数で推定するとともに、グレースケール処理した差金隙間を図9及び図10に示す。差金隙間の正値は凹、負値は凸を示している。
A steel plate shape obtained by smoothing the point cloud data with a low-pass filter frequency response function is as shown in FIG. Here, the error cutoff wavelength was set to 0.25 m. It can be seen from FIG. 8 that the “unevenness” of the measurement error component has been removed.
The point cloud data in FIG. 4 is estimated with the frequency response function of the bandpass filter f1 (high frequency error cutoff wavelength 0.25 m, low frequency cutoff wavelength (difference length) 2.0 m), and the gray scale processed difference gap is illustrated. 9 and FIG. The positive value of the difference gap indicates concave, and the negative value indicates convex.

図10の差金隙間は、前記図8の差金隙間を鋼板の表面と平行な視点で表したものであり、正値は凸、つまり上に凸、負値は凹、つまり下に凸を表している。この差金隙間は、全体として鋼板の表面(形状測定面)の凹凸(変形)を認識しやすいが、オペレータにとっては、どの箇所をどの程度プレス矯正してよいか分かりにくい。そこで、図10の差金隙間を、長手方向及び幅方向の平面状に表したのが図11である。このようにして、差金隙間の絶対値が予め設定された規定値以上である箇所を、例えば白っぽく表したり、黒っぽく表したりすることで、それらの箇所をプレス矯正すればよいことが分かる。   The difference gap in FIG. 10 represents the difference gap in FIG. 8 from a viewpoint parallel to the surface of the steel plate, and positive values are convex, that is, convex upward, negative values are concave, that is, convex downward. Yes. The difference gap is easy to recognize the unevenness (deformation) of the surface (shape measurement surface) of the steel sheet as a whole, but it is difficult for the operator to know which part should be pressed and to what extent. Therefore, FIG. 11 shows the difference gap in FIG. 10 in a planar shape in the longitudinal direction and the width direction. In this way, it can be understood that the portions where the absolute value of the difference gap is equal to or larger than a predetermined value set in advance, for example, are expressed whitish or blackish, and these portions may be press-corrected.

凸形状については、前述のような凸部挟んだ鋼板の下に2本のシムを敷き、そのシムの間の凸部を加圧ラムで加圧する。凹形状については、凹部の下に1本のシムを敷き、凹部を挟んだ鋼板の両側にシムを介在させて加圧ラムで加圧する。
ところで、図10では、板先端及び板尾端で、差金隙間が比較的大きな値となっているが、実際は零に拘束されなければいけない。図12に示すように、板端部付近では、差金隙間の差金有効長が短くなり、板端では、差金間が原理的に零となる。
About convex shape, two shims are spread under the steel plate which pinched the above convex parts, and the convex part between the shims is pressurized with a pressure ram. As for the concave shape, one shim is laid under the concave portion, and the shim is interposed on both sides of the steel plate sandwiching the concave portion, and the pressure is applied with a pressure ram.
By the way, in FIG. 10, the difference gap is a relatively large value at the front end and the rear end of the plate, but in reality, it must be constrained to zero. As shown in FIG. 12, the difference effective length of the difference gap is shortened in the vicinity of the plate end, and the difference between the differences is theoretically zero at the plate end.

したがって、板端付近では、作業者の隙間測定値と合わせるために、差金長さを順次短くして行く必要がある。しかしながら、バンドパスフィルタを作用させる場合、鋼板Sの場所毎に差金長さを変更することはできない。そこで、逆に長手方向位置と幅を成分とする射影平面を長手方向に伸長させることで、鋼板Sの場所毎での差金長さを相対的に変更することができる。   Therefore, in the vicinity of the plate edge, it is necessary to sequentially shorten the difference length in order to match the gap measurement value of the operator. However, when the band-pass filter is applied, the difference length cannot be changed for each location of the steel plate S. Then, conversely, by extending the projection plane having the longitudinal position and width as components in the longitudinal direction, the difference length for each location of the steel sheet S can be relatively changed.

