JP2018096500A - Support device and support system - Google Patents

Support device and support system Download PDF

Info

Publication number
JP2018096500A
JP2018096500A JP2016243552A JP2016243552A JP2018096500A JP 2018096500 A JP2018096500 A JP 2018096500A JP 2016243552 A JP2016243552 A JP 2016243552A JP 2016243552 A JP2016243552 A JP 2016243552A JP 2018096500 A JP2018096500 A JP 2018096500A
Authority
JP
Japan
Prior art keywords
magnet
sliding
magnetic
flange portion
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016243552A
Other languages
Japanese (ja)
Other versions
JP6867673B2 (en
Inventor
拓朗 片山
Takuro Katayama
拓朗 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimigafuchi Gakuen
Original Assignee
Kimigafuchi Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimigafuchi Gakuen filed Critical Kimigafuchi Gakuen
Priority to JP2016243552A priority Critical patent/JP6867673B2/en
Publication of JP2018096500A publication Critical patent/JP2018096500A/en
Application granted granted Critical
Publication of JP6867673B2 publication Critical patent/JP6867673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a support device capable of also corresponding to a high displacement while showing a non-linear characteristic.SOLUTION: A support device 1 has an upper shoe part 3, an intermediate shoe part 5 and a lower shoe part 7 and is displaced in at least one orientation in a horizontal direction and recovered. These shoes are kept under their overlapped state in a vertical direction, slide between the adjoining shoes and displaced in a horizontal direction. Each of the shoes comprise first magnet parts 11, 21 and 31, and non-magnetic bodies 13, 23 and 33 enclosing the side surface of the first magnet part, and the first magnet part of the lower shoe shows that its upper surface has a second polarity opposite to that of the first polarity if the lower surface of the first magnet part of the upper shoe is the first polarity. Both the lower surface of the first magnet part of the upper shoe and the upper surface of the first magnet part of the lower shoe have the same size to each other. The first magnet part is placed at an overlapped position under a neutral state and at least a part of it becomes an overlapped state even if it is kept under a state in which it is displaced to the maximum position.SELECTED DRAWING: Figure 1

Description

本発明は、支承装置及び支承システムに関し、特に、水平方向の少なくとも一つの向きに変位して復元する支承装置等に関する。   The present invention relates to a bearing device and a bearing system, and more particularly to a bearing device that is displaced and restored in at least one horizontal direction.

発明者は、特許文献1において、磁性体の転動体を利用した独自の免振装置を提案した。特許文献2には、複数の磁石による単純な吸引力や反発力を利用した一般的な制振装置が記載されている。   Inventor proposed the original vibration isolator which utilized the rolling element of the magnetic body in patent document 1. FIG. Patent Document 2 describes a general vibration damping device that uses simple attractive force and repulsive force by a plurality of magnets.

特開2014−222093号公報JP 2014-2222093 A 特許第3038347号公報Japanese Patent No. 3038347

特許文献2記載の制振装置では、復元力は、ほぼ線形に変化することが想定されていた。これに対し、特許文献1記載の免振装置は、非線形の特性を有するものである。   In the vibration damping device described in Patent Document 2, it is assumed that the restoring force changes almost linearly. On the other hand, the vibration isolator described in Patent Document 1 has nonlinear characteristics.

しかしながら、特許文献1記載の免振装置では、磁性体の転動体を利用する。ベースプレートとスライドプレートの間にあるリテーナーは、1枚のリテーナーを利用するものが原則となり、複数枚のリテーナーへ拡張することが困難であった。そのため、大きな変位に対応することが難しかった。   However, the vibration isolator described in Patent Document 1 uses a rolling element of magnetic material. In principle, the retainer between the base plate and the slide plate uses one retainer, and it has been difficult to expand to a plurality of retainers. Therefore, it was difficult to cope with a large displacement.

そこで、本願発明は、実用的な特性を有しつつ、大きな変位にも対応することが可能な支承装置等を提案することを目的とする。   Accordingly, an object of the present invention is to propose a bearing device or the like that has practical characteristics and can cope with a large displacement.

本願発明の第1の観点は、水平方向の少なくとも一つの向きに変位して復元する支承装置であって、複数の沓部を備え、前記複数の沓部は、鉛直方向に重ねた状態にあって、隣接する沓部との間で摺動して水平方向に変位し、各沓部は、第1磁石部と、前記第1磁石部の側面を囲う非磁性体部を備え、上側の前記沓部の前記第1磁石部は、下面が第1極性であり、下側の前記沓部の前記第1磁石部は、上面が前記第1極性と対極の第2極性であり、上側の前記沓部の前記第1磁石部の下面と下側の前記沓部の前記第1磁石部の上面は、同じ大きさであって、中立時に重なる位置にあり、最大に変位した状態でも少なくとも一部が重なる状態にあるものである。   A first aspect of the present invention is a bearing device that is displaced and restored in at least one direction in a horizontal direction, and includes a plurality of flanges, and the plurality of flanges are in a state of being stacked in a vertical direction. Each of the flanges includes a first magnet part and a non-magnetic body part surrounding the side surface of the first magnet part, The lower surface of the first magnet portion of the flange portion has a first polarity, and the lower surface of the first magnet portion of the flange portion has an upper surface of the first polarity and a second polarity opposite to the first polarity. The lower surface of the first magnet portion of the flange portion and the upper surface of the first magnet portion of the lower flange portion are the same size and are in a position where they overlap when neutral, and at least partially even in a state of maximum displacement Are in a state of overlapping.

本願発明の第2の観点は、第1の観点の支承装置であって、前記各沓部は、前記第1磁石部に加えて第2磁石部を備え、上側の前記沓部の前記第2磁石部は、下面が前記第2極性であり、下側の前記沓部の前記第2磁石部は、上面が前記第1極性であり、前記非磁性体部は、前記第1磁石部及び前記第2磁石部の側面を囲い、上側の前記沓部の前記第2磁石部の下面と下側の前記沓部の前記第2磁石部の上面は、同じ大きさであって、中立時に重なる位置にあり、最大に変位した状態でも少なくとも一部が重なる状態にあり、上側の前記沓部の前記第1磁石部の下面と下側の前記沓部の前記第2磁石部の上面は、最大に変位した状態でも重ならず、上側の前記沓部の前記第2磁石部の下面と上側の前記沓部の前記第1磁石部の上面は、最大に変位した状態でも重ならないものである。   A second aspect of the present invention is the support device according to the first aspect, wherein each of the flanges includes a second magnet part in addition to the first magnet part, and the second part of the upper flange part. The magnet portion has a lower surface having the second polarity, the second magnet portion of the lower flange portion has an upper surface having the first polarity, and the non-magnetic body portion has the first magnet portion and the A position that surrounds the side surface of the second magnet portion, and that the lower surface of the second magnet portion of the upper flange portion and the upper surface of the second magnet portion of the lower flange portion are the same size and overlap when neutral The upper surface of the first magnet part of the upper collar part and the upper surface of the second magnet part of the lower collar part are at a maximum. The upper surface of the first magnet part of the upper flange part and the lower surface of the upper magnet part do not overlap even in a displaced state. It is those which do not overlap each other in place the state.

本願発明の第3の観点は、第2の観点の支承装置であって、最も上にある前記沓部及び最も下にある前記沓部は、それぞれ、上部及び下部に磁性体部を備えることにより、前記非磁性体部を利用して、上部の磁性体部、前記第1磁石部、下部の磁性体部及び前記第2磁石部による磁気回路を形成するものである。   According to a third aspect of the present invention, there is provided a support device according to the second aspect, wherein the uppermost flange portion and the lowermost flange portion are provided with a magnetic body portion at an upper portion and a lower portion, respectively. Using the non-magnetic part, a magnetic circuit is formed by an upper magnetic part, the first magnet part, a lower magnetic part, and the second magnet part.

本願発明の第4の観点は、第1から第3のいずれかの観点の支承装置であって、上側の前記沓部の下面及び下側の前記沓部の上面は、それぞれ、下に凸形状及び上に凹形状、又は、下に凹形状及び上に凸形状であり、前記沓部は、前記凸形状の一部に第一摺動部を備え、前記沓部は、前記凹形状の窪みの底に第二摺動部を備え、上側の前記沓部の下面の凸形状又は凹形状の部分が下側の前記沓部の上面の凹形状又は凸形状の部分に水平方向の隙間を持って嵌合することにより、最大に変位する長さが制限され、かつ、前記第一摺動部と前記第二摺動部が摺動するものである。   A fourth aspect of the present invention is the support device according to any one of the first to third aspects, wherein the lower surface of the upper flange portion and the upper surface of the lower flange portion are respectively convex downward. And a concave shape on the upper side, or a concave shape on the lower side and a convex shape on the upper side, and the collar portion includes a first sliding portion in a part of the convex shape, and the collar portion is a depression in the concave shape. A second sliding part at the bottom of the upper part, and the convex or concave part of the lower surface of the upper collar part has a horizontal gap between the concave or convex part of the upper surface of the lower collar part By fitting, the maximum displacement length is limited, and the first sliding portion and the second sliding portion slide.

本願発明の第5の観点は、第1から第4のいずれかの観点の支承装置であって、前記沓部において前記凹形状が上向きのときに、前記凹形状の第二摺動部に摺動液を保持するものである。   According to a fifth aspect of the present invention, there is provided the supporting device according to any one of the first to fourth aspects, wherein when the concave shape is upward in the flange portion, the second sliding portion having the concave shape is slid. It holds the fluid.

本願発明の第6の観点は、第5の観点の支承装置であって、上側の前記沓部の下面にあり且つ下側の前記沓部の前記第二摺動部と接触せず且つ前記摺動液と接触する第一間接接触部、又は、下側の前記沓部の上面にあり且つ上側の前記沓部の前記第一摺動部と接触せず且つ前記摺動液と接触する第二間接接触部を備えるものである。   According to a sixth aspect of the present invention, there is provided a support device according to the fifth aspect, wherein the support device is on the lower surface of the upper flange portion and does not contact the second sliding portion of the lower flange portion, and the sliding device. A second indirect contact portion that contacts the fluid, or a second contact that is on the upper surface of the lower flange and does not contact the first sliding portion of the upper flange and contacts the sliding fluid An indirect contact portion is provided.

本願発明の第7の観点は、第1から第6のいずれかの観点の支承装置であって、前記少なくとも最大に変位した状態で、磁力以外によって上側の沓部と下側の沓部との間の復元力を生じる復元部を備えるものである。   According to a seventh aspect of the present invention, there is provided a support device according to any one of the first to sixth aspects, wherein the upper flange portion and the lower flange portion are separated by a force other than magnetic force in a state of being displaced at least to the maximum. It is provided with a restoring unit that generates a restoring force between them.

