JP2018094499A - Coating and drying device and coating and drying method - Google Patents

Coating and drying device and coating and drying method Download PDF

Info

Publication number
JP2018094499A
JP2018094499A JP2016240543A JP2016240543A JP2018094499A JP 2018094499 A JP2018094499 A JP 2018094499A JP 2016240543 A JP2016240543 A JP 2016240543A JP 2016240543 A JP2016240543 A JP 2016240543A JP 2018094499 A JP2018094499 A JP 2018094499A
Authority
JP
Japan
Prior art keywords
coating
concentration
steel strip
organic solvent
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016240543A
Other languages
Japanese (ja)
Other versions
JP6280194B1 (en
Inventor
洋 城野
Hiroshi Kino
洋 城野
義弘 馬郡
Yoshihiro Magori
義弘 馬郡
敏郎 平石
Toshiro Hiraishi
敏郎 平石
栄二 平尾
Eiji Hirao
栄二 平尾
秀昭 進藤
Hideaki Shindo
秀昭 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
JFE Galvanizing and Coating Co Ltd
Original Assignee
Chugai Ro Co Ltd
JFE Galvanizing and Coating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd, JFE Galvanizing and Coating Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2016240543A priority Critical patent/JP6280194B1/en
Priority to CN201780076483.5A priority patent/CN110114150B/en
Priority to KR1020197017928A priority patent/KR102391214B1/en
Priority to MYPI2019003291A priority patent/MY196677A/en
Priority to PCT/JP2017/039803 priority patent/WO2018110137A1/en
Priority to TW106140307A priority patent/TWI748003B/en
Application granted granted Critical
Publication of JP6280194B1 publication Critical patent/JP6280194B1/en
Publication of JP2018094499A publication Critical patent/JP2018094499A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects

Abstract

PROBLEM TO BE SOLVED: To improve safety of a coating and drying device and a coating and drying method.SOLUTION: A coating and drying device, which coats and dries a steel strip while continuously conveying, includes a conveying part which continuously conveys the steel strip, a coating part which applies paint containing an organic solvent and coats the conveyed steel strip, an oven which dries and bakes the steel strip in a heating space on a downstream side than a coating position, an exhaust part which exhausts the heating space, a concentration measuring part which measures an organic solvent concentration of the organic solvent in the heating space, and a control part which controls operation of the coating and drying device. The control part calculates an arrival predicted concentration based on the organic solvent concentration measured by the concentration measuring part, and controls to stop coating by the coating part while continuing conveyance by the conveying part when the arrival predicted concentration is equal to or higher than a predetermined threshold concentration.SELECTED DRAWING: Figure 4C

Description

本開示は、鋼帯を連続搬送しながら塗装して乾燥処理する塗装乾燥装置および塗装乾燥方法に関する。   The present disclosure relates to a coating / drying apparatus and a coating / drying method for performing a coating and drying process while continuously conveying a steel strip.

従来、鋼帯(金属ストリップ)にロールコータで塗装を行う装置として、鋼帯に塗布された塗料を、鋼帯を搬送しながらオーブン内で乾燥・焼付処理する塗装乾燥装置およびその方法が提案されている(例えば、特許文献1−3参照)。   Conventionally, as a device for coating a steel strip (metal strip) with a roll coater, there has been proposed a coating drying device and method for drying and baking the paint applied to the steel strip in an oven while transporting the steel strip. (For example, see Patent Documents 1-3).

特許文献1−3の塗装乾燥装置では、オーブンの内部はブロワで常時一定量を排気しており、オーブンに入った鋼帯は奥に入るに従って温度が上昇し、塗布された塗料は乾燥される。オーブンの中ほどで塗料の全量が乾燥し、焼付工程に入る。   In the paint drying apparatus of Patent Documents 1-3, the oven is constantly exhausted with a blower by a blower, the temperature of the steel strip entering the oven rises as it enters the back, and the applied paint is dried. . In the middle of the oven, the entire amount of paint dries and enters the baking process.

特開平4−193371号公報JP-A-4-193371 特開2005−262132号公報JP 2005-262132 A 特開平8−38855号公報JP-A-8-38855

しかしながら、特許文献1、2に開示されるような塗装乾燥装置では、鋼帯に塗布される塗料には通常、引火性の有機溶剤が含まれており、オーブン内の雰囲気には、蒸発した有機溶剤が拡散される。オーブン内の熱によって有機溶剤の成分が引火しないようにするためにも、オーブン内の雰囲気の有機溶剤の濃度を所定濃度以下に維持することが望ましく、そのような制御を精度良く実現することで安全性を向上させ、排気量の適正化による省エネルギー化を実現することができる技術の開発が求められている。   However, in the paint drying apparatus as disclosed in Patent Documents 1 and 2, the paint applied to the steel strip usually contains a flammable organic solvent, and the atmosphere in the oven has an evaporated organic solvent. The solvent is diffused. In order to prevent the components of the organic solvent from being ignited by the heat in the oven, it is desirable to maintain the concentration of the organic solvent in the atmosphere in the oven below a predetermined concentration, and by realizing such control with high accuracy. Development of technology that can improve safety and realize energy saving by optimizing the displacement is required.

ところが実際の操業では、塗装乾燥装置を運転する際の人為的ミスや、塗布量を制御する制御装置の故障などにより、運転開始時点から誤って塗布量が倍程度あるいはそれ以上も過剰に大きくなってしまう場合がある。このような場合、有機溶剤濃度の高い雰囲気を排気しきれずに爆発事故を起こす恐れがある。   However, in actual operation, due to human error when operating the paint drying device or failure of the control device that controls the coating amount, the coating amount is erroneously doubled or excessively increased from the start of operation. May end up. In such a case, an atmosphere with a high organic solvent concentration may not be exhausted and an explosion may occur.

一方で、特許文献3のようにオーブン内の有機溶剤濃度に基づいて排気量を増加させるというものも有るが、過剰な有機溶剤濃度となった雰囲気を素早く排気するには大型のブロワが必要となり、製作コストが上昇し、大きな設置スペースも必要となる。   On the other hand, there is a technique such as Patent Document 3 that increases the displacement based on the organic solvent concentration in the oven. However, a large blower is required to quickly exhaust the atmosphere having an excessive organic solvent concentration. This increases the production cost and requires a large installation space.

本開示は、前記課題を解決するものであり、塗装乾燥装置および塗装乾燥方法において安全性を向上させ、操業時の省エネルギー化を実現することを目的とする。   The present disclosure is to solve the above-described problems, and an object thereof is to improve safety in a coating drying apparatus and a coating drying method, and to realize energy saving during operation.

本開示の一態様の塗装乾燥装置は、鋼帯を連続搬送しながら塗装して乾燥処理する塗装乾燥装置であって、前記鋼帯を搬送する搬送部と、搬送されている前記鋼帯に対して有機溶剤を含む塗料を塗装位置にて塗布して塗装する塗装部と、前記塗装位置よりも下流側において前記鋼帯を乾燥処理するための加熱空間を形成するオーブンと、前記加熱空間を排気する排気部と、前記加熱空間における前記有機溶剤の有機溶剤濃度を測定する濃度測定部と、前記塗装乾燥装置の運転を制御する制御部と、を備え、前記制御部は、前記濃度測定部が測定した前記有機溶剤濃度に基づいて到達予測濃度を演算し、前記到達予測濃度が所定の閾値濃度以上である場合に、前記搬送部による搬送を継続しながら前記塗装部による塗装を停止するように制御する、塗装乾燥装置である。   The coating drying apparatus according to an aspect of the present disclosure is a coating drying apparatus that performs coating and drying treatment while continuously conveying a steel strip, with respect to the transporting section that transports the steel strip, and the steel strip being transported A coating part for applying a paint containing an organic solvent at a coating position, an oven for forming a heating space for drying the steel strip downstream of the coating position, and exhausting the heating space An exhaust unit, a concentration measuring unit that measures the organic solvent concentration of the organic solvent in the heating space, and a control unit that controls the operation of the paint drying apparatus, and the control unit includes the concentration measuring unit Based on the measured concentration of the organic solvent, the predicted predicted concentration is calculated, and when the predicted predicted concentration is equal to or higher than a predetermined threshold concentration, the coating unit stops coating while continuing the transport by the transport unit. Control , It is a paint-drying apparatus.

前記構成によれば、加熱空間における有機溶剤の濃度が過度に高くなることを防止する制御が可能となり、加熱空間の熱によって有機溶剤が引火することを精度良く防止することができ、安全性を向上させることができる。   According to the above configuration, it is possible to control the concentration of the organic solvent in the heating space from being excessively high, and it is possible to accurately prevent the organic solvent from being ignited by the heat in the heating space. Can be improved.

前記塗装乾燥装置において、前記制御部は、前記到達予測濃度が前記閾値濃度以上である場合に、前記塗装部による塗装停止に加えて、前記搬送部による搬送速度を遅くするように制御してもよい。これにより、有機溶剤の濃度上昇をさらに抑制することができ、安全性をさらに向上させることができる。   In the paint drying apparatus, the control unit may control to slow down the conveyance speed by the conveyance unit in addition to stopping painting by the coating unit when the predicted arrival density is equal to or higher than the threshold concentration. Good. Thereby, the raise of the density | concentration of an organic solvent can further be suppressed, and safety | security can be improved further.

前記塗装乾燥装置は、前記塗装部によって前記鋼帯に塗布された前記塗料を前記加熱空間よりも上流側で除去する除去部をさらに備え、前記制御部は、前記到達予測濃度が前記閾値濃度以上である場合に、前記塗装部による塗装停止に加えて、前記除去部により塗料の除去を行うように制御してもよい。これにより、有機溶剤の濃度上昇をさらに抑制することができ、安全性をさらに向上させることができる。   The paint drying apparatus further includes a removal unit that removes the paint applied to the steel strip by the coating unit on the upstream side of the heating space, and the control unit has the predicted predicted concentration equal to or higher than the threshold concentration. In this case, in addition to stopping the coating by the coating unit, the removal unit may be controlled to remove the paint. Thereby, the raise of the density | concentration of an organic solvent can further be suppressed, and safety | security can be improved further.

前記塗装乾燥装置において、前記制御部は、前記到達予測濃度が前記閾値濃度以上である場合に、前記排気部による排気量を同量に維持しながら前記塗装部による塗装停止を行うように制御してもよい。これにより、簡便な制御と機構として実施することができる。   In the paint drying apparatus, the control unit controls to stop the painting by the coating unit while maintaining the same exhaust amount by the exhaust unit when the predicted concentration reaches or exceeds the threshold concentration. May be. Thereby, it can implement as simple control and a mechanism.

本開示の一態様の塗装乾燥方法は、鋼帯を連続搬送しながら塗装して乾燥処理する塗装乾燥方法であって、前記鋼帯を搬送するステップと、搬送されている前記鋼帯に対して有機溶剤を含む塗料を塗装位置にて塗布する塗装ステップと、前記塗装位置よりも下流側において前記鋼帯を加熱空間にて乾燥処理する乾燥ステップと、前記加熱空間を排気する排気ステップと、前記加熱空間における前記有機溶剤の有機溶剤濃度を測定する測定ステップと、測定した前記有機溶剤濃度に基づいて、到達予測濃度を演算する演算ステップと、前記到達予測濃度が所定の閾値濃度以上である場合に、前記鋼帯の搬送を継続しながら塗装を停止する塗装停止ステップと、を含む、塗装乾燥方法である。   The coating drying method according to one aspect of the present disclosure is a coating drying method in which a steel strip is coated and continuously dried while being transported, and the step of transporting the steel strip and the steel strip being transported A coating step of applying a paint containing an organic solvent at a coating position; a drying step of drying the steel strip in a heating space downstream of the coating position; an exhausting step of exhausting the heating space; A measurement step of measuring the organic solvent concentration of the organic solvent in the heating space, a calculation step of calculating a predicted predicted concentration based on the measured organic solvent concentration, and the predicted predicted concentration being equal to or higher than a predetermined threshold concentration And a coating stopping step of stopping the coating while continuing the conveyance of the steel strip.