このためには、xを伸長前の鋼板Sの形状測定面における長手方向座標とし、Xを伸長後の鋼板Sの形状測定面における長手方向座標とし、伸長率の逆数をρとすると、鋼板Sを長手方向に伸長させる場合には、伸長前長手方向座標x、伸長後長手方向座標X及び伸長率の逆数ρについて、下記(11)式が成り立つ。
dx/dX(x)=ρ ・・・式(11)
For this purpose, when x is the longitudinal coordinate on the shape measuring surface of the steel sheet S before stretching, X is the longitudinal coordinate on the shape measuring surface of the steel sheet S after stretching, and the reciprocal of the stretching ratio is ρ, the steel sheet S Is extended in the longitudinal direction, the following equation (11) holds for the longitudinal coordinate x before stretching, the longitudinal coordinate X after stretching, and the reciprocal ρ of the stretching ratio.
dx / dX (x) = ρ (11)

この伸長率の逆数ρを“1”に設定すると、伸長や伸縮を行なわない状態となり、伸長率の逆数ρを“1”より小さい値に設定すると伸長状態となり、“1”より大きい値に設定する縮小状態となる。このため、図13に示すように、先端側及び尾端側に設定した調整領域Aa内で内側から板端に向かうに従い順次“1”より小さい値に順次減少させ、板端で例えば1/4程度のρ=0.25に設定することにより、調整領域Aa内で射影平面を伸長させることができる。調整領域Aaを除く他の領域では、ρ=1に設定することにより、伸長及び縮小を行なわない状態とする。   If the reciprocal number ρ of the expansion rate is set to “1”, expansion or contraction is not performed, and if the reciprocal number ρ of the expansion rate is set to a value smaller than “1”, the expansion state is set, and is set to a value larger than “1”. It becomes a reduced state. For this reason, as shown in FIG. 13, within the adjustment area Aa set on the front end side and the tail end side, the value is sequentially decreased to a value smaller than “1” as it goes from the inner side to the plate end, for example, 1/4 at the plate end. By setting the degree ρ = 0.25, the projection plane can be extended in the adjustment area Aa. In other areas excluding the adjustment area Aa, by setting ρ = 1, the expansion and reduction are not performed.

ここで、調整領域Aaは、差金隙間の計測を図5に示すように差金長さLの半分の長さL/2の位置で行なうので、鋼板Sの長手方向の先端及び尾端と、これら先端及び尾端から差金長さの1/2の距離だけ内側にとった先端及び尾端と平行な線L1と、幅方向の両端とで囲まれる射影領域である。しかしながら、調整領域Aaの設定は、厳密にL/2に設定する必要はなく、板端からL/2以上の長さをとった位置から板端までの間に設定することができる。また、調整領域Aaは、要求される差金隙間の計測精度が低い場合には、板端からL/2より小さい長さをとった位置から板端までの間に設定することができる。   Here, since the adjustment area Aa performs the measurement of the difference gap as shown in FIG. 5 at a position having a length L / 2 that is half the difference length L, the front end and the tail end in the longitudinal direction of the steel sheet S, and these This is a projection region surrounded by a line L1 parallel to the tip and tail ends taken from the tip and tail ends by a distance of ½ of the difference length, and both ends in the width direction. However, the setting of the adjustment area Aa does not need to be strictly set to L / 2, and can be set from a position having a length of L / 2 or more from the plate end to the plate end. Further, the adjustment area Aa can be set between the position from the plate end to the plate end where the length is smaller than L / 2 when the required measurement accuracy of the difference gap is low.

この調整領域Aaでの伸長率の逆数ρの設定は、図13で実線図示の上に凸の2次曲線L2で示すように、線L1上のρ=1から板端側に行くに従い順次減少させ、板端でρ=0.25=1/4となるように設定されている。したがって、伸長率の逆数ρが“1”から徐々に減少することにより、調整領域Aaの長手方向の各点データの射影座標が線L1から板端に向かうにしたがって長手方向に伸長され、板端で長手方向に4倍に伸長された射影座標となる。   The reciprocal ρ of the expansion rate in the adjustment area Aa is gradually decreased from ρ = 1 on the line L1 to the plate end side as shown by a convex quadratic curve L2 on the solid line in FIG. And ρ = 0.25 = 1/4 at the end of the plate. Therefore, when the reciprocal ρ of the expansion rate is gradually decreased from “1”, the projected coordinates of the respective point data in the longitudinal direction of the adjustment area Aa are expanded in the longitudinal direction from the line L1 toward the plate end, and the plate end Thus, the projected coordinates are expanded four times in the longitudinal direction.