本願発明の第8の観点は、第1から第7のいずれかの観点の支承装置を鉛直方向に重ね、鉛直方向に隣り合う下部の磁性体と上部の磁性体を一体化する支承システムである。   An eighth aspect of the present invention is a support system in which the support devices according to any one of the first to seventh aspects are stacked in the vertical direction and the lower magnetic body and the upper magnetic body adjacent in the vertical direction are integrated. .

本願発明の各観点によれば、磁石部の側面を非磁性体部で囲うことにより、後の実験により具体的に説明するように、実用的な復元力の特性を実現することが可能になる。さらに、複数の沓部が互いに摺動するという簡単な構造であるため、容易に多数の沓部に拡張でき、大きな変位にも対応することが可能になる。   According to each aspect of the present invention, by enclosing the side surface of the magnet portion with a non-magnetic body portion, it becomes possible to realize a practical restoring force characteristic, as will be specifically described in later experiments. . Furthermore, since it has a simple structure in which a plurality of collars slide relative to each other, it can be easily expanded to a large number of collars and can cope with large displacements.

さらに、本願発明の第2の観点によれば、沓部の第1磁石部と第2磁石部により、磁気回路を形成することが可能になる。特に、第3の観点にあるように、支承装置の上側及び下側に磁性体部を設けることにより、閉回路となる。これにより、強力な復元作用等を実現することが可能になる。   Furthermore, according to the 2nd viewpoint of this invention, it becomes possible to form a magnetic circuit with the 1st magnet part and 2nd magnet part of a collar part. In particular, as in the third aspect, a closed circuit is formed by providing magnetic parts on the upper and lower sides of the support device. Thereby, it is possible to realize a powerful restoring action and the like.

さらに、本願発明の第4の観点によれば、上側の沓部の下面を凸形状または凹形状にし、下側の沓部の上面を凹形状または凸形状にすることにより、隣り合う沓の変位を制限することが可能となる。   Furthermore, according to the fourth aspect of the present invention, the lower surface of the upper collar is made convex or concave, and the upper surface of the lower collar is made concave or convex so that the adjacent collars are displaced. Can be restricted.

さらに、本願発明の第5の観点にあるように、下側の沓部の上面が上向きに凹形状である場合に、凹形状を利用して、第二摺動部にオイル等の液体を保持させて、摺動を容易にすることができる。   Furthermore, as in the fifth aspect of the present invention, when the upper surface of the lower flange portion is concave upward, a liquid such as oil is held in the second sliding portion using the concave shape. Thus, sliding can be facilitated.

本願発明の第6の観点によれば、上側の前記沓部の前記第一間接接触部と下側の前記沓部の前記第二摺動部との間にある前記摺動液又は上側の前記沓部の前記第一摺動部と下側の前記沓部の前記第二間接接触部の間にある前記摺動液の粘性を利用して、上側の前記沓部と下側の前記沓部の相対速度に応じる振動減衰力としての粘性力を生成することが可能になる。   According to the sixth aspect of the present invention, the sliding liquid or the upper side between the first indirect contact portion of the upper flange portion and the second sliding portion of the lower flange portion. Utilizing the viscosity of the sliding fluid between the first sliding part of the collar part and the second indirect contact part of the lower collar part, the upper collar part and the lower collar part It is possible to generate a viscous force as a vibration damping force according to the relative speed of the.

さらに、本願発明の第7の観点によれば、実験で確認された磁石による復元力が最大変位付近で減少するところにおいて、復元部により復元力を補うことができる。   Further, according to the seventh aspect of the present invention, the restoring force can be supplemented by the restoring portion where the restoring force by the magnet confirmed in the experiment decreases near the maximum displacement.

さらに、本願発明の第8の観点から、前記支承装置を鉛直方向に重ねた状態として、鉛直方向に隣り合う下部の磁性体と上部の磁性体を一体化し、支承装置内部に形成する磁気回路の磁路を短くすることにより、最大変位と復元力を大きくすることができる。   Further, according to an eighth aspect of the present invention, a magnetic circuit formed by integrating the lower magnetic body and the upper magnetic body adjacent in the vertical direction into a state where the support apparatus is stacked in the vertical direction and formed inside the support apparatus. By shortening the magnetic path, the maximum displacement and restoring force can be increased.

本願発明の実施の形態に係る支承装置1の一例を示す図であり、(a)支承装置1、(b)(a)の右側部分の拡大図、(c)上沓3、(d)中間沓5、(e)下沓7の一例を示す図である。(f)及び(g)は、それぞれ、支承装置1の中立時及び最大変位時の平面図である。(h)及び(i)は、それぞれ、(e)及び(f)のときの中間断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of the support apparatus 1 which concerns on embodiment of this invention, (a) The support apparatus 1, (b) The enlarged view of the right side part of (a), (c) Upper collar 3, (d) Middle It is a figure which shows an example of the eaves 5 and (e) the lower eaves 7. (F) And (g) is a top view at the time of neutrality and the maximum displacement of the support apparatus 1, respectively. (H) And (i) is an intermediate sectional view at the time of (e) and (f), respectively. 本願発明の他の実施の形態に係る支承装置を示す図であり、(a)支承装置、(b)上沓、(c)下沓の一例を示す図である。(d)及び(e)は、それぞれ、支承装置1の中立時及び最大変位時の平面図である。(f)及び(g)は、それぞれ、(d)及び(e)のときの中間断面図である。It is a figure which shows the support apparatus which concerns on other embodiment of this invention, and is a figure which shows an example of (a) support apparatus, (b) upper collar, (c) lower collar. (D) And (e) is a top view at the time of neutrality and the maximum displacement of the support apparatus 1, respectively. (F) And (g) is an intermediate sectional view at the time of (d) and (e), respectively. 試作機の(a)全体、(b)上沓の下面側、(c)中沓の上面側、及び、(d)下沓の上面側の外観を示す。The appearance of the prototype (a) as a whole, (b) the lower surface side of the upper collar, (c) the upper surface side of the middle collar, and (d) the upper surface side of the lower collar is shown. 試作機の(a)上沓、(b)中沓及び(c)下沓の磁束密度の分布を示す図である。It is a figure which shows distribution of the magnetic flux density of (a) upper collar, (b) middle collar, and (c) lower collar of a prototype. (a)実施例1と(b)実施例2と、(c)実施例1の作動状況を示す図と、(d)実施例1と実施例2の磁気吸引力Vの比較を示す表である。(A) Example 1, (b) Example 2, (c) The figure which shows the operation condition of Example 1, and (d) The table which shows the comparison of the magnetic attraction force V of Example 1 and Example 2. is there. (a)〜(c)は、実施例1と実施例2の変位とみかけの復元力の履歴曲線を示すグラフであり、(d)(e)は、数値実験による免震特性の比較を示すグラフである。(A)-(c) is a graph which shows the hysteresis curve of the displacement of Example 1 and Example 2, and an apparent restoring force, (d) (e) shows the comparison of the seismic isolation characteristic by a numerical experiment. It is a graph. 図1の支承装置1を実際に設置したときの一例を示す図である。It is a figure which shows an example when the installation apparatus 1 of FIG. 1 is actually installed. 本願発明の他の実施の形態に係る支承装置の中立時の(a)平面図及び(b)中間断面図、並びに、最大変位時の(c)平面図及び(d)中間断面図を示す図である。(e)と(f)は各沓の磁石の極の分布の一例を示す図である。The figure which shows the (a) top view and (b) intermediate sectional view at the time of neutrality of the support apparatus which concerns on other embodiment of this invention, and the (c) top view and (d) intermediate sectional view at the time of maximum displacement. It is. (E) And (f) is a figure which shows an example of distribution of the pole of the magnet of each cage. 本願発明の他の実施の形態に係る支承装置の中立時の(a)平面図及び(b)中間断面図、並びに、最大変位時の(c)平面図及び(d)中間断面図を示す図である。The figure which shows the (a) top view and (b) intermediate sectional view at the time of neutrality of the support apparatus which concerns on other embodiment of this invention, and the (c) top view and (d) intermediate sectional view at the time of maximum displacement. It is. 本願発明の他の実施の形態に係る支承装置の中立時の(a)平面図及び(b)中間断面図、並びに、最大変位時の(c)平面図及び(d)中間断面図を示す図である。The figure which shows the (a) top view and (b) intermediate sectional view at the time of neutrality of the support apparatus which concerns on other embodiment of this invention, and the (c) top view and (d) intermediate sectional view at the time of maximum displacement. It is. 磁気回路の一例を示す概念図である。It is a conceptual diagram which shows an example of a magnetic circuit.

以下では、図面を参照して、本願発明の実施例について説明する。なお、本願発明は、これらの実施例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to these examples.

本願発明の実施の形態に係る支承装置は、複数の沓部が、鉛直方向に重ねた状態にあって、隣接する沓部との間で摺動して水平方向に変位する。最も上にある沓部を上沓、最も下にある沓部を下沓、上沓と下沓の間の沓部を中間沓という。   In the support device according to the embodiment of the present invention, a plurality of hooks are stacked in the vertical direction, and slide between the hooks adjacent to each other to be displaced in the horizontal direction. The upper heel is called the upper heel, the lowest heel is called the lower heel, and the heel between the upper heel and the lower heel is called the intermediate heel.

図1は、本願発明の実施の形態に係る支承装置の一例を示す図である。この例では、各沓にある磁石が1つであり、中間沓は1枚である。(a)は支承装置1を示し、(b)は(a)の右側部分の拡大図である。(c)は上沓3、(d)は中間沓5、(e)は下沓7の一例を示す。   FIG. 1 is a diagram illustrating an example of a support device according to an embodiment of the present invention. In this example, there is one magnet in each cage and one intermediate cage. (A) shows the support device 1, (b) is an enlarged view of the right side part of (a). (C) shows an example of the upper rod 3, (d) shows an example of the intermediate rod 5, and (e) shows an example of the lower rod 7.

図1(a)を参照して、支承装置1は、上沓3、中間沓5及び下沓7を備える。   Referring to FIG. 1A, the support device 1 includes an upper rod 3, an intermediate rod 5, and a lower rod 7.

図1(c)を参照して、上沓3は、上部磁石部11(本願発明の「第1磁石部」の一例)と、上部非磁性体部13(本願発明の「非磁性体部」の一例)と、上部摺動部15(本願発明の「第一摺動部」の一例)と、上部磁性体部17(本願発明の「磁性体部」の一例)を備える。   Referring to FIG. 1 (c), the upper collar 3 includes an upper magnet portion 11 (an example of the “first magnet portion” of the present invention) and an upper nonmagnetic body portion 13 (the “nonmagnetic body portion” of the present invention). ), An upper sliding portion 15 (an example of the “first sliding portion” of the present invention), and an upper magnetic body portion 17 (an example of the “magnetic body portion” of the present invention).

上部磁石部11は、円板状で、例えば上面が第2極性(例えばN極)で、下面が第2極性と対極の第1極性(例えばS極)である。   The upper magnet unit 11 has a disc shape, and has, for example, an upper surface having a second polarity (for example, N pole) and a lower surface having a first polarity (for example, an S pole) opposite to the second polarity.