前記構成によれば、加熱空間における有機溶剤の濃度が過度に高くなることを防止する制御が可能となり、加熱空間の熱によって有機溶剤が引火することを確実に防止する等、安全性を向上させることができる。   According to the above configuration, it is possible to control to prevent the concentration of the organic solvent in the heating space from becoming excessively high, and to improve safety such as reliably preventing the organic solvent from being ignited by the heat in the heating space. be able to.

前記塗装乾燥方法において、塗装停止ステップは、前記到達予測濃度が前記閾値濃度以上である場合に、塗装の停止に加えて、前記鋼帯の搬送速度を遅くするステップを含んでもよい。これにより、有機溶剤の濃度上昇をさらに抑制することができ、安全性をさらに向上させることができる。   In the coating and drying method, the coating stopping step may include a step of slowing the conveying speed of the steel strip in addition to stopping the coating when the predicted arrival concentration is equal to or higher than the threshold concentration. Thereby, the raise of the density | concentration of an organic solvent can further be suppressed, and safety | security can be improved further.

前記塗装乾燥方法において、塗装停止ステップは、前記到達予測濃度が前記閾値濃度以上である場合に、塗装の停止に加えて、前記塗装位置にて前記鋼帯に塗布された前記塗料を前記加熱空間よりも上流側で除去するステップを含んでもよい。これにより、有機溶剤の濃度上昇をさらに抑制することができ、安全性をさらに向上させることができる。   In the paint drying method, in the paint stop step, the paint applied to the steel strip at the paint position is added to the heating space in addition to the stop of the paint when the predicted predicted concentration is equal to or higher than the threshold concentration. It may include a step of removing upstream. Thereby, the raise of the density | concentration of an organic solvent can further be suppressed, and safety | security can be improved further.

前記塗装乾燥方法において、塗装停止ステップは、前記到達予測濃度が前記閾値濃度以上である場合に、排気量を同量に維持しながら塗装の停止を行ってもよい。これにより、簡便な制御として実施することができる。   In the paint drying method, the paint stop step may stop the paint while maintaining the same exhaust amount when the predicted concentration reaches or exceeds the threshold concentration. Thereby, it can implement as simple control.

本開示によれば、安全性を向上させることができる。   According to the present disclosure, safety can be improved.

実施形態1における塗装乾燥装置の概略構成を示す図The figure which shows schematic structure of the coating drying apparatus in Embodiment 1. 実施形態1における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the operation state of the paint drying apparatus in Embodiment 1. 実施形態1における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the operation state of the paint drying apparatus in Embodiment 1. 実施形態1における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the operation state of the paint drying apparatus in Embodiment 1. 実施形態1における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the operation state of the paint drying apparatus in Embodiment 1. 実施形態1における塗装乾燥装置の運転による有機溶剤の濃度変化の一例を示す図The figure which shows an example of the density | concentration change of the organic solvent by the driving | operation of the coating drying apparatus in Embodiment 1. 実施形態1における塗装乾燥装置の運転状態の別の例を説明する概略図Schematic explaining another example of the operating state of the paint drying apparatus in the first embodiment 実施形態1における塗装乾燥装置の運転状態の別の例を説明する概略図Schematic explaining another example of the operating state of the paint drying apparatus in the first embodiment 実施形態1における塗装乾燥装置の運転状態の別の例を説明する概略図Schematic explaining another example of the operating state of the paint drying apparatus in the first embodiment 実施形態1における塗装乾燥装置の運転状態の別の例を説明する概略図Schematic explaining another example of the operating state of the paint drying apparatus in the first embodiment 実施形態1における塗装乾燥装置の運転による有機溶剤の濃度変化の別の例を示す図The figure which shows another example of the density | concentration change of the organic solvent by the driving | operation of the coating drying apparatus in Embodiment 1. 実施形態2における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the driving | running state of the coating drying apparatus in Embodiment 2. FIG. 実施形態2における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the driving | running state of the coating drying apparatus in Embodiment 2. FIG. 実施形態2における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the driving | running state of the coating drying apparatus in Embodiment 2. FIG. 実施形態2における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the driving | running state of the coating drying apparatus in Embodiment 2. FIG. 実施形態2における塗装乾燥装置の運転による有機溶剤の濃度変化の一例を示す図The figure which shows an example of the density | concentration change of the organic solvent by the driving | operation of the coating-drying apparatus in Embodiment 2. 実施形態3における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the driving | running state of the coating drying apparatus in Embodiment 3. FIG. 実施形態3における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the driving | running state of the coating drying apparatus in Embodiment 3. FIG. 実施形態3における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the driving | running state of the coating drying apparatus in Embodiment 3. FIG. 実施形態3における塗装乾燥装置の運転状態の一例を説明する概略図Schematic explaining an example of the driving | running state of the coating drying apparatus in Embodiment 3. FIG. 実施形態3における塗装乾燥装置の運転による有機溶剤の濃度変化の一例を示す図The figure which shows an example of the density | concentration change of the organic solvent by the driving | operation of the coating drying apparatus in Embodiment 3. 塗装の停止に加えて搬送を停止した場合の有機溶剤の濃度変化の一例を示す図The figure which shows an example of the concentration change of the organic solvent when conveyance is stopped in addition to the stop of painting

以下、本開示に係る塗装乾燥装置および塗装乾燥方法の好適な実施形態について、添付の図面を参照しながら説明する。本開示は、以下の実施形態の具体的な構成に限定されるものではなく、同様の技術的思想に基づく構成が本開示に含まれる。   Hereinafter, preferred embodiments of a paint drying apparatus and a paint drying method according to the present disclosure will be described with reference to the accompanying drawings. The present disclosure is not limited to the specific configurations of the following embodiments, and configurations based on the same technical idea are included in the present disclosure.

(実施形態1)
図1は、実施形態1における塗装乾燥装置2の概略構成を示す図である。
(Embodiment 1)
FIG. 1 is a diagram illustrating a schematic configuration of a coating drying apparatus 2 according to the first embodiment.

塗装乾燥装置2は、鋼帯Sを連続搬送しながら塗装して乾燥・焼付処理する装置である。図1に示すように、塗装乾燥装置2は、搬送部4と、塗装部6と、オーブン8と、排気部10と、濃度測定部12と、制御部14とを備える。   The coating and drying apparatus 2 is an apparatus that performs coating and drying and baking processes while continuously conveying the steel strip S. As shown in FIG. 1, the coating drying apparatus 2 includes a transport unit 4, a coating unit 6, an oven 8, an exhaust unit 10, a concentration measuring unit 12, and a control unit 14.

塗装乾燥装置2は、搬送部4によって鋼帯Sを連続搬送しながら、塗装部6によって塗装位置7にて有機溶剤を含む塗料を塗布する(例えば厚さ約50μm)。その後、塗装位置7の下流側にあるオーブン8内の加熱空間9にて鋼帯Sを加熱することにより、鋼帯Sに塗布された塗料の乾燥・焼付処理を行う。   The coating drying apparatus 2 applies a paint containing an organic solvent at the coating position 7 by the coating unit 6 (for example, a thickness of about 50 μm) while continuously conveying the steel strip S by the transport unit 4. Thereafter, the steel strip S is heated in the heating space 9 in the oven 8 on the downstream side of the coating position 7, thereby drying and baking the paint applied to the steel strip S.

本開示の発明は特に、オーブン8内の加熱空間9に接続された濃度測定部12によって加熱空間9内の雰囲気の有機溶剤濃度を測定し、当該測定濃度に基づいて、その後到達することが予測される濃度としての「到達予測濃度」を演算する。さらに、到達予測濃度が所定の閾値濃度以上である場合に、搬送部4による鋼帯Sの搬送を継続しながら塗装部6による塗装を停止するように制御するものである。   In particular, the invention of the present disclosure measures the concentration of the organic solvent in the atmosphere in the heating space 9 by the concentration measuring unit 12 connected to the heating space 9 in the oven 8, and is predicted to reach after that based on the measured concentration. The “arrival predicted density” as the density to be calculated is calculated. Further, when the predicted arrival concentration is equal to or higher than a predetermined threshold concentration, control is performed so as to stop the coating by the coating unit 6 while continuing the transport of the steel strip S by the transport unit 4.

以下、塗装乾燥装置2のそれぞれの構成要素について説明する。   Hereinafter, each component of the paint drying apparatus 2 will be described.

搬送部4は、鋼帯Sを一定速度で下流側へ連続搬送する機構である。図1に示す搬送部4は、複数の回転ロールにより構成されている。鋼帯Sは例えば、鋼板の製造過程で帯状に薄く伸ばした金属ストリップをドーナツ状に巻き取ったコイル材(図示せず)から巻き出されて、搬送部4に供給される。   The conveyance unit 4 is a mechanism that continuously conveys the steel strip S to the downstream side at a constant speed. The conveyance part 4 shown in FIG. 1 is comprised by the some rotating roll. For example, the steel strip S is unwound from a coil material (not shown) obtained by winding a metal strip thinly stretched into a strip shape in the manufacturing process of the steel plate into a donut shape, and is supplied to the transport unit 4.

塗装部6は、搬送部4によって搬送されている鋼帯Sに対して塗装位置7にて塗料を塗布する部材である。塗装部6が塗布する塗料としては、トルエン、キシレン等の有機溶剤を含む塗料が使用される。図1に示すように、塗装部6による塗装位置7は、オーブン8よりも上流側である。   The coating unit 6 is a member that applies paint at the coating position 7 to the steel strip S that is being transported by the transport unit 4. As the paint applied by the coating unit 6, a paint containing an organic solvent such as toluene or xylene is used. As shown in FIG. 1, the painting position 7 by the painting unit 6 is upstream of the oven 8.

図1に示す塗装部6は、2つの回転ロールを有するロールコータで構成される。具体的には、塗装部6は、2つの回転ロールとして、ピックアップロール6aおよびアプリケータロール6bを備え、さらに、塗料貯留部6cと、移動機構6dとを備える。ピックアップロール6aは、塗料貯留部6cに貯留されている塗料を持ち上げてアプリケータロール6bに供給又は転写するように接触させる回転ロールである。アプリケータロール6bは、ピックアップロール6aから供給される塗料を鋼帯Sの表面に塗布するように鋼帯Sに接触する回転ロールである。塗料貯留部6cは、塗料を貯留する部材(例えば容器)である。移動機構6dは、ピックアップロール6a、アプリケータロール6bおよび塗料貯留部6cを一体的に駆動可能な部材(例えば油圧シリンダ)である。   The coating unit 6 shown in FIG. 1 is composed of a roll coater having two rotating rolls. Specifically, the coating unit 6 includes a pick-up roll 6a and an applicator roll 6b as two rotating rolls, and further includes a paint storage unit 6c and a moving mechanism 6d. The pick-up roll 6a is a rotating roll that lifts the paint stored in the paint storage section 6c and contacts the applicator roll 6b to supply or transfer it. The applicator roll 6b is a rotating roll that comes into contact with the steel strip S so that the paint supplied from the pickup roll 6a is applied to the surface of the steel strip S. The paint reservoir 6c is a member (for example, a container) that stores paint. The moving mechanism 6d is a member (for example, a hydraulic cylinder) that can integrally drive the pickup roll 6a, the applicator roll 6b, and the paint reservoir 6c.