なお、調整領域Aaでの伸長率の逆数ρの設定は、図13で実線図示のように上に凸の円弧状に設定する場合に限らず、図13で点線図示のように折れ線状に減少させるように設定するようにしてもよく、図13で一点鎖線図示のように直線状に減少するように設定するようにしてもよく、図13で破線図示のように下側に凸の2次曲線に設定するようにしてもよい。   Note that the setting of the reciprocal ρ of the expansion rate in the adjustment area Aa is not limited to the case of setting an upward convex arc as shown by the solid line in FIG. 13, but decreases to a broken line as shown by the dotted line in FIG. 13 may be set so as to decrease linearly as shown by a one-dot chain line in FIG. 13, or a secondary projecting downward as shown by a broken line in FIG. You may make it set to a curve.

また、板端での伸長率の逆数ρは、ρ≧0.25に設定することが好ましく、ρ<0.25に設定すると、測定点がまばらになりすぎ、却って精度が悪くなる。
したがって、上記式(11)から、伸長後の長手方向座標値X(x)は、下記式(12)で計算することができる。

Figure 2018096876
Moreover, it is preferable to set the reciprocal ρ of the elongation rate at the plate end to ρ ≧ 0.25. If ρ <0.25, the measurement points become too sparse, and the accuracy is worsened.
Therefore, from the above equation (11), the elongated longitudinal coordinate value X (x) can be calculated by the following equation (12).
Figure 2018096876

そして、鋼板Sの点群データの調整領域Aaにおける長手方向座標値xを式(12)で伸長後の長手方向座標値Xに変換する。ここで、任意のρに対応できるように、式(12)は数値積分で計算する。
この点群データの長手方向座標値の変換が終了した後の点群データに対して前述した式(2)の右辺第2項のローパスフィルタを作用させた結果を、座標変換前の点群データに対して式(2)の右辺第2項のローパスフィルタを作用させた結果から減算してバンドパスフィルタ処理を行なう。
And the longitudinal direction coordinate value x in the adjustment area | region Aa of the point cloud data of the steel plate S is converted into the longitudinal direction coordinate value X after expansion | extension by Formula (12). Here, the equation (12) is calculated by numerical integration so as to correspond to an arbitrary ρ.
The result of applying the low-pass filter of the second term on the right-hand side of Equation (2) described above to the point cloud data after the conversion of the longitudinal coordinate values of the point cloud data is finished, is the point cloud data before the coordinate conversion. Is subtracted from the result of applying the low-pass filter of the second term on the right-hand side of equation (2) to perform band-pass filter processing.

したがって、形状計測装置5で、図14に示すフィルタ処理を実行することにより、差金隙間を算出することができる。
すなわち、先ず、ステップS11でレーザ距離計から鋼板Sの位置データの点群データを取得し、次いでステップS12に移行して、取得した点群データに対して前記(2)式の右辺第1項の高周波数域側のローパスフィルタを作用させて高周波数域ローパスフィルタ処理を行い、フィルタ処理結果をメモリ等の記憶領域に記憶する。
Therefore, by executing the filtering process shown in FIG. 14 with the shape measuring device 5, the difference gap can be calculated.
That is, first, in step S11, point cloud data of the position data of the steel sheet S is acquired from the laser distance meter, and then the process proceeds to step S12, where the first term on the right side of the equation (2) is obtained with respect to the acquired point cloud data. The low frequency filter on the high frequency side is applied to perform high frequency low pass filter processing, and the filter processing result is stored in a storage area such as a memory.

次いで、ステップS13に移行して、点群データの調整領域Aaに対応する各長手方向座標値xについて前述した図13で設定される伸長率の逆数ρに基づいて前記式(12)の演算を行なって伸長後の長手方向座標値X(x)を算出してからステップS14に移行する。
ステップS14では、点群データの調整領域Aaに対応する長手方向座標値xを伸長後の長手方向座標値X(x)に変換する座標変換処理を行なってからステップS15に移行する。
Subsequently, the process proceeds to step S13, and the calculation of the equation (12) is performed based on the reciprocal ρ of the expansion rate set in FIG. 13 described above for each longitudinal coordinate value x corresponding to the adjustment area Aa of the point cloud data. The process proceeds to step S14 after calculating the longitudinal coordinate value X (x) after expansion.
In step S14, coordinate conversion processing is performed to convert the longitudinal coordinate value x corresponding to the adjustment area Aa of the point cloud data into the elongated longitudinal coordinate value X (x), and then the process proceeds to step S15.