上部非磁性体部13は、例えばアルミニューム合金で、非磁性体であり、上面が円形で、上部磁石部11を囲うようにある。   The upper non-magnetic part 13 is made of, for example, an aluminum alloy and is a non-magnetic substance. The upper non-magnetic part 13 has a circular upper surface and surrounds the upper magnet part 11.

上部摺動部15は、例えばフッ素樹脂シートで、滑りやすく、円板状で、少なくとも上部非磁性体部13の下を覆う。なお、上部摺動部15は、上部磁石部11の下を覆わなくてもよい。   The upper sliding portion 15 is, for example, a fluororesin sheet, is slippery, has a disk shape, and covers at least the lower portion of the upper nonmagnetic body portion 13. The upper sliding portion 15 may not cover the lower magnet portion 11.

上部磁性体部17は、例えば炭素鋼で磁性体であり、上面が円形で、上部磁石部11と上部非磁性体部13の上を覆うようにある。   The upper magnetic body portion 17 is made of, for example, carbon steel and is a magnetic body, and has a circular upper surface so as to cover the upper magnet portion 11 and the upper nonmagnetic body portion 13.

上部非磁性体部13の最下面14は、上部磁性体部17の下面16よりも下方に突出している。さらに、上部摺動部15は、上部非磁性体部13の最下面14(本願発明の「第一間接接触部」の一例)よりも下方に突出している。上沓3の下面は、下に凸な形状であり、上部摺動部15は、この凸形状の突出する部分の一部を形成している。   The lowermost surface 14 of the upper nonmagnetic portion 13 protrudes below the lower surface 16 of the upper magnetic portion 17. Further, the upper sliding portion 15 protrudes below the lowermost surface 14 (an example of the “first indirect contact portion” of the present invention) of the upper nonmagnetic body portion 13. The lower surface of the upper collar 3 has a downwardly convex shape, and the upper sliding portion 15 forms a part of the protruding portion of the convex shape.

図1(d)を参照して、中間沓5は、中間磁石部21(本願発明の「第1磁石部」の一例)と、中間非磁性体部23(本願発明の「非磁性体部」の一例)と、中間下摺動部25(本願発明の「第一摺動部」の一例)と、中間上摺動部29(本願発明の「第二摺動部」の一例)を備える。   Referring to FIG. 1 (d), the intermediate collar 5 includes an intermediate magnet portion 21 (an example of a “first magnet portion” of the present invention) and an intermediate nonmagnetic body portion 23 (“nonmagnetic body portion” of the present invention). An intermediate lower sliding portion 25 (an example of the “first sliding portion” of the present invention) and an intermediate upper sliding portion 29 (an example of the “second sliding portion” of the present invention).

中間磁石部21は、円板状で、例えば上面が第2極性(例えばN極)で、下面が第2極性と対極の第1極性(例えばS極)である。   The intermediate magnet unit 21 has a disc shape, and has, for example, an upper surface having a second polarity (for example, N pole) and a lower surface having a first polarity (for example, an S pole) opposite to the second polarity.

中間非磁性体部23は、例えばアルミニューム合金で、非磁性体であり、中間磁石部21を囲うようにある。中間非磁性体部23は、上面が凹形状で、下面は下に突出した部分がある。   The intermediate non-magnetic part 23 is, for example, an aluminum alloy and is a non-magnetic substance so as to surround the intermediate magnet part 21. The intermediate non-magnetic member 23 has a concave shape on the upper surface and a portion protruding downward on the lower surface.

中間下摺動部25は、例えばフッ素樹脂シートで、滑りやすく、円板状で、少なくとも中間部非磁性体23の下を覆う。なお、中間下摺動部25は、中間磁石21の下を覆わなくても良い.   The middle lower sliding portion 25 is, for example, a fluororesin sheet, is slippery, has a disk shape, and covers at least the middle portion nonmagnetic material 23. The intermediate lower sliding portion 25 may not cover the lower portion of the intermediate magnet 21.

中間下摺動部25は、中間非磁性体部23の最下面24(本願発明の「第一間接接触部」の一例)よりも下方に突出している。中間沓5の下面は、下に凸な形状であり、中間下摺動部25は、凸形状の突出する部分の一部を形成している。   The intermediate lower sliding portion 25 protrudes below the lowermost surface 24 of the intermediate nonmagnetic body portion 23 (an example of the “first indirect contact portion” of the present invention). The lower surface of the intermediate rod 5 has a downwardly convex shape, and the intermediate lower sliding portion 25 forms a part of the protruding portion of the convex shape.

中間上摺動部29は、例えば磨きオーステナイト系ステンレス鋼であり、中間非磁性体部の凹形状の窪みの底にある。中間沓5の上面は凹形状である。中間上摺動部29は、中間磁石21の上を覆わなくてもよい。そして、例えばシリコーンオイルのように滑りやすくする液体(本願請求項の「摺動液」の一例)が充填されている。   The middle upper sliding portion 29 is, for example, polished austenitic stainless steel, and is located at the bottom of the concave recess of the middle nonmagnetic body portion. The upper surface of the intermediate cage 5 is concave. The middle upper sliding portion 29 may not cover the middle magnet 21. And it is filled with the liquid (an example of "sliding liquid" of the claim of this application) which makes it slippery like silicone oil, for example.

防溢材22が、凹形状の盛り上がった部分に形成されている。防溢材22は、例えばニトリルゴム製であり、上部に比べて下部が大きい形状であり、凹形状の盛り上がった部分に嵌めこまれたような状態で、抜けにくい構造となっている。   The anti-overflow material 22 is formed in the raised part of the concave shape. The overflow material 22 is made of, for example, nitrile rubber, and has a shape in which the lower part is larger than the upper part, and has a structure that is difficult to come out in a state where it is fitted in a raised part of a concave shape.

図1(e)を参照して、下沓7は、下部磁石部31(本願発明の「第1磁石部」の一例)と、下部非磁性体部33(本願発明の「非磁性体部」の一例)と、下部磁性体部37(本願発明の「磁性体部」の一例)と、下部摺動部39(本願発明の「第二摺動部」の一例)を備える。   Referring to FIG. 1 (e), the lower arm 7 includes a lower magnet portion 31 (an example of the “first magnet portion” of the present invention) and a lower nonmagnetic body portion 33 (the “nonmagnetic body portion” of the present invention). ), A lower magnetic part 37 (an example of the “magnetic part” of the present invention), and a lower sliding part 39 (an example of the “second sliding part” of the present invention).

下部磁石部31は、円板状で、例えば上面が第2極性(例えばN極)で、下面が第1極性(例えばS極)である。   The lower magnet unit 31 has a disk shape, and has, for example, an upper surface having a second polarity (for example, N pole) and a lower surface having a first polarity (for example, S pole).

下部非磁性体部33は、例えばアルミニューム合金で、非磁性体であり、下部磁石部31を囲うようにある。下部非磁性体部33は、上面と下面は円形である。   The lower nonmagnetic part 33 is, for example, an aluminum alloy and is a nonmagnetic substance, and surrounds the lower magnet part 31. The lower nonmagnetic body portion 33 has a circular upper surface and lower surface.

下部磁性体部37は、例えば炭素鋼で磁性体であり、上面が凹形状で、下面が円形で、下部磁石部31と下部非磁性体部33の下を覆うようにある。   The lower magnetic part 37 is made of, for example, carbon steel and is a magnetic substance. The upper surface is concave, the lower surface is circular, and covers the lower magnet part 31 and the lower nonmagnetic part 33.

下部摺動部39は、例えば磨きオーステナイト系ステンレス鋼であり、下部非磁性体部33の上にある。よって、下沓の上面は凹形状である。下部摺動部39は下部磁石部31の上を覆わなくても良い。そして、例えばシリコーンオイルのように滑りやすくする液体(本願請求項の「摺動液」の一例)が充填されている。   The lower sliding portion 39 is, for example, polished austenitic stainless steel, and is on the lower nonmagnetic body portion 33. Therefore, the upper surface of the lower eyelid is concave. The lower sliding portion 39 may not cover the lower magnet portion 31. And it is filled with the liquid (an example of "sliding liquid" of the claim of this application) which makes it slippery like silicone oil, for example.

下部磁性体部の上面を凹形状とする代わりに、下部非磁性体部33の上面を凹形状として、下部摺動部39は下部非磁性体部33の凹形状の窪みの底にあってもい。   Instead of making the upper surface of the lower magnetic body portion concave, the upper surface of the lower nonmagnetic body portion 33 may be concave, and the lower sliding portion 39 may be at the bottom of the concave recess of the lower nonmagnetic body portion 33. .

防溢材32が、凹形状の盛り上がった部分に形成されている。防溢材32は、例えばニトリルゴム製であり、上部に比べて下部が大きい形状であり、凹形状の盛り上がった部分に嵌めこまれたような状態で、抜けにくい構造となっている。   The anti-overflow material 32 is formed in the raised part of the concave shape. The anti-overflow material 32 is made of, for example, nitrile rubber, and the lower portion is larger than the upper portion.

図1(b)を参照して、シリコーンオイルは、上部非磁性体部13の最下面14(本願発明の「第一間接接触部」の一例)と接触し、上沓3と中間沓5の相対速度に応じて(すなわち、最下面14と中間上摺動部29の相対速度に応じて)、振動減衰力としての粘性力が最下面14と中間上摺動部29にそれぞれ作用するように、シリコーンオイルの液面18が最下面14より高くなるまで、シリコーンオイルは中間上摺動部29に充填するのがよい。   Referring to FIG. 1 (b), the silicone oil contacts the lowermost surface 14 (an example of the “first indirect contact portion” of the present invention) of the upper nonmagnetic body portion 13, and the upper flange 3 and the intermediate flange 5 According to the relative speed (that is, according to the relative speed between the lowermost surface 14 and the middle upper sliding portion 29), the viscous force as the vibration damping force acts on the lowermost surface 14 and the middle upper sliding portion 29, respectively. Until the liquid level 18 of the silicone oil becomes higher than the lowermost surface 14, the silicone oil is preferably filled in the middle upper sliding portion 29.

同様に、シリコーンオイルが中間非磁性体部23の最下面24(本願発明の「第一間接接触部」の一例)と接触し、中間沓5と下沓7の相対速度に応じて(すなわち、最下面24と下部摺動部39の相対速度に応じて)、振動減衰力としての粘性力が最下面24と下部摺動部39にそれぞれ作用するように、シリコーンオイルの液面28が最下面24より高くなるまで、シリコーンオイルは下部摺動部39に充填するのがよい。   Similarly, the silicone oil comes into contact with the lowermost surface 24 (an example of the “first indirect contact portion” of the present invention) of the intermediate non-magnetic body portion 23 and depends on the relative speed of the intermediate rod 5 and the lower rod 7 (that is, The liquid level 28 of the silicone oil is the lowermost surface so that a viscous force as a vibration damping force acts on the lowermost surface 24 and the lower sliding portion 39, respectively (depending on the relative speed between the lowermost surface 24 and the lower sliding portion 39). Silicone oil is preferably filled in the lower sliding portion 39 until it becomes higher than 24.