このような構成において、移動機構6dの駆動制御により、鋼帯Sへの塗装を行う塗装状態と、塗装状態から退避した待機状態を相互に切り替えることができる。図1では、塗装状態が示されている。鋼帯Sに対する塗料の塗布量は、ピックアップロール6aとアプリケータロール6bを相互に押し付ける押付力および回転速度を制御することで制御可能である。実施形態1では、運転中における鋼帯Sに対する塗料の塗布量は一定に制御される。   In such a configuration, the driving state of the moving mechanism 6d can be switched between a coating state in which the steel strip S is coated and a standby state in which the steel strip S is retracted. In FIG. 1, the paint state is shown. The coating amount of the coating on the steel strip S can be controlled by controlling the pressing force and the rotational speed for pressing the pickup roll 6a and the applicator roll 6b against each other. In the first embodiment, the amount of coating applied to the steel strip S during operation is controlled to be constant.

オーブン8は、塗料が塗布された鋼帯Sを加熱して鋼帯S上の塗料を乾燥・焼付処理するための炉である。オーブン8は、乾燥・焼付処理を完了するのに十分な長さの加熱空間9を内側に形成する。オーブン8内の加熱空間9を所定温度に維持することで、加熱空間9における鋼帯Sが全体的に加熱される。鋼帯Sは加熱空間9内を一定速度で搬送されるため、加熱空間9の下流側に行くほど鋼帯Sの加熱が進む。   The oven 8 is a furnace for heating the steel strip S to which the paint is applied and drying and baking the paint on the steel strip S. The oven 8 forms a heating space 9 on the inside that is long enough to complete the drying and baking process. By maintaining the heating space 9 in the oven 8 at a predetermined temperature, the steel strip S in the heating space 9 is entirely heated. Since the steel strip S is conveyed in the heating space 9 at a constant speed, the steel strip S is heated toward the downstream side of the heating space 9.

図1に示すように、オーブン8は、鋼帯Sの搬送方向Aにおいて塗装部6による塗装位置7よりも下流側に設けられている。塗装部6とオーブン8は間隔を空けて配置されており、塗装部6の塗装位置7からオーブン8の加熱空間9の入り口部分までの区間は、塗装済みの鋼帯Sが非加熱状態で搬送される空走区間16となる。   As shown in FIG. 1, the oven 8 is provided on the downstream side of the coating position 7 by the coating unit 6 in the conveying direction A of the steel strip S. The coating section 6 and the oven 8 are arranged with a space between them, and the coated steel strip S is transported in an unheated state between the coating position 7 of the coating section 6 and the entrance portion of the heating space 9 of the oven 8. It becomes the empty run section 16 to be performed.

排気部10は、オーブン8内の加熱空間9を排気する部材である。図1の例では、排気部10は、ダクト10aとブロワ10bとを備える。ダクト10aは、加熱空間9に直接的に接続されたパイプであって、加熱空間9の空気を外部へ通気させる。ブロワ10bは、ダクト10aを通気される空気を外部に排出する。   The exhaust unit 10 is a member that exhausts the heating space 9 in the oven 8. In the example of FIG. 1, the exhaust unit 10 includes a duct 10a and a blower 10b. The duct 10a is a pipe directly connected to the heating space 9, and allows the air in the heating space 9 to be vented to the outside. The blower 10b discharges the air ventilated through the duct 10a to the outside.

濃度測定部12は、加熱空間9における雰囲気の有機溶剤濃度を測定する部材である(例えば、濃度センサ)。図1に示す濃度測定部12は、加熱空間9内の雰囲気の有機溶剤濃度を直接的に測定するように加熱空間9を代表する位置に接続されており、好ましくは、加熱空間9において雰囲気の有機溶剤濃度が最も高くなることが想定される位置に設けられるのがよい。   The concentration measuring unit 12 is a member that measures the organic solvent concentration of the atmosphere in the heating space 9 (for example, a concentration sensor). The concentration measuring unit 12 shown in FIG. 1 is connected to a position representing the heating space 9 so as to directly measure the organic solvent concentration of the atmosphere in the heating space 9. It is good to provide in the position where the organic solvent density | concentration is assumed to become the highest.

制御部14は、塗装乾燥装置2の運転を制御する部材である。制御部14は例えば、メモリと、CPUなどのプロセッサに対応する処理回路とを備えたマイクロコンピュータにより構成される。制御部14は少なくとも、搬送部4、塗装部6、排気部10および濃度測定部12に電気的に接続されており、これらの部材の運転を制御する。   The control unit 14 is a member that controls the operation of the paint drying apparatus 2. For example, the control unit 14 includes a microcomputer including a memory and a processing circuit corresponding to a processor such as a CPU. The control unit 14 is electrically connected to at least the transport unit 4, the coating unit 6, the exhaust unit 10, and the concentration measurement unit 12, and controls the operation of these members.

このように構成される塗装乾燥装置2の運転例について、図2A―2Dを用いて説明する。   An operation example of the paint drying apparatus 2 configured as described above will be described with reference to FIGS. 2A to 2D.

まず、昇温を行う(昇温ステップ)。具体的には、制御部14の制御によりオーブン8を運転し、オーブン8内の加熱空間9全体を所定の加熱温度(例えば300度)まで昇温し、その加熱温度を維持する。   First, the temperature is raised (temperature raising step). Specifically, the oven 8 is operated under the control of the control unit 14, the entire heating space 9 in the oven 8 is heated to a predetermined heating temperature (for example, 300 degrees), and the heating temperature is maintained.

次に、鋼帯Sの搬送を行う(搬送ステップ)。具体的には、図2Aに示すように、制御部14の制御により搬送部4を運転し、鋼帯Sを下流側に向けて一定速度で連続搬送する(搬送方向A)。   Next, the steel strip S is transported (conveying step). Specifically, as shown in FIG. 2A, the transport unit 4 is operated under the control of the control unit 14, and the steel strip S is continuously transported at a constant speed toward the downstream side (transport direction A).

さらに、塗装を行う(塗装ステップ)。具体的には、図2Aに示すように、制御部14の制御により塗装部6を運転し、搬送中の鋼帯Sに対して塗装位置7にて塗料を塗布する。前述したように、塗装部6による塗料の塗布量は、単位時間当たり一定に維持される。これにより、鋼帯S上に塗料が均一な厚みに塗布される。   Furthermore, painting is performed (painting step). Specifically, as shown in FIG. 2A, the coating unit 6 is operated under the control of the control unit 14, and the paint is applied to the steel strip S being conveyed at the coating position 7. As described above, the coating amount of the coating unit 6 is kept constant per unit time. Thereby, a coating material is apply | coated to the steel strip S by uniform thickness.

図2Aに示す例では、塗料が塗布された鋼帯Sがオーブン8内の加熱空間9に入る直前の状態が示される。鋼帯Sは、塗装位置7から加熱空間9の入り口部分までの空走区間16を走行するため、塗装部6による塗装を開始してから、鋼帯Sの塗装済み部分(太線で図示)が加熱空間9に入るまでにタイムラグが生じる。   In the example shown in FIG. 2A, a state immediately before the steel strip S to which the paint is applied enters the heating space 9 in the oven 8 is shown. Since the steel strip S travels in an idle running section 16 from the painting position 7 to the entrance portion of the heating space 9, the painted portion of the steel strip S (illustrated by a thick line) is started after painting by the painting section 6 is started. There is a time lag before entering the heating space 9.

さらに、加熱を行う(加熱ステップ)。具体的には、所定の加熱温度に維持されたオーブン8内の加熱空間9において塗装済みの鋼帯Sが加熱される。   Further, heating is performed (heating step). Specifically, the coated steel strip S is heated in the heating space 9 in the oven 8 maintained at a predetermined heating temperature.

図2Bは、図2Aに示す状態から鋼帯Sがさらに搬送された状態を示す。塗装済みの鋼帯Sが加熱空間9内で加熱されると、鋼帯Sに塗布された塗料中に含まれる有機溶剤が蒸発する。常温で加熱空間9に入った鋼帯Sは下流に進むに従い、徐々に温度が上昇するため、鋼帯S上の塗料中に含まれる有機溶剤は加熱空間9における最も上流側から蒸発を開始し、徐々に蒸発量が増加する。   FIG. 2B shows a state where the steel strip S is further conveyed from the state shown in FIG. 2A. When the coated steel strip S is heated in the heating space 9, the organic solvent contained in the paint applied to the steel strip S evaporates. Since the steel strip S that has entered the heating space 9 at room temperature gradually increases in temperature as it progresses downstream, the organic solvent contained in the paint on the steel strip S starts to evaporate from the most upstream side in the heating space 9. The amount of evaporation gradually increases.

図2Bでは、鋼帯Sにおける有機溶剤の蒸発度合いを示す蒸発量18が示される。図2Bに示すように、塗装済みの鋼帯Sがオーブン8内に入ってから加熱および蒸発が進み、鋼帯Sの搬送方向Aにおいて下流側にいくほど有機溶剤の蒸発量18が上昇している。図2Bでは、蒸発量18を斜線部で視覚的に示している。斜線部の高さはその位置における蒸発量であり、面積は全体の蒸発量である。   In FIG. 2B, the evaporation amount 18 which shows the evaporation degree of the organic solvent in the steel strip S is shown. As shown in FIG. 2B, heating and evaporation proceed after the coated steel strip S enters the oven 8, and the evaporation amount 18 of the organic solvent increases toward the downstream side in the transport direction A of the steel strip S. Yes. In FIG. 2B, the evaporation amount 18 is visually indicated by a hatched portion. The height of the hatched portion is the evaporation amount at that position, and the area is the entire evaporation amount.

さらに、雰囲気の有機溶剤濃度の測定を行う(測定ステップ)。具体的には、濃度測定部12を運転し、加熱空間9における雰囲気の有機溶剤濃度を測定する。本実施形態1では、濃度測定部12による有機溶剤の濃度測定を連続的に行い、その測定結果を制御部14に随時伝送する。   Furthermore, the organic solvent concentration in the atmosphere is measured (measurement step). Specifically, the concentration measuring unit 12 is operated to measure the organic solvent concentration of the atmosphere in the heating space 9. In the first embodiment, the concentration measurement unit 12 continuously measures the concentration of the organic solvent, and transmits the measurement result to the control unit 14 as needed.

さらに、排気を行う(排気ステップ)。具体的には、制御部14の制御により排気部10を運転し、加熱空間9の排気を行う。本実施形態1では、排気部10のブロワ10bの排気量は、単位時間当たり一定に設定される。   Further, exhaust is performed (exhaust step). Specifically, the exhaust unit 10 is operated under the control of the control unit 14 to exhaust the heating space 9. In the first embodiment, the exhaust amount of the blower 10b of the exhaust unit 10 is set constant per unit time.

図2Cは、図2Bに示す状態から鋼帯Sがさらに搬送された状態を示す。図2Cにおける有機溶剤の蒸発量20に示すように、蒸発終了点22で有機溶剤の蒸発が完了している。有機溶剤が蒸発して残った残りの塗料は加熱空間9でさらに加熱されることにより、鋼帯Sの表面に焼き付けられる。   FIG. 2C shows a state in which the steel strip S is further conveyed from the state shown in FIG. 2B. As shown in the evaporation amount 20 of the organic solvent in FIG. 2C, the evaporation of the organic solvent is completed at the evaporation end point 22. The remaining paint remaining after evaporation of the organic solvent is further heated in the heating space 9 and is baked onto the surface of the steel strip S.

図2Dは、図2Cに示す状態から鋼帯Sがさらに搬送された状態を示す。図2Dにおける有機溶剤の蒸発量24に示すように、加熱空間9の入口から蒸発終了点22までの領域は、有機溶剤が蒸発されて乾燥される乾燥領域23となる。蒸発終了点22から加熱空間9の出口までの領域は、鋼帯S上の塗料が加熱されて焼き付けられる焼付領域25となる。   FIG. 2D shows a state where the steel strip S is further conveyed from the state shown in FIG. 2C. As shown by the evaporation amount 24 of the organic solvent in FIG. 2D, the region from the entrance of the heating space 9 to the evaporation end point 22 becomes a dry region 23 where the organic solvent is evaporated and dried. A region from the evaporation end point 22 to the exit of the heating space 9 is a baking region 25 where the paint on the steel strip S is heated and baked.