ステップS15では、座標変換後の点群データに対して前述した式(2)の右辺第2項の低周波数域ローパスフィルタ処理を行なって、フィルタ処理結果をメモリ等の記憶領域に記憶してからステップS16に移行する。
ステップS16では、高周波数域ローパスフィルタ処理結果から低周波数域ローパスフィルタ処理結果を減算するバンドパスフィルタ処理を行なって差金隙間を算出する。
In step S15, the low-frequency low-pass filter processing of the second term on the right side of the above-described equation (2) is performed on the point cloud data after coordinate conversion, and the filter processing result is stored in a storage area such as a memory. Control goes to step S16.
In step S16, a band gap filter process for subtracting the low frequency band low pass filter process result from the high frequency band low pass filter process result is performed to calculate the difference gap.

このように、本実施形態では、鋼板Sの先端及び尾端の板端側において、板端から内側へ差金長さの1/2の距離をとった調整領域Aaで内側から板端に向かうにしたがって伸長率の逆数ρを順次小さく設定することにより、調整領域Aaの長手方向座標値xを伸長させた長手方向座標値X(x)に変換している。
したがって、相対的に差金長さLを縮小していることになり、板端では伸長率の逆数ρを0.25に設定することにより、長手方向座標値を4倍に伸長させている。このため、板端で相対的に差金長さを1/4に縮小していることになる。
As described above, in the present embodiment, on the plate end side of the tip and tail ends of the steel plate S, the adjustment region Aa takes a distance of ½ of the difference length from the plate end to the inside, toward the plate end from the inside. Accordingly, the reciprocal number ρ of the expansion rate is sequentially set to be smaller, thereby converting the longitudinal coordinate value x of the adjustment area Aa into the elongated longitudinal coordinate value X (x).
Therefore, the difference length L is relatively reduced, and the longitudinal coordinate value is expanded four times by setting the reciprocal ρ of the expansion rate to 0.25 at the plate end. For this reason, the difference length is relatively reduced to ¼ at the plate end.

したがって、図14のフィルタ処理を行なった場合の差金隙間は、図15に示すように、前述した図10に比較して先端部及び尾端部の双方で“0”に近づき、実際のオペレータの差金による測定時の差金隙間と同等の差金隙間に近づけることができる。このため、鋼板Sの長手方向の全面で正確な差金隙間評価が可能となる。
よって、差金隙間評価に基づいて鋼板Sをプレス機1で正確な形状矯正を行なうことができる。
Accordingly, as shown in FIG. 15, the difference gap when the filter processing of FIG. 14 is performed approaches “0” at both the front end and the tail end compared to FIG. It is possible to approach the difference gap equivalent to the difference gap at the time of measurement by the difference. For this reason, accurate difference clearance evaluation is possible on the entire surface of the steel sheet S in the longitudinal direction.
Therefore, it is possible to correct the shape of the steel sheet S with the press 1 based on the difference gap evaluation.

図16には、2つの平滑化スプライン曲面の差から差金隙間を求める方法の具体的な結果を示す。前述のように、本実施形態では、2つの平滑化スプライン曲面の差から差金隙間を求める方法は、鋼板の長手方向に採用しているので、ここでは長手方向の位置と高さ方向の位置を示す。同図に示す誤差遮断曲面は、誤差遮断のための差金長さ(誤差遮断波長)Lの差金で平滑化した平滑化スプライン曲面、基準曲面は、差金長さLの差金で平滑化した平滑化スプライン曲面であり、前者から後者を差し引くと差金隙間が求まる。 FIG. 16 shows specific results of a method for obtaining a difference gap from the difference between two smoothed spline curved surfaces. As described above, in the present embodiment, the method of obtaining the difference gap from the difference between the two smoothed spline curved surfaces is employed in the longitudinal direction of the steel plate, so here the longitudinal direction position and the height direction position are determined. Show. Smoothing error blocking curved surface shown in the figure, discounts for error blocking length (error cut-off wavelength) L H discounts with smoothed smoothing spline curved surface, the reference curved surface is smoothed with discounts of discounts length L A spline curved surface, and the difference gap is obtained by subtracting the latter from the former.