振動減衰力としての粘性力の大きさは、例えば、最下面14と最下面24のそれぞれの面積、最下面14と中間上摺動部29の鉛直方向の間隔、最下面24と下部摺動部39の鉛直方向の間隔、シリコーンオイルの粘度で調整することが可能である。   The magnitude of the viscous force as the vibration damping force is, for example, the respective areas of the lowermost surface 14 and the lowermost surface 24, the vertical distance between the lowermost surface 14 and the middle upper sliding portion 29, and the lowermost surface 24 and the lower sliding portion. It is possible to adjust by the vertical interval of 39 and the viscosity of the silicone oil.

振動減衰力としての粘性力を生成あるいは増強するために、最下面14及び最下面24に相当する部分を、それぞれ上部非磁性体部13及び中間非磁性体部23の他の部位に設けてもよい。例えば、上部摺動部15の下面より上に窪んだ状態の上部磁石部11の下面及び中間下摺動部25の下面より上に窪んだ状態の中間磁石部21の下面(それぞれ、本願発明の「第一間接接触部」の一例)をシリコーンオイルと接触させて粘性力を発生させてもよい。粘性力を生成する窪みは各磁石部の下面に限らず、例えば、上部摺動部15および中間下摺動部25に設けた窪みや溝など(本願発明の「第一間接接触部」の一例)としてもよい。   In order to generate or enhance the viscous force as the vibration damping force, portions corresponding to the lowermost surface 14 and the lowermost surface 24 may be provided at other portions of the upper nonmagnetic body portion 13 and the intermediate nonmagnetic body portion 23, respectively. Good. For example, the lower surface of the upper magnet portion 11 that is recessed above the lower surface of the upper sliding portion 15 and the lower surface of the intermediate magnet portion 21 that is recessed above the lower surface of the intermediate lower sliding portion 25 (each of the present invention An example of the “first indirect contact portion” may be brought into contact with silicone oil to generate a viscous force. The depressions that generate the viscous force are not limited to the lower surface of each magnet part, but, for example, depressions and grooves provided in the upper sliding part 15 and the intermediate lower sliding part 25 (an example of the “first indirect contact part” of the present invention) ).

さらに、例えば、中間上摺動部29の上面より下に窪んだ状態の中間磁石部21の上面及び下部摺動部39の上面より下に窪んだ状態の下部磁石部31の上面(それぞれ、本願発明の「第二間接接触部」の一例)をシリコーンオイルと接触させて、粘性力を生成させてもよい。粘性力を生成する窪みは各磁石部の上面に限らず、例えば、中間上摺動部29および下部摺動部39に設けた窪みや溝など(本願発明の「第二間接接触部」の一例)としてもよい。   Further, for example, the upper surface of the intermediate magnet portion 21 that is recessed below the upper surface of the intermediate upper sliding portion 29 and the upper surface of the lower magnet portion 31 that is recessed below the upper surface of the lower sliding portion 39 (each of the present application An example of the “second indirect contact portion” of the invention may be brought into contact with silicone oil to generate a viscous force. The depressions that generate the viscous force are not limited to the upper surface of each magnet part, but, for example, depressions and grooves provided in the intermediate upper sliding part 29 and the lower sliding part 39 (an example of the “second indirect contact part” of the present invention) ).

摺動部の材料と材料の組合せは任意であり、シリコーンオイルなどの液体の代わりに黒鉛などの固体潤滑剤を用いて摺動部の摩擦係数を調整してよい。また、摺動部にシリコーンオイルなどを含浸させた材料を用いてもよい。摺動部に液体を充填しない場合は、各沓の凸形状を鉛直上向きに凹形状を鉛直下向になるように各沓を鉛直方向に重ねてもよい。摺動部で発生する摩擦力は、支承装置の振動減衰要素の一つとなるので、摺動部の摩擦係数が必要とされる支承装置の振動減衰性能に合うように、摺動部の材料、摺動部の表面性状、摺動液などの組合せを適宜調整するのがよい.   The material of the sliding portion and the combination of the materials are arbitrary, and the friction coefficient of the sliding portion may be adjusted using a solid lubricant such as graphite instead of a liquid such as silicone oil. Further, a material in which the sliding portion is impregnated with silicone oil or the like may be used. When the sliding portion is not filled with liquid, the ridges may be stacked vertically so that the convex shape of each ridge is vertically upward and the concave shape is vertically downward. Since the frictional force generated in the sliding part becomes one of the vibration damping elements of the bearing device, the sliding part material, so as to match the vibration damping performance of the bearing device where the friction coefficient of the sliding part is required, The combination of the surface properties of the sliding part, the sliding fluid, etc. should be adjusted accordingly.

また、中間沓5の防溢材22及び下沓7の防溢材32は、それぞれ、上沓3の上部磁性体部17の下面16及び中間沓5の中間非磁性体部23の下面26と接触し且つ摺動し、凸形状と凹形状が接触して支承装置1が最大変位に達する前後で、各防溢材は凹形状の中の液体が凹形状の外へ溢れ出るのを防止する。さらに、各防溢材は各摺動部への火炎の進入や埃などの進入を防止する。   Further, the anti-flooding material 22 of the intermediate rod 5 and the anti-flooding material 32 of the lower rod 7 are respectively the lower surface 16 of the upper magnetic body portion 17 of the upper rod 3 and the lower surface 26 of the intermediate non-magnetic body portion 23 of the intermediate rod 5. Each anti-flooding material prevents the liquid in the concave shape from overflowing out of the concave shape before and after the convex shape and the concave shape come into contact with each other and slide. . Furthermore, each anti-flooding material prevents the entry of flames and dust into each sliding part.

上部非磁性体部13と中間非磁性体部23および下部非磁性体部33は、単一の非磁性材料で形成する必要は無く、例えば、磁石部の回りを樹脂とし、さらに樹脂の回りを他の樹脂または非鉄金属とするなど、複数の非磁性材料で形成してよい。   The upper non-magnetic body portion 13, the intermediate non-magnetic body portion 23 and the lower non-magnetic body portion 33 do not need to be formed of a single non-magnetic material. It may be formed of a plurality of nonmagnetic materials such as other resins or nonferrous metals.

支承装置1の上部磁性体17と下部磁性体37(本願発明の「磁性体部」)に作用する力の全部または力の一部は、上部非磁性体部13,中間非磁性体部23,下部非磁性体部33(本願発明の「非磁性体部」)を経由して各沓の摺動部(本願発明の「第一摺動部」と「第二摺動部」)から隣り合う沓に伝達される。   All or some of the forces acting on the upper magnetic body 17 and the lower magnetic body 37 (the “magnetic body portion” of the present invention) of the support device 1 are the upper non-magnetic body portion 13, the intermediate non-magnetic body portion 23, Adjacent to the sliding portions (the “first sliding portion” and the “second sliding portion” in the present invention) of each bag through the lower nonmagnetic body portion 33 (the “nonmagnetic body portion” in the present invention) It is transmitted to the niece.

図1(f)及び(g)は、それぞれ、支承装置1の中立時(すなわち、外力が働いていない状態)及び最大変位時の平面図を示す。図1(h)及び(i)は、それぞれ、(f)及び(g)のときの中間断面図を示す。   FIGS. 1 (f) and 1 (g) show a plan view when the bearing device 1 is neutral (ie, when no external force is applied) and when the displacement is maximum. FIGS. 1 (h) and (i) show intermediate cross-sectional views at (f) and (g), respectively.

図1(f)及び(h)を参照して、上部磁石部11、中間磁石部21及び下部磁石部31は、同じ大きさであり、中立時に重なっている。   Referring to FIGS. 1F and 1H, the upper magnet portion 11, the intermediate magnet portion 21, and the lower magnet portion 31 have the same size and overlap when neutral.

図1(g)及び(i)を参照して、上沓3と下沓7に外力Hが働いて、最大の変位となったとき、上沓3及び中間沓5が移動している。上側の凸形状と下側の凹形状により変位が制限されており、上部磁石部11、中間磁石部21及び下部磁石部31は、最大変位時にも一部は重なっている。そのため、変位中、少なくとも一部は重なったままである。上沓3の上部磁石部11の中心と下沓7の下部磁石部31の中心との変位をuとする。   Referring to FIGS. 1 (g) and (i), when the external force H acts on the upper rod 3 and the lower rod 7, and the maximum displacement is obtained, the upper rod 3 and the intermediate rod 5 are moved. Displacement is limited by the upper convex shape and the lower concave shape, and the upper magnet portion 11, the intermediate magnet portion 21, and the lower magnet portion 31 partially overlap even at the maximum displacement. For this reason, at least a portion remains overlapped during the displacement. Let u be the displacement between the center of the upper magnet portion 11 of the upper collar 3 and the center of the lower magnet portion 31 of the lower collar 7.

図2は、本願発明の実施の形態に係る支承装置の他の例を示す図である。この例では、各沓にある磁石が1つで、上沓と下沓で構成し、簡単な構造となっている。(a)は支承装置、(b)は上沓、(c)は下沓の一例を示す。図2の(b)上沓及び(c)下沓の構成は、それぞれ、図1の(c)上沓3及び(e)下沓7と同じ構成にすることができる。   FIG. 2 is a diagram showing another example of the support device according to the embodiment of the present invention. In this example, there is one magnet in each cage, which is composed of an upper cage and a lower cage and has a simple structure. (A) is a support device, (b) is an upper collar, and (c) is an example of a lower collar. The configurations of (b) upper rod and (c) lower rod of FIG. 2 can be the same as (c) upper rod 3 and (e) lower rod 7 of FIG. 1, respectively.

図2(d)及び(e)は、それぞれ、支承装置の中立時及び最大変位時の平面図を示す。図2(f)及び(g)は、それぞれ、(d)及び(e)のときの中間断面図を示す。図2の支承装置は、図1の支承装置1と同様の機能を有する。ただし、最大変位が1/2と短くなる。   2 (d) and 2 (e) show plan views when the bearing device is neutral and when it is displaced maximum, respectively. 2 (f) and 2 (g) show intermediate cross-sectional views at (d) and (e), respectively. The bearing device of FIG. 2 has the same function as the bearing device 1 of FIG. However, the maximum displacement is shortened to 1/2.

図3は、図1の支承装置1の試作機の外観を示す図であり、(a)全体の外観、(b)上沓の下面側の外観、(c)中沓の上面側の外観、及び、(d)下沓の上面側の外観を示す。   3 is a diagram showing the appearance of the prototype of the support device 1 of FIG. 1, (a) the overall appearance, (b) the appearance on the lower surface side of the upper collar, (c) the appearance on the upper surface side of the middle collar, And (d) shows the appearance of the upper surface side of the lower arm.