前述したように、搬送部4による搬送速度、塗装部6による塗布量、排気部10による排気量が一定に制御されているため、オーブン8内の塗料中の有機溶剤の蒸発量24は定常化し、図2Dに示す状態が維持される。   As described above, since the conveyance speed by the conveyance unit 4, the coating amount by the coating unit 6, and the exhaust amount by the exhaust unit 10 are controlled to be constant, the evaporation amount 24 of the organic solvent in the paint in the oven 8 is stabilized. The state shown in FIG. 2D is maintained.

ここで、図2Bに示すように鋼帯Sがオーブン8内に入って以降、有機溶剤の蒸発が進み、蒸発した有機溶剤がオーブン8内に拡散し始める。これにより、濃度測定部12による測定値の値が0から変化し始める。   Here, as shown in FIG. 2B, after the steel strip S enters the oven 8, the evaporation of the organic solvent proceeds, and the evaporated organic solvent begins to diffuse into the oven 8. As a result, the value measured by the concentration measuring unit 12 starts to change from zero.

図2A−2Dの運転例による加熱空間9内の雰囲気の有機溶剤の濃度推移の一例を図3に示す。図2A−2Dおよび図3に示す例は、塗装部6による塗布量が正常に制御されている場合を示す。   An example of the concentration transition of the organic solvent in the atmosphere in the heating space 9 according to the operation example of FIGS. 2A to 2D is shown in FIG. 2A-2D and the example shown in FIG. 3 show the case where the coating amount by the coating part 6 is normally controlled.

図3は、横軸に時間、縦軸に加熱空間9の雰囲気中の有機溶剤の濃度を示す。図3に示すように、加熱空間9の雰囲気における有機溶剤の実際の平均濃度である実平均濃度D1と、濃度測定部12が測定した有機溶剤濃度である測定濃度D2とが、塗装乾燥装置2の運転開始(時間t0)以降、徐々に増加し始める。図3に示すように、実平均濃度D1の増加に遅れて測定濃度D2が増加している。これは、鋼帯S上の有機溶剤が蒸発してから濃度測定部12に到達するまでに移動を要するためである。なお、本実施形態1における実平均濃度D1は、塗装部6で鋼帯Sに塗布した有機溶剤の量、塗装部6からオーブン8までの距離(空走区間16)、オーブン8の容量、排気部10によるオーブン8からの排気量、鋼帯Sの速度等に基づいて、オーブン8内での有機溶剤の揮発量から計算した値である。   FIG. 3 shows time on the horizontal axis and the concentration of the organic solvent in the atmosphere of the heating space 9 on the vertical axis. As shown in FIG. 3, the actual average concentration D1 that is the actual average concentration of the organic solvent in the atmosphere of the heating space 9 and the measured concentration D2 that is the organic solvent concentration measured by the concentration measuring unit 12 are the paint drying apparatus 2. After the start of operation (time t0), it gradually increases. As shown in FIG. 3, the measured concentration D2 increases with an increase in the actual average concentration D1. This is because movement is required from the time when the organic solvent on the steel strip S evaporates until it reaches the concentration measuring unit 12. The actual average concentration D1 in the first embodiment is the amount of the organic solvent applied to the steel strip S in the coating unit 6, the distance from the coating unit 6 to the oven 8 (idle running section 16), the capacity of the oven 8, and the exhaust This is a value calculated from the volatilization amount of the organic solvent in the oven 8 based on the exhaust amount from the oven 8 by the unit 10, the speed of the steel strip S, and the like.

その後、実平均濃度D1および測定濃度D2がともに一定となり、定常状態となる。   Thereafter, the actual average density D1 and the measured density D2 are both constant and become a steady state.

本実施形態1では、濃度測定部12が測定した有機溶剤の測定濃度D2に基づいて、制御部14は到達予測濃度D3を演算する。より具体的には、濃度測定部12が測定した有機溶剤の測定濃度D2が0から最初に変化したとき(時間t1)の値に基づいて、制御部14は到達予測濃度D3を演算する。その後も到達予測濃度D3の演算を継続して行う。   In the first embodiment, based on the measured concentration D2 of the organic solvent measured by the concentration measuring unit 12, the control unit 14 calculates the predicted predicted concentration D3. More specifically, the control unit 14 calculates the predicted predicted concentration D3 based on the value when the measured concentration D2 of the organic solvent measured by the concentration measuring unit 12 first changes from 0 (time t1). Thereafter, the calculation of the predicted arrival density D3 is continued.

なお、「最初に変化したときの値」というのは、濃度測定部12の測定周期の1パルス(例えば100ms)の間にゼロから変化した時の値に限らない。この安全対策が成立するように過去のデータや計算結果に基づいて得られた時間後の値でもよい(例えばオーブン8内に有機溶剤が流れ込んできてから0.5秒後)。   The “value when first changed” is not limited to the value when changed from zero during one pulse (for example, 100 ms) of the measurement cycle of the concentration measuring unit 12. It may be a value after time obtained based on past data or calculation results so that this safety measure is established (for example, 0.5 seconds after the organic solvent flows into the oven 8).

到達予測濃度D3の具体的な演算式の一例は以下の通りである。以下の演算式は一例であって、この他にも、有機溶剤の測定濃度D2に基づいて到達予測濃度D3を演算するものであれば、任意の演算方法を用いてもよい。   An example of a specific calculation formula for the predicted arrival density D3 is as follows. The following calculation formula is an example, and any other calculation method may be used as long as the predicted predicted concentration D3 is calculated based on the measured concentration D2 of the organic solvent.

<数式1>
D3=D2/(1−exp(−(t1−x)/T))
<Formula 1>
D3 = D2 / (1-exp (-(t1-x) / T))

ここで、t1は、塗装開始からの経過時間であり、xは、有機溶剤流入までのラグ時間などを含む変数であり、Tは、時定数である。   Here, t1 is an elapsed time from the start of coating, x is a variable including a lag time until inflow of the organic solvent, and T is a time constant.

図3に示す例では、時間t1において制御部14が演算した到達予測濃度D3が、予め定められた所定の閾値濃度D4を超えていない。このように、到達予測濃度D3が所定の閾値濃度D4を超えない場合には、制御部14は正常状態と判定し、特段の制御を行わない。なお、閾値濃度D4は、有機溶剤の爆発下限界の濃度よりも小さな値とする。   In the example shown in FIG. 3, the predicted arrival concentration D3 calculated by the control unit 14 at time t1 does not exceed a predetermined threshold concentration D4. As described above, when the arrival predicted density D3 does not exceed the predetermined threshold density D4, the control unit 14 determines that the state is normal and does not perform special control. The threshold concentration D4 is set to a value smaller than the lower limit concentration of the organic solvent.

図2A−2Dおよび図3では、塗装部6による塗布量が正常に制御されている場合を示したが、塗装乾燥装置2を運転する際の人為的ミスや、塗装部6の塗布量を制御する制御装置の故障等により、運転開始時点(時間t0)から塗布量が誤って過剰に大きくなっている場合が想定される。   2A-2D and FIG. 3 show the case where the coating amount by the coating unit 6 is normally controlled. However, human error when operating the coating drying device 2 and the coating amount of the coating unit 6 are controlled. It is assumed that the application amount is erroneously excessively large from the operation start time (time t0) due to a failure of the control device.

このような場合に備えて、実施形態1の塗装乾燥装置2では、有機溶剤の測定濃度D2に基づく制御を行っている。具体的には、濃度測定部12による測定濃度D2に基づいて到達予測濃度D3を演算し、到達予測濃度D3が予め定めた所定の閾値濃度D4以上である場合に、実平均濃度D1が閾値を超える前に塗装部6の運転(塗装)を停止するように制御する。実施形態1では、塗装部6の運転を停止しながらも搬送部4による鋼帯Sの搬送は継続して行い、かつ、搬送部4による搬送速度および排気部10による排気量は変更せず、同速度および同排気量に維持する。   In preparation for such a case, the coating drying apparatus 2 of Embodiment 1 performs control based on the measured concentration D2 of the organic solvent. Specifically, the predicted arrival density D3 is calculated based on the measured density D2 by the density measuring unit 12, and the actual average density D1 sets the threshold when the predicted arrival density D3 is equal to or higher than a predetermined threshold density D4. Control is performed so that the operation (painting) of the coating unit 6 is stopped before exceeding. In the first embodiment, while the operation of the coating unit 6 is stopped, the transport of the steel strip S by the transport unit 4 is continuously performed, and the transport speed by the transport unit 4 and the exhaust amount by the exhaust unit 10 are not changed. Maintain the same speed and displacement.

上記制御の一例を図4A−4Dおよび図5に示す。   An example of the control is shown in FIGS. 4A to 4D and FIG.

図4A、4Bに示すように、塗装部6による塗布量が誤って過剰に高くなってしまったため、蒸発量26、27は、図2B、2Cに示した蒸発量18、20よりも大幅に多くなっている。   As shown in FIGS. 4A and 4B, the amount of application by the coating unit 6 is accidentally excessively high, so the evaporation amounts 26 and 27 are significantly larger than the evaporation amounts 18 and 20 shown in FIGS. 2B and 2C. It has become.

図4Aに示すように、鋼帯Sがオーブン8内の加熱空間9に進入した時点で有機溶剤が蒸発するため、濃度測定部12による測定結果が変化し始める。本実施形態1では、濃度測定部12が測定した有機溶剤の測定濃度D2が0から最初に変化したときの値に基づいて、到達予測濃度D3を演算する。具体的には、数式1に示した演算式により、到達予測濃度D3を演算する。   As shown in FIG. 4A, since the organic solvent evaporates when the steel strip S enters the heating space 9 in the oven 8, the measurement result by the concentration measuring unit 12 starts to change. In the first embodiment, the reached predicted concentration D3 is calculated based on the value when the measured concentration D2 of the organic solvent measured by the concentration measuring unit 12 first changes from 0. Specifically, the reached predicted concentration D3 is calculated by the calculation formula shown in Formula 1.

図5に示すように、時間t1において制御部14が演算した到達予測濃度D3は、所定の閾値濃度D4を超えている。このように到達予測濃度D3が所定の閾値濃度D4を超えている場合に、制御部14は、搬送部4の運転を継続しながら塗装部6の運転を停止するように制御する。具体的には、図4Aに示すように、塗装部6を塗装状態から待機状態に退避させることで、塗装部6による塗装を停止する。塗装終了点29で鋼帯S上の塗装は終わっているが、鋼帯Sの搬送は継続して行われる。   As shown in FIG. 5, the predicted arrival density D3 calculated by the control unit 14 at time t1 exceeds a predetermined threshold density D4. As described above, when the predicted arrival density D3 exceeds the predetermined threshold density D4, the control unit 14 performs control so as to stop the operation of the coating unit 6 while continuing the operation of the transport unit 4. Specifically, as shown in FIG. 4A, painting by the painting unit 6 is stopped by retracting the painting unit 6 from the painted state to the standby state. Although the coating on the steel strip S is finished at the coating end point 29, the transport of the steel strip S is continued.

塗装部6による塗装を停止した状態で、搬送部4による鋼帯Sの搬送を継続した状態を図4Cに示す。図4Cに示すように、塗装部6による塗装が最後に行われた点である塗装終了点29から上流側では有機溶剤の蒸発は生じていない。このとき、加熱空間9全体における有機溶剤の蒸発量28は、図4B(塗装終了点29がオーブン8の加熱空間9へ進入した瞬間の状態)に示した蒸発量27に比べて減少している。このように、加熱空間9における有機溶剤の濃度上昇が抑制されている。   FIG. 4C shows a state in which the transport of the steel strip S by the transport unit 4 is continued in a state where the coating by the coating unit 6 is stopped. As shown in FIG. 4C, the organic solvent does not evaporate upstream from the coating end point 29, which is the point at which the coating unit 6 was last applied. At this time, the evaporation amount 28 of the organic solvent in the entire heating space 9 is smaller than the evaporation amount 27 shown in FIG. 4B (the state at the moment when the coating end point 29 enters the heating space 9 of the oven 8). . Thus, the increase in the concentration of the organic solvent in the heating space 9 is suppressed.