このようにして求めた差金隙間を図17に示す。この差金隙間は、前記図8の差金隙間を鋼板の表面と平行な視点で表したものであり、正値は凸、負値は凹となっている。凸形状については、前述のように凸部を挟んだ鋼板の下に2本のシムを敷き、そのシムの間の凸部を加圧ラムで加圧する。凹形状については、凹部の下に1本のシムを敷き、凹部を挟んだ鋼板の両側にシムを介在して加圧ラムで加圧する。   The difference gap thus obtained is shown in FIG. This differential gap is a representation of the differential gap of FIG. 8 from a viewpoint parallel to the surface of the steel plate, with positive values being convex and negative values being concave. As for the convex shape, two shims are laid under the steel plate sandwiching the convex portions as described above, and the convex portions between the shims are pressurized with a pressure ram. As for the concave shape, a single shim is laid under the concave portion, and pressure is applied with a pressure ram with shims interposed on both sides of the steel plate sandwiching the concave portion.

図18には、計算によって求めた差金隙間とオペレータが差金を用いて測定した差金隙間との相関を示す。両者の差は、±0.3mm以内であり、良好な相関が見られる。そのため、オペレータが差金を用いて差金隙間を測定する代わりに、形状測定装置及び制御装置を用いて、差金隙間、即ち鋼板の形状を適正に評価することができ、その結果を用いて鋼板の形状を適正にプレス矯正することが可能となる。   FIG. 18 shows a correlation between the difference gap obtained by calculation and the difference gap measured by the operator using the difference. The difference between the two is within ± 0.3 mm, and a good correlation is observed. Therefore, instead of measuring the difference gap using the difference, the operator can properly evaluate the difference gap, that is, the shape of the steel sheet, using the shape measuring device and the control device, and using the result, the shape of the steel sheet Can be properly pressed.

このように本実施形態の形状評価方法及び鋼板形状矯正方法では、演算処理機能を有する計算機を用いて形状評価対象体の形状測定面の形状評価を行う場合に、予め設定された長さの差金を形状評価対象体の形状測定面にあてがい、差金と形状測定面との間の隙間を計測するときの周波数応答特性を有するバンドパスフィルタを用い、形状評価対象体の形状測定面上の測定点の位置の点群データにバンドパスフィルタを作用させて隙間を求める。   As described above, in the shape evaluation method and the steel plate shape correction method of the present embodiment, when the shape of the shape measurement surface of the shape evaluation object is evaluated using a computer having an arithmetic processing function, a difference in length set in advance is set. Is applied to the shape measurement surface of the shape evaluation object, and a measurement point on the shape measurement surface of the shape evaluation object using a bandpass filter having frequency response characteristics when measuring the gap between the difference and the shape measurement surface. A gap is obtained by applying a band pass filter to the point cloud data at the position.

このバンドパスフィルタとして、形状測定面にあてがわれる差金長さに相当する平滑化度合で点群データを平滑化して求めた平滑化スプライン曲面と、形状測定面にあてがわれる差金長さより短く且つ誤差を遮断するために予め設定された第2の差金長さに相当する平滑化度合で点群データを平滑化して求めた第2の平滑化スプライン曲面との差から、差金と形状測定面との間の隙間を求める。このため、差金と形状測定面との間の隙間を正確に求めることができ、これにより形状測定面の形状を適正に評価することができる。   As this band pass filter, a smoothed spline curved surface obtained by smoothing the point cloud data with a smoothing degree corresponding to the difference length applied to the shape measurement surface, and shorter than the difference length applied to the shape measurement surface and From the difference from the second smoothed spline curved surface obtained by smoothing the point cloud data with a smoothing degree corresponding to the second difference length set in advance to block the error, the difference and the shape measurement surface Find the gap between. For this reason, the clearance gap between a difference metal and a shape measurement surface can be calculated | required correctly, and, thereby, the shape of a shape measurement surface can be evaluated appropriately.