図4は、試作機の(a)上沓、(b)中沓及び(c)下沓の磁束密度の分布を示す。横軸は磁石部の中心からの距離、縦軸は磁束密度を示す。   FIG. 4 shows the magnetic flux density distribution of the prototype (a) upper rod, (b) middle rod, and (c) lower rod. The horizontal axis represents the distance from the center of the magnet part, and the vertical axis represents the magnetic flux density.

実験では、上沓と中間沓と下沓を使用した支承装置の場合(図5(a)、実施例1)と、上沓と下沓のみを使用した支承装置の場合(図5(b)、実施例2)を比較した。図5(c)は、支承装置の作動状況を示す。図5(d)は、実施例1と実施例2の支承装置の磁気吸引力Vの比較を示す。磁気吸引力は、3回の平均である。磁気吸引力は、実施例2の支承装置の方が大きかった。   In the experiment, in the case of a bearing device using an upper rod, an intermediate rod and a lower rod (FIG. 5 (a), Example 1), and in the case of a bearing device using only an upper rod and a lower rod (FIG. 5 (b)). Example 2) was compared. FIG.5 (c) shows the operating condition of a support apparatus. FIG. 5 (d) shows a comparison of the magnetic attractive force V between the bearing devices of Example 1 and Example 2. The magnetic attractive force is an average of three times. The magnetic attraction force of the support device of Example 2 was greater.

図6(a)は、実施例1と実施例2の支承装置の変位と見かけの復元力(摩擦力を含む)の履歴曲線を比較する図である。(b)及び(c)は、それぞれ、実施例1及び実施例2の支承装置の変位と復元力の関係を示す。(a)は、(b)と(c)を重ねたものである。横軸は、変位を磁石直径で割った値である。縦軸は、復元力を示す。実施例1の支承装置の復元力の最大は、変異が磁石直径の約50%で生じ、変異がそれより大きくなると復元力は減少した。実施例2の支承装置の復元力の最大は、変異が磁石直径の約30%で生じ、変異がそれよりも大きくなると復元力は減少した。実施例1の支承装置は、中間沓の採用により、実施例2の支承装置の倍程度の変位ストロークが可能となった。また、非線形の復元力特性を実現していることが確認された。   FIG. 6A is a diagram comparing the hysteresis curves of the displacements of the bearing devices of the first and second embodiments and the apparent restoring force (including frictional force). (B) and (c) show the relationship between the displacement and restoring force of the bearing device of Example 1 and Example 2, respectively. (A) is an overlay of (b) and (c). The horizontal axis is the value obtained by dividing the displacement by the magnet diameter. The vertical axis shows the restoring force. The maximum restoring force of the bearing device of Example 1 was found that the variation occurred at about 50% of the magnet diameter, and the restoring force decreased as the variation increased. The maximum restoring force of the support device of Example 2 occurred when the variation occurred at about 30% of the magnet diameter, and the restoring force decreased when the variation was larger than that. The support device of Example 1 is capable of a displacement stroke that is about twice that of the support device of Example 2 by adopting an intermediate rod. It was also confirmed that non-linear restoring force characteristics were realized.

図6(d)は、2011年東北地方太平洋沖地震(最大加速度675gal)での数値実験での最大地震応答の予測を示す。横軸は本願発明の支承装置および積層ゴム支承とそれぞれ併用するダンパーの粘性減衰係数であり、縦軸は最大加速度を示す。変位は、積層ゴム支承と本願発明とでは変わらず、加速度は、積層ゴム支承では下に凸なグラフで、本願発明では単調に増加している。図6(e)は、長周期地震動の最大変位応答の予測を示す。積層ゴム支承は、本願発明に比較して、最大変位が大きく、特に長周期領域での最大変位が大きくなっている。   FIG. 6 (d) shows the prediction of the maximum seismic response in a numerical experiment in the 2011 Tohoku-Pacific Ocean Earthquake (maximum acceleration 675 gal). The horizontal axis represents the viscous damping coefficient of the damper used in combination with the bearing device and laminated rubber bearing of the present invention, and the vertical axis represents the maximum acceleration. The displacement is the same between the laminated rubber bearing and the present invention, and the acceleration is a downwardly convex graph in the laminated rubber bearing, and monotonously increases in the present invention. FIG. 6 (e) shows the prediction of the maximum displacement response of long-period ground motion. The laminated rubber bearing has a larger maximum displacement than that of the present invention, and particularly has a larger maximum displacement in the long period region.

図6(f)及び(g)は、それぞれ、実施例1及び実施例2の支承装置における非磁性体部の効果を説明するための比較例1及び比較例2の変位と見かけの復元力の履歴曲線である。   FIGS. 6 (f) and 6 (g) show the displacement and apparent restoring force of Comparative Example 1 and Comparative Example 2 for explaining the effect of the nonmagnetic body portion in the bearing device of Example 1 and Example 2, respectively. It is a history curve.

比較例1は上沓、中間沓、下沓からなり、それぞれの沓は磁石の側面を囲う黄銅製の非磁性体部と非磁性体部の側面を囲う磁性体の炭素鋼または磁性体のマルテンサイト系ステンレス鋼を備える。摺動部はフッ素樹脂シート、磨きマルテンサイト系ステンレス鋼、フッ素グリースで構成されている。   Comparative Example 1 is composed of an upper iron, an intermediate iron, and a lower iron, each of which is made of a brass nonmagnetic body portion surrounding the magnet side surface and a magnetic carbon steel or magnetic martens surrounding the nonmagnetic body side surface. Equipped with site-based stainless steel. The sliding portion is made of a fluororesin sheet, polished martensitic stainless steel, and fluorine grease.

実施例1の実験結果について説明する。実施例1の磁石部のネオジム磁石の寸法は外径50mm×厚10mmであり、隣り合う沓部の最大変位は25mmである。隣り合う沓部の最大変位rmaxと磁石直径Dの比はrmax/D=0.5である。実施例1は上沓、中間沓、下沓で構成されているので、支承装置の最大変位umaxは隣り合う沓部の最大変位rmaxの2倍となる。よって、最大変位はumax=50mmであり、最大変位と磁石直径の比はumax/D=1.0である。磁石部の側面を囲う非磁性体部の外径は150mm以上であり、磁石部の側面から変位方向に測った非磁性体部の長さは75mm以上である。つまり、隣り合う沓部の最大変位25mmと磁石直径50mmを超えて、非磁性体部は磁石部の側面を囲っている。   The experimental results of Example 1 will be described. The dimension of the neodymium magnet of the magnet part of Example 1 is 50 mm in outer diameter x 10 mm in thickness, and the maximum displacement of the adjacent flange part is 25 mm. The ratio between the maximum displacement rmax of the adjacent flanges and the magnet diameter D is rmax / D = 0.5. Since Example 1 is composed of an upper rod, an intermediate rod, and a lower rod, the maximum displacement umax of the support device is twice the maximum displacement rmax of the adjacent flange portion. Therefore, the maximum displacement is umax = 50 mm, and the ratio between the maximum displacement and the magnet diameter is umax / D = 1.0. The outer diameter of the nonmagnetic body portion surrounding the side surface of the magnet portion is 150 mm or more, and the length of the nonmagnetic body portion measured in the displacement direction from the side surface of the magnet portion is 75 mm or more. In other words, the non-magnetic part surrounds the side surface of the magnet part, exceeding the maximum displacement 25 mm of the adjacent collar part and the magnet diameter 50 mm.

図6(b)より、変位/直径が0.5付近で見かけの復元力(摩擦力を含む)は最大となり、最大復元力は約220Nである。変位/直径が0.5を越えて大きくなると復元力は徐々に減少し、最大変位時の復元力は約180Nとなる。最大変位時(umax/D=1.0)の復元力は最大水平力の約80%である。摩擦力は約5Nであり、摩擦係数は約0.009である。   From FIG. 6 (b), the apparent restoring force (including frictional force) becomes maximum when the displacement / diameter is around 0.5, and the maximum restoring force is about 220N. When the displacement / diameter exceeds 0.5, the restoring force gradually decreases, and the restoring force at the maximum displacement is about 180N. The restoring force at the maximum displacement (umax / D = 1.0) is about 80% of the maximum horizontal force. The friction force is about 5N and the coefficient of friction is about 0.009.

他方、比較例1の磁石部のネオジム磁石の寸法は外径80mm×厚5mmである。隣り合う沓部の変位に制限はない。磁石部の側面を囲う非磁性体部の直径は100mmとし、非磁性体部の側面は直径280mmの磁性体の炭素鋼で囲っている。磁石部の側面から変位方向に沿った非磁性体部の長さは10mmであり、その非磁性体部の側面の外側には磁性体がある。   On the other hand, the dimensions of the neodymium magnet in the magnet part of Comparative Example 1 are an outer diameter of 80 mm and a thickness of 5 mm. There is no restriction on the displacement of the adjacent buttock. The diameter of the nonmagnetic body portion surrounding the side surface of the magnet portion is 100 mm, and the side surface of the nonmagnetic body portion is surrounded by magnetic carbon steel having a diameter of 280 mm. The length of the nonmagnetic body portion along the displacement direction from the side surface of the magnet portion is 10 mm, and the magnetic body is present outside the side surface of the nonmagnetic body portion.

図6(f)は見かけの復元力Hと変位uの関係である。復元力は変位/直径が約0.18で最大となり、最大水平力は約200Nである。変位が0.18を超えて増加すると、復元力は急激に減少する。rmax/D=0.7の復元力は約100Nであり、その水平力は最大水平力の約50%である。復元力が最大となる変位/直径=0.18の変位は約15mmである。この状態では、鉛直方向に隣り合う沓部の磁石部と非磁性体部が部分的に重なり、磁石部と磁性体は重なっていない。変位が20mmを超えると隣り合う沓の磁石部と磁性体が重なり、復元力が急激に減少する。   FIG. 6F shows the relationship between the apparent restoring force H and the displacement u. The restoring force is maximum at a displacement / diameter of about 0.18 and the maximum horizontal force is about 200N. As the displacement increases beyond 0.18, the restoring force decreases rapidly. The restoring force at rmax / D = 0.7 is about 100 N, and the horizontal force is about 50% of the maximum horizontal force. The displacement with the maximum restoring force / diameter = 0.18 is about 15 mm. In this state, the magnet part and the non-magnetic part that are adjacent to each other in the vertical direction partially overlap, and the magnet part and the magnetic substance do not overlap. When the displacement exceeds 20 mm, the adjacent magnet portions and the magnetic body overlap, and the restoring force decreases rapidly.

実施例1の非磁性体部の効果について、比較例1を用いて説明する。実施例1では、変形時には隣り合う沓部の磁石部と非磁性体部が部分的に重なるので、図6(b)に示すような復元力の減少は比較例1より少ない。   The effect of the nonmagnetic part of Example 1 will be described using Comparative Example 1. In Example 1, since the magnet part and the non-magnetic body part adjacent to each other partially overlap at the time of deformation, the reduction in restoring force as shown in FIG.