このような制御によれば、図5に示すように、時間t1以降においても実平均濃度D1の最大値Pが所定の閾値濃度D4を超えないようにすることができ、爆発に至る危険を無くすことができる。   According to such control, as shown in FIG. 5, the maximum value P of the actual average density D1 can be prevented from exceeding the predetermined threshold density D4 even after the time t1, thereby eliminating the risk of explosion. be able to.

図4Dは、図4Cに示す状態から鋼帯Sがさらに搬送された状態を示す。図4Dに示すように、乾燥・焼付処理の完了した鋼帯Sがオーブン8の外部に排出される。この鋼帯Sは、塗装部6の塗布量が誤って設定された異常運転によるものであるため、その後、廃棄されてもよい。   FIG. 4D shows a state where the steel strip S is further conveyed from the state shown in FIG. 4C. As shown in FIG. 4D, the steel strip S that has been dried and baked is discharged to the outside of the oven 8. Since this steel strip S is due to abnormal operation in which the coating amount of the coating part 6 is set in error, it may be discarded thereafter.

そして、この後、異常運転の原因を取り除き、正常な状態で再び運転を開始する。   Thereafter, the cause of the abnormal operation is removed, and the operation is started again in a normal state.

上述したように、本実施形態1の塗装乾燥装置2は、鋼帯Sを連続搬送しながら塗装して乾燥処理する塗装乾燥装置2である。塗装乾燥装置2は、鋼帯Sを搬送する搬送部4と、搬送されている鋼帯Sに対して有機溶剤を含む塗料を塗装位置7にて塗布する塗装部6と、塗装位置7よりも下流側において鋼帯Sを加熱空間9にて乾燥処理するオーブン8と、オーブン8の加熱空間9を排気する排気部10と、オーブン8の加熱空間9における雰囲気の有機溶剤濃度を測定する濃度測定部12と、塗装乾燥装置2の運転を制御する制御部14とを備える。さらに、制御部14は、濃度測定部12が測定する有機溶剤の測定濃度D2に基づいて到達予測濃度D3を演算し、到達予測濃度D3が所定の閾値濃度D4以上である場合に、搬送部4による搬送を継続しながら、塗装部6による塗装を停止するように制御する。   As described above, the coating and drying apparatus 2 according to the first embodiment is the coating and drying apparatus 2 that performs coating and drying processing while continuously feeding the steel strip S. The coating drying apparatus 2 includes a transport unit 4 that transports the steel strip S, a coating unit 6 that applies a paint containing an organic solvent to the transported steel strip S at the coating position 7, and a coating position 7. An oven 8 for drying the steel strip S in the heating space 9 on the downstream side, an exhaust unit 10 for exhausting the heating space 9 of the oven 8, and a concentration measurement for measuring the concentration of the organic solvent in the atmosphere in the heating space 9 of the oven 8 The control part 14 which controls the operation | movement of the part 12 and the coating drying apparatus 2 is provided. Furthermore, the control unit 14 calculates the predicted predicted concentration D3 based on the measured concentration D2 of the organic solvent measured by the concentration measuring unit 12, and when the predicted predicted concentration D3 is equal to or higher than the predetermined threshold concentration D4, the transport unit 4 Control is performed so as to stop the coating by the coating unit 6 while continuing the conveyance by the above.

同様に、本実施形態1の塗装乾燥方法は、鋼帯Sを連続搬送しながら塗装して乾燥処理する塗装乾燥方法であって、鋼帯Sを搬送するステップと、搬送されている鋼帯Sに対して有機溶剤を含む塗料を塗装位置7にて塗布する塗装ステップと、塗装位置7よりも下流側において鋼帯Sを加熱空間9にて乾燥処理する乾燥ステップと、加熱空間9を排気する排気ステップと、加熱空間9における雰囲気の有機溶剤濃度を測定する測定ステップと、測定した有機溶剤の測定濃度D2に基づいて到達予測濃度D3を演算する演算ステップと、到達予測濃度D3が所定の閾値濃度D4以上である場合に、鋼帯Sの搬送を継続しながら、塗装を停止する塗装停止ステップと、を含む。   Similarly, the coating and drying method according to the first embodiment is a coating and drying method in which the steel strip S is coated and dried while continuously transporting the steel strip S. The step of transporting the steel strip S and the steel strip S being transported A coating step in which a paint containing an organic solvent is applied at the coating position 7, a drying step in which the steel strip S is dried in the heating space 9 downstream of the coating position 7, and the heating space 9 is exhausted. An exhaust step, a measurement step for measuring the organic solvent concentration in the atmosphere in the heating space 9, a calculation step for calculating the predicted predicted concentration D3 based on the measured measured concentration D2 of the organic solvent, and the predicted predicted concentration D3 is a predetermined threshold value A coating stopping step of stopping the coating while continuing the conveyance of the steel strip S when the concentration is D4 or more.

上記構成によれば、演算した到達予測濃度D3が所定の閾値濃度D4以上である場合に塗装部6の運転を停止することで、その後の加熱空間9における有機溶剤の濃度上昇を抑えることができる。このような制御により、加熱空間9における有機溶剤の濃度が過剰に高くなることを防止する制御が可能となり、加熱空間9の熱によって有機溶剤が引火することを精度良く防止する等、安全性を向上させることができる。さらに、操業時の省エネルギー化を実現することができる。   According to the above configuration, when the calculated predicted arrival concentration D3 is equal to or higher than the predetermined threshold concentration D4, the increase in the concentration of the organic solvent in the heating space 9 can be suppressed by stopping the operation of the coating unit 6. . Such control enables control to prevent the concentration of the organic solvent in the heating space 9 from becoming excessively high, and prevents the organic solvent from being ignited by heat of the heating space 9 with high accuracy. Can be improved. Furthermore, energy saving during operation can be realized.

上記方法および装置にて排気部10による排気量の適正化が達成できたので、排ガス顕熱を低く抑えられた結果、熱効率の向上につながった。   Since the exhaust amount by the exhaust unit 10 can be optimized by the above method and apparatus, the sensible heat of the exhaust gas can be suppressed to a low level, resulting in an improvement in thermal efficiency.

また、本実施形態1の塗装乾燥装置2によれば、制御部14は、塗装部6による塗装開始後、濃度測定部12が測定する有機溶剤の測定濃度D2が0から最初に変化したときの値に基づいて、到達予測濃度D3を演算する。同様に、本実施形態1の塗装乾燥方法によれば、演算ステップは、塗装開始後において有機溶剤の測定濃度D2が0から最初に変化したときの値に基づいて、到達予測濃度D3を演算する。   Moreover, according to the coating drying apparatus 2 of the first embodiment, the control unit 14 is configured to change the measured concentration D2 of the organic solvent measured by the concentration measuring unit 12 from 0 when the coating unit 6 starts coating. Based on the value, the predicted arrival density D3 is calculated. Similarly, according to the coating drying method of the first embodiment, the calculation step calculates the predicted predicted concentration D3 based on the value when the measured concentration D2 of the organic solvent first changes from 0 after the start of coating. .

上記構成によれば、到達予測濃度D3を演算する際に、測定濃度D2が最初に変化したときの値を用いることで、塗装部6による塗装停止を迅速に判断することができる。これにより、加熱空間9における有機溶剤の濃度上昇を迅速に抑えることができ、安全性をさらに向上させることができる。   According to the said structure, when calculating | requiring the arrival prediction density | concentration D3, the coating stop by the coating part 6 can be rapidly determined by using the value when the measurement density | concentration D2 changes first. Thereby, the raise of the density | concentration of the organic solvent in the heating space 9 can be suppressed rapidly, and safety can further be improved.

さらに、本実施形態1の塗装乾燥装置2によれば、制御部14は、到達予測濃度D3が所定の閾値濃度D4以上である場合に、排気部10による排気量を同量に維持しながら、塗装部6による塗装停止を行う。同様に、本実施形態1の塗装乾燥方法によれば、塗装停止ステップは、到達予測濃度D3が所定の閾値濃度D4以上である場合に、排気量を同量に維持しながら塗装停止を行う。   Furthermore, according to the paint drying apparatus 2 of the first embodiment, the control unit 14 maintains the exhaust amount by the exhaust unit 10 at the same amount when the predicted arrival concentration D3 is equal to or higher than the predetermined threshold concentration D4. Stop painting by the paint unit 6. Similarly, according to the paint drying method of the first embodiment, the paint stop step performs the paint stop while maintaining the exhaust amount at the same amount when the arrival predicted concentration D3 is equal to or higher than the predetermined threshold concentration D4.

上記構成によれば、雰囲気中の有機溶剤濃度が高くなったときに排気量を増加させる場合に比べて、簡便な機構と制御として実施することができる。   According to the said structure, it can implement as a simple mechanism and control compared with the case where an exhaust_gas | exhaustion amount is increased when the organic solvent density | concentration in atmosphere becomes high.

(実施形態2)
本開示に係る実施形態2の塗装乾燥装置30について説明する。実施形態2では、主に実施形態1と異なる点について説明する。実施形態2においては、実施形態1と同一又は同等の構成については同じ符号を付して説明する。また、実施形態2では、実施形態1と重複する記載は省略する。
(Embodiment 2)
The coating drying apparatus 30 according to the second embodiment of the present disclosure will be described. In the second embodiment, differences from the first embodiment will be mainly described. In the second embodiment, the same or equivalent components as those in the first embodiment will be described with the same reference numerals. In the second embodiment, descriptions overlapping with those in the first embodiment are omitted.

実施形態1では、到達予測濃度D3が所定の閾値濃度D4以上である場合に、塗装部6による塗装を停止する制御を行ったが、実施形態2では、塗装の停止に加えて、搬送部4による搬送速度を遅くする制御をあわせて行う点が異なる。   In the first embodiment, when the arrival predicted concentration D3 is equal to or higher than the predetermined threshold concentration D4, control is performed to stop the coating by the coating unit 6, but in the second embodiment, in addition to stopping the coating, the transport unit 4 The difference is that the control to slow down the conveyance speed is also performed.

実施形態2にかかる塗装乾燥装置30の運転例および有機溶剤の濃度推移の一例を図6A−6Dおよび図7にそれぞれ示す。   FIGS. 6A-6D and FIG. 7 show an example of operation of the paint drying apparatus 30 according to the second embodiment and an example of the concentration transition of the organic solvent, respectively.

図6Aに示すように、実施形態1と同様に、塗装部6を塗装状態から待機状態に退避させて、塗装部6による塗装を停止する。これは、図7に示すように、時間t1において濃度測定部12による測定濃度D2に基づき演算した到達予測濃度D3が所定の閾値濃度D4を超えているためである。実施形態2ではさらに、制御部14は、搬送部4による搬送速度を遅くするように制御する(例えば、40〜80%の速度にする)。具体的には、図6Aに示すように、搬送部4を駆動するモータ31の回転速度を低下させる。   As shown in FIG. 6A, as in the first embodiment, the paint unit 6 is retracted from the paint state to the standby state, and the paint by the paint unit 6 is stopped. This is because, as shown in FIG. 7, the arrival predicted density D3 calculated based on the measured density D2 by the density measuring unit 12 at time t1 exceeds the predetermined threshold density D4. In the second embodiment, the control unit 14 further controls the conveyance speed of the conveyance unit 4 to be slow (for example, 40 to 80%). Specifically, as shown in FIG. 6A, the rotational speed of the motor 31 that drives the transport unit 4 is decreased.