しかも、形状評価対象体の先端及び尾端の板端から所定長さ内側にとった調整領域Aaで計測方向の位置座標を伸長させることにより、相対的に差金長さを縮小することが可能となる。このため、板端での差金隙間を実際のオペレータによる測定時の差金隙間に近づけることができ、鋼板Sの計測方向の全面で正確な形状評価を行なうことができる。
また、形状評価対象体の先端又は尾端から差金長さLの半分の距離L/2をとった調整領域Aaでのみ計測方向の座標値を伸長させればよいので、形状評価対象体の長さにかかわらず所定の伸長処理を適用することができる。
In addition, it is possible to relatively reduce the difference length by extending the position coordinates in the measurement direction in the adjustment area Aa taken inward by a predetermined length from the end of the shape evaluation object and the plate end of the tail end. Become. For this reason, the difference gap at the plate end can be brought close to the difference gap at the time of measurement by an actual operator, and accurate shape evaluation can be performed on the entire surface of the steel sheet S in the measurement direction.
In addition, since the coordinate value in the measurement direction only needs to be extended in the adjustment area Aa that takes a distance L / 2 that is half the difference length L from the tip or tail end of the shape evaluation object, the length of the shape evaluation object Regardless of this, a predetermined decompression process can be applied.

また、形状評価対象体を鋼板とし、形状評価方法で求めた差金と形状測定面との間の隙間の絶対値が予め設定された規定値以上である位置を加圧ラムによるプレス矯正位置として提示する。これにより、鋼板形状を適正に矯正した鋼板を製造することができる。
なお、前記実施形態では、鋼板Sの長手方向について形状評価した場合について説明したが、これに限定されるものではなく、幅方向についても同様の手法で形状評価を行なうことができる。
Moreover, the shape evaluation object is a steel plate, and the position where the absolute value of the gap between the difference obtained by the shape evaluation method and the shape measurement surface is equal to or greater than a preset specified value is presented as the press correction position by the pressure ram. To do. Thereby, the steel plate which correct | amended the steel plate shape appropriately can be manufactured.
In addition, although the said embodiment demonstrated the case where shape evaluation was carried out about the longitudinal direction of the steel plate S, it is not limited to this, Shape evaluation can be performed with the same method also about the width direction.

また、前記実施形態では、鋼板Sの先端及び尾端の双方について長手方向座標の伸長処理を行なった場合について説明したが、これに限定されるものではなく、形状評価対象体の長さが長い場合には、形状評価対象体の形状測定面を複数に分割して形状評価を行なうことが可能であり、この場合には、先端又は尾端を含む領域について調整領域の座標値伸長処理を行なえばよい。   Moreover, although the said embodiment demonstrated the case where the extending | stretching process of a longitudinal direction coordinate was performed about both the front-end | tip and tail end of the steel plate S, it is not limited to this, The length of a shape evaluation object is long. In this case, it is possible to divide the shape measurement surface of the shape evaluation object into a plurality of shapes and perform the shape evaluation. In this case, the coordinate value expansion process of the adjustment region can be performed for the region including the tip or the tail. That's fine.

また、前記実施形態では、圧延ラインの側方でオフライン的に鋼板の形状を評価し、矯正する場合について説明したが、本発明の鋼板形状矯正方法は、圧延ラインの内部にオンライン的に適用することも可能である。
また、前記実施形態では、形状評価対象体として、圧延ラインで圧延された鋼板についてのみ詳述したが、本発明の形状評価方法は、鋼板に限らず、形状測定面上の測定点の位置の点群データを取得できる形状評価対象体であれば、如何様なものにも適用することができる。
Moreover, in the said embodiment, although demonstrated the case where the shape of a steel plate was evaluated offline and corrected in the side of a rolling line, the steel plate shape correction method of this invention is applied online inside a rolling line. It is also possible.
Moreover, in the said embodiment, although it explained in full detail only about the steel plate rolled by the rolling line as a shape evaluation object, the shape evaluation method of this invention is not restricted to a steel plate, but the position of the measurement point on a shape measurement surface. Any shape evaluation object that can acquire point cloud data can be applied.