実施例2の実験結果について説明する。実施例2は実施例1の上沓と下沓で構成するので、隣り合う沓部の最大変位rmaxと支承装置の最大変位umaxは同じである。よって、最大変位はumax=25mmであり、最大変位と磁石直径の比はumax/D=0.5である。磁石部の側面を囲う非磁性体部の外径は150mm以上であり、磁石部の側面から変位方向に測った非磁性体部の長さは75mm以上である。つまり、隣り合う沓部の最大変位25mmと磁石直径50mmを超えて、非磁性体部は磁石の側面を囲っている。   The experimental results of Example 2 will be described. Since the second embodiment is composed of the upper and lower collars of the first embodiment, the maximum displacement rmax of the adjacent collars and the maximum displacement umax of the support device are the same. Therefore, the maximum displacement is umax = 25 mm, and the ratio between the maximum displacement and the magnet diameter is umax / D = 0.5. The outer diameter of the nonmagnetic body portion surrounding the side surface of the magnet portion is 150 mm or more, and the length of the nonmagnetic body portion measured in the displacement direction from the side surface of the magnet portion is 75 mm or more. That is, the non-magnetic part surrounds the side surface of the magnet beyond the maximum displacement of 25 mm and the magnet diameter of 50 mm between the adjacent flanges.

図6(c)より、変位/直径が0.4付近で見かけの復元力は最大となり、最大復元力は約200Nである。変位/直径が0.5を越えて大きくなると復元力は徐々に減少し、最大変位時の復元力は最大復元力より僅かに小さい。   From FIG. 6 (c), the apparent restoring force becomes maximum when the displacement / diameter is around 0.4, and the maximum restoring force is about 200N. When the displacement / diameter exceeds 0.5, the restoring force gradually decreases, and the restoring force at the maximum displacement is slightly smaller than the maximum restoring force.

他方、比較例2は比較例1の上沓、下沓から構成されている。変位に制限はない。磁石の側面から変位方向に沿った非磁性体部の長さは10mmであり、その非磁性体部の外側には磁性体がある。   On the other hand, the comparative example 2 is composed of the upper and lower eyelids of the comparative example 1. There is no limit to the displacement. The length of the nonmagnetic body portion along the displacement direction from the side surface of the magnet is 10 mm, and the magnetic body is present outside the nonmagnetic body portion.

図6(g)は見かけの復元力Hと変位uの関係である。復元力は変位/直径=約0.1で最大となり、最大復元力は約200Nである。変位が0.1を超えて増加すると、復元力は急激に減少する。umax/D=0.5の水平力は約100Nであり、この時の復元力は最大復元力の約50%である。復元力が最大となる時の変位は約8mmである。この状態では、鉛直方向に隣り合う沓部の磁石部と非磁性体部が部分的に重なり、磁石部と磁性体は重なっていないが、変位が10mmを超えると隣り合う沓部の磁石部と磁性体が重なり、復元力が急速に減少する。   FIG. 6G shows the relationship between the apparent restoring force H and the displacement u. The restoring force is maximum at displacement / diameter = about 0.1, and the maximum restoring force is about 200N. As the displacement increases beyond 0.1, the restoring force decreases rapidly. The horizontal force at umax / D = 0.5 is about 100 N, and the restoring force at this time is about 50% of the maximum restoring force. The displacement when the restoring force is maximized is about 8 mm. In this state, the magnet part and the non-magnetic body part that are adjacent to each other in the vertical direction partially overlap, and the magnet part and the magnetic body do not overlap, but if the displacement exceeds 10 mm, Magnetic bodies overlap and the restoring force decreases rapidly.

実施例2の非磁性体部の効果について、比較例2を用いて説明する。実施例2では、変形時には隣り合う沓部の磁石部と非磁性体部が部分的に重なるので、図6(c)に示すような変位の増加に伴う復元力の減少は比較例2より少ない。   The effect of the nonmagnetic part of Example 2 will be described using Comparative Example 2. In Example 2, the magnet part of the adjacent flange part and the nonmagnetic body part partially overlap at the time of deformation, so that the reduction in restoring force accompanying the increase in displacement as shown in FIG. .

実施例1と比較例1、並びに、実施例1と比較例2の実験結果の比較により、磁石部を囲う非磁性体部を、変位方向に最大変位を超えて延伸させることにより、変位時において隣り合う沓の磁石と非磁性体部が部分的に重なるようにすると、最大変位時における復元力を最大復元力の約80%とすることが可能となる。変位時において隣り合う沓部の磁石部と部分的に重なる磁性体が存在すると復元力が急激に減少するので、そのような構成は復元力の観点から実用的でない。   By comparing the experimental results of Example 1 and Comparative Example 1 and Example 1 and Comparative Example 2, the non-magnetic body part surrounding the magnet part was extended beyond the maximum displacement in the displacement direction, and at the time of displacement If the adjacent magnets and the nonmagnetic part are partially overlapped, the restoring force at the maximum displacement can be about 80% of the maximum restoring force. If there is a magnetic body that partially overlaps with the adjacent magnet portion at the time of displacement, the restoring force decreases rapidly, so such a configuration is not practical from the viewpoint of restoring force.

図7は、実際に設置したときの一例を示す図である。支承装置の両側に、鉛直方向の引張材(本願発明の「復元部」の一例)を設けている。図6の実験により、最大変位の後、復元力が減少していることが判明した。引張材により、この復元力の減少を補うことができる。具体的には引張材の軸力の水平方向分力が復元力の減少を補う。また、側面を粘弾性体で囲繞してもよい。側面を囲繞した粘弾性に発生する力を利用して復元力の減少を補ってもよい。このようにして復元力の減少を補うことができる。   FIG. 7 is a diagram showing an example when actually installed. On both sides of the support device, a vertical tension member (an example of the “restoration part” of the present invention) is provided. The experiment of FIG. 6 revealed that the restoring force decreased after the maximum displacement. The decrease in restoring force can be compensated by the tensile material. Specifically, the horizontal component of the axial force of the tensile material compensates for the decrease in restoring force. Further, the side surface may be surrounded by a viscoelastic body. The reduction in restoring force may be compensated by using the force generated in the viscoelasticity surrounding the side surface. In this way, the reduction in restoring force can be compensated.

図8は、本願発明の実施の形態に拘わる支承装置の他の例を示す図である。図8は、支承装置の(a)中立時及び(b)最大変位時の平面図を示す。(c)及び(d)は、それぞれ、(a)及び(b)の中間断面図を示す。   FIG. 8 is a diagram showing another example of the support device according to the embodiment of the present invention. FIG. 8: shows the top view of the support apparatus at the time of (a) neutrality and (b) maximum displacement. (C) and (d) show intermediate sectional views of (a) and (b), respectively.

図8(e)及び(f)を参照して、各沓に配置される磁石部の極の配置の一例を説明する。(e)及び(f)は、それぞれ、沓を上及び下から見たときの極の配置の一例を示す。各沓にある磁石部は9個であり,9個の磁石部は平面的に格子状に配置される。格子状に配置された磁石部は、同じ面で、N極かS極かに統一されていない。格子状にN極とS極が平面的に隣り合うように磁石部は配置される。これにより、後述する磁気回路を形成し、大きな一つの磁石でなくとも、小さな複数の磁石部で、望ましい復元力を生じることができる。   With reference to FIG.8 (e) and (f), an example of arrangement | positioning of the pole of the magnet part arrange | positioned at each cage | basket is demonstrated. (E) and (f) show an example of arrangement | positioning of a pole when respectively seeing a cage | basket from the top and the bottom. There are nine magnet portions in each cage, and the nine magnet portions are arranged in a grid pattern in a plane. The magnet portions arranged in a lattice shape are not unified as N poles or S poles on the same surface. The magnet part is arranged so that the N pole and the S pole are adjacent to each other in a lattice shape. Thereby, a magnetic circuit to be described later is formed, and a desirable restoring force can be generated with a plurality of small magnet portions instead of a single large magnet.

中間沓は1枚である。上沓と中間沓と下沓の構成は、図1と同様であり、非磁性体部は、複数の磁石部の側面を囲っている。隣接する沓は、図1と同様に凸形状が凹形状に隙間を持って嵌合して、変位可能な距離が制限されている。   There is one intermediate cage. The configuration of the upper rod, the intermediate rod and the lower rod is the same as in FIG. 1, and the non-magnetic body portion surrounds the side surfaces of the plurality of magnet portions. As in FIG. 1, the adjacent ridges are fitted in a concave shape with a gap, and the displaceable distance is limited.

図8(a)及び(c)を参照して、上沓、中間沓及び下沓の磁石部は、同じ大きさであり、中立時に重なっている。図8(b)及び(d)を参照して、上沓と下沓に外力が働いて、最大の変位となったとき、上沓及び中間沓が移動している。上側の凸形状と下側の凹形状により変位が制限されており、各沓で、中位時に重なっていた磁石部は、最大変位時にも一部は重なっている。他方、各沓で、中位時に重なっていない磁石部は、最大変位時にも重なっていない。そのため、変位しているとき、中位時に重なっていた磁石部は、最大変位に至るまで少なくとも一部は重なったままである。他方、中位時に重なっていない磁石部は、最大変位に至るまで重ならない。   Referring to FIGS. 8A and 8C, the upper, intermediate and lower magnet portions have the same size and overlap when neutral. With reference to FIGS. 8B and 8D, when an external force acts on the upper and lower eyelids to achieve the maximum displacement, the upper and intermediate eyelids are moving. Displacement is limited by the upper convex shape and the lower concave shape, and the magnet portion that overlaps at the middle position partially overlaps at the maximum displacement. On the other hand, the magnet portions that do not overlap at the middle position in each rod do not overlap even at the maximum displacement. Therefore, at the time of the displacement, at least a part of the magnet portion overlapping at the middle position remains overlapped until reaching the maximum displacement. On the other hand, magnet portions that do not overlap at the middle position do not overlap until the maximum displacement is reached.

図9は、本願発明の実施の形態に係る支承装置の他の例を示す図である。この例では、図8の場合と同様に、各沓にある磁石部が9つで、上沓と下沓で構成し、簡単な構造となっている。上沓及び下沓の構成は、それぞれ、図8の上沓及び下沓と同じ構成とすることができる。   FIG. 9 is a diagram showing another example of the support device according to the embodiment of the present invention. In this example, as in the case of FIG. 8, each magnet has nine magnet portions, and is composed of an upper rod and a lower rod, and has a simple structure. The configurations of the upper and lower eyelids can be the same as the upper and lower eyelids of FIG. 8, respectively.

図9(a)及び(b)は、それぞれ、支承装置の中立時及び最大変位時の平面図を示す。図9(c)及び(d)は、それぞれ、(a)及び(b)のときの中間断面図を示す。図9の支承装置は、図8の支承装置と同様の機能を有する。ただし、最大変位が1/2と短くなる。   FIGS. 9A and 9B show plan views of the bearing device when neutral and when the displacement is maximum. FIGS. 9C and 9D are intermediate sectional views at the time of (a) and (b), respectively. The support device of FIG. 9 has the same function as the support device of FIG. However, the maximum displacement is shortened to 1/2.