図6Aの状態からさらに鋼帯Sが搬送された状態を図6Bに示す。図6Bに示す状態では、加熱空間9の入口から下流側における蒸発終了点32において、有機溶剤の蒸発が終了している。図4Bに示す実施形態1の蒸発終了点22と比較すると、図6Bに示す実施形態2の蒸発終了点32は上流側に位置する。これは、搬送部4による搬送速度を遅くしたことにより、鋼帯Sが少ない搬送距離でも同じ時間加熱されるためである。   FIG. 6B shows a state where the steel strip S is further conveyed from the state of FIG. 6A. In the state shown in FIG. 6B, the evaporation of the organic solvent is completed at the evaporation end point 32 on the downstream side from the inlet of the heating space 9. Compared with the evaporation end point 22 of Embodiment 1 shown in FIG. 4B, the evaporation end point 32 of Embodiment 2 shown in FIG. 6B is located on the upstream side. This is because the steel strip S is heated for the same time even when the steel strip S is short because the transport speed of the transport unit 4 is reduced.

このように、塗装部6による塗装停止に加えて、搬送部4による搬送速度を遅くすることで、単位時間当たりに加熱空間9に入ってくる塗料の量が減少する。これにより、搬送部4による搬送速度を遅くせずに同じ速度に維持する場合に比べて、加熱空間9における有機溶剤の蒸発量34、36(図6C)が少なくなり、有機溶剤の濃度上昇をさらに抑制することができる。図7に示すように、塗装部6による塗装停止(時間t1)以降における加熱空間9内の有機溶剤の実平均濃度D1の上昇をより抑制することができる。実平均濃度D1の最大値Pも実施形態1(図5)よりも下がっている。   In this way, in addition to stopping the coating by the coating unit 6, the amount of paint entering the heating space 9 per unit time is reduced by slowing the conveyance speed by the conveyance unit 4. Thereby, compared with the case where it maintains at the same speed without making the conveyance speed by the conveyance part 4 slow, the evaporation amounts 34 and 36 (FIG. 6C) of the organic solvent in the heating space 9 decrease, and the density | concentration rise of an organic solvent is reduced. Further suppression can be achieved. As shown in FIG. 7, the increase in the actual average concentration D1 of the organic solvent in the heating space 9 after the coating stop (time t1) by the coating unit 6 can be further suppressed. The maximum value P of the actual average density D1 is also lower than that of the first embodiment (FIG. 5).

上述したように、本実施形態2の塗装乾燥装置30によれば、制御部14は、塗装部6による塗装停止に加えて、搬送部4による搬送速度を遅くするように制御する。同様に、本実施形態2の塗装乾燥方法によれば、塗装停止ステップは、塗装の停止に加えて、鋼帯Sの搬送速度を遅くする。   As described above, according to the coating drying apparatus 30 of the second embodiment, the control unit 14 controls to slow down the conveyance speed by the conveyance unit 4 in addition to stopping the painting by the coating unit 6. Similarly, according to the coating drying method of the second embodiment, the coating stopping step slows the conveying speed of the steel strip S in addition to stopping the coating.

このような制御によれば、鋼帯Sの搬送速度を遅くすることで、単位時間当たりに加熱空間9に入る塗料の量を少なくすることができるため、加熱空間9内の有機溶剤の濃度上昇をさらに抑えることができる。これにより、安全性をさらに向上させることができる。   According to such control, since the amount of paint entering the heating space 9 per unit time can be reduced by slowing the conveying speed of the steel strip S, the concentration of the organic solvent in the heating space 9 increases. Can be further suppressed. Thereby, safety can be further improved.

なお、搬送速度を遅くするとは言っても、搬送を停止してしまったのでは、加熱空間9における鋼帯Sの最も上流側の部分までもがオーブン8の加熱温度(例えば300℃)にまで上昇し、加熱空間9で停止した塗料全体から有機溶剤が一斉に蒸発するため、実平均濃度D1が閾値濃度D4を超えてしまう恐れがある(図10に示す蒸発量47を参照)。そこで、搬送速度を遅くする場合は、そういう状態に近づかない速度とすることが有効である。   Even though the transport speed is slowed down, if the transport is stopped, even the most upstream portion of the steel strip S in the heating space 9 reaches the heating temperature of the oven 8 (for example, 300 ° C.). Since the organic solvent evaporates all at once from the entire paint that has risen and stopped in the heating space 9, the actual average concentration D1 may exceed the threshold concentration D4 (see the evaporation amount 47 shown in FIG. 10). Therefore, when the conveyance speed is decreased, it is effective to set the speed so as not to approach such a state.

(実施形態3)
本開示に係る実施形態3の塗装乾燥装置40について説明する。実施形態3では、主に実施形態1と異なる点について説明する。実施形態3においては、実施形態1と同一又は同等の構成については同じ符号を付して説明する。また、実施形態3では、実施形態1と重複する記載は省略する。
(Embodiment 3)
The coating drying apparatus 40 of Embodiment 3 which concerns on this indication is demonstrated. In the third embodiment, differences from the first embodiment will be mainly described. In the third embodiment, the same or equivalent components as those in the first embodiment will be described with the same reference numerals. In the third embodiment, descriptions overlapping with those in the first embodiment are omitted.

実施形態1では、到達予測濃度D3が所定の閾値濃度D4以上である場合に、塗装の停止のみ行うように制御したが、実施形態3では、塗装の停止に加えて、既に塗装されてしまった塗料を乾燥・焼付前に除去する点が異なる。   In the first embodiment, control is performed so as to only stop the coating when the predicted concentration D3 is equal to or higher than the predetermined threshold concentration D4. However, in the third embodiment, in addition to stopping the coating, the coating has already been performed. The difference is that the paint is removed before drying and baking.

実施形態3にかかる塗装乾燥装置40の運転例および有機溶剤の濃度推移の一例を図8A−8Dおよび図9に示す。   8A-8D and FIG. 9 show an example of operation of the paint drying apparatus 40 according to the third embodiment and an example of the concentration transition of the organic solvent.

図8A−8Dに示すように、実施形態3における塗装乾燥装置40は、除去部42を備える。除去部42は、塗布位置7にて鋼帯Sに塗布された塗料をオーブン8の加熱空間9よりも上流側で除去する部材である。図8A−8Dに示す除去部42は上下に昇降可能なプレートを有し、プレートの先端を鋼帯Sの表面に押し付けることで鋼帯S上の塗料を掻き取る装置である。除去部42のプレートの昇降は、制御部14によって制御される。また、プレートの下方には受け皿43が設けられており、プレートによって掻き取られた塗料は下方の受け皿43に流れ落ちる。   As illustrated in FIGS. 8A to 8D, the coating drying apparatus 40 according to the third embodiment includes a removing unit 42. The removing unit 42 is a member that removes the paint applied to the steel strip S at the application position 7 on the upstream side of the heating space 9 of the oven 8. The removal part 42 shown to FIG. 8A-8D has a plate which can be moved up and down, and is an apparatus which scrapes the coating material on the steel strip S by pressing the front-end | tip of a plate against the surface of the steel strip S. FIG. The lifting / lowering of the plate of the removing unit 42 is controlled by the control unit 14. A tray 43 is provided below the plate, and the paint scraped off by the plate flows down to the tray 43 below.

図9に示すように、時間t1において測定濃度D2に基づき演算した到達予測濃度D3が所定の閾値濃度D4を超えているため、図8Aに示すように、塗装部6を塗装状態から待機状態に退避させて、塗装部6による塗装を停止する。   As shown in FIG. 9, since the predicted arrival density D3 calculated based on the measured density D2 at time t1 exceeds a predetermined threshold density D4, as shown in FIG. 8A, the coating unit 6 is changed from the painted state to the standby state. Withdrawing, the painting by the painting unit 6 is stopped.

本実施形態3では、塗装部6による塗装の停止に加えて、除去部42による塗料の除去を行う。具体的には、図8Aに示すように、除去部42のプレートを下降させて鋼帯Sの表面に接触させることで、プレートの先端にて塗料を掻き取る。これにより、オーブン8の加熱空間9には、塗料が塗布されていない状態の鋼帯Sが搬送されるようになる。   In the third embodiment, the paint is removed by the removing unit 42 in addition to the stop of painting by the painting unit 6. Specifically, as shown in FIG. 8A, the plate of the removing portion 42 is lowered and brought into contact with the surface of the steel strip S, whereby the paint is scraped off at the tip of the plate. Thereby, the steel strip S in the state where the paint is not applied is conveyed to the heating space 9 of the oven 8.

図8Bは、図8Aに示す状態から鋼帯Sがさらに搬送された状態を示す。図8Bに示す状態では、蒸発終了点44において有機溶剤の蒸発が終了している。図4Bに示す実施形態1の蒸発終了点22と比較すると、図8Bに示す実施形態3の蒸発終了点44は同じ点に位置する。これは、実施形態3でも実施形態1と同様に、搬送部4による搬送速度を変更せずに同速度に維持しているためである。   FIG. 8B shows a state in which the steel strip S is further conveyed from the state shown in FIG. 8A. In the state shown in FIG. 8B, the evaporation of the organic solvent is completed at the evaporation end point 44. Compared to the evaporation end point 22 of Embodiment 1 shown in FIG. 4B, the evaporation end point 44 of Embodiment 3 shown in FIG. 8B is located at the same point. This is because the third embodiment maintains the same speed without changing the transport speed by the transport section 4 as in the first embodiment.

一方で、除去部42による塗料の除去を行っているため、図8Bに示すように、加熱空間9における鋼帯Sの上流側の部分では塗料が塗布されておらず、有機溶剤の蒸発は生じていない。図8Bに示す塗装終了点48は、図4Bに示す塗装終了点29よりも、同じ鋼帯Sにおける下流側の位置に移動している。また、図8Bに示す有機溶剤の蒸発量46は、図4Bに示す有機溶剤の蒸発量27と比較すると大幅に少なくなっている。その後、図8Cに示すように、除去部42のプレートは上昇して元の位置に戻り、図8Dに示すように、塗布された部分が排出される。   On the other hand, since the paint is removed by the removing unit 42, as shown in FIG. 8B, no paint is applied to the upstream portion of the steel strip S in the heating space 9, and the organic solvent evaporates. Not. The coating end point 48 shown in FIG. 8B has moved to a downstream position in the same steel strip S than the coating end point 29 shown in FIG. 4B. Further, the evaporation amount 46 of the organic solvent shown in FIG. 8B is significantly smaller than the evaporation amount 27 of the organic solvent shown in FIG. 4B. Thereafter, as shown in FIG. 8C, the plate of the removal section 42 is raised and returned to the original position, and the applied portion is discharged as shown in FIG. 8D.

このように、塗装部6による塗装停止に加えて、除去部42による塗料の除去を行うことで、単位時間当たりに加熱空間9に入ってくる塗料の量を減少させることができる(実施形態3では0にする)。これにより、加熱空間9における有機溶剤の蒸発量46が少なくなり、有機溶剤の濃度上昇を抑制することができる。図9に示すように、塗装部6による塗装停止(時間t1)以降における加熱空間9内の有機溶剤の実平均濃度D1の上昇がさらに抑制されており、実平均濃度D1の最大値Pもさらに低くなっている。このようにして、より安全な制御が可能となる。   In this way, in addition to stopping the coating by the coating unit 6, the removal of the coating by the removing unit 42 can reduce the amount of the coating that enters the heating space 9 per unit time (Embodiment 3). Then set it to 0). Thereby, the evaporation amount 46 of the organic solvent in the heating space 9 is reduced, and an increase in the concentration of the organic solvent can be suppressed. As shown in FIG. 9, the increase in the actual average concentration D1 of the organic solvent in the heating space 9 after the coating stop (time t1) by the coating unit 6 is further suppressed, and the maximum value P of the actual average concentration D1 is further increased. It is low. In this way, safer control is possible.