1 プレス機
2 加圧ラム
3 入側ベッド
4 出側ベッド
5 形状計測装置
6 制御装置
7 位置検出装置
11 レーザ光源
12 回転台
13 ガルバノミラー
DESCRIPTION OF SYMBOLS 1 Press machine 2 Pressurization ram 3 Incoming bed 4 Outgoing bed 5 Shape measuring device 6 Control device 7 Position detection device 11 Laser light source 12 Turntable 13 Galvano mirror

Claims (6)

演算処理機能を有する計算機を用いて形状評価対象体の形状測定面の形状評価を行うに際し、予め設定された長さの差金を前記形状評価対象体の形状測定面にあてがい、前記差金と前記形状測定面との間の隙間を計測するときの周波数応答特性を有する位相補償用バンドパスフィルタを前記形状評価対象体の形状測定面上の測定点の位置の点群データに作用させて前記隙間を求める形状評価方法であって、前記形状評価対象体の少なくとも一方の測定端から所定長さ内側までの調整領域で射影座標を伸長させることを特徴とする形状評価方法。   When performing shape evaluation of the shape measurement surface of the shape evaluation object using a computer having an arithmetic processing function, a difference in length set in advance is applied to the shape measurement surface of the shape evaluation object, and the difference and the shape A phase compensation band-pass filter having frequency response characteristics when measuring the gap between the measurement surfaces is applied to point cloud data at the position of the measurement point on the shape measurement surface of the shape evaluation object, and the gap is formed. A shape evaluation method to be obtained, wherein projective coordinates are extended in an adjustment region from at least one measurement end of the shape evaluation object to a predetermined length inside. 前記調整領域は、前記形状評価対象体の端面から前記差金の1/2の長さ分内側までの領域であることを特徴とする請求項1に記載の形状評価方法。   2. The shape evaluation method according to claim 1, wherein the adjustment region is a region from an end face of the shape evaluation object to an inner side corresponding to a half of the difference. 前記位相補償用バンドパスフィルタは、前記形状測定面にあてがわれる差金長さに相当する平滑化度合で前記点群データを平滑化して求めた平滑化スプライン曲面と、前記形状測定面にあてがわれる差金長さより短く且つ誤差を遮断するために予め設定された第2の差金長さに相当する平滑化度合で前記点群データを平滑化して求めた第2の平滑化スプライン曲面との差から前記隙間を求めることを特徴とする請求項1又は2に記載の形状評価方法。   The phase compensation bandpass filter is applied to a smoothed spline curved surface obtained by smoothing the point cloud data with a smoothing degree corresponding to a difference length applied to the shape measuring surface, and to the shape measuring surface. From the difference from the second smoothed spline curved surface obtained by smoothing the point cloud data with a smoothing degree that is shorter than the difference length and that corresponds to the second difference length set in advance to cut off the error. The shape evaluation method according to claim 1, wherein the gap is obtained. 前記調整領域における射影座標の伸長率は、当該調整領域の内側端から前記形状評価対象体の端面に向かって大きくなるように設定され、前記端面で当該伸長率の逆数が1/4以上に設定されていることを特徴とする請求項1から3の何れか1項に記載の形状評価方法。   The projection coordinate expansion rate in the adjustment region is set so as to increase from the inner end of the adjustment region toward the end surface of the shape evaluation object, and the reciprocal of the expansion rate is set to ¼ or more on the end surface. The shape evaluation method according to claim 1, wherein the shape evaluation method is performed. 前記形状評価対象体が鋼板である場合、前記請求項1から4の何れか1項に記載の形状評価方法で求めた前記隙間の絶対値が予め設定された規定値以上である位置を加圧ラムによるプレス矯正位置として提示することを特徴とする鋼板形状矯正方法。   When the shape evaluation object is a steel plate, a position where the absolute value of the gap obtained by the shape evaluation method according to any one of claims 1 to 4 is equal to or greater than a preset specified value is pressed. A method for correcting the shape of a steel sheet, characterized by being presented as a press correction position by a ram. 前記請求項5に記載の鋼板形状矯正方法を鋼板製造工程に用いたことを特徴とする鋼板製造方法。   A steel sheet manufacturing method using the steel sheet shape correction method according to claim 5 in a steel sheet manufacturing process.
JP2016242450A 2016-12-14 2016-12-14 Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method Active JP6531752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016242450A JP6531752B2 (en) 2016-12-14 2016-12-14 Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242450A JP6531752B2 (en) 2016-12-14 2016-12-14 Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2018096876A true JP2018096876A (en) 2018-06-21
JP6531752B2 JP6531752B2 (en) 2019-06-19