図10は、本願発明の実施の形態に係る支承装置の他の例を示す。この例では、各沓にある磁石が複数であり、沓に配置された磁石の中心を結ぶと正三角形網となる磁石配置であり、単位面積当たりの磁石数が最大となる磁石配置である。中間沓は複数枚である。   FIG. 10 shows another example of the support device according to the embodiment of the present invention. In this example, there are a plurality of magnets on each ridge, a magnet arrangement that forms an equilateral triangle network when the centers of the magnets arranged on the ridge are connected, and a magnet arrangement that maximizes the number of magnets per unit area. There are multiple intermediate fences.

上沓と中間沓と下沓は、他の実施例と同様に、非磁性体部が、複数の磁石部の側面を囲っている。隣接する沓は、凸形状が凹形状に隙間を持って嵌合して、変位可能な距離が制限されている。   In the upper collar, the intermediate collar, and the lower collar, as in the other embodiments, the non-magnetic body portion surrounds the side surfaces of the plurality of magnet portions. Adjacent ridges have a convex shape that is fitted in a concave shape with a gap, and the displaceable distance is limited.

支承装置は、内部を保護するため、側面を囲繞するように粘弾性体(本願請求項の「復元部」の一例)で囲まれている。粘弾性の上側は上沓に固定され、下側は下沓に固定されている。   In order to protect the inside of the support device, the support device is surrounded by a viscoelastic body (an example of a “restoration unit” in the claims of the present application) so as to surround the side surface. The upper side of the viscoelasticity is fixed to the upper eyelid, and the lower side is fixed to the lower eyelid.

図10は、支承装置の(a)中立時及び(b)最大変位時の平面図を示し、(c)中立時及び(d)最大変位時の中間断面図を示す。図10(a)及び(c)を参照して、上沓、中間沓及び下沓の磁石部は、同じ大きさであり、中立時に重なっている。   FIG. 10: shows the top view of the support apparatus at the time of (a) neutrality and (b) the maximum displacement, (c) The intermediate sectional view at the time of neutrality and (d) the maximum displacement is shown. Referring to FIGS. 10 (a) and 10 (c), the upper, middle and lower magnet portions have the same size and overlap when neutral.

図10(b)及び(d)を参照して、上沓と下沓に外力が働いて最大の変位となったとき、上沓及び中間沓が移動している。上側の凸形状と下側の凹形状により変位が制限されており、各沓で、中位時に重なっていた磁石部は、最大変位時にも一部は重なっている。他方、各沓で、中位時に重なっていない磁石部は、最大変位時にも重なっていない。そのため、変位しているとき、中位時に重なっていた磁石部は、最大変位に至るまで少なくとも一部は重なったままである。他方、中位時に重なっていない磁石部は、最大変位に至るまで重ならない。   Referring to FIGS. 10 (b) and 10 (d), when an external force acts on the upper and lower eyelids to achieve the maximum displacement, the upper and intermediate eyelids are moving. Displacement is limited by the upper convex shape and the lower concave shape, and the magnet portion that overlaps at the middle position partially overlaps at the maximum displacement. On the other hand, the magnet portions that do not overlap at the middle position in each rod do not overlap even at the maximum displacement. Therefore, at the time of the displacement, at least a part of the magnet portion overlapping at the middle position remains overlapped until reaching the maximum displacement. On the other hand, magnet portions that do not overlap at the middle position do not overlap until the maximum displacement is reached.

変形時は、粘弾性体は中立時に比べて長さが長くなり、上沓と下沓には粘弾性体が伸びた方向に引張力が作用する。この引張力の水平方向分力は、上沓と下沓の変位を元に戻す復元力として作用する。支承装置が最大変位に近くなると磁気復元力が小さくなるので、この粘弾性体の引張力の水平方向分力を磁気復元力の減少を補う復元力としてよい。   At the time of deformation, the viscoelastic body becomes longer than that at the neutral position, and a tensile force acts on the upper and lower eyelids in the direction in which the viscoelastic body extends. This horizontal component of the tensile force acts as a restoring force that restores the displacement of the upper and lower eyelids. Since the magnetic restoring force decreases as the support device approaches the maximum displacement, the horizontal component of the tensile force of the viscoelastic body may be used as a restoring force that compensates for the decrease in the magnetic restoring force.

図10(e)及び(f)は、各沓の複数の磁石の極の分布の一例を示す。(e)は、沓の上側の極の分布の一例を示し、(f)は沓の下側の極の分布の一例を示す。複数の磁石は、同じ面で、N極かS極かに統一されていない。N極とS極が混在する。これにより、磁気回路を形成し、大きな一つの磁石でなくとも、小さな複数の磁石で、望ましい復元力を生じることができる。   FIGS. 10E and 10F show an example of the distribution of poles of a plurality of magnets in each cage. (E) shows an example of the distribution of the poles above the heel, and (f) shows an example of the distribution of the poles below the heel. A plurality of magnets are not unified as N pole or S pole on the same surface. N pole and S pole are mixed. As a result, a magnetic circuit is formed, and a desired restoring force can be generated with a plurality of small magnets, instead of a single large magnet.

図10は、各沓が複数の磁石部を備える場合に支承装置に形成される磁気回路を示す概念図である。   FIG. 10 is a conceptual diagram illustrating a magnetic circuit formed in the support device when each rod includes a plurality of magnet portions.

図10(a)は、上沓、中間沓及び下沓を有する場合を示す。上沓、中間沓及び下沓では、鉛直方向では極が統一し、その方向が複数存在する。そして、上沓の上側の磁性体と、下沓の下側の磁性体を利用することにより、磁気回路が形成される。このような磁気回路を利用するため、複数の磁石を利用する場合には、同じ極となる磁石を集めるのではなく、隣接する磁石がなるべく異なる極となるように配置することが望ましい。   FIG. 10A shows a case having an upper eyelid, an intermediate eyelid, and a lower eyelid. The upper, middle and lower poles have a uniform pole in the vertical direction, and there are multiple directions. Then, a magnetic circuit is formed by using the upper magnetic body of the upper eyelid and the lower magnetic body of the lower eyelid. In order to use such a magnetic circuit, when using a plurality of magnets, it is desirable not to collect magnets having the same pole, but to arrange adjacent magnets to have different poles as much as possible.

図10(b)は、(a)の支承装置を鉛直方向に重ねた状態の支承装置の磁気回路の概念図である。上側の支承装置の下部磁性体部と下側の支承装置の上部磁性体部は一体化しているが、一体化しなくても良い。図10(a)に示した磁気回路と同様の磁気回路が形成される。非常に大きな最大変位に対応するためには、多数の中間沓を重ねて最大変位を大きくする必要がある。多数の中間沓を重ねると磁路が長くなり磁気抵抗が大きくなるので、磁場が弱くなり磁気復元力が小さくなる場合がある。このような場合には支承装置を鉛直方向に重ねることによって最大変位を大きくすることが可能で、中間沓を少なくして磁気回路の磁路を短くして磁気復元力を大きくすることが可能な図10(b)に示す支承装置が有効である。   FIG. 10B is a conceptual diagram of the magnetic circuit of the support device in a state where the support device of FIG. The lower magnetic body portion of the upper support device and the upper magnetic body portion of the lower support device are integrated, but may not be integrated. A magnetic circuit similar to the magnetic circuit shown in FIG. In order to cope with a very large maximum displacement, it is necessary to increase the maximum displacement by stacking a large number of intermediate rods. If a large number of intermediate rods are stacked, the magnetic path becomes longer and the magnetic resistance increases, so that the magnetic field is weakened and the magnetic restoring force may be reduced. In such a case, it is possible to increase the maximum displacement by stacking the support devices in the vertical direction, and it is possible to increase the magnetic restoring force by reducing the intermediate rod and shortening the magnetic path of the magnetic circuit. The support device shown in FIG. 10B is effective.

図10(c)は、上沓及び下沓を有する場合を示す。実施例の中で最も短い磁路の磁気回路が形成される支承装置である。図10(d)は、(c)の支承装置を鉛直方向に重ねた支承装置の磁気回路の概念図である。図10(d)に示す支承装置の構成は、最も磁路が短い磁気回路を維持しながら、支承装置の多層化で最大変位を大きくできるので、図10(b)の支承装置と同様に大きな最大変位に対応する場合に有効である。   FIG. 10C shows a case having an upper eyelid and a lower eyelid. This is a bearing device in which a magnetic circuit having the shortest magnetic path in the embodiment is formed. FIG.10 (d) is a conceptual diagram of the magnetic circuit of the support apparatus which piled up the support apparatus of (c) in the perpendicular direction. The structure of the support device shown in FIG. 10 (d) is large as the support device of FIG. 10 (b) because the maximum displacement can be increased by multilayering the support device while maintaining the magnetic circuit with the shortest magnetic path. Effective when dealing with maximum displacement.

なお、これらの例では、水平方向のいずれの方向でも変位できるように、上沓、中間沓、下沓、磁石部のそれぞれの形状を円形としているが、長方形などの他の形状としても良く、変位する方向を限定したものであってもよい。   In these examples, the shape of each of the upper collar, the intermediate collar, the lower collar, and the magnet portion is circular so that it can be displaced in any direction in the horizontal direction, but other shapes such as a rectangle may be used. The direction of displacement may be limited.