上述したように、本実施形態3の塗装乾燥装置40は、塗装部6によって鋼帯に塗布された塗料をオーブン8の加熱空間9よりも上流側で除去する除去部42をさらに備える。さらに、制御部14は、到達予測濃度D3が所定の閾値濃度D4以上である場合に、塗装部6による塗装停止に加えて、除去部42による塗料の除去を行うように制御する。同様に、本実施形態3の塗装乾燥方法によれば、塗装停止ステップは、塗装の停止に加えて、塗装位置7にて鋼帯Sに塗布された塗料を加熱空間9よりも上流側で除去するステップを含む。   As described above, the coating drying apparatus 40 of the third embodiment further includes the removing unit 42 that removes the paint applied to the steel strip by the coating unit 6 on the upstream side of the heating space 9 of the oven 8. Furthermore, the control unit 14 performs control so that the removal unit 42 removes the paint in addition to stopping the painting by the painting unit 6 when the predicted arrival density D3 is equal to or higher than the predetermined threshold concentration D4. Similarly, according to the paint drying method of the third embodiment, the paint stop step removes the paint applied to the steel strip S at the paint position 7 upstream of the heating space 9 in addition to the stop of the paint. Including the steps of:

上記構成によれば、鋼帯Sに塗布された塗料(空走区間16における塗料)をオーブン8の加熱空間9よりも上流側で除去することで、単位時間当たりに加熱空間9に入る塗料の量を少なくすることができる。これにより、加熱空間9内の有機溶剤の濃度上昇をさらに抑えることができ、安全性をさらに向上させることができる。   According to the above configuration, the paint applied to the steel strip S (the paint in the idling section 16) is removed upstream of the heating space 9 of the oven 8, so that the paint entering the heating space 9 per unit time is removed. The amount can be reduced. Thereby, the raise of the density | concentration of the organic solvent in the heating space 9 can further be suppressed, and safety can further be improved.

以上、上述の実施形態1−3を挙げて本開示の発明を説明したが、本開示の発明は上述の実施形態1−3に限定されない。例えば、上記実施形態1−3では、搬送部4が複数の回転ロールにより構成される場合について説明したが、このような場合に限らず、鋼帯Sを連続搬送可能であれば、任意の構成を採用してもよい。また、上記実施形態1−3では塗装部6がロールコータにより構成される場合について説明したが、このような場合に限らず、鋼帯Sに塗料を塗布可能であれば、任意の構成を採用してもよい(例えば、スリットノズル)。また、上記実施形態1−3では、排気部10がダクト10aおよびブロワ10bを備えて構成される場合について説明したが、このような場合に限らず、オーブン8内の加熱空間9を排気可能であれば、任意の構成を採用してもよい。   As described above, the invention of the present disclosure has been described with reference to the above-described embodiment 1-3, but the invention of the present disclosure is not limited to the above-described embodiment 1-3. For example, in Embodiment 1-3, the case where the transport unit 4 is configured by a plurality of rotating rolls has been described. However, the present invention is not limited to such a case, and any configuration is possible as long as the steel strip S can be continuously transported. May be adopted. Moreover, although the said Embodiment 1-3 demonstrated the case where the coating part 6 was comprised with a roll coater, not only in such a case but if a coating material can be apply | coated to the steel strip S, arbitrary structures are employ | adopted. (For example, a slit nozzle). Further, in Embodiment 1-3 described above, the case where the exhaust unit 10 includes the duct 10a and the blower 10b has been described. However, the present invention is not limited to this, and the heating space 9 in the oven 8 can be exhausted. Any configuration may be employed as long as it exists.

また、上記実施形態1−3では、塗装乾燥装置2として、鋼帯Sを乾燥・焼付処理する装置である場合について説明したが、このような場合に限らず、焼付処理を行わずに乾燥処理のみを行う塗装乾燥装置であっても適用可能である。   Moreover, although the said Embodiment 1-3 demonstrated the case where it was an apparatus which dries and bakes the steel strip S as the coating drying apparatus 2, it is not restricted to such a case, A drying process is performed without performing a baking process. The present invention can be applied even to a paint drying apparatus that performs only the above.

また、上記実施形態1−3では、濃度測定部12を加熱空間9に直接的に接続する場合について説明したが、このような場合に限らず例えば、排気部10の排気ダクト10aの途中に濃度測定部を設けてもよい。このような場合であっても、加熱空間9内の雰囲気の有機溶剤濃度を測定可能である。このように、加熱空間9内の雰囲気の有機溶剤濃度を間接的に測定してもよい。   In Embodiment 1-3, the case where the concentration measuring unit 12 is directly connected to the heating space 9 has been described. However, the present invention is not limited to such a case. For example, the concentration is measured in the middle of the exhaust duct 10a of the exhaust unit 10. A measurement unit may be provided. Even in such a case, the concentration of the organic solvent in the atmosphere in the heating space 9 can be measured. Thus, the organic solvent concentration in the atmosphere in the heating space 9 may be indirectly measured.

また、上記実施形態3では、除去部42が昇降可能なプレートを有し、オーブン8の入口に取り付けられる場合について説明したが、このような場合に限らない。オーブン8の加熱空間9よりも上流側で塗料を除去可能であれば、例えば未乾燥で液状の塗料を吸引する機構など、任意の構成の除去部を採用してもよい。   Moreover, although the said Embodiment 3 demonstrated the case where the removal part 42 had a plate which can be raised / lowered and was attached to the inlet_port | entrance of the oven 8, it is not restricted to such a case. As long as the paint can be removed on the upstream side of the heating space 9 of the oven 8, for example, a removal unit having an arbitrary configuration such as a mechanism for sucking an undried liquid paint may be employed.

また、上記実施形態1−3では、塗装部6による塗装開始後、濃度測定部12が測定した有機溶剤の測定濃度D2が0から最初に変化したときの値に基づいて、到達予測濃度D3を演算する場合について説明したが、このような場合に限らない。例えば、有機溶剤濃度の測定を継続的に行うとともに、任意のタイミングの測定値に基づいて到達予測濃度D3を演算してもよい。   Further, in Embodiment 1-3, the predicted predicted concentration D3 is set based on the value when the measured concentration D2 of the organic solvent measured by the concentration measuring unit 12 first changes from 0 after the coating unit 6 starts painting. Although the case of calculating has been described, it is not limited to such a case. For example, the organic solvent concentration may be continuously measured, and the predicted arrival concentration D3 may be calculated based on the measurement value at an arbitrary timing.

また、上記実施形態2、3では、単位時間当たりに加熱空間9に入ってくる塗料の量を少なくするために、搬送部4による搬送速度を遅くする制御(実施形態2)、あるいは除去部42により鋼帯S上の塗料を除去する制御を行う場合(実施形態3)について説明したが、このような場合に限らない。単位時間当たりに加熱空間9に入る塗料の量を少なくすることができる制御であれば、その他の制御を実行してもよい。   In the second and third embodiments, in order to reduce the amount of paint that enters the heating space 9 per unit time, control for slowing the transport speed by the transport unit 4 (second embodiment), or removal unit 42. The case where the control for removing the paint on the steel strip S is performed (Embodiment 3) has been described. Other controls may be executed as long as the amount of paint entering the heating space 9 per unit time can be reduced.

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

本開示は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。また、各実施形態における要素の組合せや順序の変化は、本開示の範囲及び思想を逸脱することなく実現し得るものである。   While the present disclosure has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present disclosure as set forth in the appended claims. In addition, combinations of elements and changes in the order in each embodiment can be realized without departing from the scope and spirit of the present disclosure.

本開示は、鋼帯を連続搬送しながら塗装して乾燥・焼付処理する塗装乾燥装置および塗装乾燥方法であれば適用可能である。   The present disclosure is applicable as long as it is a coating drying apparatus and a coating drying method for coating and drying / baking a steel strip while continuously conveying it.

2、30、40 塗装乾燥装置
4 搬送部
6 塗装部
7 塗装位置
8 オーブン
9 加熱空間
10 排気部
10a ダクト
10b ブロワ
12 濃度測定部
14 制御部
16 空走区間
18、20、24、26、27、28、34、36、46、47 蒸発量
22、32、44 蒸発終了点
23 乾燥領域
25 焼付領域
29、48 塗装終了点
31 モータ
42 除去部
43 受け皿
A 搬送方向
D1 実平均濃度
D2 測定濃度
D3 到達予測濃度
D4 閾値濃度
P 実平均濃度の最大値
S 鋼帯
2, 30, 40 Coating / drying device 4 Conveying unit 6 Coating unit 7 Coating position 8 Oven 9 Heating space 10 Exhaust unit 10a Duct 10b Blower 12 Concentration measuring unit 14 Control unit 16 Free running section 18, 20, 24, 26, 27, 28, 34, 36, 46, 47 Evaporation amount 22, 32, 44 Evaporation end point 23 Drying area 25 Baking area 29, 48 Coating end point 31 Motor 42 Removal part 43 Dish tray A Transport direction D1 Actual average density D2 Measurement density D3 reach Predicted concentration D4 Threshold concentration P Maximum value of actual average concentration S Steel strip

Claims (8)