Family

ID=62632906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242450A Active JP6531752B2 (en) 2016-12-14 2016-12-14 Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP6531752B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122709A (en) * 2019-01-30 2020-08-13 Jfeスチール株式会社 Forging press apparatus, forging press method and manufacturing method for metal material
JP2021018160A (en) * 2019-07-22 2021-02-15 Jfeスチール株式会社 Shape measurement device, shape measurement method, steel sheet shape correction device, steel sheet shape correction method, steel sheet manufacturing device, and steel sheet manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155272A (en) * 2008-12-27 2010-07-15 Jfe Steel Corp Device for straightening shape of steel sheet
EP2517799A1 (en) * 2011-04-26 2012-10-31 Centre de Recherches Métallurgiques asbl - Centrum voor Research in de Metallurgie vzw Apparatus and method for industrial online micro-topography and waviness measurements on moving products
JP2014087813A (en) * 2012-10-29 2014-05-15 Jfe Steel Corp Steel plate shape correction method
JP2014104483A (en) * 2012-11-27 2014-06-09 Jfe Steel Corp Shape evaluation method, steel plate shape correction method and steel plate manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155272A (en) * 2008-12-27 2010-07-15 Jfe Steel Corp Device for straightening shape of steel sheet
EP2517799A1 (en) * 2011-04-26 2012-10-31 Centre de Recherches Métallurgiques asbl - Centrum voor Research in de Metallurgie vzw Apparatus and method for industrial online micro-topography and waviness measurements on moving products
JP2014087813A (en) * 2012-10-29 2014-05-15 Jfe Steel Corp Steel plate shape correction method
JP2014104483A (en) * 2012-11-27 2014-06-09 Jfe Steel Corp Shape evaluation method, steel plate shape correction method and steel plate manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122709A (en) * 2019-01-30 2020-08-13 Jfeスチール株式会社 Forging press apparatus, forging press method and manufacturing method for metal material
JP2021018160A (en) * 2019-07-22 2021-02-15 Jfeスチール株式会社 Shape measurement device, shape measurement method, steel sheet shape correction device, steel sheet shape correction method, steel sheet manufacturing device, and steel sheet manufacturing method
JP7036093B2 (en) 2019-07-22 2022-03-15 Jfeスチール株式会社 Shape measuring device, shape measuring method, steel plate shape straightening device, steel sheet shape straightening method, steel sheet manufacturing device, and steel sheet manufacturing method

Also Published As

Publication number Publication date
JP6531752B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6003583B2 (en) Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method
JP3946499B2 (en) Method for detecting posture of object to be observed and apparatus using the same
TWI438050B (en) Method and processor for laser processing error calibration
US20160239949A1 (en) Workpiece positioning apparatus using imaging unit
JP5412829B2 (en) Steel plate shape straightening device
JP2017517759A5 (en)
WO2020094709A3 (en) Method and computer program product for oct measurement beam adjustment
JP2018096876A (en) Shape estimation method, steel sheet shape correction method, and manufacturing method of steel sheet
JP5983311B2 (en) Steel plate shape correction method
US20060175311A1 (en) Machine for bending of long products and a method to control such a machine
JP6624121B2 (en) Steel plate shape straightening device
JP6913476B2 (en) Press brake and bending shape correction method
JP6597679B2 (en) Method for evaluating strain of steel sheet
US9664604B2 (en) Measurement apparatus, measurement method, and method of manufacturing article
JP6477541B2 (en) Steel plate shape correction method and steel plate manufacturing method
JP6086099B2 (en) Surface shape measuring apparatus and method
JP5294891B2 (en) Image processing method for extracting uneven characters
JP2001330430A (en) Method and apparatus for measurement of flatness
JP2019518607A (en) Bending beam for pivoting bending machines
KR102454557B1 (en) mounting device
KR101500221B1 (en) Apparatus for manufacturing slot of casting roll and Method for the same
JP6580723B2 (en) Steel plate shape straightening device and shape straightening method
JP5655941B2 (en) Thermal image smoothing method, surface temperature measuring method, and surface temperature measuring apparatus
JP2022027454A (en) Steel plate correction position calculation method and steel plate manufacturing method
TWI722748B (en) Method for measuring shape of steel slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250