1 支承装置、3 上沓、5 中間沓、7 下沓、11 上部磁石部、13 上部非磁性体部、14 上部非磁性体部の最下面、15 上部摺動部、16 上部磁性体部の下面、17 上部磁性体部、18、中間沓の液面、21 中間磁石部、22 中間沓の防溢材、23 中間非磁性体部、24 中間非磁性体の最下面、25 中間下摺動部、26 中間非磁性体の下面、28 下沓の液面、29 中間上摺動部、31 下部磁石部、32 下沓の防溢材、33 下部非磁性体部、37 下部磁性体部、39 下部摺動部   DESCRIPTION OF SYMBOLS 1 Supporting device, 3 Upper collar, 5 Middle collar, 7 Lower collar, 11 Upper magnet part, 13 Upper nonmagnetic body part, 14 Bottom surface of upper nonmagnetic body part, 15 Upper sliding part, 16 Upper magnetic body part Lower surface, 17 Upper magnetic body portion, 18, Liquid surface of intermediate ridge, 21 Intermediate magnet portion, 22 Overflow preventive material of intermediate ridge, 23 Intermediate nonmagnetic portion, 24 Lowermost surface of intermediate nonmagnetic portion, 25 Middle lower sliding 26, lower surface of the intermediate non-magnetic material, 28 lower liquid level, 29 intermediate upper sliding portion, 31 lower magnet portion, 32 lower anti-flooding material, 33 lower non-magnetic material portion, 37 lower magnetic material portion, 39 Lower sliding part

Claims (8)

水平方向の少なくとも一つの向きに変位して復元する支承装置であって、
複数の沓部を備え、
前記複数の沓部は、鉛直方向に重ねた状態にあって、隣接する沓部との間で摺動して水平方向に変位し、
各沓部は、第1磁石部と、前記第1磁石部の側面を囲う非磁性体部を備え、
上側の前記沓部の前記第1磁石部は、下面が第1極性であり、
下側の前記沓部の前記第1磁石部は、上面が前記第1極性と対極の第2極性であり、
上側の前記沓部の前記第1磁石部の下面と下側の前記沓部の前記第1磁石部の上面は、同じ大きさであって、
中立時に重なる位置にあり、
最大に変位した状態でも少なくとも一部が重なる状態にある、支承装置。
A bearing device that is displaced and restored in at least one horizontal direction,
With multiple buttocks,
The plurality of hooks are in a state of being overlapped in the vertical direction, sliding between adjacent hooks and displaced in the horizontal direction,
Each flange includes a first magnet portion and a non-magnetic body portion surrounding the side surface of the first magnet portion,
The lower surface of the first magnet portion of the upper flange has a first polarity,
The upper surface of the first magnet portion of the lower flange portion has a second polarity opposite to the first polarity,
The lower surface of the first magnet portion of the upper flange portion and the upper surface of the first magnet portion of the lower flange portion are the same size,
In the neutral position,
A bearing device that is at least partially overlapped even in the maximum displaced state.
前記各沓部は、前記第1磁石部に加えて第2磁石部を備え、
上側の前記沓部の前記第2磁石部は、下面が前記第2極性であり、
下側の前記沓部の前記第2磁石部は、上面が前記第1極性であり、
前記非磁性体部は、前記第1磁石部及び前記第2磁石部の側面を囲い、
上側の前記沓部の前記第2磁石部の下面と下側の前記沓部の前記第2磁石部の上面は、同じ大きさであって、
中立時に重なる位置にあり、
最大に変位した状態でも少なくとも一部が重なる状態にあり、
上側の前記沓部の前記第1磁石部の下面と下側の前記沓部の前記第2磁石部の上面は、最大に変位した状態でも重ならず、
上側の前記沓部の前記第2磁石部の下面と上側の前記沓部の前記第1磁石部の上面は、最大に変位した状態でも重ならない、請求項1記載の支承装置。
Each collar includes a second magnet part in addition to the first magnet part,
The lower surface of the second magnet portion of the upper flange portion has the second polarity,
The upper surface of the second magnet portion of the lower flange portion is the first polarity,
The non-magnetic part surrounds side surfaces of the first magnet part and the second magnet part,
The lower surface of the second magnet portion of the upper flange portion and the upper surface of the second magnet portion of the lower flange portion are the same size,
In the neutral position,
Even if it is displaced to the maximum, at least part of it overlaps,
The lower surface of the first magnet portion of the upper flange portion and the upper surface of the second magnet portion of the lower flange portion do not overlap even in a state of maximum displacement,
2. The support device according to claim 1, wherein the lower surface of the second magnet portion of the upper flange portion and the upper surface of the first magnet portion of the upper flange portion do not overlap even when displaced to the maximum.
最も上にある前記沓部及び最も下にある前記沓部は、それぞれ、上部及び下部に磁性体部を備えることにより、前記非磁性体部を利用して、上部の磁性体部、前記第1磁石部、下部の磁性体部及び前記第2磁石部による磁気回路を形成する、請求項2に記載の支承装置。   The uppermost brim part and the lowermost brim part have a magnetic part at the upper part and the lower part, respectively, so that the upper magnetic part, the first The support device according to claim 2, wherein a magnetic circuit is formed by a magnet part, a lower magnetic part, and the second magnet part. 上側の前記沓部の下面及び下側の前記沓部の上面は、それぞれ、下に凸形状及び上に凹形状、又は、下に凹形状及び上に凸形状であり、
前記沓部は、前記凸形状の一部に第一摺動部を備え、
前記沓部は、前記凹形状の窪みの底に第二摺動部を備え、
上側の前記沓部の下面の凸形状又は凹形状の部分が下側の前記沓部の上面の凹形状又は凸形状の部分に水平方向の隙間を持って嵌合することにより、最大に変位する長さが制限され、かつ、前記第一摺動部と前記第二摺動部が摺動する、請求項1から3のいずれかに記載の支承装置。
The lower surface of the upper collar part and the upper surface of the lower collar part are respectively convex downward and concave upward, or concave downward and convex upward.
The collar part includes a first sliding part in a part of the convex shape,
The collar portion includes a second sliding portion at the bottom of the concave recess.
The convex or concave part on the lower surface of the upper collar part is displaced to the maximum by fitting with the concave or convex part on the upper surface of the lower collar part with a horizontal gap. The support device according to any one of claims 1 to 3, wherein the length is limited, and the first sliding portion and the second sliding portion slide.
前記沓部において前記凹形状が上向きのときに、前記凹形状の第二摺動部に摺動液を保持する、請求項1から4のいずれかに記載の支承装置。   The bearing device according to any one of claims 1 to 4, wherein a sliding fluid is held in the concave second sliding portion when the concave shape is upward in the collar portion. 上側の前記沓部の下面にあり、かつ下側の前記沓部の前記第二摺動部と接触せず、かつ前記摺動液と接触する第一間接接触部、又は、下側の前記沓部の上面にあり、かつ上側の前記沓部の前記第一摺動部と接触せず、かつ前記摺動液と接触する第二間接接触部を備える、請求項5に記載の支承装置。   The first indirect contact portion that is on the lower surface of the upper flange portion and does not contact the second sliding portion of the lower flange portion and that contacts the sliding liquid, or the lower flange The support device according to claim 5, further comprising a second indirect contact portion that is on an upper surface of a portion and does not contact the first sliding portion of the upper flange portion and contacts the sliding liquid. 前記少なくとも最大に変位した状態で、磁力以外によって上側の沓部と下側の沓部との間の復元力を生じる復元部を備える請求項1から6のいずれかに記載の支承装置。   The support device according to any one of claims 1 to 6, further comprising a restoring portion that generates a restoring force between the upper flange portion and the lower flange portion other than magnetic force in the state of being displaced at least to the maximum. 請求項1から7のいずれかに記載の支承装置を鉛直方向に重ね、鉛直方向に隣り合う下部の磁性体と上部の磁性体を一体化する支承システム。   A support system in which the support device according to any one of claims 1 to 7 is stacked in a vertical direction, and a lower magnetic body and an upper magnetic body adjacent to each other in the vertical direction are integrated.
JP2016243552A 2016-12-15 2016-12-15 Bearing equipment and bearing system Active JP6867673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243552A JP6867673B2 (en) 2016-12-15 2016-12-15 Bearing equipment and bearing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243552A JP6867673B2 (en) 2016-12-15 2016-12-15 Bearing equipment and bearing system

Publications (2)

Publication Number Publication Date
JP2018096500A true JP2018096500A (en) 2018-06-21
JP6867673B2 JP6867673B2 (en) 2021-05-12

Family

ID=62633386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243552A Active JP6867673B2 (en) 2016-12-15 2016-12-15 Bearing equipment and bearing system

Country Status (1)

Country Link
JP (1) JP6867673B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021196048A (en) * 2020-06-18 2021-12-27 オイレス工業株式会社 Base isolation tool
JP2022077488A (en) * 2020-11-11 2022-05-23 ツィンファ ユニバーシティ Magnetic fluid damper based on principle of secondary buoyance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637473A (en) * 1986-06-26 1988-01-13 オイレス工業株式会社 Earthquake damping support apparatus for structure
JPH01151506U (en) * 1988-03-31 1989-10-19
JPH11247932A (en) * 1998-03-05 1999-09-14 Hitachi Ltd Base isolation device
JPH11351324A (en) * 1998-06-10 1999-12-24 Bando Chem Ind Ltd Base isolation device
JP2002106634A (en) * 2000-10-04 2002-04-10 Railway Technical Res Inst Magnetic control rubber support, and structure supported by it
JP2014001797A (en) * 2012-06-19 2014-01-09 Ps-Tokki Inc Base isolation device
JP2014222093A (en) * 2013-05-14 2014-11-27 学校法人君が淵学園 Base isolation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637473A (en) * 1986-06-26 1988-01-13 オイレス工業株式会社 Earthquake damping support apparatus for structure
JPH01151506U (en) * 1988-03-31 1989-10-19
JPH11247932A (en) * 1998-03-05 1999-09-14 Hitachi Ltd Base isolation device
JPH11351324A (en) * 1998-06-10 1999-12-24 Bando Chem Ind Ltd Base isolation device
JP2002106634A (en) * 2000-10-04 2002-04-10 Railway Technical Res Inst Magnetic control rubber support, and structure supported by it
JP2014001797A (en) * 2012-06-19 2014-01-09 Ps-Tokki Inc Base isolation device
JP2014222093A (en) * 2013-05-14 2014-11-27 学校法人君が淵学園 Base isolation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021196048A (en) * 2020-06-18 2021-12-27 オイレス工業株式会社 Base isolation tool
JP7471153B2 (en) 2020-06-18 2024-04-19 オイレス工業株式会社 Seismic isolation device
JP2022077488A (en) * 2020-11-11 2022-05-23 ツィンファ ユニバーシティ Magnetic fluid damper based on principle of secondary buoyance

Also Published As

Publication number Publication date
JP6867673B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
US20160211736A1 (en) Magnetic Actuators for Haptic Response
US11255407B2 (en) Eddy current damper
JP2013130216A (en) Sliding base isolation mechanism
JP2019035493A (en) Slide bearing device
KR20180117938A (en) Vibration isolation viscoelastic module for earthquake reduction
JP2018096500A (en) Support device and support system
KR20180117937A (en) Vibration isolation viscoelastic module for earthquake reduction
JP6175641B2 (en) Seismic isolation device
JP5513956B2 (en) Sliding bearing device
JP2006291588A (en) Base-isolated structure
JP2002013312A (en) Base isolation device
KR20080090744A (en) Friction pendulum system
JP6384817B2 (en) Base-isolated building for long-period earthquakes
JP2002106634A (en) Magnetic control rubber support, and structure supported by it
JP6274172B2 (en) Seismic isolation table device
JP2016014411A (en) Sliding base isolation mechanism
JP2014001797A (en) Base isolation device
JP7429313B2 (en) sliding bearing
JP7511433B2 (en) Seismic isolation device
Javed et al. Proposal of lateral vibration control based on force detection in magnetic suspension system
JP2017198063A (en) Seismic isolator
JP7425699B2 (en) Seismic isolation device
JP2016142344A (en) Seismic isolator
Jiang et al. Development of magnetic levitation device for active vibration control
KR20020003792A (en) Hybrid Mass Damper for vibration control of structures using Magnetic Actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6867673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150