鋼帯を連続搬送しながら塗装して乾燥処理する塗装乾燥装置であって、
前記鋼帯を搬送する搬送部と、
搬送されている前記鋼帯に対して有機溶剤を含む塗料を塗装位置にて塗布して塗装する塗装部と、
前記塗装位置よりも下流側において前記鋼帯を乾燥処理するための加熱空間を形成するオーブンと、
前記加熱空間を排気する排気部と、
前記加熱空間における前記有機溶剤の有機溶剤濃度を測定する濃度測定部と、
前記塗装乾燥装置の運転を制御する制御部と、を備え、
前記制御部は、前記濃度測定部が測定した前記有機溶剤濃度に基づいて到達予測濃度を演算し、前記到達予測濃度が所定の閾値濃度以上である場合に、前記搬送部による搬送を継続しながら前記塗装部による塗装を停止するように制御する、塗装乾燥装置。
A coating and drying device that performs coating and drying while continuously conveying steel strips,
A transport unit for transporting the steel strip;
A coating part for applying a paint containing an organic solvent to the steel strip being transported at a painting position;
An oven for forming a heating space for drying the steel strip on the downstream side of the coating position;
An exhaust part for exhausting the heating space;
A concentration measuring unit for measuring the organic solvent concentration of the organic solvent in the heating space;
A control unit for controlling the operation of the paint drying apparatus,
The control unit calculates a predicted arrival concentration based on the organic solvent concentration measured by the concentration measurement unit, and continues the conveyance by the conveyance unit when the arrival predicted concentration is a predetermined threshold concentration or more. A paint drying device that controls to stop painting by the painting unit.
前記制御部は、前記到達予測濃度が前記閾値濃度以上である場合に、前記塗装部による塗装停止に加えて、前記搬送部による搬送速度を遅くするように制御する、請求項1に記載の塗装乾燥装置。   The said control part is a coating of Claim 1 which controls so that the conveyance speed by the said conveyance part may be slowed in addition to the coating stop by the said coating part, when the said arrival density | concentration is more than the said threshold density | concentration. Drying equipment. 前記塗装部によって前記鋼帯に塗布された前記塗料を前記加熱空間よりも上流側で除去する除去部をさらに備え、
前記制御部は、前記到達予測濃度が前記閾値濃度以上である場合に、前記塗装部による塗装停止に加えて、前記除去部により塗料の除去を行うように制御する、請求項1又は2に記載の塗装乾燥装置。
A removal unit for removing the paint applied to the steel strip by the coating unit on the upstream side of the heating space;
3. The control unit according to claim 1, wherein, when the predicted predicted concentration is equal to or higher than the threshold concentration, in addition to stopping the coating by the coating unit, the control unit performs control so that the paint is removed by the removing unit. Paint drying equipment.
前記制御部は、前記到達予測濃度が前記閾値濃度以上である場合に、前記排気部による排気量を同量に維持しながら前記塗装部による塗装停止を行うように制御する、請求項1から3のいずれか1つに記載の塗装乾燥装置。   The said control part is controlled to perform the coating stop by the said coating part, maintaining the exhaust_gas | exhaustion amount by the said exhaust part at the same amount, when the said arrival density | concentration is more than the said threshold density | concentration. The paint drying apparatus as described in any one of these. 鋼帯を連続搬送しながら塗装して乾燥処理する塗装乾燥方法であって、
前記鋼帯を搬送するステップと、
搬送されている前記鋼帯に対して有機溶剤を含む塗料を塗装位置にて塗布する塗装ステップと、
前記塗装位置よりも下流側において前記鋼帯を加熱空間にて乾燥処理する乾燥ステップと、
前記加熱空間を排気する排気ステップと、
前記加熱空間における前記有機溶剤の有機溶剤濃度を測定する測定ステップと、
測定した前記有機溶剤濃度に基づいて、到達予測濃度を演算する演算ステップと、
前記到達予測濃度が所定の閾値濃度以上である場合に、前記鋼帯の搬送を継続しながら塗装を停止する塗装停止ステップと、
を含む、塗装乾燥方法。
A coating and drying method in which a steel strip is coated and dried while being continuously conveyed,
Conveying the steel strip;
A coating step of applying a coating containing an organic solvent to the steel strip being transported at a coating position;
A drying step of drying the steel strip in a heating space on the downstream side of the coating position;
An exhaust step for exhausting the heating space;
A measuring step for measuring an organic solvent concentration of the organic solvent in the heating space;
Based on the measured organic solvent concentration, a calculation step for calculating a predicted concentration reached;
When the predicted arrival concentration is equal to or higher than a predetermined threshold concentration, a coating stop step for stopping the coating while continuing to convey the steel strip;
Including a paint drying method.
塗装停止ステップは、前記到達予測濃度が前記閾値濃度以上である場合に、塗装の停止に加えて、前記鋼帯の搬送速度を遅くするステップを含む、請求項5に記載の連続塗装乾燥方法。   The continuous coating drying method according to claim 5, wherein the coating stopping step includes a step of slowing a conveyance speed of the steel strip in addition to stopping the coating when the predicted predicted concentration is equal to or higher than the threshold concentration. 塗装停止ステップは、前記到達予測濃度が前記閾値濃度以上である場合に、塗装の停止に加えて、前記塗装位置にて前記鋼帯に塗布された前記塗料を前記加熱空間よりも上流側で除去するステップを含む、請求項5又は6に記載の連続塗装乾燥方法。   The coating stop step removes the paint applied to the steel strip at the coating position on the upstream side of the heating space in addition to stopping the coating when the predicted predicted concentration is equal to or higher than the threshold concentration. The continuous paint drying method of Claim 5 or 6 including the step to perform. 塗装停止ステップは、前記到達予測濃度が前記閾値濃度以上である場合に、排気量を同量に維持しながら塗装の停止を行う、請求項5から7のいずれか1つに記載の連続塗装乾燥方法。   The continuous paint drying according to any one of claims 5 to 7, wherein the paint stop step stops the paint while maintaining the exhaust amount equal when the predicted arrival concentration is equal to or higher than the threshold concentration. Method.
JP2016240543A 2016-12-12 2016-12-12 Paint drying apparatus and paint drying method Active JP6280194B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016240543A JP6280194B1 (en) 2016-12-12 2016-12-12 Paint drying apparatus and paint drying method
CN201780076483.5A CN110114150B (en) 2016-12-12 2017-11-02 Coating and drying device and coating and drying method
KR1020197017928A KR102391214B1 (en) 2016-12-12 2017-11-02 Painting drying device and painting drying method
MYPI2019003291A MY196677A (en) 2016-12-12 2017-11-02 Paint Application and Drying Device and Paint Application and Drying Method
PCT/JP2017/039803 WO2018110137A1 (en) 2016-12-12 2017-11-02 Paint application and drying device and paint application and drying method
TW106140307A TWI748003B (en) 2016-12-12 2017-11-21 Coating and drying device and coating and drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240543A JP6280194B1 (en) 2016-12-12 2016-12-12 Paint drying apparatus and paint drying method

Publications (2)

Publication Number Publication Date
JP6280194B1 JP6280194B1 (en) 2018-02-14
JP2018094499A true JP2018094499A (en) 2018-06-21

Family

ID=61195789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240543A Active JP6280194B1 (en) 2016-12-12 2016-12-12 Paint drying apparatus and paint drying method

Country Status (6)

Country Link
JP (1) JP6280194B1 (en)
KR (1) KR102391214B1 (en)
CN (1) CN110114150B (en)
MY (1) MY196677A (en)
TW (1) TWI748003B (en)
WO (1) WO2018110137A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011146B (en) * 2017-11-17 2021-04-23 四川长虹电器股份有限公司 Recycling method of waste lithium battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019785B1 (en) * 1970-11-17 1975-07-09
JPS58124113A (en) * 1982-01-19 1983-07-23 Chugai Ro Kogyo Kaisha Ltd Atmosphere control for oven
JPS5941772A (en) * 1982-08-31 1984-03-08 井上金属工業株式会社 Method of continuously drying organic solvent applied material
JPH0239938A (en) * 1988-06-07 1990-02-08 W R Grace & Co Control system of air floating drier with built-in type after burner
US4926567A (en) * 1985-07-04 1990-05-22 Fuji Photo Film Co., Ltd. Process and apparatus for drying coated web
JPH04193371A (en) * 1990-11-28 1992-07-13 Kawasaki Steel Corp Heat-treating furnace of continuous strip coating line, its operation and method for controlling heat treatment
JPH0838855A (en) * 1994-07-29 1996-02-13 Chugai Ro Co Ltd Operation of drying and baking oven
JP2005262132A (en) * 2004-03-19 2005-09-29 Jfe Steel Kk Atmospheric temperature adjusting method in heating furnace as well as drying and baking apparatus of baked metal strip
JP2007268393A (en) * 2006-03-31 2007-10-18 Jfe Mechanical Co Ltd Dehumidification for paint chambers, and organic solvent treatment system
JP2013137139A (en) * 2011-12-28 2013-07-11 Dainippon Screen Mfg Co Ltd Drying device and heat treatment system
JP2013139889A (en) * 2011-12-28 2013-07-18 Nissan Motor Co Ltd Electrode drying method and electrode drying device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030039B2 (en) * 1994-10-27 2006-04-18 Asml Holding N.V. Method of uniformly coating a substrate
JP3563241B2 (en) * 1997-08-08 2004-09-08 ジャパン・エア・ガシズ株式会社 Drying equipment for solvent-containing objects
JP4602699B2 (en) * 2004-05-28 2010-12-22 アルプス電気株式会社 Spray coating apparatus and spray coating method
JP4805024B2 (en) * 2006-05-29 2011-11-02 株式会社アルバック Printing apparatus and printing method
JP4881750B2 (en) * 2007-01-19 2012-02-22 富士フイルム株式会社 Method and apparatus for forming coating film
JP5477524B2 (en) * 2007-09-11 2014-04-23 凸版印刷株式会社 Drying method and apparatus
WO2009107310A1 (en) * 2008-02-29 2009-09-03 株式会社康井精機 Apparatus for production of composite material sheet
CN101703995B (en) * 2008-10-24 2012-09-19 汕头市远东轻化装备有限公司 Drying device of coating complex machine
CN201659077U (en) * 2009-09-10 2010-12-01 简甦 Environment-friendly drying oven cover
CN203408853U (en) * 2013-08-15 2014-01-29 湖南深泰虹科技有限公司 Ventilating device of circuit board coating compound machine
CN203816879U (en) * 2014-04-08 2014-09-10 广东生益科技股份有限公司 Coating drying oven capable of recovering heat
CN105817406A (en) * 2016-05-24 2016-08-03 深圳市善营自动化股份有限公司 Gas exhaust control system of coating machine and coating machine with same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019785B1 (en) * 1970-11-17 1975-07-09
JPS58124113A (en) * 1982-01-19 1983-07-23 Chugai Ro Kogyo Kaisha Ltd Atmosphere control for oven
JPS5941772A (en) * 1982-08-31 1984-03-08 井上金属工業株式会社 Method of continuously drying organic solvent applied material
US4926567A (en) * 1985-07-04 1990-05-22 Fuji Photo Film Co., Ltd. Process and apparatus for drying coated web
JPH0239938A (en) * 1988-06-07 1990-02-08 W R Grace & Co Control system of air floating drier with built-in type after burner
JPH04193371A (en) * 1990-11-28 1992-07-13 Kawasaki Steel Corp Heat-treating furnace of continuous strip coating line, its operation and method for controlling heat treatment
JPH0838855A (en) * 1994-07-29 1996-02-13 Chugai Ro Co Ltd Operation of drying and baking oven
JP2005262132A (en) * 2004-03-19 2005-09-29 Jfe Steel Kk Atmospheric temperature adjusting method in heating furnace as well as drying and baking apparatus of baked metal strip
JP2007268393A (en) * 2006-03-31 2007-10-18 Jfe Mechanical Co Ltd Dehumidification for paint chambers, and organic solvent treatment system
JP2013137139A (en) * 2011-12-28 2013-07-11 Dainippon Screen Mfg Co Ltd Drying device and heat treatment system
JP2013139889A (en) * 2011-12-28 2013-07-18 Nissan Motor Co Ltd Electrode drying method and electrode drying device

Also Published As

Publication number Publication date
KR102391214B1 (en) 2022-04-26
MY196677A (en) 2023-04-29
CN110114150B (en) 2021-06-25
TWI748003B (en) 2021-12-01
JP6280194B1 (en) 2018-02-14
WO2018110137A1 (en) 2018-06-21
TW201825192A (en) 2018-07-16
CN110114150A (en) 2019-08-09
KR20190095303A (en) 2019-08-14

Similar Documents

Publication Publication Date Title
US10137538B2 (en) Liquid coating device
JP7350750B2 (en) Web coating and calendering systems and methods
JP5929190B2 (en) Electrode drying method and electrode drying apparatus
JP2009078250A (en) Coating treatment method, coating treatment device, and memory medium readable by computer
KR20150058351A (en) Manufacturing method for secondary battery electrode, and hot air drying furnace
JP6280194B1 (en) Paint drying apparatus and paint drying method
JP2013088048A (en) Electrode drying method and electrode drying device
CN106475277A (en) Applying device and coating method
JP2017524825A (en) Method for manufacturing steel strip for packaging and related equipment
CN109121402A (en) Flux coating device and scolding tin
JP2005205268A (en) Coating apparatus and coating method
JP5924570B2 (en) Drying apparatus and drying method
JP5910188B2 (en) Battery electrode manufacturing method and manufacturing apparatus
JP2014127438A (en) Method of manufacturing electrode and dryer
CN206543696U (en) A kind of apparatus for coating for being suitable for porous substrate
JP2019122928A (en) Coating apparatus
JP2009170623A (en) Treatment method for substrate, program, and computer storage medium
JP4022673B2 (en) Method for drying coating film and method for producing sheet for inkjet recording
EP3951299A1 (en) Drying system and method for manufacturing coated metal plate
CN209715486U (en) A kind of roll-to-roll coating apparatus of substrate
JP2007271147A (en) Sheet drying machine, and sheet forming device including it
JP2003294364A (en) Heating dryer
CN109807009A (en) A kind of roll-to-roll coating apparatus of substrate
JP2755466B2 (en) Coating machine moisture control method
JPS6247425B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180118

R150 Certificate of patent or registration of utility model

Ref document number: 6280194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250